JP5590773B2 - Steel material control method - Google Patents

Steel material control method Download PDF

Info

Publication number
JP5590773B2
JP5590773B2 JP2008078836A JP2008078836A JP5590773B2 JP 5590773 B2 JP5590773 B2 JP 5590773B2 JP 2008078836 A JP2008078836 A JP 2008078836A JP 2008078836 A JP2008078836 A JP 2008078836A JP 5590773 B2 JP5590773 B2 JP 5590773B2
Authority
JP
Japan
Prior art keywords
steel
magnetic field
wire
carbon
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008078836A
Other languages
Japanese (ja)
Other versions
JP2009228122A (en
Inventor
貞弘 連川
世紀 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008078836A priority Critical patent/JP5590773B2/en
Publication of JP2009228122A publication Critical patent/JP2009228122A/en
Application granted granted Critical
Publication of JP5590773B2 publication Critical patent/JP5590773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、強磁場を利用した鋼の機械的性質の制御に関するものである。さらに詳しくは、高炭素鋼線材の伸線加工時の時効硬化、又は、伸線加工後の室温時効、及び、熱間圧延における低温領域でのフェライト域脱炭を抑制する方法に関する。   The present invention relates to control of mechanical properties of steel using a strong magnetic field. More specifically, the present invention relates to a method for suppressing age hardening at the time of wire drawing of a high carbon steel wire, room temperature aging after wire drawing, and ferrite region decarburization in a low temperature region in hot rolling.

鋼の侵入型元素の拡散により引き起こされる種々の現象を抑制することにより組織を制御して、機械的性質を調整する方法が従来より用いられている。例えば、高炭素鋼線の伸線加工時の発熱による延性劣化を抑制する技術として、特許文献1に開示されている方法がある。   Conventionally, a method of adjusting a mechanical property by controlling a structure by suppressing various phenomena caused by diffusion of interstitial elements in steel has been used. For example, there is a method disclosed in Patent Document 1 as a technique for suppressing ductility deterioration due to heat generation during drawing of a high carbon steel wire.

この方法は、伸線加工中に発生する加工発熱により高温となり、侵入型元素が拡散し易くなる現象について、鋼線を直接水で冷却することにより、延性が劣化するのを防ぐ技術である。   This method is a technique for preventing the ductility from deteriorating by directly cooling the steel wire with water with respect to a phenomenon in which the high temperature is generated by the heat generated during the wire drawing and the interstitial elements are easily diffused.

しかし、この直接鋼線を水冷する方法を用いても、スチールコードのような0.15〜0.4mm径の3.0GPa以上のワイヤでは、加工温度の低下により変形抵抗が増加し、それによって、かえって発熱の増加が有り、十分に冷却の効果を得られないという問題があった。   However, even if this method of directly cooling the steel wire is used, a wire with a diameter of 0.15 to 0.4 mm, such as a steel cord, of 3.0 GPa or more increases deformation resistance due to a decrease in processing temperature, thereby On the contrary, there was an increase in heat generation, and there was a problem that a sufficient cooling effect could not be obtained.

一方、Siを多量に含む高炭素鋼を熱間圧延で線材圧延する場合、熱間圧延の過程で、鋼材の温度がAe3変態点以下の温度になると、フェライトが生成し、フェライト中の炭素の拡散速度が大きいために、脱炭が促進されるとの問題があった。 On the other hand, when the rolled wire rod of high carbon steel containing Si in a large amount in hot rolling, in the course of hot rolling, the temperature of the steel material to a temperature below Ae 3 transformation point, ferrite is generated, the carbon in the ferrite There was a problem that decarburization was promoted because of the high diffusion rate.

このような課題に対しては、例えば、特許文献2に開示されているような技術がある。この方法では、鋼に、アンチモンを添加することで、鋼の表面に、Fe酸化物より緻密なSb酸化物を形成し、鋼の表面からの炭素が抜け出すのを防止するという技術である。   For such a problem, for example, there is a technique disclosed in Patent Document 2. In this method, antimony is added to the steel to form a finer Sb oxide than the Fe oxide on the surface of the steel, thereby preventing the escape of carbon from the surface of the steel.

しかし、この方法では、アンチモンなどの、環境負荷が大きい元素を用いるため、実用に際しては制限が多く、一般的に用いることができないとの問題があった。   However, this method uses an element having a large environmental load such as antimony, so that there are many limitations in practical use, and there is a problem that it cannot be generally used.

特開昭62−284044号公報JP 62-284044 A 特開平01−319650号公報JP-A-01-319650

このように、加工技術、鋼材成分などの工夫を行なっても、鋼の侵入型元素の拡散によって生じる問題に対する解決策には限界があり、侵入型元素の拡散に関する、新たな制御技術方法が必要とされていた。   As described above, even if processing techniques, steel material components, etc. are devised, there are limits to the solutions to the problems caused by the diffusion of interstitial elements in steel, and new control technology methods related to the diffusion of interstitial elements are necessary. It was said.

本発明は、上記問題点に鑑みてなされた発明であり、鉄、鋼などの鋼材の機械的性質に影響を与える炭素、窒素、水素などの侵入型元素の拡散の制御方法であり、これを通じて、鋼材の機械的性質を改善する技術を提供することを目的としている。   The present invention has been made in view of the above problems, and is a method for controlling the diffusion of interstitial elements such as carbon, nitrogen, and hydrogen that affects the mechanical properties of steel materials such as iron and steel. The purpose is to provide a technique for improving the mechanical properties of steel materials.

さらに、具体的には、例えば、スチールコード、ベルトコード、ゴムホース用ワイヤ、ロープ用ワイヤなどの細引き用途に使用されるピアノ線材、硬鋼線材などに用いられる高炭素鋼線材に関し、熱間圧延後の伸線加工性に優れ、伸線加工の際に内部欠陥を発生し難い、高延性の高炭素鋼線材を提供することにより、中間パテンティング処理を省略することが可能な、高延性の高炭素鋼線材を提供することを目的としている。   More specifically, for example, hot-rolling for high-carbon steel wire used for piano wire, hard steel wire, etc. used for thinning applications such as steel cord, belt cord, rubber hose wire, rope wire, etc. By providing a high carbon steel wire with high ductility, which is excellent in later wire drawing workability and hardly generates internal defects during wire drawing, it is possible to omit intermediate patenting treatment, It aims to provide a high carbon steel wire rod.

本発明は、以下を要旨とする。   The gist of the present invention is as follows.

(1)炭素を0.3質量%以上含む鋼を冷間加工する際に、
前記冷間加工がダイスを用いて行う伸線加工であり、かつ、
少なくとも、当該ダイスの出側位置で当該鋼に1テスラ以上の強磁場をかけながら、減面率10%以上の加工を行なうことを特徴とする鋼材の材質制御方法。
(1) When cold working steel containing 0.3% by mass or more of carbon,
The cold working is wire drawing performed using a die, and
A method for controlling the material of a steel material, characterized in that at least a processing with a reduction in area of 10% or more is performed while applying a strong magnetic field of 1 Tesla or more to the steel at the exit side of the die.

本発明により、従来では不可能であった鋼の加工時に発生する時効硬化、加工後に発生する室温時効、又は、熱間圧延時に発生するフェライト域での脱炭を抑制することが可能となった。   According to the present invention, it has become possible to suppress age hardening that occurs during processing of steel, which has been impossible in the past, room temperature aging that occurs after processing, or decarburization in the ferrite region that occurs during hot rolling. .

このことにより、例えば、伸線ワイヤの時効硬化を抑制すること、及び、高炭素鋼を熱間圧延する際のフェライト域圧延で、脱炭を、磁場をかけることで抑制することが可能となり、線材又は鋼線の高延性化が可能となった。   By this, for example, it is possible to suppress age hardening of the drawn wire, and to suppress decarburization by applying a magnetic field in ferrite region rolling when hot rolling high carbon steel, High ductility of wire or steel wire has become possible.

本発明者らは、強磁場中におけるフェライト中の炭素の拡散速度に着目して、本発明に至った。本発明者らが測定を行なった強磁場中の炭素の拡散速度を、図1に示す。図1に示すように、6テスラの強磁場をかけることにより、鉄中の炭素の拡散係数は、ほぼ4分の1となっている。   The inventors of the present invention have arrived at the present invention by paying attention to the diffusion rate of carbon in ferrite in a strong magnetic field. The carbon diffusion rate in the strong magnetic field measured by the present inventors is shown in FIG. As shown in FIG. 1, by applying a strong magnetic field of 6 Tesla, the diffusion coefficient of carbon in iron is approximately one-fourth.

つまり、鋼材に強磁場をかけることにより、鋼中炭素の拡散速度が4分の1程度に低下する。このことを利用すれば、鋼の機械的性質の変化に、炭素の拡散が影響しているものに関しては、磁場をかけることにより、炭素の拡散を遅延させることが可能となる。   That is, by applying a strong magnetic field to the steel material, the diffusion rate of carbon in the steel is reduced to about a quarter. By utilizing this fact, carbon diffusion can be delayed by applying a magnetic field to those in which carbon diffusion affects the change in the mechanical properties of steel.

そして、この炭素の拡散速度の抑制は、炭素含有量が0.3質量%以上の鋼で、効果が顕著である。   And suppression of this carbon diffusion rate is remarkable in steel with a carbon content of 0.3% by mass or more.

また、この磁場による炭素の拡散速度抑制効果は、図2に示すように、磁場の強度に比例して大きくなる。   Further, the effect of suppressing the diffusion rate of carbon by the magnetic field increases in proportion to the strength of the magnetic field, as shown in FIG.

したがって、磁場により炭素の拡散速度に及ぼす影響が明瞭となる1テスラ以上の磁場をかける必要がある。本発明では、1テスラ以上の磁場としているが、期待する効果に応じて、磁場の強度を調整することが可能である。   Therefore, it is necessary to apply a magnetic field of 1 Tesla or higher that clearly shows the influence of the magnetic field on the diffusion rate of carbon. In the present invention, a magnetic field of 1 Tesla or more is used, but the strength of the magnetic field can be adjusted according to the expected effect.

鋼の加工を行う場合、加工度が小さいと、鋼材中心部まで圧縮応力が届かず、内部クラックを生じるので、加工減面率を、少なくとも、10%以上とする必要がある。   When processing steel, if the degree of processing is small, the compressive stress does not reach the center of the steel material, and internal cracks are generated. Therefore, the processing area reduction rate needs to be at least 10% or more.

また、ダイスを用いる伸線加工の場合、ダイスの出側で、最も鋼材の温度が高温となるので、ダイスを使用する加工の場合は、少なくとも、ダイスの出側位置で、強磁場を掛ける必要がある。   Also, in the case of wire drawing using a die, the temperature of the steel material is the highest on the exit side of the die, so in the case of processing using a die, it is necessary to apply a strong magnetic field at least at the exit side position of the die. There is.

なお、この伸線加工を行なった後に行なうスキンパス伸線は、通常、減面率が1%以上10%未満であるが、伸線ワイヤの内部に、カッピー破断を引き起こすクラックを生じない条件であれば、本発明の強磁場を利用することが可能である。   Note that the skin pass wire drawing performed after this wire drawing processing usually has a surface reduction rate of 1% or more and less than 10%, but it is a condition that does not cause a crack that causes a capty break in the wire drawing wire. For example, the strong magnetic field of the present invention can be used.

同様に、鋼材の加工後に、室温で起きる時効現象の抑制にも用いることができる。この場合、特に、0.3%以上の鋼線で室温時効が現れるので、0.3%以上炭素を含む鋼線に適用する。   Similarly, it can be used to suppress the aging phenomenon that occurs at room temperature after the steel material is processed. In this case, since room temperature aging appears especially with a steel wire of 0.3% or more, it is applied to a steel wire containing 0.3% or more of carbon.

また、室温時効は炭素量ばかりでなく、伸線加工により導入された転位密度にも影響されるので、真ひずみで1.5以上の加工を行なった場合に、加工後、1テスラ以上の磁場をかけた状態で保持することが効果的である。   In addition, since room temperature aging is affected not only by the carbon content but also by the dislocation density introduced by wire drawing, a magnetic field of 1 Tesla or higher after processing when processing at 1.5 or more true strain is performed. It is effective to hold in a state of applying.

なお、このような強磁場による効果は、炭素に代表されるが、その他の侵入型元素である窒素、又は、水素であっても、同様に、強磁場により拡散係数を小さくすることが可能である。   The effect of such a strong magnetic field is typified by carbon, but even with other interstitial elements such as nitrogen or hydrogen, the diffusion coefficient can be similarly reduced by a strong magnetic field. is there.

次に、鋼材に強磁場をかけることにより、鋼材表層の脱炭も抑制できることについて、説明する。   Next, the fact that decarburization of the steel material surface layer can be suppressed by applying a strong magnetic field to the steel material will be described.

磁場をかけることで脱炭を抑制する場合に、フェライト域脱炭の影響が大きくなるのは、0.3%以上の炭素を含む鋼である。また、フェライト域脱炭は、炭素の拡散が早くなる500℃以上の温度域で影響が大きく、γ中に、フェライトが生成するAe3変態点以下の温度域で、脱炭が大きくなる。このため、500℃以上、Ae3変態点以下の温度範囲で磁場をかけるものとする。 In the case where decarburization is suppressed by applying a magnetic field, the influence of ferrite region decarburization is increased in steel containing 0.3% or more of carbon. In addition, the decarburization of the ferrite region has a large influence in a temperature range of 500 ° C. or more at which carbon diffusion becomes fast, and decarburization becomes large in a temperature region below the Ae 3 transformation point where ferrite forms in γ. Therefore, 500 ° C. or higher, it is assumed to apply a magnetic field in a temperature range of Ae 3 transformation point.

磁場の強度は、圧延中の雰囲気に影響されるので、脱炭の大きさや、必要な脱炭の制御範囲によって調整することが可能である。一般的には、1テスラ以上の強度で脱炭抑制の効果が大きくなるので、1テスラ以上の磁場をかけるものとする。   Since the strength of the magnetic field is affected by the atmosphere during rolling, it can be adjusted according to the size of decarburization and the required control range of decarburization. In general, since the effect of suppressing decarburization increases with an intensity of 1 Tesla or higher, a magnetic field of 1 Tesla or higher is applied.

また、熱間加工の際にも、Ae3変態点以下で脱炭が起きるので、熱間圧延の際に、Ae3変態点以下の温度領域で、当該鋼に強磁場をかけながら圧延することも、脱炭を抑制するのに効果的である。 Also, since decarburization occurs below the Ae 3 transformation point during hot working, rolling the steel while applying a strong magnetic field in the temperature range below the Ae 3 transformation point. Is also effective in suppressing decarburization.

(実施例1)
実炉で、JIS SWRS82A相当の鋼を溶製し、熱間圧延で5.5mm径の線材とした。得られた線材に、伸線加工と中間熱処理を施して、1.85mm径のワイヤとした。その後、950℃でオーステナイト化を行い、575℃の鉛浴に浸漬する鉛パテンティング処理を行なった。さらに、湿式の連続伸線機を用いて、伸線加工で、1.85mm径の鋼線を0.3mm径のワイヤにした。
Example 1
In an actual furnace, steel corresponding to JIS SWRS82A was melted and hot rolled to obtain a wire having a diameter of 5.5 mm. The obtained wire was subjected to wire drawing and intermediate heat treatment to obtain a wire having a diameter of 1.85 mm. Thereafter, austenitization was performed at 950 ° C., and lead patenting treatment was performed by immersing in a 575 ° C. lead bath. Furthermore, a 1.85 mm diameter steel wire was made into a 0.3 mm diameter wire by wire drawing using a wet continuous wire drawing machine.

本発明法のワイヤの場合、連続伸線機のダイス出側に、強磁場をかける磁場発生装置を配置して、伸線加工を行なった。   In the case of the wire according to the present invention, a magnetic field generator for applying a strong magnetic field was disposed on the die exit side of the continuous wire drawing machine to perform wire drawing.

表1に、最終ダイスの出側でワイヤにかけた磁場強度、伸線加工後に直ちに行なった引張試験結果、及び、捻回試験におけるデラミネーションの有無を示す。本発明法1から3は、引張強度TSが少し低いが、捻回試験におけるデラミネーションは発生していない。比較法4は、磁場をかけなかった場合で、伸線加工後の捻回試験でデラミネーションが発生している。   Table 1 shows the strength of the magnetic field applied to the wire on the exit side of the final die, the result of a tensile test performed immediately after wire drawing, and the presence or absence of delamination in the twist test. In the inventive methods 1 to 3, the tensile strength TS is slightly low, but no delamination occurs in the twist test. In Comparative Method 4, no magnetic field was applied, and delamination occurred in the twist test after wire drawing.

Figure 0005590773
Figure 0005590773

また、表1の本発明法3のサンプルを室温中に放置した場合と、強磁場をかけた状態で室温中に置いた場合とのワイヤの機械的性質の変化を、表2に示す。強磁場をかけることで、室温での時効が抑制されていることが判る。   Table 2 shows changes in the mechanical properties of the wire when the sample of the method 3 of the present invention shown in Table 1 is left at room temperature and when the sample is placed at room temperature with a strong magnetic field applied. It can be seen that aging at room temperature is suppressed by applying a strong magnetic field.

Figure 0005590773
Figure 0005590773

(実施例2)
実炉で、表3に成分組成を示す鋼を溶製した。熱間圧延で9mm径の線材とした。1000℃でオーステナイト化した後、800℃から水冷を行い、7mm径に大気中で加工を行い、その後、直ちに、600℃の鉛浴に浸漬するパテンティング処理を行なった。その際に、6テスラの強磁場をかける本発明法と、磁場をかけない比較法の2つの条件で試験をした。
(Example 2)
In an actual furnace, steels having component compositions shown in Table 3 were melted. A 9 mm diameter wire was obtained by hot rolling. After austenitizing at 1000 ° C., water cooling was performed from 800 ° C., processing was performed in the air to a diameter of 7 mm, and then a patenting process was performed in which it was immediately immersed in a 600 ° C. lead bath. At that time, the test was conducted under the two conditions of the present method in which a strong magnetic field of 6 Tesla was applied and the comparative method in which no magnetic field was applied.

得られた線材の脱炭深さを、表4に示す。本発明法により、脱炭深さが小さくなっていることが解る。   Table 4 shows the decarburization depth of the obtained wire. It can be seen that the decarburization depth is reduced by the method of the present invention.

Figure 0005590773
Figure 0005590773

Figure 0005590773
Figure 0005590773

強磁場による拡散係数の変化を示す図である。It is a figure which shows the change of the diffusion coefficient by a strong magnetic field. 磁場強度と拡散係数の関係を示す図である。It is a figure which shows the relationship between a magnetic field intensity and a diffusion coefficient.

Claims (1)

炭素を0.3質量%以上含む鋼を冷間加工する際に、
前記冷間加工がダイスを用いて行う伸線加工であり、かつ、
少なくとも、当該ダイスの出側位置で当該鋼に1テスラ以上の強磁場をかけながら、減面率10%以上の加工を行なう
ことを特徴とする鋼材の材質制御方法。
When cold working steel containing 0.3 mass% or more of carbon,
The cold working is wire drawing performed using a die, and
A method for controlling the material of a steel material, characterized in that at least a processing with a reduction in area of 10% or more is performed while applying a strong magnetic field of 1 Tesla or more to the steel at the exit side of the die.
JP2008078836A 2008-03-25 2008-03-25 Steel material control method Expired - Fee Related JP5590773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078836A JP5590773B2 (en) 2008-03-25 2008-03-25 Steel material control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078836A JP5590773B2 (en) 2008-03-25 2008-03-25 Steel material control method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012204931A Division JP5488658B2 (en) 2012-09-18 2012-09-18 Steel material control method
JP2012204935A Division JP2013032594A (en) 2012-09-18 2012-09-18 Method for control of steel quality

Publications (2)

Publication Number Publication Date
JP2009228122A JP2009228122A (en) 2009-10-08
JP5590773B2 true JP5590773B2 (en) 2014-09-17

Family

ID=41243840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078836A Expired - Fee Related JP5590773B2 (en) 2008-03-25 2008-03-25 Steel material control method

Country Status (1)

Country Link
JP (1) JP5590773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429055B2 (en) * 2010-06-02 2014-02-26 新日鐵住金株式会社 Steel material control method by strong magnetic field
CN106399654B (en) * 2016-09-09 2018-08-07 武汉钢铁有限公司 A method of improving spring steel pattern segregation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182911A (en) * 1995-12-28 1997-07-15 Sumitomo Electric Ind Ltd Steel wire for spring and its production
JPH09194994A (en) * 1996-01-17 1997-07-29 Sumitomo Electric Ind Ltd Wire for wire drawing and its production
JPH11323445A (en) * 1998-05-11 1999-11-26 Sumitomo Electric Ind Ltd Method for heat treating steel
JP2000328143A (en) * 1999-05-21 2000-11-28 Kawasaki Steel Corp Manufacture of dual-phase steel having microstructure

Also Published As

Publication number Publication date
JP2009228122A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP6180351B2 (en) High strength steel wire and high strength steel wire with excellent stretchability
WO2012023483A1 (en) Special steel steel-wire and special steel wire material
JP2007231347A (en) Wire rod with excellent wire drawability and manufacturing method
JP5000367B2 (en) High strength galvanized bolt with excellent hydrogen embrittlement resistance
JP6129311B2 (en) Steel plate for steel belt, method for producing the same and steel belt
JPWO2011111873A1 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
WO2016002413A1 (en) Wire material for steel wire, and steel wire
WO2014097872A1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
JP6687112B2 (en) Steel wire
JP6354481B2 (en) Steel wire and method for manufacturing steel wire
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
JP5459342B2 (en) Manufacturing method of high-strength galvanized bolts with excellent hydrogen embrittlement resistance
JP5945196B2 (en) High strength steel wire
JP2017082251A (en) Method for producing heat-treated steel wire
JP2009235523A (en) Oil tempered steel wire, its production method, and spring
JP5590773B2 (en) Steel material control method
JP6225759B2 (en) Method for producing grain-oriented electrical steel sheet
JP6085192B2 (en) Steel wire for springs excellent in drawability and manufacturing method thereof
JP6416708B2 (en) High strength PC steel wire
JP6053031B2 (en) High carbon steel wire rod excellent in the machinability on the rolling scale and its manufacturing method
JP5488658B2 (en) Steel material control method
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JP2013032594A (en) Method for control of steel quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5590773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees