JP2008038199A - Method for recovering ductility of metallic wire rod - Google Patents

Method for recovering ductility of metallic wire rod Download PDF

Info

Publication number
JP2008038199A
JP2008038199A JP2006213931A JP2006213931A JP2008038199A JP 2008038199 A JP2008038199 A JP 2008038199A JP 2006213931 A JP2006213931 A JP 2006213931A JP 2006213931 A JP2006213931 A JP 2006213931A JP 2008038199 A JP2008038199 A JP 2008038199A
Authority
JP
Japan
Prior art keywords
metal wire
heat treatment
ductility
strength
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006213931A
Other languages
Japanese (ja)
Other versions
JP5124113B2 (en
Inventor
Yoshiaki Ono
義昭 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006213931A priority Critical patent/JP5124113B2/en
Publication of JP2008038199A publication Critical patent/JP2008038199A/en
Application granted granted Critical
Publication of JP5124113B2 publication Critical patent/JP5124113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To give a method for recovering a ductility without sacrificing a tensile strength and a bending strength of a metallic wire rod after applying heat treatment. <P>SOLUTION: When the heat treatment is applied to the metallic wire rod having 4000 MPa or higher of the tensile strength in the temperature range of 250-400°C, the holding time in this temperature zone is controlled so that Fe diffusion distance X(m) in the metallic wire rod after applying heat treatment, becomes in the range of 1.00×10<SP>-13</SP><X<1.00×10<SP>-11</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属線材の延性回復方法に関する。ここで、金属線材とは、特にコードの構成要素である素線を製造する際の出発材となる金属線材のほか、該金属線材を伸線加工して得られる金属素線を含めた総称とする。   The present invention relates to a method for recovering ductility of a metal wire. Here, the metal wire is a generic name including the metal wire obtained by drawing the metal wire in addition to the metal wire used as a starting material when manufacturing the wire that is a component of the cord in particular. To do.

コードの構成要素となる金属素線には、様々な特性が要求されている。例えば、近年の環境問題の観点から、特に自動車の低燃費化を促進するのに寄与するタイヤの軽量化が急務である。そのためには、タイヤの補強材となるコードを高強度化して、その使用量を減らすことが希求されている。   Various characteristics are required for the metal wire that is a constituent element of the cord. For example, from the viewpoint of environmental issues in recent years, there is an urgent need to reduce the weight of tires that contribute to promoting the reduction in fuel consumption of automobiles. For this purpose, there is a demand for increasing the strength of the cord that serves as a reinforcing material for the tire and reducing the amount of use.

コードを高強度化する手法としては、コードを構成する素線自体を高強度化することが有効である。この素線の高強度化には、伸線加工して得られる素線の出発材である金属線材について、その成分組成を調整したり、或いは伸線加工に工夫を凝らすことが行われている。これらにより、高強度化を達成しているが、一方で高強度化に伴って金属線材の延性が低下することが問題になる。   As a technique for increasing the strength of the cord, it is effective to increase the strength of the strands constituting the cord itself. In order to increase the strength of the wire, the composition of the metal wire that is the starting material of the wire obtained by wire drawing is adjusted or the device is devised for wire drawing. . As a result, high strength is achieved, but on the other hand, there is a problem that ductility of the metal wire is lowered with the increase in strength.

従来、金属線材の延性を回復する手段としては、金属線材に低温かつ短時間の熱処理、いわゆるブルーイング処理を施すことが一般的である。該ブルーイング処理を金属線材に施すことで延性の回復を図っている。   Conventionally, as a means for recovering the ductility of a metal wire, it is common to subject the metal wire to a low-temperature and short-time heat treatment, so-called bluing treatment. Ductility recovery is achieved by applying the blueing treatment to the metal wire.

例えば、引張り強さが3000MPa未満のスチールコードに、400℃付近の温度域で一定の保持時間でなされるブルーイング処理を施すことによって、スチールコードの破断伸びを高めている。(特許文献1および特許文献2参照)   For example, the breaking elongation of the steel cord is increased by subjecting the steel cord having a tensile strength of less than 3000 MPa to a blueing treatment that is performed at a constant holding time in a temperature range near 400 ° C. (See Patent Document 1 and Patent Document 2)

また、スチールワイヤに伸線加工、めっき処理および340℃以上500℃以下の温度域にて数秒〜数十秒のブルーイング処理を施すことによって、弾性伸びを増加させている(特許文献3参照)。
さらに、炭素鋼線に250℃以上440℃以下の温度域で保持時間を6秒以上15分以下の間で調節するブルーイング処理を施すことによって、炭素鋼線の内部摩擦の最大値を、180℃以上220℃以下の温度域において、好適な範囲とすることで延性を向上させている。(特許文献4参照)
特開平9―228274号公報 特開平2001―512191号公報 特開平2000―80441号公報 特開平11―269557号公報
In addition, the steel wire is subjected to wire drawing, plating, and blueing treatment for several seconds to several tens of seconds in a temperature range of 340 ° C. to 500 ° C. to increase elastic elongation (see Patent Document 3). .
Furthermore, the maximum value of the internal friction of the carbon steel wire can be increased by applying a blueing treatment that adjusts the holding time between 6 seconds and 15 minutes in the temperature range of 250 ° C to 440 ° C. Ductility is improved by setting it in a suitable range in the temperature range from ℃ to 220 ℃. (See Patent Document 4)
JP-A-9-228274 Japanese Unexamined Patent Publication No. 2001-512191 Japanese Unexamined Patent Publication No. 2000-80441 Japanese Patent Laid-Open No. 11-269557

上記のように、従来、高強度化した金属線材の延性を回復する手法は、ブルーイング処理が一般的であった。   As described above, conventionally, a technique for recovering the ductility of a high strength metal wire has been generally a blueing treatment.

しかし、金属線材にブルーイング処理を施すことで、延性が回復すると同時に、金属線材の引張強さが15%以上も減少してしまう。また、金属線材の内部組織であるセメンタイトが球状化するため、曲げ強度が低下してしまう。なぜなら、ブルーイング処理によって、延性は回復するが、同時に、例えば伸線加工によって加工方向に延びたラメラー構造(フェライトとセメンタイトの層状組織)が分断される結果、曲げ強度が低下し、さらに歪除去に伴う強度低下を超える強度低下が起こる。   However, by applying the blueing treatment to the metal wire, the ductility is restored and the tensile strength of the metal wire is reduced by 15% or more. Moreover, since cementite which is an internal structure | tissue of a metal wire is spheroidized, bending strength will fall. This is because the ductility is restored by the bluing treatment, but at the same time, the lamellar structure (layered structure of ferrite and cementite) extending in the processing direction, for example, by wire drawing is divided, resulting in a decrease in bending strength and further removal of strain. The strength reduction that exceeds the strength reduction associated with.

ここで、曲げ強度とは、図1に示す引掛け試験において、2本の金属線材1をループ状にして互いに引っ掛け合い、それぞれの金属線材1を引張試験機のグリップ2間の中央に、同一の金属線材が平行に接触するように固定して、金属線材の引っ掛け部分の曲率が一定になるようにし、金属線材を引っ張って破断したときの荷重を意味する。   Here, the bending strength means that in the hook test shown in FIG. 1, two metal wires 1 are looped and hooked together, and each metal wire 1 is the same at the center between the grips 2 of the tensile tester. The metal wire is fixed so as to be in parallel contact, the curvature of the hooked portion of the metal wire is made constant, and the load when the metal wire is pulled and broken is meant.

そこで本発明の目的は、熱処理後の金属線材における引張り強さおよび曲げ強度を犠牲にすることなしに、延性を回復する方途を与えることにある。   Accordingly, an object of the present invention is to provide a way to recover ductility without sacrificing the tensile strength and bending strength of the metal wire after heat treatment.

金属線材の延性を回復するにあたっては、熱処理の条件を調整することによって、改善してきた。しかし同時に、熱処理後の金属線材は、引張り強さおよび曲げ強度が低下してしまうため、両方をバランス良く向上させることが困難であった。   In recovering the ductility of the metal wire, it has been improved by adjusting the conditions of the heat treatment. At the same time, however, since the tensile strength and bending strength of the metal wire after the heat treatment are lowered, it is difficult to improve both in a balanced manner.

そこで発明者は、熱処理後の金属線材について、引張り強さおよび曲げ強度を低下させずに延性を回復する手段を鋭意検討した結果、金属線材に熱処理を施す際、その条件である熱処理温度と保持時間を調整することによって、金属線材の引張り強さおよび曲げ強度を犠牲にすることなしに延性が回復することを見出し、本発明を完成するに至った。   Therefore, the inventors have intensively studied means for recovering ductility without reducing the tensile strength and bending strength of the metal wire after heat treatment. As a result, when the heat treatment is performed on the metal wire, the heat treatment temperature and the holding conditions are maintained. By adjusting the time, it was found that the ductility was restored without sacrificing the tensile strength and bending strength of the metal wire, and the present invention was completed.

すなわち、本発明の要旨構成は次の通りである。
(1)金属線材に、250℃以上400℃以下の温度範囲にて熱処理を施すに当たり、当該温度域における保持時間を、該熱処理後の金属線材におけるFe拡散距離X(m)が1.00×10-13<X<1.00×10-11となる範囲に制御することを特徴とする金属線材の延性回復方法。
That is, the gist configuration of the present invention is as follows.
(1) When a metal wire is heat-treated in a temperature range of 250 ° C. or more and 400 ° C. or less, the retention time in the temperature range is set so that the Fe diffusion distance X (m) in the metal wire after the heat treatment is 1.00 × 10 − 13 <X <1.00 × 10 −11 In a ductility recovery method for a metal wire, characterized by controlling in a range.

(2)前記金属線材は、引張り強さが4000MPa以上である前記(1)に記載の金属線材の延性回復方法。 (2) The ductility recovery method for a metal wire according to (1), wherein the metal wire has a tensile strength of 4000 MPa or more.

(3)前記熱処理は、減圧下または不活性ガス中にて行うことを特徴とする前記(1)または(2)に記載の金属線材の延性回復方法。 (3) The ductility recovery method for a metal wire according to (1) or (2), wherein the heat treatment is performed under reduced pressure or in an inert gas.

本発明によれば、金属線材に熱処理を施す際、熱処理温度および保持時間をバランス良く調節することによって、金属線材の引張り強さ並びに曲げ強度を犠牲にすることなく延性を回復できるため、高性能の金属線材を提供することが可能となる。   According to the present invention, when heat treating a metal wire, the ductility can be recovered without sacrificing the tensile strength and bending strength of the metal wire by adjusting the heat treatment temperature and holding time in a well-balanced manner. It becomes possible to provide a metal wire.

本発明は、金属素線および該素線の製造に供する金属線材について、特に高強度化に伴って低下した金属線材の延性を熱処理を施すことによって、回復することを所期したものである。
すなわち、金属線材に250℃以上400℃以下の温度範囲にて熱処理を施すにあたり、当該温度域における保持時間を、該熱処理後の金属線材におけるFe拡散距離X(m)が1.00×10-13<X<1.00×10-11となる範囲に制御することを特徴とする。
The present invention intends to recover the ductility of the metal wire and the metal wire used for the production of the strand by performing a heat treatment, in particular, by reducing the ductility of the metal wire which has been lowered with increasing strength.
That is, when the metal wire is subjected to heat treatment in a temperature range of 250 ° C. or more and 400 ° C. or less, the holding time in the temperature range is set such that the Fe diffusion distance X (m) in the metal wire after the heat treatment is 1.00 × 10 −13 < Control is performed in a range of X <1.00 × 10 −11 .

ここで、金属線材に施す熱処理の温度を、250℃以上400℃以下の範囲としたのは、次の理由によるものである。すなわち、250℃未満では、金属線材の成分であるFeがほとんど拡散せず、歪に炭素が移動して固着することで硬化する歪時効のみが発現し、かえって延性が低下してしまう。
一方、400℃超では、Fe原子の移動が活発化し、歪除去以外にセメンタイトが球状化し易くなり、Fe拡散距離X(m)を1.00×10-13<X<1.00×10-11の範囲とするためには、熱処理の保持時間を1秒以下としなければならず、かような短時間保持は、その制御が困難である。
より好ましくは、250℃以上350℃以下の温度範囲とする。
Here, the reason for setting the temperature of the heat treatment applied to the metal wire in the range of 250 ° C. or more and 400 ° C. or less is as follows. That is, when the temperature is less than 250 ° C., Fe, which is a component of the metal wire material, hardly diffuses, and only strain aging that cures when carbon moves and adheres to the strain appears, and ductility decreases.
On the other hand, when the temperature exceeds 400 ° C., the movement of Fe atoms becomes active, and cementite tends to spheroidize in addition to strain removal, and the Fe diffusion distance X (m) is within the range of 1.00 × 10 −13 <X <1.00 × 10 −11 In order to achieve this, the heat treatment holding time must be 1 second or less, and such a short time holding is difficult to control.
More preferably, the temperature range is 250 ° C. or higher and 350 ° C. or lower.

そして、上記の温度域にて、熱処理を施すに当たり、保持時間を熱処理後のFe拡散距離X(m)が1.00×10-13<X<1.00×10-11となる範囲に制御することが肝要である。なお、Fe拡散距離X(m)は、下記式(1)式にて算出するものとする。

X=√2・D・t ----(1)
但し、D:D0・e(-Q/RT)
t:保持時間(s)
ここで、D0:拡散係数 2.80×10-4 (m/s)
-Q:活性化エネルギー 251 (kJ/mol)
R:気体定数
T:温度(K)
And, in performing the heat treatment in the above temperature range, it is important to control the holding time so that the Fe diffusion distance X (m) after the heat treatment is 1.00 × 10 −13 <X <1.00 × 10 −11. It is. The Fe diffusion distance X (m) is calculated by the following formula (1).
Record
X = √2 · D · t ---- (1)
However, D: D 0 · e (-Q / RT)
t: Retention time (s)
Here, D 0 : diffusion coefficient 2.80 × 10 −4 (m 2 / s)
-Q: Activation energy 251 (kJ / mol)
R: Gas constant
T: Temperature (K)

ここで、保持時間をFe拡散距離X(m)で制御することの意義は、歪がFeの結晶格子欠陥として導入されており、該歪を除去するには、Fe原子の微少な移動(拡散)が必要となることから、熱処理の条件である保持時間を該Fe拡散距離X(m)で制御すれば歪の除去が確実に行えることにある。   Here, the significance of controlling the holding time by the Fe diffusion distance X (m) is that strain is introduced as a crystal lattice defect of Fe, and in order to remove the strain, a slight movement (diffusion of Fe atoms) Therefore, if the holding time, which is a heat treatment condition, is controlled by the Fe diffusion distance X (m), the strain can be surely removed.

従って、熱処理後の金属線材におけるFe拡散距離X(m)が1.00×10-13<X<1.00×10-11となる範囲にあれば、熱処理後の引張強さの低下は10%以下に抑えられる。また、伸びの大きな変化もなく、曲げ強度が向上する。 Therefore, if the Fe diffusion distance X (m) in the metal wire after heat treatment is in the range of 1.00 × 10 −13 <X <1.00 × 10 −11 , the decrease in tensile strength after heat treatment is suppressed to 10% or less. It is done. In addition, the bending strength is improved without a large change in elongation.

すなわち、Fe拡散距離X(m)が1.00×10-13以下となる保持時間では、十分な歪除去が出来ず、炭素が歪へ固着することにより、歪時効が優先的に発現するため、十分な延性回復が得られない。
また、Fe拡散距離X(m)が1.00×10-11以上となる保持時間では、歪が除去されるが、一方で該歪除去を担うFe原子の拡散を伴う反応であるセメンタイトの球状化または再結晶が発現し、強度が大幅に低下することになる。
より好ましくは、5.0×10-13<X<5.0×10-12とする。
In other words, with a holding time where the Fe diffusion distance X (m) is 1.00 × 10 −13 or less, sufficient strain removal cannot be performed, and because carbon adheres to the strain, strain aging preferentially develops. Cannot be recovered.
Further, in the holding time where the Fe diffusion distance X (m) is 1.00 × 10 −11 or more, strain is removed, while on the other hand, cementite spheroidization, which is a reaction involving diffusion of Fe atoms responsible for strain removal, or Recrystallization will occur and the strength will be greatly reduced.
More preferably, 5.0 × 10 −13 <X <5.0 × 10 −12 is satisfied.

そして、上記の熱処理は、引張り強さが4000MPa以上の金属線材に適用することが好ましい。なぜなら、4000MPa以上の金属線材はデラミネーションなどによって顕著な延性低下が発生し易いから、このような線材に本発明の熱処理を適用して、その延性を回復させることは有効であるからである。   The heat treatment is preferably applied to a metal wire having a tensile strength of 4000 MPa or more. This is because a metal wire having a pressure of 4000 MPa or more is likely to be significantly reduced in ductility due to delamination or the like, and thus it is effective to restore the ductility by applying the heat treatment of the present invention to such a wire.

また、金属線材に熱処理を施すには、減圧下または不活性ガス中にて行うことが好ましい。なぜなら、金属線材に250〜400℃の熱処理を大気中で施した場合、金属線材の表面が酸化してしまい、該表面が酸化した金属線材をタイヤ等の補強に用いた際、ゴムとの接着が悪化するおそれがあるから、酸化の抑制に有効な減圧下または不活性ガス中にて行うことが好ましい。また、金属線材の酸化皮膜を除去することもできるが、該除去プロセスを金属線材の製造工程に付加するよりは、金属線材の表面の酸化を抑制する減圧下または不活性ガス中にて熱処理を実施することの方が効率的である。   Further, the heat treatment of the metal wire is preferably performed under reduced pressure or in an inert gas. This is because when the metal wire is subjected to heat treatment at 250 to 400 ° C. in the atmosphere, the surface of the metal wire is oxidized, and when the oxidized metal wire is used for reinforcement of a tire or the like, it adheres to rubber. Therefore, it is preferable to carry out under reduced pressure or in an inert gas effective for suppressing oxidation. It is also possible to remove the oxide film of the metal wire, but rather than adding the removal process to the metal wire manufacturing process, heat treatment is performed under reduced pressure or in an inert gas that suppresses oxidation of the surface of the metal wire. It is more efficient to implement.

引張り強さが4500MPaの金属線材に表1に示す条件の下で熱処理を施した。該熱処理後の金属線材について、引張り強さ、破断歪およびFe拡散距離X(m)を測定した。これらの結果を表1に併記する。   A metal wire having a tensile strength of 4500 MPa was subjected to heat treatment under the conditions shown in Table 1. The metal wire after the heat treatment was measured for tensile strength, breaking strain, and Fe diffusion distance X (m). These results are also shown in Table 1.

なお、表1におけるFe拡散距離(m)は上記式(1)に準拠して求めたものである。   In addition, the Fe diffusion distance (m) in Table 1 is obtained based on the above formula (1).

また、熱処理後の金属線材の引張り強さは、JIS Z 2241に準拠した引張り試験に基いて、応力―歪線図を作成し、その応力―歪線図から最大応力を求めて、その値を引張強さとした。   For the tensile strength of the metal wire after heat treatment, create a stress-strain diagram based on the tensile test in accordance with JIS Z 2241, obtain the maximum stress from the stress-strain diagram, and calculate the value. The tensile strength.

熱処理後の破断歪は、JIS Z 2241に準拠した引張り試験に基いて、応力―歪線図を作成し、その応力―歪線図から破断伸びを求めて、その値を破断歪みとした。   For the breaking strain after the heat treatment, a stress-strain diagram was created based on a tensile test based on JIS Z 2241, the elongation at break was determined from the stress-strain diagram, and the value was taken as the breaking strain.

さらに、該曲げ強度特性指数は、先に示した図1の引掛け試験にて測定した曲げ強度について、従来例の曲げ強度を100としての指数化したものである。   Further, the bending strength characteristic index is obtained by indexing the bending strength measured in the hook test of FIG.

Figure 2008038199
Figure 2008038199

曲げ強度を測定する引掛け試験の説明図である。It is explanatory drawing of the hook test which measures bending strength.

符号の説明Explanation of symbols

1 金属線材
2 試験機のグリップ
1 Metal wire
2 Grip of testing machine

Claims (3)

金属線材に、250℃以上400℃以下の温度範囲にて熱処理を施すに当たり、当該温度域における保持時間を、該熱処理後の金属線材におけるFe拡散距離X(m)が1.00×10-13<X<1.00×10-11となる範囲に制御することを特徴とする金属線材の延性回復方法 When heat treatment is performed on a metal wire in a temperature range of 250 ° C. or more and 400 ° C. or less, the holding time in the temperature range is set as follows: Fe diffusion distance X (m) in the metal wire after the heat treatment is 1.00 × 10 −13 <X <Method for recovering ductility of metal wire, characterized by being controlled within range of 1.00 × 10 -11 前記金属線材は、引張り強さが4000MPa以上である請求項1に記載の金属線材の延性回復方法。   The method for recovering ductility of a metal wire according to claim 1, wherein the metal wire has a tensile strength of 4000 MPa or more. 前記熱処理は、減圧下または不活性ガス中にて行うことを特徴とする請求項1または2に記載の金属線材の延性回復方法。   The method for recovering ductility of a metal wire according to claim 1 or 2, wherein the heat treatment is performed under reduced pressure or in an inert gas.
JP2006213931A 2006-08-04 2006-08-04 Method for recovering ductility of metal wire Expired - Fee Related JP5124113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213931A JP5124113B2 (en) 2006-08-04 2006-08-04 Method for recovering ductility of metal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213931A JP5124113B2 (en) 2006-08-04 2006-08-04 Method for recovering ductility of metal wire

Publications (2)

Publication Number Publication Date
JP2008038199A true JP2008038199A (en) 2008-02-21
JP5124113B2 JP5124113B2 (en) 2013-01-23

Family

ID=39173574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213931A Expired - Fee Related JP5124113B2 (en) 2006-08-04 2006-08-04 Method for recovering ductility of metal wire

Country Status (1)

Country Link
JP (1) JP5124113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021244A1 (en) 2008-08-20 2010-02-25 株式会社ブリヂストン Method for manufacturing high-strength metal wire rod

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103313A (en) * 1976-02-27 1977-08-30 Kobe Steel Ltd Production of steel wire, steel rod of low carbon content, having high strength and high toughness
JPS60152635A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Manufacture of high-strength low-carbon steel material having superior heavy workability
JPS6250408A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Production of high-strength high-ductility drawn wire
JPH05105965A (en) * 1991-10-16 1993-04-27 Nippon Steel Corp Production of high strength bead wire excellent in ductility
JPH05117764A (en) * 1991-10-24 1993-05-14 Nippon Steel Corp Manufacture of high strength bead wire
JPH1080716A (en) * 1996-09-05 1998-03-31 Nippon Steel Corp Manufacture of high-strength high-carbon steel wire excellent in elongation characteristic
JPH11269557A (en) * 1998-03-25 1999-10-05 Kobe Steel Ltd High strength steel wire excellent in ductility and toughness, and its manufacture
JP2003328076A (en) * 2002-05-14 2003-11-19 Nippon Steel Corp Medium-carbon high-strength steel wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103313A (en) * 1976-02-27 1977-08-30 Kobe Steel Ltd Production of steel wire, steel rod of low carbon content, having high strength and high toughness
JPS60152635A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Manufacture of high-strength low-carbon steel material having superior heavy workability
JPS6250408A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Production of high-strength high-ductility drawn wire
JPH05105965A (en) * 1991-10-16 1993-04-27 Nippon Steel Corp Production of high strength bead wire excellent in ductility
JPH05117764A (en) * 1991-10-24 1993-05-14 Nippon Steel Corp Manufacture of high strength bead wire
JPH1080716A (en) * 1996-09-05 1998-03-31 Nippon Steel Corp Manufacture of high-strength high-carbon steel wire excellent in elongation characteristic
JPH11269557A (en) * 1998-03-25 1999-10-05 Kobe Steel Ltd High strength steel wire excellent in ductility and toughness, and its manufacture
JP2003328076A (en) * 2002-05-14 2003-11-19 Nippon Steel Corp Medium-carbon high-strength steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021244A1 (en) 2008-08-20 2010-02-25 株式会社ブリヂストン Method for manufacturing high-strength metal wire rod
US8900383B2 (en) 2008-08-20 2014-12-02 Bridgestone Corporation Method of producing a high tenacity metal wire material

Also Published As

Publication number Publication date
JP5124113B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
CN107406950B (en) High-carbon steel wire rod and steel wire having excellent drawability
JP5521052B2 (en) Wire rod for wire drawing excellent in wire drawing workability, ultra-high strength steel wire, and manufacturing method thereof
WO2015064202A1 (en) Spring and process for producing spring
JP2001220650A (en) Steel wire, spring and producing method therefor
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
KR20120024609A (en) Tyre bead wire and process for production thereof
JP3542489B2 (en) High-strength extra-fine steel wire with excellent fatigue properties
JP5124113B2 (en) Method for recovering ductility of metal wire
KR102125275B1 (en) High cabon steel wire having excellent mechanical descaling property and method for manufacturing the same
JP2000119805A (en) Steel wire rod excellent in wire drawability
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
CN110819903B (en) Steel wire and steel wire rod having excellent kink characteristics, and method for producing same
JP5478494B2 (en) Manufacturing method of high strength metal wire
WO2016002414A1 (en) Wire material for steel wire, and steel wire
JP4062612B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength and sag resistance
JP3250247B2 (en) Manufacturing method of high carbon steel wire for wire drawing
JP5590773B2 (en) Steel material control method
KR20110069353A (en) High strength steel wire having excellent twist properties and mothod for manufacturing the same
JP5914144B2 (en) Metal wire manufacturing method and metal wire
JP2015101779A (en) Wire material for extra fine steel wire and manufacturing method therefor
JP2003293074A (en) Steel wire for hard drawn spring having excellent fatigue strength and hard drawn spring
JP2015074802A (en) Method of producing wire rod for hypereutectoid bentonite steel wire excellent in wire drawing characteristic and delayed fracture resistance characteristic and method of producing steel wire using the wire rod
JP2011052269A (en) Method for manufacturing steel wire, and steel wire obtained by using the same
JP5488658B2 (en) Steel material control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees