JP6450939B2 - Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator - Google Patents

Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator Download PDF

Info

Publication number
JP6450939B2
JP6450939B2 JP2015168580A JP2015168580A JP6450939B2 JP 6450939 B2 JP6450939 B2 JP 6450939B2 JP 2015168580 A JP2015168580 A JP 2015168580A JP 2015168580 A JP2015168580 A JP 2015168580A JP 6450939 B2 JP6450939 B2 JP 6450939B2
Authority
JP
Japan
Prior art keywords
motor
compressor
brushless
winding
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015168580A
Other languages
Japanese (ja)
Other versions
JP2017046512A (en
Inventor
田中 秀尚
秀尚 田中
義典 竹岡
義典 竹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015168580A priority Critical patent/JP6450939B2/en
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to SG11201800798TA priority patent/SG11201800798TA/en
Priority to CN201680046997.1A priority patent/CN107960145B/en
Priority to PCT/JP2016/003696 priority patent/WO2017038024A1/en
Priority to EP16841065.2A priority patent/EP3343751B1/en
Priority to BR112018003257-3A priority patent/BR112018003257B1/en
Publication of JP2017046512A publication Critical patent/JP2017046512A/en
Priority to US15/897,587 priority patent/US10637377B2/en
Application granted granted Critical
Publication of JP6450939B2 publication Critical patent/JP6450939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明はインバータ制御によりブラシレスDCモータを使用した圧縮機を駆動するモータ駆動装置、これを用いた圧縮機の駆動装置、および冷蔵庫に関するものである。   The present invention relates to a motor drive device for driving a compressor using a brushless DC motor by inverter control, a drive device for a compressor using the same, and a refrigerator.

従来、この種のモータ駆動装置およびこれを用いた冷蔵庫は、ブラシレスDCモータの回転子の回転位置を検出し、その回転位置を基にして、通電する固定子巻き線を切り替えるようにしている。圧縮機等の特殊な環境下でのブラシレスDCモータの駆動では、回転子位置の検出は、エンコーダやホール素子などの検出器を用いず、インバータ出力電圧とインバータ入力電圧の1/2を比較して、その大小関係が変化するポイントを、検出するデジタルセンサレス方式が一般的である。(たとえば非特許文献1)
図4は非特許文献1のモータ駆動装置のブロック図を示すものである。
Conventionally, this type of motor drive device and a refrigerator using the same detect the rotational position of the rotor of the brushless DC motor, and switch the stator winding to be energized based on the rotational position. When driving a brushless DC motor in a special environment such as a compressor, the rotor position is detected by comparing 1/2 the inverter output voltage and the inverter input voltage without using a detector such as an encoder or hall element. Thus, a digital sensorless system that detects a point where the magnitude relationship changes is common. (For example, Non-Patent Document 1)
FIG. 4 shows a block diagram of the motor drive device of Non-Patent Document 1.

図4において、商用電源1を入力として整流平滑回路2により交流電圧を直流電圧に変換しインバータ3に入力する。インバータ3は6個のスイッチング素子(3aから3f)を3相フルブリッジで接続するとともに、各スイッチング素子にはダイオード(3gから3l)が逆方向に並列接続され、直流入力を3相交流電力に変換し、ブラシレスDCモータ4に電力を供給する。位置検出回路300はブラシレスDCモータ4の端子電圧から回転子の相対位置を検出する。   In FIG. 4, an AC voltage is converted into a DC voltage by a rectifying / smoothing circuit 2 with a commercial power supply 1 as an input and input to an inverter 3. Inverter 3 has six switching elements (3a to 3f) connected by a three-phase full bridge, and diodes (3g to 3l) are connected in parallel to each switching element in the reverse direction, and the DC input is converted to three-phase AC power. The power is supplied to the brushless DC motor 4 after conversion. The position detection circuit 300 detects the relative position of the rotor from the terminal voltage of the brushless DC motor 4.

図5は非特許文献1のモータ駆動装置の位置検出回路300の回路図である。図5において、非特許文献1における位置検出回路300は、コンパレータにより実現する比較部301であり、非反転入力にはブラシレスDCモータの端子電圧が入力され、反転入力には基準電圧としてインバータ入力電圧の1/2を入力する。位置信号は、固定子巻き線のうち非通電相のインバータ出力端子に現れる誘起電圧が基準電圧との大小関係が変化するタイミング(すなわち誘起電圧のゼロクロスポイント)を検出する。   FIG. 5 is a circuit diagram of the position detection circuit 300 of the motor drive device of Non-Patent Document 1. In FIG. 5, the position detection circuit 300 in Non-Patent Document 1 is a comparison unit 301 realized by a comparator. The terminal voltage of the brushless DC motor is input to the non-inverting input, and the inverter input voltage is used as the reference voltage at the inverting input. Is input. The position signal detects the timing at which the induced voltage appearing at the inverter output terminal of the non-conduction phase of the stator winding changes in magnitude relationship with the reference voltage (that is, the zero cross point of the induced voltage).

図6は非特許文献1によるセンサレス駆動時の電流波形A、端子電圧波形Bを示しており、端子電圧波形Bを基準電圧(インバータ入力の1/2電圧)の大小関係を比較した比較結果がCであり、位置検出部の出力波形Dは、波形CからPWM制御によるスイッチングの影響と、転流により電圧供給が遮断された巻線のエネルギを還流電流として放出する際に発生するスパイク電圧XおよびYの影響を波形処理により除去したものである。この波形Dの信号状態が変化するタイミング(立ち上がりエッジまたは、立下りエッジ)を位置検出として検出し、この位置信号を基にした転流を繰り返すことでブラシレスDCモータ4を安定的に駆動することが出来る。   FIG. 6 shows a current waveform A and a terminal voltage waveform B at the time of sensorless driving according to Non-Patent Document 1. A comparison result comparing the magnitude relationship between the terminal voltage waveform B and the reference voltage (1/2 voltage of the inverter input) is shown. The output waveform D of the position detection unit is the influence of switching by the PWM control from the waveform C, and the spike voltage X generated when the energy of the winding whose voltage supply is cut off by commutation is released as the return current. And the influence of Y are removed by waveform processing. The timing at which the signal state of the waveform D changes (rising edge or falling edge) is detected as position detection, and the brushless DC motor 4 is stably driven by repeating commutation based on this position signal. I can do it.

図7は特許文献1に記載された従来のモータ駆動装置を示すものである。図7に示すように、永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータ4と、前記三相巻線に電力を供給するインバータ3と、前記インバータを駆動するドライブ部111と、前記ブラシレスDCモータ4の固定子巻線に発生する誘起電圧を基に回転子の相対的な回転位置を検出し位置信号を出力する位置検出部205と、前記位置検出部205からの出力信号を基にデューティ制御を行いながら矩形波または正弦波、或いは、それらに準じる波形を出力する第1波形発生部207と、前記ブラシレスDCモータ4へ矩形波または正弦波、或いはそれらに準じる波形を出力する第2波形発生部209と、前記ブラシレスDCモータ4が所定回転数以下の低速で回転している時は前記第1波形発生部207の出力でインバータ3を駆動させ、前記ブラシレスDCモータ4が所定回転数を
超える高速で回転している時は第2波形発生部209の出力でインバータ3を駆動させる切替判定部210とを有し、第2波形発生部209による駆動の際、所定のタイミングでブラシレスDCモータ4の誘起電圧を検出するためのパターンを出力する様に構成することで、低速ではブラシレスDCモータ4を位置検出部205の信号に基づいて第1波形発生部207によってセンサレス駆動による高効率駆動を行い、高速では第2波形発生部209による周波数固定の同期駆動を行いつつ、定期的に位置検出部205によりブラシレスDCモータ4の誘起電圧ゼロクロス検出から回転子位置情報を得て転流タイミングを決定するので、同期駆動による高負荷高速駆動時も安定した駆動性能を得るようにしている。
FIG. 7 shows a conventional motor driving device described in Patent Document 1. In FIG. As shown in FIG. 7, a brushless DC motor 4 comprising a rotor having a permanent magnet and a stator having a three-phase winding, an inverter 3 for supplying power to the three-phase winding, and a drive for driving the inverter A position detection unit 205 that detects a relative rotation position of the rotor based on an induced voltage generated in the stator winding of the brushless DC motor 4 and outputs a position signal; The first waveform generator 207 that outputs a rectangular wave or a sine wave or a waveform conforming thereto while performing duty control based on the output signal of the above, and the rectangular wave or sine wave or conforms to them to the brushless DC motor 4 A second waveform generator 209 that outputs a waveform, and an output of the first waveform generator 207 when the brushless DC motor 4 is rotating at a low speed equal to or less than a predetermined number of rotations. A switching determination unit 210 that drives the inverter 3 and drives the inverter 3 with the output of the second waveform generation unit 209 when the brushless DC motor 4 rotates at a high speed exceeding a predetermined rotation number; When driven by the waveform generator 209, a pattern for detecting the induced voltage of the brushless DC motor 4 is output at a predetermined timing, so that the brushless DC motor 4 is used as a signal of the position detector 205 at low speed. Based on this, the first waveform generating unit 207 performs high-efficiency driving by sensorless driving, and at high speed, the second waveform generating unit 209 performs synchronous fixed-frequency driving, while the position detecting unit 205 periodically induces the brushless DC motor 4. Since the rotor position information is obtained from the voltage zero cross detection and the commutation timing is determined, high load and high speed drive by synchronous drive So as to obtain the stable drive performance.

長竹和夫編著「家電用モータ・インバータ技術」日刊工業新聞社出版、2000年4月28日、P.88−91Published by Kazuo Nagatake, “Motor / Inverter Technology for Home Appliances”, published by Nikkan Kogyo Shimbun, April 28, 2000, p. 88-91

特開2010−252406号公報JP 2010-252406 A

しかしながら、非特許文献1および特許文献1に示す従来の構成では、センサレス駆動時における起動時等の低速高トルクが必要な条件ではモータ巻線に流れる電流が大きく、転流によりモータ巻線を切換えた際、電力を遮断した巻線のエネルギが還流電流として消費されるまでに時間要することになる。   However, in the conventional configuration shown in Non-Patent Document 1 and Patent Document 1, the current that flows through the motor winding is large under conditions that require low-speed and high-torque, such as during startup in sensorless driving, and the motor winding is switched by commutation. In this case, it takes time until the energy of the winding whose power is cut off is consumed as the return current.

図6において、区間K2から区間K3へ転流するタイミングを考える。区間K2から区間K3への移行時、電力が供給されていたU相巻線への通電が遮断されたとき、U相巻線に蓄積されたエネルギは、図4に示すスイッチング素子3fおよびダイオード3jを介してブラシレスDCモータ内を還流して消費される。したがってダイオード3jが導通状態となることで、インバータ入力電圧の負側に接続されるため、還流電流発生時の端子電圧波形にはスパイク電圧Yが発生する。   In FIG. 6, consider the timing of commutation from section K2 to section K3. At the time of transition from the section K2 to the section K3, when the energization to the U-phase winding to which power is supplied is cut off, the energy accumulated in the U-phase winding is the switching element 3f and the diode 3j shown in FIG. Circulates through the brushless DC motor via the Therefore, since the diode 3j is turned on, the diode 3j is connected to the negative side of the inverter input voltage, so that a spike voltage Y is generated in the terminal voltage waveform when the return current is generated.

同様に区間K4から区間K1に移行する際は、スイッチング素子3cおよびダイオード3gを介して還流電流として巻線エネルギが消費され、ダイオード3gがインバータ入力電圧の正側に接続されスパイク電圧Xが生じる。   Similarly, when transitioning from the section K4 to the section K1, winding energy is consumed as a return current via the switching element 3c and the diode 3g, and the diode 3g is connected to the positive side of the inverter input voltage, and a spike voltage X is generated.

図8はセンサレス駆動におけるモータ電流が大きい状態で駆動している時の波形であり、電流波形A0、端子電圧波形B0を示す。ブラスレスDCモータに流れる電流が高いため、U相巻線への電力供給が遮断されて巻線に蓄えられたエネルギは大きく、その放出時間、すなわちスパイク電圧X0およびY0の発生期間が長くなる。   FIG. 8 is a waveform when the motor is driven with a large motor current in sensorless driving, and shows a current waveform A0 and a terminal voltage waveform B0. Since the current flowing through the brassless DC motor is high, the power supply to the U-phase winding is interrupted and the energy stored in the winding is large, and the discharge time, that is, the generation period of the spike voltages X0 and Y0 is lengthened.

従って図8の端子電圧波形B0に示すように、スパイク電圧X0およびY0は、誘起電圧のゼロクロスポイントを覆い隠してしまい、位置信号を検出できない状態となっている。   Therefore, as shown in the terminal voltage waveform B0 in FIG. 8, the spike voltages X0 and Y0 cover the zero cross point of the induced voltage, and the position signal cannot be detected.

この結果非特許文献1に示すモータ駆動装置では、センサレス駆動におけるモータ電流が大きい状態での駆動では、ブラシレスDCモータの正確に位置検出をすることが出来ないため、駆動トルクの低下や、トルク低下による起動性能の低下、モータ駆動効率の低下、速度安定度の低下、速度変動による振動・騒音の増大といった課題を有している。   As a result, in the motor driving device shown in Non-Patent Document 1, since the position of the brushless DC motor cannot be accurately detected when driving with a large motor current in sensorless driving, the driving torque decreases or the torque decreases. There are problems such as a decrease in start-up performance, a decrease in motor drive efficiency, a decrease in speed stability, and an increase in vibration and noise due to speed fluctuations.

また、特許文献1に示す構成では、同期駆動中にインバータ駆動の特別パターンの信号を出力することで、ブラシレスDCモータの位置信号を取得出来る様にして、高速・高負荷時の駆動安定性を確保しているが、センサレス駆動中にモータ電流が大きくスパイク電圧がゼロクロス信号を覆い隠す様な駆動状態での安定性向上には対応することが出来ない。従って、特許文献1に示す従来のモータ駆動装置では、モータ電流が高いセンサレス駆動時は、前述した非特許文献1と同様の課題を有している。   In the configuration shown in Patent Document 1, a special pattern signal for inverter driving is output during synchronous driving, so that the position signal of the brushless DC motor can be acquired, and driving stability at high speed and high load is achieved. Although it is ensured, it cannot cope with the stability improvement in the driving state in which the motor current is large and the spike voltage covers the zero cross signal during sensorless driving. Therefore, the conventional motor driving device shown in Patent Document 1 has the same problem as that of Non-Patent Document 1 described above during sensorless driving with a high motor current.

本発明は前記従来の課題を解決するもので、起動時等で高トルク駆動が必要で、大きなモータ電流が流れる駆動状態においても、ブラシレスDCモータの位置信号を確実に検出できることで、ブラシレスDCモータの起動性を含めた高トルク駆動性能を向上することを目的とする。   The present invention solves the above-mentioned conventional problems. A brushless DC motor is capable of reliably detecting a position signal of a brushless DC motor even in a driving state in which high torque driving is required at the time of starting or the like and a large motor current flows. The purpose is to improve the high torque drive performance including the start-up performance.

前記従来の課題を解決するために、本発明のモータ駆動装置は、交流電圧を整流する整流部と、前記整流部の出力電圧を安定した直流電圧に変換するコンデンサにより構成される平滑部とから成る整流平滑部と、永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、6個のスイッチング素子を3相ブリッジ構成で接続し、前記整流部の出力を入力として前記三相巻線に電力を供給するインバータと、前記回転子の回転位置を検出する位置検出手段と、前記位置検出手段からの信号から前記ブラシレスDCモータの速度を検出する速度検出手段と、検出した前記回転子の回転位置と、駆動速度から前記固定子巻線の通電相を決定する通電相決定手段と、前記インバータの駆動波形を生成する駆動波形生成手段を有し、前記ブラシレスDCモータの通電巻線が切り替えられた時、電力供給を遮断した巻線から前記平滑部のコンデンサを充電する電流が流れる様に、インバータの駆動波形を生成するものである。   In order to solve the conventional problem, a motor driving device of the present invention includes a rectifying unit that rectifies an AC voltage, and a smoothing unit that includes a capacitor that converts an output voltage of the rectifying unit into a stable DC voltage. A rectifying and smoothing unit, a brushless DC motor including a rotor having a permanent magnet and a stator having a three-phase winding, and six switching elements are connected in a three-phase bridge configuration, and the output of the rectifying unit is used as an input An inverter for supplying electric power to the three-phase winding; a position detecting means for detecting the rotational position of the rotor; a speed detecting means for detecting the speed of the brushless DC motor from a signal from the position detecting means; Energized phase determining means for determining the energized phase of the stator winding from the rotational position of the rotor and the drive speed, and drive waveform generating means for generating the drive waveform of the inverter And, when the energizing winding of the brushless DC motor is switched, as a current flows to charge the capacitor of the smoothing section from the winding to interrupt power supply, generates a drive waveform of the inverter.

これによって、ブラシレスDCモータの巻線が切り替えられたとき、通電を遮断された巻線に蓄積されたエネルギが回生として電源側に戻ることで、電力供給を遮断した巻線電流を短時間でゼロに出来るため、ブラシレスDCモータの端子から位置情報としての誘起電圧のゼロクロス位置(すなわちブラシレスDCモータの位置信号)を確実に検出することができる。   As a result, when the winding of the brushless DC motor is switched, the energy accumulated in the coil that has been de-energized returns to the power supply side as regenerative power so that the coil current that has cut off the power supply can be zeroed in a short time. Therefore, the zero-cross position of the induced voltage as position information (that is, the position signal of the brushless DC motor) can be reliably detected from the terminal of the brushless DC motor.

本発明のモータ駆動装置は、起動時等のモータに流れる電流が大きい高負荷トルクでの駆動性能を向上し、ブラシレスDCモータの起動性能を含めた高トルク駆動性能を向上することができる。   The motor driving device of the present invention can improve the driving performance at a high load torque with a large current flowing through the motor at the time of starting or the like, and can improve the high torque driving performance including the starting performance of the brushless DC motor.

本発明の実施の形態1におけるモータ駆動装置のブロック図1 is a block diagram of a motor drive device according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるモータ駆動時の各部の波形を示す図The figure which shows the waveform of each part at the time of the motor drive in Embodiment 1 of this invention スイッチング素子状態による電流の流れる経路を示す図Diagram showing the path of current flow depending on the switching element 従来のモータ駆動装置のブロック図Block diagram of a conventional motor drive device 従来のモータ駆動装置の位置検出回路を示す図The figure which shows the position detection circuit of the conventional motor drive device 従来のモータ駆動装置のセンサレス駆動時の各部の波形を示す図The figure which shows the waveform of each part at the time of sensorless drive of the conventional motor drive device 従来のモータ駆動装置のブロック図Block diagram of a conventional motor drive device 従来のモータ駆動装置のセンサレス駆動での大電流発生時の各部の波形を示す図The figure which shows the waveform of each part at the time of large current generation by the sensorless drive of the conventional motor drive device

第1の発明は、交流電圧を整流する整流部と、前記整流部の出力電圧を安定した直流電圧に変換するコンデンサにより構成される平滑部とから成る整流平滑部と、永久磁石を有
する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、6個のスイッチング素子を3相ブリッジ構成で接続し、前記整流部の出力を入力として前記三相巻線に電力を供給するインバータと、前記回転子の回転位置を検出する位置検出手段と、前記位置検出手段からの信号から前記ブラシレスDCモータの速度を検出する速度検出手段と、検出した前記回転子の回転位置と、駆動速度から前記固定子巻線の通電相を決定する通電相決定手段と、前記インバータの駆動波形を生成する駆動波形生成手段を有し、前記ブラシレスDCモータの通電巻線が切り替えられた時、電力供給を遮断した巻線から前記平滑部のコンデンサを充電する電流が流れる様に、インバータの駆動波形を生成する。これにより、ブラシレスDCモータ巻線の通電相が切り替えられた際、電源供給が遮断された巻線に蓄積されたエネルギは回生エネルギとして電源側に戻るため、通電を遮断したモータ巻線の電流を短時間でゼロにすることが出来るので、モータ端子電圧に現れるモータ誘起電圧のゼロクロスポイントからモータ回転子の磁極位置を確実に検出できるため、ブラシレスDCモータの起動性能を向上することができる。
A first aspect of the present invention is a rotor having a rectifying / smoothing unit comprising a rectifying unit for rectifying an AC voltage, a smoothing unit including a capacitor for converting the output voltage of the rectifying unit into a stable DC voltage, and a permanent magnet. And a brushless DC motor comprising a stator having a three-phase winding, an inverter for connecting six switching elements in a three-phase bridge configuration, and supplying power to the three-phase winding with the output of the rectifying unit as an input; From the position detection means for detecting the rotational position of the rotor, the speed detection means for detecting the speed of the brushless DC motor from the signal from the position detection means, the detected rotational position of the rotor, and the driving speed A current-carrying phase determining unit that determines a current-carrying phase of the stator winding; and a drive waveform generation unit that generates a drive waveform of the inverter. When it is changed, as current flows to charge the capacitor of the smoothing section from the winding to interrupt power supply to generate a drive waveform of the inverter. As a result, when the energization phase of the brushless DC motor winding is switched, the energy accumulated in the winding that is cut off from the power supply returns to the power supply side as regenerative energy. Since it can be made zero in a short time, the magnetic pole position of the motor rotor can be reliably detected from the zero cross point of the motor induced voltage appearing in the motor terminal voltage, so that the starting performance of the brushless DC motor can be improved.

第2の発明は、第1の発明のモータ駆動装置により駆動される圧縮機の駆動装置である。これにより、停電等により圧縮機が停止したとき、圧縮機の吸入側と吐出側の圧力差のため、大きな起動トルクが必要な状態でも速やかに再起動を行うことができるため、圧縮機の停止期間を短くすることができる。   2nd invention is the drive device of the compressor driven by the motor drive device of 1st invention. As a result, when the compressor is stopped due to a power failure or the like, it is possible to restart quickly even when a large starting torque is required due to the pressure difference between the suction side and the discharge side of the compressor. The period can be shortened.

第3の発明は、圧縮機により圧縮された高温高圧のガス冷媒を凝縮する凝縮器と、前記凝縮器により液化された液冷媒の圧力を低下する減圧器と、前記減圧器により圧力を低下した液冷媒を蒸発させる蒸発器と前記凝縮器と前記蒸発器間の冷媒の流路を遮断する冷媒流路遮断手段を有し、圧縮機が停止中は前記冷媒流路遮断手段により、前記凝縮器と前記蒸発器間の冷媒流路を遮断する第2の発明に記載の圧縮機の駆動装置を備えた冷凍装置である。これにより圧縮機停止時に高温の冷媒の凝縮器側流入による凝縮器温度の上昇を防ぐことができる。これにより圧縮機再起動時の冷凍サイクルの損失を低減することができる。   According to a third aspect of the present invention, there is provided a condenser for condensing the high-temperature and high-pressure gas refrigerant compressed by the compressor, a decompressor for reducing the pressure of the liquid refrigerant liquefied by the condenser, and the pressure reduced by the decompressor. An evaporator for evaporating liquid refrigerant, and a refrigerant flow path blocking means for blocking a refrigerant flow path between the condenser and the evaporator, and the condenser is blocked by the refrigerant flow path blocking means when the compressor is stopped. And a refrigerant flow path between the evaporator and the compressor drive device according to the second aspect of the present invention. Accordingly, it is possible to prevent an increase in the condenser temperature due to the inflow of high-temperature refrigerant on the condenser side when the compressor is stopped. Thereby, the loss of the refrigeration cycle at the time of restarting the compressor can be reduced.

第4の発明は、第3の発明において、前記圧縮機が停止状態から起動する際は、前記圧縮機の吸入側圧力と、吐出側圧力とが所定以上の圧力差が付加されているものである。これにより、圧縮機が再起動する際も、圧縮機駆動中とほぼ同じ圧力状態から起動することが出来るので、起動後すぐに圧縮機の吸入と吐出圧力が圧縮機運転中の安定圧力状態に戻ることが出来る。従って、圧縮機起動後に安定した圧力状態に戻るまでの冷凍サイクルの損失を大幅に低減できる。   According to a fourth invention, in the third invention, when the compressor is started from a stopped state, a pressure difference greater than or equal to a predetermined value is added between the suction side pressure and the discharge side pressure of the compressor. is there. As a result, when the compressor is restarted, it can be started from almost the same pressure state as when the compressor is being driven, so that the suction and discharge pressures of the compressor immediately become stable pressure during operation of the compressor. I can go back. Therefore, the loss of the refrigeration cycle until the stable pressure state is restored after the compressor is started can be greatly reduced.

第5の発明は、第1から第4のいずれかのモータ駆動装置、または圧縮機の駆動装置、または冷凍装置を使用した冷蔵庫である。これにより、冷蔵庫の庫内温度調節のために圧縮機のオン・オフ制御が伴っても、圧縮機停止中は凝縮器内の高温冷媒の蒸発器内流入による熱負荷の増加の防止と、圧縮機の起動時の圧力状態が圧縮機運転時の安定圧力に戻るまでの冷凍サイクルの損失を抑制できるので、消費電力の低い冷蔵庫を提供することが出来る。   A fifth invention is a refrigerator using any one of the first to fourth motor driving devices, the driving device of the compressor, or the refrigeration device. As a result, even if the compressor is turned on / off to adjust the refrigerator internal temperature, the heat load is prevented from increasing due to the flow of high-temperature refrigerant in the condenser while the compressor is stopped. Since the loss of the refrigeration cycle until the pressure state at the start of the machine returns to the stable pressure at the time of compressor operation can be suppressed, a refrigerator with low power consumption can be provided.

以下、本発明の実施の意形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1におけるモータ駆動装置のブロック図を示すものである。
(Embodiment 1)
FIG. 1 shows a block diagram of a motor drive apparatus according to Embodiment 1 of the present invention.

図1において電源1は一般的な商用電源であり、日本の場合は実効値100Vの50Hzまたは60Hzの交流電源である。整流平滑回路2は整流部2aおよび平滑部2bで構
成され、前記交流電源1を入力として、交流電圧を直流電圧に変換する。本実施の形態1における整流平滑回路は倍電圧整流としているが、全波整流構成でも、全波整流と倍電圧整流を切り替える構成、あるいは力率改善回路(PFC)等でも構わない。
In FIG. 1, a power source 1 is a general commercial power source. In Japan, the power source 1 is a 50 Hz or 60 Hz AC power source having an effective value of 100V. The rectifying / smoothing circuit 2 includes a rectifying unit 2a and a smoothing unit 2b, and converts the AC voltage into a DC voltage with the AC power supply 1 as an input. Although the rectifying / smoothing circuit in the first embodiment is double voltage rectification, it may be a full wave rectification configuration, a configuration that switches between full wave rectification and voltage double rectification, a power factor correction circuit (PFC), or the like.

インバータ3は6個のスイッチング素子(3a〜3f)を3相フルブリッジ構成で接続し、前記整流平滑回路2からの直流入力を交流電力に変換し、ブラシレスDCモータ4に任意の電圧および周波数の交流出力を供給する。各スイッチング素子(3a〜3f)には逆方向に並列にダイオード(3g〜3l)が接続されている。なお、図1ではスイッチング素子をIGBTとしているがMOSFETやバイポーラトランジスタ、SiCデバイス、GaNデバイス等でも構わない。   The inverter 3 connects six switching elements (3a to 3f) in a three-phase full bridge configuration, converts the DC input from the rectifying and smoothing circuit 2 into AC power, and supplies the brushless DC motor 4 with an arbitrary voltage and frequency. Supply AC output. A diode (3g-3l) is connected to each switching element (3a-3f) in parallel in the reverse direction. In FIG. 1, the switching element is an IGBT, but a MOSFET, bipolar transistor, SiC device, GaN device, or the like may be used.

位置検出手段6はブラシレスDCモータ4の回転子の磁極位置を検出するもので、電流が流れていない固定子巻線が接続された端子に現れる誘起電圧から、そのゼロクロスポイントを位置信号として検出する。   The position detection means 6 detects the magnetic pole position of the rotor of the brushless DC motor 4, and detects the zero cross point as a position signal from the induced voltage appearing at the terminal connected to the stator winding to which no current flows. .

速度検出手段7は位置検出手段6の出力信号間隔から、ブラシレスDCモータの駆動速度を検出する。誤差検出手段8は速度検出手段7で得た駆動速度と指令速度との差を検出する。   The speed detector 7 detects the driving speed of the brushless DC motor from the output signal interval of the position detector 6. The error detection means 8 detects the difference between the drive speed obtained by the speed detection means 7 and the command speed.

PWM制御手段9は誤差検出手段8から得た、指令速度と実際の駆動速度との差からインバータ3がブラシレスDCモータに供給する電圧を調整する。具体的にはインバータ3のスイッチング素子をPWM(パルス幅変調)により任意の周波数でオン・オフを行い、オン・オフ1サイクルあたりのオン時間(デューティ)を調整する。デューティは、ブラシレスDCモータの実際の駆動速度と目標とする指令速度とを一致させるようにフィードバック制御により調整し決定する。   The PWM control means 9 adjusts the voltage that the inverter 3 supplies to the brushless DC motor from the difference between the command speed and the actual drive speed obtained from the error detection means 8. Specifically, the switching element of the inverter 3 is turned on / off at an arbitrary frequency by PWM (pulse width modulation), and the on time (duty) per on / off cycle is adjusted. The duty is adjusted and determined by feedback control so that the actual drive speed of the brushless DC motor matches the target command speed.

通電相設定手段10は位置検出手段で得た位置信号とその検出タイミングから次に通電する巻線の通電パターンと通電タイミングを設定するとともに、転流により電圧印加を遮断したモータ巻線のエネルギを回生として電源側(すなわち平滑部)に戻すパターンを付加した上で駆動波形生成手段11に出力する。   The energization phase setting means 10 sets the energization pattern and energization timing of the next energized winding based on the position signal obtained by the position detection means and the detection timing thereof, and also determines the energy of the motor winding that has cut off the voltage application by commutation. A pattern for returning to the power source side (that is, the smoothing portion) as a regeneration is added and output to the drive waveform generation means 11.

なお、通電相設定手段10により設定する巻線への通電パターンは、120度以上150度以下の矩形波またはそれに準じる波形を所定の周波数の波形となる様に設定する。   In addition, the energization pattern to the winding set by the energization phase setting means 10 is set so that a rectangular wave of 120 degrees or more and 150 degrees or less or a waveform corresponding thereto becomes a waveform of a predetermined frequency.

駆動波形生成手段11は通電相設定手段10によるブラシレスDCモータの3相巻線の通電パターンと通電タイミングを、PWM制御手段9で設定したPWM周波数とオン時間とを合成することで、インバータ3の各スイッチング素子をオン・オフする駆動波形を生成し、ドライブ手段12に出力する。   The drive waveform generation means 11 combines the energization pattern and the energization timing of the three-phase winding of the brushless DC motor by the energization phase setting means 10 with the PWM frequency set by the PWM control means 9 and the on-time so that the inverter 3 A drive waveform for turning on / off each switching element is generated and output to the drive means 12.

ドライブ手段12は駆動波形生成手段11で生成した駆動波形を基にインバータ3の各スイッチング素子をオンまたはオフする。   The drive unit 12 turns on or off each switching element of the inverter 3 based on the drive waveform generated by the drive waveform generation unit 11.

図2は本発明の実施の形態1のモータ駆動装置による駆動時の各部の波形を示したものである。図2において波形A1はモータ巻線に流れる電流波形を示し、波形B1はモータ端子電圧であり、ともにU相の波形を示している。波形C〜Hはドライブ手段12によるインバータ3の各スイッチング素子の駆動波形を示している。   FIG. 2 shows waveforms at various parts during driving by the motor driving apparatus according to the first embodiment of the present invention. In FIG. 2, a waveform A1 shows a waveform of a current flowing through the motor winding, and a waveform B1 is a motor terminal voltage, both of which show a U-phase waveform. Waveforms C to H show drive waveforms of the respective switching elements of the inverter 3 by the drive means 12.

「ア」から「カ」に示すタイミングは、通電するモータ巻線を切換える転流タイミングである。この転流タイミングにおいて駆動波形生成手段11は、ブラシレスDCモータの3相巻線の通電パターンに準じて通電相設定手段10が設定した出力と、フィードバック
制御に基づくPWM制御手段による出力波形、さらに巻線に蓄えら獲れたエネルギを回生として電源側(電解コンデンサ)に戻すためのパターンを合成してドライブ回路に出力する。
The timings indicated by “A” to “F” are commutation timings for switching energized motor windings. At this commutation timing, the drive waveform generation means 11 outputs the output set by the energization phase setting means 10 in accordance with the energization pattern of the three-phase winding of the brushless DC motor, the output waveform by the PWM control means based on feedback control, and further the winding A pattern for returning to the power supply side (electrolytic capacitor) is recovered and output to the drive circuit as energy recovered from the wire.

通電相設定手段10により生成する転流時の巻線エネルギを電源側に戻すパターンについて、図1と図2および図3を用いて具体的に説明する。   A pattern for returning the winding energy at the time of commutation generated by the energized phase setting means 10 to the power source side will be specifically described with reference to FIGS. 1, 2, and 3.

図2において「ウ」の転流タイミング直前ではスイッチング素子3aと3fがオン状態にあり、図3(a)に示すように、モータ電流はスイッチング素子3a→U相巻線→W相巻線→スイッチング素子3fを通って電源側に戻る力行状態にある。   In FIG. 2, switching elements 3a and 3f are in an on state immediately before the commutation timing of “c”, and as shown in FIG. 3A, the motor current is switching element 3a → U-phase winding → W-phase winding → The power running state returns to the power supply side through the switching element 3f.

次に、「ウ」のタイミングでの転流によりスイッチング素子3aがターンオフ、スイッチング素子3bがターンした時、通常は図3(b)に示すように、U相巻線に蓄えられたエネルギはダイオード3jを導通状態にしてU相巻線、W相巻線、スイッチング素子3fで構成される閉回路のなかで還流し消費される。   Next, when the switching element 3a is turned off and the switching element 3b is turned by the commutation at the timing of “c”, normally, the energy stored in the U-phase winding is a diode as shown in FIG. 3j is brought into a conducting state and is recirculated and consumed in a closed circuit composed of a U-phase winding, a W-phase winding, and a switching element 3f.

しかし本発明の実施の形態では、図3(c)に示すように、転流タイミングと同時にW相下側スイッチング素子3fを任意の期間オフする。この時、U相巻線の蓄積エネルギはダイオード3kおよびダイオード3iを導通状態とさせ、回生として電源(平滑コンデンサの充電電流)に戻る。   However, in the embodiment of the present invention, as shown in FIG. 3C, the W-phase lower switching element 3f is turned off for an arbitrary period simultaneously with the commutation timing. At this time, the energy stored in the U-phase winding makes the diode 3k and the diode 3i conductive, and returns to the power source (charging current of the smoothing capacitor) as regeneration.

その後、図3(d)に示すように、スイッチング素子3fを再度して、モータ電流はスイッチング素子3b→V相巻線→W相巻線→スイッチング素子3fを通って電源側に戻る力行状態に戻る。   Thereafter, as shown in FIG. 3 (d), the switching element 3f is turned on again so that the motor current returns to the power supply state through the switching element 3b → V phase winding → W phase winding → switching element 3f. Return.

このように転流時の巻線エネルギを回生として戻すパターンとは、転流直前まで通電されている巻線の内、転流後も通電を継続する巻線の相のスイッチング素子を一時的にオフすることである。上記転流タイミング「ウ」で説明したように、転流直前まで通電していた巻線、即ちU相巻線とW相巻線の内、転流後も通電を継続する巻線の相、即ちW相のスイッチング素子、即ち3fを一時的にオフすることである。   In this manner, the pattern of returning the winding energy at the time of commutation as regeneration is to temporarily select the switching element of the phase of the coil that continues to be energized after commutation among the coils that are energized until just before commutation. Is to turn off. As described in the above commutation timing “c”, the winding that was energized until immediately before commutation, that is, the phase of the U-phase winding and W-phase winding that continues to be energized after commutation, That is, the W-phase switching element, that is, 3f is temporarily turned off.

巻線に蓄積されたエネルギが放出されたとき巻線電流はゼロとなるが、その電流がゼロとなるまでの時間は、回路と巻線インピーダンスで消費する還流モードと比較して、回生モードによる平滑回路のコンデンサへの充電時の方が非常に短い。   When the energy stored in the winding is released, the winding current becomes zero, but the time until the current becomes zero depends on the regeneration mode compared to the return mode that consumes the circuit and winding impedance. It is much shorter when charging the capacitor of the smoothing circuit.

このため、巻線エネルギを回生として放出する本発明の実施の形態1では、転流による当該巻線の電流は短時間で切れるため、高トルク駆動による大電流での駆動時においても、誘起電圧のゼロクロスポイントが発生するタイミングまでに巻線電流はゼロとなり、ゼロクロスをスパイク電圧に覆い被されることなく確実に検出できるため正確な回転子の磁極位置の検出が可能となる。これにより起動時等の高トルク駆動性能が実現し、ブラシレスDCモータの起動性を含めた高負荷時の駆動性能を向上することができる。   For this reason, in the first embodiment of the present invention in which the winding energy is released as regeneration, the current of the winding due to commutation is cut off in a short time. Therefore, even when driving with a large current by high torque driving, the induced voltage is The winding current becomes zero by the timing when the zero cross point occurs, and the zero cross can be reliably detected without being covered with the spike voltage, so that the magnetic pole position of the rotor can be accurately detected. As a result, a high torque driving performance at the time of starting or the like can be realized, and the driving performance at the time of high load including the starting performance of the brushless DC motor can be improved.

なお、本発明の実施の形態1の説明にあたり図2を用いて、巻線エネルギを回生として電源側に戻すパターンとして、一定期間スイッチング素子の通電を停止する方法で説明したが、当該のスイッチング素子を高周波でオン・オフする構成や、PWMスイッチングに同期して所定のパルス数オン・オフを行う等の構成でも構わない。   In the description of the first embodiment of the present invention, the method of stopping energization of the switching element for a certain period as a pattern for returning the winding energy to the power source side as regeneration is described with reference to FIG. May be configured to turn on / off at a high frequency, or may be configured to turn on / off a predetermined number of pulses in synchronization with PWM switching.

(実施の形態2)
図1は本発明の実施の形態2におけるモータ駆動装置およびこれを用いた冷蔵庫のブロック図である。
(Embodiment 2)
FIG. 1 is a block diagram of a motor drive device and a refrigerator using the same according to Embodiment 2 of the present invention.

図1において圧縮要素14は、ブラシレスDCモータ4の回転子4aの軸に接続され、冷媒ガスを吸入し、圧縮して吐出する。このブラシレスDCモータ4と圧縮要素14とを同一の密閉容器に収納し、圧縮機15を構成する。圧縮機15で圧縮された吐出ガスは、凝縮器16、減圧器17、蒸発器18を通って圧縮機15の吸い込みに戻るような冷凍空調システムを構成し、凝縮器16では放熱、蒸発器18では吸熱を行うので、冷却や加熱を行うことができる。尚、必要に応じて凝縮器16や蒸発器18に送風機などを使い、熱交換をさらに促進することもある。また本実施の形態2では、冷凍空調システムは冷蔵庫19の冷凍サイクルとして用いている。   In FIG. 1, the compression element 14 is connected to the shaft of the rotor 4a of the brushless DC motor 4, and sucks, compresses and discharges the refrigerant gas. The brushless DC motor 4 and the compression element 14 are accommodated in the same hermetic container to constitute the compressor 15. The discharge gas compressed by the compressor 15 constitutes a refrigerating and air-conditioning system that returns to the suction of the compressor 15 through the condenser 16, the decompressor 17, and the evaporator 18. Then, since endotherm is performed, cooling and heating can be performed. If necessary, a heat blower may be further promoted by using a blower or the like for the condenser 16 or the evaporator 18. In the second embodiment, the refrigeration air conditioning system is used as the refrigeration cycle of the refrigerator 19.

冷蔵庫の冷凍サイクルでは減圧器に毛細管を使用していることが多く、その管の内径は非常に小さいため、圧縮機停止時に圧縮機の吸入と吐出の圧力がバランスするまでに時間を要する。従って圧縮機駆動時に瞬時停電等で圧縮機が停止したとき、圧縮機の吸入と吐出の圧力差が大きい状態から速やかに再起動する必要がある。   In the refrigeration cycle of a refrigerator, a capillary tube is often used for the decompressor, and the inner diameter of the tube is very small. Therefore, it takes time to balance the suction and discharge pressures of the compressor when the compressor is stopped. Therefore, when the compressor is stopped due to an instantaneous power failure or the like when the compressor is driven, it is necessary to restart quickly from a state where the pressure difference between the suction and discharge of the compressor is large.

圧縮機の圧力バランスが取れていない状態での起動には、大きな起動トルクが必要となり起動が困難となるが、本発明のモータ駆動装置を圧縮機の駆動に用いることで、吸入と吐出の圧力差が大きい状態での圧縮機の起動も、安定して行うことができる。   Starting in a state where the compressor pressure is not balanced requires a large starting torque, which makes starting difficult, but by using the motor drive device of the present invention for driving the compressor, the suction and discharge pressures The compressor can be started in a stable manner with a large difference.

従って、瞬時停電等が発生して一旦圧縮機が停止した場合でも、停電復帰時に圧縮機の圧力バランスが平衡するまで起動を待つ必要なく、速やかに圧縮機を再起動できるため、冷蔵庫の庫内温度の上昇を抑制することが出来る。   Therefore, even if an instantaneous power failure occurs and the compressor stops, the compressor can be restarted quickly without having to wait until the compressor pressure balance is balanced when the power is restored. The rise in temperature can be suppressed.

冷媒流量調整手段21は、冷凍サイクルの凝縮器16と蒸発器18の冷媒流路を開放または遮断するものである。本実施の形態2において、冷媒流量調整手段21は凝縮器16と減圧器17の間に設置しているが、減圧器17と蒸発器18の間に設置しても構わない。   The refrigerant flow rate adjusting means 21 opens or blocks the refrigerant flow paths of the condenser 16 and the evaporator 18 in the refrigeration cycle. In the second embodiment, the refrigerant flow rate adjusting means 21 is installed between the condenser 16 and the decompressor 17, but may be installed between the decompressor 17 and the evaporator 18.

ここで、冷媒流量調整手段21の動作について説明する。冷媒流量調整手段21は圧縮機15の運転または停止に連動して動作させ、圧縮機15が運転中は、冷媒流路を開放し、圧縮機停止中は冷媒流路を閉塞する様にしている。即ち、ブラシレスDCモータ4の駆動指示がある(すなわち指令速度がゼロ以外)時、庫内冷却のため圧縮機の運転により、冷凍サイクル内を冷媒が循環できる様に冷媒流量調整手段21を開放し、圧縮機停止時(すなわちブラシレスDCモータが停止指示)は、冷媒流量調整手段21を閉塞し凝縮器16と蒸発器18間の冷媒の流れを遮断する様にしている。   Here, the operation of the refrigerant flow rate adjusting means 21 will be described. The refrigerant flow rate adjusting means 21 is operated in conjunction with the operation or stop of the compressor 15 so that the refrigerant flow path is opened while the compressor 15 is in operation, and the refrigerant flow path is closed when the compressor is stopped. . That is, when there is an instruction to drive the brushless DC motor 4 (that is, when the command speed is other than zero), the refrigerant flow rate adjusting means 21 is opened so that the refrigerant can circulate in the refrigeration cycle by operating the compressor for cooling the interior. When the compressor is stopped (that is, when the brushless DC motor is instructed to stop), the refrigerant flow rate adjusting means 21 is closed to block the refrigerant flow between the condenser 16 and the evaporator 18.

冷凍サイクルにおいて、凝縮器は圧縮機の吐出(高圧)側、凝縮器は吸入(低圧)側に接続されているため、圧縮機運転中は凝縮器と蒸発器には圧力差が生じており、圧縮機停止に伴いこの両者の圧力をバランスするために凝縮器16の高温高圧のガス冷媒が減圧器17を通って蒸発器18に流入し蒸発器18内部で凝縮し液化する。   In the refrigeration cycle, because the condenser is connected to the discharge (high pressure) side of the compressor and the condenser is connected to the suction (low pressure) side, there is a pressure difference between the condenser and the evaporator during compressor operation. When the compressor is stopped, the high-temperature and high-pressure gas refrigerant in the condenser 16 flows into the evaporator 18 through the decompressor 17 and is condensed and liquefied inside the evaporator 18 in order to balance the pressures of the two.

従って、冷却状態にある冷蔵庫内に設置した蒸発器へ、温度の高いガス冷媒が流入し、そこで熱交換(熱エネルギを放出)することになる。結局これは、冷蔵庫の熱負荷となるため、冷蔵庫の消費電力の増加要因となる。   Therefore, a high-temperature gas refrigerant flows into the evaporator installed in the refrigerator in a cooled state, and heat exchange (releases heat energy) there. Eventually, this becomes a heat load of the refrigerator, which increases the power consumption of the refrigerator.

従って、本発明の実施の形態2では圧縮機停止時に冷媒流量調整手段21を閉塞して、凝縮器側からの高温高圧ガスが蒸発器に流入しないようにすることで、圧縮機を用いた冷凍サイクルおよび、冷蔵庫の省エネ性を向上している。   Therefore, in the second embodiment of the present invention, the refrigerant flow rate adjusting means 21 is closed when the compressor is stopped so that the high-temperature and high-pressure gas from the condenser side does not flow into the evaporator, so that the refrigeration using the compressor is performed. The energy efficiency of the cycle and refrigerator is improved.

また、圧縮機の吸入圧力と、吐出圧力がバランスした状態から圧縮機を起動する場合、
起動後は、凝縮器側の圧力を所定の圧力まで低下し、吐出側の圧力を所定の圧力まで上昇させ、圧縮機運転時の安定圧力状態に戻るまでの間は、冷凍サイクルのロスとなる。
Also, when starting the compressor from a state where the suction pressure of the compressor and the discharge pressure are balanced,
After startup, the pressure on the condenser side is reduced to a predetermined pressure, the pressure on the discharge side is increased to a predetermined pressure, and the refrigeration cycle is lost until it returns to a stable pressure state during compressor operation. .

本発明の実施の形態2では、圧縮機停止時に冷媒流量調整手段21を閉塞して、圧縮機の高圧側(吐出側)と吸入側(低圧側)を分断するため、圧縮機停止中も運転中と同等の吐出側と吸入側の圧力差を有した状態となる。そして圧縮機の吸入圧力と吐出圧力が圧縮機の運転状態と同等の状態のままで再起動を行うようにしている。   In Embodiment 2 of the present invention, the refrigerant flow rate adjusting means 21 is closed when the compressor is stopped, and the high pressure side (discharge side) and the suction side (low pressure side) of the compressor are separated. It has a pressure difference between the discharge side and the suction side equivalent to the inside. Then, the compressor is restarted with the suction pressure and the discharge pressure of the compressor being in a state equivalent to the operation state of the compressor.

圧縮機の吸入と吐出圧力に圧力差が生じている状態での起動は、圧力がバランスした状態からの起動と比較して非常に大きな起動トルクが必要となる。しかし、本発明のモータ駆動装置を圧縮機の駆動に用いることで、大きな起動トルクを発生することが出来るので、圧縮機の吸入側と吐出側に大きな圧力差が生じている状態での起動でも、圧縮機を安定かつスムーズに起動できる。従って、起動後短時間で、圧縮機の運転時の安定圧力状態に戻すことができる、起動時における冷凍サイクルの損失低減が図れ、冷蔵庫の消費電力量を削減することができる。   Start-up in a state where there is a pressure difference between the suction and discharge pressure of the compressor requires a very large start-up torque compared to start-up from a state in which the pressure is balanced. However, since the motor drive device of the present invention can be used to drive the compressor, a large starting torque can be generated, so even when starting with a large pressure difference between the suction side and the discharge side of the compressor. , The compressor can be started stably and smoothly. Therefore, it is possible to return to the stable pressure state during the operation of the compressor in a short time after the start-up, the loss of the refrigeration cycle at the start-up can be reduced, and the power consumption of the refrigerator can be reduced.

本発明のモータ駆動装置は、ブラシレスDCモータに大電流が流れるような、高トルク駆動時や高負荷駆動時の駆動性能を向上したものである。これによりブラシレスDCモータの起動性能の向上および、冷凍サイクルの損失を低減できるため、エアコン、ヒートポンプ式洗濯乾燥機、給湯器などブラシレスDCモータを用いる様々な用途にも適用できる。   The motor driving device of the present invention has improved driving performance during high torque driving or high load driving such that a large current flows through the brushless DC motor. As a result, the start-up performance of the brushless DC motor can be improved and the loss of the refrigeration cycle can be reduced. Therefore, the brushless DC motor can be applied to various uses using the brushless DC motor such as an air conditioner, a heat pump washer / dryer and a water heater.

2 整流平滑回路
2a 整流部
2b 平滑部
3 インバータ
4 ブラシレスDCモータ
6 位置検出手段
7 速度検出手段
8 誤差検出手段
9 PWM制御手段
10 通電相設定手段
11 駆動波形生成手段
15 圧縮機
16 凝縮器
17 減圧器
18 蒸発器
19 冷蔵庫
21 冷媒流量調整手段
DESCRIPTION OF SYMBOLS 2 Rectification smoothing circuit 2a Rectification part 2b Smoothing part 3 Inverter 4 Brushless DC motor 6 Position detection means 7 Speed detection means 8 Error detection means 9 PWM control means 10 Energized phase setting means 11 Drive waveform generation means 15 Compressor 16 Condenser 17 Depressurization 18 Evaporator 19 Refrigerator 21 Refrigerant flow rate adjusting means

Claims (5)

交流電圧を整流する整流部と、前記整流部の出力電圧を安定した直流電圧に変換するコンデンサにより構成される平滑部とから成る整流平滑部と、永久磁石を有する回転子と三相巻線を有する固定子からなるブラシレスDCモータと、6個のスイッチング素子を3相ブリッジ構成で接続し、前記整流部の出力を入力として前記三相巻線に電力を供給するインバータと、前記回転子の回転位置を検出する位置検出手段と、前記位置検出手段からの信号から前記ブラシレスDCモータの速度を検出する速度検出手段と、検出した前記回転子の回転位置と、駆動速度から固定子巻線の通電相を決定する通電相決定手段と、前記インバータの駆動波形を生成する駆動波形生成手段を有し、前記ブラシレスDCモータの通電巻線が切り替えられた時、電力供給を遮断した巻線から前記平滑部のコンデンサを充電する電流が流れる様に、インバータの駆動波形を生成するモータ駆動装置。 A rectifying / smoothing unit including a rectifying unit that rectifies an AC voltage, and a smoothing unit including a capacitor that converts the output voltage of the rectifying unit into a stable DC voltage, a rotor having a permanent magnet, and a three-phase winding. A brushless DC motor comprising a stator having a stator, six switching elements connected in a three-phase bridge configuration, an output for supplying power to the three-phase winding with the output of the rectifying unit as an input, and rotation of the rotor Position detecting means for detecting the position, speed detecting means for detecting the speed of the brushless DC motor from the signal from the position detecting means, the detected rotational position of the rotor, and energization of the stator winding from the driving speed An energized phase determining means for determining a phase; and a drive waveform generating means for generating a drive waveform of the inverter. When the energized winding of the brushless DC motor is switched, As current flows to charge the capacitor of the smoothing section from the windings to block the supply, the motor driving apparatus for generating driving waveforms of the inverter. 請求項1に記載のモータ駆動装置により駆動される圧縮機の駆動装置。 A driving device for a compressor driven by the motor driving device according to claim 1. 圧縮機により圧縮された高温高圧のガス冷媒を凝縮する凝縮器と、前記凝縮器により液化された液冷媒の圧力を低下する減圧器と、前記減圧器により圧力を低下した液冷媒を蒸発させる蒸発器と前記凝縮器と前記蒸発器間の冷媒の流路を遮断する冷媒流路遮断手段を有し、圧縮機が停止中は前記冷媒流路遮断手段により、前記凝縮器と前記蒸発器間の冷媒流路を遮断する請求項2に記載の圧縮機の駆動装置を備えた冷凍装置。 A condenser that condenses the high-temperature and high-pressure gas refrigerant compressed by the compressor; a decompressor that reduces the pressure of the liquid refrigerant liquefied by the condenser; and an evaporation that evaporates the liquid refrigerant whose pressure is reduced by the decompressor. A refrigerant flow path blocking means for blocking a refrigerant flow path between the condenser, the condenser and the evaporator, and the refrigerant flow path blocking means between the condenser and the evaporator when the compressor is stopped. A refrigerating apparatus comprising the compressor driving device according to claim 2, wherein the refrigerant flow path is blocked. 前記圧縮機が停止状態から起動する際は、前記圧縮機の吸入側圧力と、吐出側圧力とが所定以上の圧力差が付加されている請求項3に記載の冷凍装置。 The refrigeration apparatus according to claim 3, wherein when the compressor is started from a stopped state, a pressure difference greater than or equal to a predetermined value is added between a suction side pressure and a discharge side pressure of the compressor. 請求項1から請求項4のいずれか一項に記載のモータ駆動装置または圧縮機の駆動装置または冷凍装置を有する冷蔵庫。 A refrigerator having the motor drive device or compressor drive device or refrigeration device according to any one of claims 1 to 4.
JP2015168580A 2015-08-28 2015-08-28 Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator Active JP6450939B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015168580A JP6450939B2 (en) 2015-08-28 2015-08-28 Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator
CN201680046997.1A CN107960145B (en) 2015-08-28 2016-08-10 Motor drive device, and drive device for compressor and refrigerator using same
PCT/JP2016/003696 WO2017038024A1 (en) 2015-08-28 2016-08-10 Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
EP16841065.2A EP3343751B1 (en) 2015-08-28 2016-08-10 Refrigerator
SG11201800798TA SG11201800798TA (en) 2015-08-28 2016-08-10 Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
BR112018003257-3A BR112018003257B1 (en) 2015-08-28 2016-08-10 REFRIGERATOR
US15/897,587 US10637377B2 (en) 2015-08-28 2018-02-15 Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015168580A JP6450939B2 (en) 2015-08-28 2015-08-28 Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator

Publications (2)

Publication Number Publication Date
JP2017046512A JP2017046512A (en) 2017-03-02
JP6450939B2 true JP6450939B2 (en) 2019-01-16

Family

ID=58211877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168580A Active JP6450939B2 (en) 2015-08-28 2015-08-28 Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator

Country Status (1)

Country Link
JP (1) JP6450939B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102020024059A2 (en) 2020-11-25 2022-06-07 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. Accelerated residual current extinguishing method and duration control method of accelerated residual current extinguishing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117188A (en) * 1995-10-16 1997-05-02 Matsushita Refrig Co Ltd Refrigerating cycle device
JP3550910B2 (en) * 1996-10-18 2004-08-04 ダイキン工業株式会社 Method and apparatus for starting brushless DC motor
JP4075338B2 (en) * 2001-07-18 2008-04-16 株式会社豊田自動織機 Control method of electric compressor
US20150188461A1 (en) * 2013-12-30 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Motor driving control apparatus and method, and motor driving system using the same

Also Published As

Publication number Publication date
JP2017046512A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US10637377B2 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
JP6533950B2 (en) Motor drive device, compressor drive device using the same, refrigeration apparatus and refrigerator
JP5195444B2 (en) Brushless DC motor driving apparatus, refrigerator and air conditioner using the same
JP6134905B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP6127275B2 (en) Motor drive device and refrigerator using the same
WO2005067131A1 (en) Driving method and driver of brushless dc motor
WO2017208873A1 (en) Motor drive apparatus, and electric device having compressor using same
JP2008289310A (en) Motor drive and refrigerator using the same
JP2006149097A (en) Motor controller
US8427090B2 (en) Magnetic-drive-pulsation motor
JP6450939B2 (en) Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator
JP2014087078A (en) Motor drive unit and refrigerator using the same
JP2008172880A (en) Method and device for driving brushless dc motor
JP2010252406A (en) Motor drive and refrigerator using the same
JP6182462B2 (en) Power converter
JP2010252480A (en) Motor drive and refrigerator using the same
JP2008005639A (en) Method and device for driving brushless dc motor
JP6970871B2 (en) Motor drive device and refrigerator using it
JP6979568B2 (en) Motor drive device and refrigerator using it
JP2012161219A (en) Control unit for brushless dc motor
JP2012092694A (en) Driving device for compressor and refrigerator using the same
JP2017220970A (en) Motor drive device, and electrical equipment that has compressor using the same
JP6383940B2 (en) Motor drive device
JP2010246333A (en) Motor drive device and refrigerator using the same
JP2006002733A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6450939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151