JP2008037682A - Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon - Google Patents

Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon Download PDF

Info

Publication number
JP2008037682A
JP2008037682A JP2006212220A JP2006212220A JP2008037682A JP 2008037682 A JP2008037682 A JP 2008037682A JP 2006212220 A JP2006212220 A JP 2006212220A JP 2006212220 A JP2006212220 A JP 2006212220A JP 2008037682 A JP2008037682 A JP 2008037682A
Authority
JP
Japan
Prior art keywords
activated carbon
active carbon
pores
treatment
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006212220A
Other languages
Japanese (ja)
Inventor
Hiroki Harada
宏紀 原田
Keiichi Kohama
恵一 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006212220A priority Critical patent/JP2008037682A/en
Publication of JP2008037682A publication Critical patent/JP2008037682A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying active carbon so that the decomposition of an electrolyte is suppressed on a pore wall, active carbon obtained by such a treatment, and a storage battery which utilizes the active carbon and in which reduction of power output and capacity is suppressed over a long period of time. <P>SOLUTION: The present invention is embodied in a method for modifying a pore wall of active carbon. This treatment method comprises the steps of: (step S2) bringing active carbon into contact with an amine compound, a carboxyl group being adsorbed to the surface of the active carbon containing a pore wall; (step S3) immersing the active carbon which is brought into contact with the amine compound in an acid having a high viscosity; and (step S4) immersing the active carbon taken out of the acid in a treatment liquid having a low viscosity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、活性炭の処理方法と、処理済み活性炭と、処理済み活性炭を使用している蓄電装置に関する。   The present invention relates to a method for treating activated carbon, a treated activated carbon, and a power storage device using the treated activated carbon.

リチウム二次電池などの蓄電装置では、電極の表面積が広いと、広い範囲で電気二重層効果が得られるので、大電流を確保することができる。
活性炭は、単位重量当たりの比表面積が広いために、電極の表面積を広くするのに適している。例えば、特許文献1に開示されているリチウム二次電池は、正極に活性炭を含んでいる。特許文献1のリチウム二次電池は、初期出力と初期充放電容量が大きい。
In a power storage device such as a lithium secondary battery, when the electrode surface area is large, the electric double layer effect can be obtained in a wide range, so that a large current can be secured.
Activated carbon is suitable for increasing the surface area of the electrode because of its large specific surface area per unit weight. For example, the lithium secondary battery disclosed in Patent Document 1 includes activated carbon in the positive electrode. The lithium secondary battery of Patent Document 1 has a large initial output and initial charge / discharge capacity.

特開2002−260634号公報JP 2002-260634 A

正極に活性炭を含むリチウム二次電池を製作してみると、リチウム二次電池の使用開始直後には出力と容量を増大させることができるものの、使用時間の経過に伴って、出力と容量が顕著に低下してしまう。
発明者らの研究によって、出力と容量が低下する理由は、活性炭の細孔に原因があることがわかった。活性炭は、多数の細孔を有している。有機電解液は、活性炭の細孔にも入り込む。細孔に入り込んだ有機電解液は循環しづらくなり、細孔壁に接触し続ける。有機電解液を構成する分子は、活性炭に長期に接触し続けると、分解し易くなる。さらに、電池の充放電に伴う電気的な作用が活性炭に加わると、活性炭の細孔の中に電界が生じる。細孔壁に留まっている有機電解液は、電界の作用により分解してしまう。
リチウム二次電池は、密閉構造の電池である。リチウム二次電池は、有機電解液が分解するとガスが発生するために、リチウム二次電池内圧が上昇する。その結果、電池出力と電池容量が低下してしまう現象が生じる。
上記では、正極に活性炭を含むリチウム二次電池の場合を説明したが、電極に活性炭を含む蓄電装置では、一般的に、電解液が細孔壁で分解しやすい現象が生じる。
Producing a lithium secondary battery containing activated carbon in the positive electrode can increase the output and capacity immediately after the start of use of the lithium secondary battery, but the output and capacity become more noticeable as the usage time elapses. It will drop to.
The inventors' research has revealed that the reason why the output and capacity are reduced is due to the pores of the activated carbon. Activated carbon has many pores. The organic electrolyte also enters the pores of the activated carbon. The organic electrolyte that has entered the pores is difficult to circulate and continues to contact the pore walls. Molecules constituting the organic electrolytic solution are likely to be decomposed when kept in contact with the activated carbon for a long time. Furthermore, when an electrical action accompanying charging / discharging of the battery is applied to the activated carbon, an electric field is generated in the pores of the activated carbon. The organic electrolyte remaining on the pore walls is decomposed by the action of the electric field.
A lithium secondary battery is a sealed battery. Since the lithium secondary battery generates gas when the organic electrolyte is decomposed, the internal pressure of the lithium secondary battery increases. As a result, the battery output and the battery capacity are reduced.
In the above, the case of a lithium secondary battery including activated carbon in the positive electrode has been described. However, in a power storage device including activated carbon in the electrode, a phenomenon in which the electrolytic solution is likely to be decomposed at the pore walls generally occurs.

本発明では、活性炭の細孔内で電解液の分解が抑制されるように細孔壁を改質する処理方法を提供する。
また本発明では、細孔内で電解液の分解が抑制されるように改質された活性炭を提供する。
また本発明では、細孔壁で電解液の分解が抑制されるように改質された活性炭を利用し、出力と容量の低下が長期間にわたって抑制される蓄電装置を提供する。
The present invention provides a treatment method for modifying the pore walls so that the decomposition of the electrolytic solution is suppressed in the pores of the activated carbon.
The present invention also provides activated carbon that has been modified so as to suppress decomposition of the electrolyte in the pores.
In addition, the present invention provides a power storage device that uses activated carbon that has been modified so that decomposition of the electrolytic solution at the pore walls is suppressed, and in which a decrease in output and capacity is suppressed over a long period of time.

本発明は、活性炭の細孔壁を改質する方法に具現化される。
本処理方法は、細孔壁を含む表面にカルボキシル基が吸着している活性炭をアミン系化合物に接触させる工程と、アミン系化合物に接触させた活性炭を高粘性の酸に浸漬する工程と、酸から取り出した活性炭を低粘性の処理液に浸漬する工程を備えている。
上記の高粘性は、活性炭の細孔に浸入できないほど高い粘性をいう。逆に低粘性は、活性炭の細孔に浸入できほど低い粘性をいう。
The present invention is embodied in a method for modifying the pore walls of activated carbon.
This treatment method comprises a step of contacting activated carbon having a carboxyl group adsorbed on the surface including pore walls with an amine compound, a step of immersing activated carbon contacted with the amine compound in a highly viscous acid, A step of immersing the activated carbon extracted from the substrate in a low-viscosity processing solution.
Said high viscosity means viscosity so high that it cannot penetrate into the pores of activated carbon. On the other hand, low viscosity refers to a viscosity that is so low that it can enter the pores of the activated carbon.

本明細書の「細孔壁を含む表面にカルボキシル基が吸着している活性炭」は、活性炭の外周面と細孔壁の表面にカルボキシル基が吸着しているものを言う。たとえば賦活処理のように、製造過程でカルボキシル基が吸着した活性炭も、「細孔壁を含む表面がカルボキシル基が吸着している活性炭」に含まれる。
本明細書の「アミン系化合物」は、カルボキシル基と結合してアミノ化できる化合物であれば特に限定されない。例えば、一般的な1級〜4級アミンのほか、ジアミン、ヒドロキシルアミン、アミノアルコールも含まれる。
本明細書の「高粘性の酸」は、活性炭の細孔(開口径が100nm程度であることが多い)に浸入することができないほど高い粘性を有する酸性液体をいう。
本明細書の「処理液」とは、アミノ基と作用して絶縁性物質を生成する成分を含有する液体を言う。処理液の一例として、重合脂肪酸を含んでいる液体が挙げられる。このような処理液を用いる場合、アミノ基と重合脂肪酸が作用し、ポリアミド樹脂が生成する。処理液の他の例として、金属イオン等の陽イオンと、ハロゲン化物イオン、濃硫酸イオン、リン酸イオン、炭酸イオン等の陰イオンを含んでいる処理液が挙げられる。このような処理液を用いると、活性炭のアミノ基を有する領域に、前記陽イオンと陰イオンの塩が選択的に析出する。
In the present specification, “activated carbon in which carboxyl groups are adsorbed on the surface including pore walls” refers to those in which carboxyl groups are adsorbed on the outer peripheral surface of the activated carbon and the surfaces of the pore walls. For example, activated carbon in which carboxyl groups are adsorbed during the production process, such as activation treatment, is also included in “activated carbon in which carboxyl groups are adsorbed on the surface including pore walls”.
The “amine compound” in the present specification is not particularly limited as long as it is a compound that can be aminated by binding to a carboxyl group. For example, in addition to general primary to quaternary amines, diamines, hydroxylamines, and amino alcohols are also included.
The “highly viscous acid” in the present specification refers to an acidic liquid having such a high viscosity that it cannot enter the pores of the activated carbon (the opening diameter is often about 100 nm).
The “treatment liquid” in this specification refers to a liquid containing a component that acts on an amino group to generate an insulating material. As an example of the treatment liquid, a liquid containing a polymerized fatty acid can be given. When such a treatment liquid is used, an amino group and a polymerized fatty acid act to produce a polyamide resin. As another example of the treatment liquid, a treatment liquid containing a cation such as a metal ion and an anion such as a halide ion, concentrated sulfate ion, phosphate ion, or carbonate ion can be given. When such a treatment liquid is used, the cation and anion salts are selectively deposited on the activated carbon having an amino group.

本発明の処理方法では、活性炭をアミン系化合物に接触させる工程で、活性炭の表面(細孔壁を含む表面)のカルボキシル基がアミノ化される。活性炭の細孔壁を含む表面は、アミン類が吸着する。ここで言う「アミン類」は、一般式が-COORNH2、-CONHRNH2、-CONHR、-CONRR’であらわされる弱アルカリ性の性質を有するものをいう。アミン類が活性炭表面に吸着していると、活性炭の表面が弱アルカリ性に偏る。
次にアミン類が表面に吸着している活性炭を高粘性の酸に浸漬する。酸と接触した部分のアミン類は、中和される。活性炭は、多孔質構造を有している。高粘性の酸は、細孔に入り込むことができない。活性炭の外周面のアミン類は酸によって中和されるが、活性炭の細孔壁のアミン類は酸によって中和されない。その結果、細孔壁にはアミン類が吸着しており、外周面は中和されている活性炭が得られる。
次いで、活性炭を高粘性の酸から引き上げ、その活性炭を処理液に浸漬する。処理液は、活性炭の細孔に浸入できる低粘性の液体であり、処理液中の成分と細孔壁のアミン類が作用して、絶縁性物質が生成される。この絶縁性物質は、最孔壁に強固に吸着する。
本処理方法によれば、細孔壁面には絶縁性物質からなる皮膜が形成されており、外周面には絶縁性物質が付着していないで活性炭が露出している活性炭を得ることができる。なお、絶縁性物質は細孔壁を覆うように皮膜が形成されていればよく、皮膜の状態は限定されない。例えば、鱗片形状に生成した絶縁性物質が重なり合うように皮膜を形成していてもよい。また、皮膜状の絶縁性物質の表面に絶縁性物質が析出し、細孔を部分的に充填している状態も、「細孔壁面に皮膜が形成されている」状態に含まれる。
本方法によって処理された活性炭は、細孔壁に絶縁性物質が付着しているため、細孔壁の活性が低い。また、細孔壁面に絶縁性物質の皮膜を有することから、細孔には電界が生じづらくなる。細孔に入り込んでいる電解液が分解されることを顕著に抑制することができる。
In the treatment method of the present invention, the carboxyl group on the surface of the activated carbon (the surface including the pore walls) is aminated in the step of bringing activated carbon into contact with the amine compound. The amines adsorb on the surface including the pore walls of the activated carbon. As used herein, “amines” refers to those having a weak alkaline property represented by a general formula of —COORNH 2 , —CONHRNH 2 , —CONHR, and —CONRR ′. When amines are adsorbed on the activated carbon surface, the surface of the activated carbon is biased to weak alkalinity.
Next, the activated carbon having amines adsorbed on the surface is immersed in a highly viscous acid. The amines in contact with the acid are neutralized. Activated carbon has a porous structure. Highly viscous acids cannot penetrate into the pores. The amines on the outer peripheral surface of the activated carbon are neutralized by the acid, but the amines on the pore walls of the activated carbon are not neutralized by the acid. As a result, activated carbon having amines adsorbed on the pore walls and neutralized on the outer peripheral surface is obtained.
Next, the activated carbon is pulled up from the highly viscous acid, and the activated carbon is immersed in the treatment liquid. The treatment liquid is a low-viscosity liquid that can enter the pores of the activated carbon, and the components in the treatment liquid and amines on the pore walls act to produce an insulating material. This insulating substance is firmly adsorbed on the innermost hole wall.
According to the present processing method, it is possible to obtain activated carbon in which a film made of an insulating material is formed on the pore wall surface, and the activated carbon is exposed without the insulating material attached to the outer peripheral surface. The insulating material only needs to be formed so as to cover the pore walls, and the state of the coating is not limited. For example, the film may be formed so that insulating substances generated in a scale shape overlap. In addition, the state where the insulating substance is deposited on the surface of the film-like insulating substance and the pores are partially filled is also included in the state where the film is formed on the pore wall surface.
The activated carbon treated by this method has low activity on the pore walls because the insulating material is attached to the pore walls. Further, since the insulating material film is provided on the pore wall surface, it is difficult to generate an electric field in the pore. It is possible to remarkably suppress the decomposition of the electrolyte solution entering the pores.

本発明の処理方法では、高粘性の酸の粘性が0.020Pa/sec以上で0.95Pa/sec以下であり、低粘性の処理液の粘性が0.0015Pa/sec以下であることが好ましい。
粘性が0.020Pa/sec以上の酸は、開口径が100nm程度である活性炭の細孔に浸入しづらい。酸の粘性が0.95Pa/sec以上となると、活性炭が分散しにくくなり、処理効率が悪くなる。高粘性の酸の粘性が0.020Pa/sec以上で0.95Pa/sec以下であることが好ましい。一つの具体例としては、気温0℃の環境下の粘性が0.027Pa/secとなる濃硫酸を利用することができる。
粘性が0.0015Pa/sec以下の液体は、開口径が100nm程度である活性炭の細孔に浸入することができる。処理液の粘性が0.0015Pa/sec以下であれば、処理液を活性炭の細孔壁に接触させ、細孔壁の表面処理を行うことができる。
In the treatment method of the present invention, the viscosity of the highly viscous acid is preferably 0.020 Pa / sec or more and 0.95 Pa / sec or less, and the viscosity of the low viscosity treatment liquid is preferably 0.0015 Pa / sec or less.
An acid having a viscosity of 0.020 Pa / sec or more is difficult to enter into the pores of activated carbon having an opening diameter of about 100 nm. When the viscosity of the acid is 0.95 Pa / sec or more, the activated carbon becomes difficult to disperse and the processing efficiency is deteriorated. The viscosity of the highly viscous acid is preferably 0.020 Pa / sec or more and 0.95 Pa / sec or less. As one specific example, concentrated sulfuric acid having a viscosity of 0.027 Pa / sec in an environment with a temperature of 0 ° C. can be used.
A liquid having a viscosity of 0.0015 Pa / sec or less can enter the pores of activated carbon having an opening diameter of about 100 nm. If the viscosity of the treatment liquid is 0.0015 Pa / sec or less, the treatment liquid can be brought into contact with the pore walls of the activated carbon to perform surface treatment of the pore walls.

本発明の好ましい処理方法では、金属元素を含有するイオンを含む処理液を用いる。
「金属元素を含有するイオン」には、金属単体の陽イオン(例えばNa+、Ca2+、Fe2+、Zn2+、Zr4+、Ti4+)と、金属元素を含む複合イオン(例えばTiO3 2-、AlO2 -)が含まれる。
処理液に金蔵元素を含有するイオンが含まれていると、活性炭の細孔壁に金属化合物からなる絶縁性物質の皮膜を形成することができる。
In a preferred treatment method of the present invention, a treatment liquid containing ions containing a metal element is used.
“Ions containing metal elements” include cations of simple metals (eg, Na + , Ca 2+ , Fe 2+ , Zn 2+ , Zr 4+ , Ti 4+ ) and complex ions containing metal elements ( For example, TiO 3 2− , AlO 2 ) are included.
When ions containing a metal-containing element are contained in the treatment liquid, an insulating material film made of a metal compound can be formed on the pore walls of the activated carbon.

金属元素が、チタン、ジルコニウム、亜鉛から選択される1種又は2種以上の金属元素を含んでいることが好ましい。本処理方法で処理された活性炭を、リチウム二次電池の電極に用いる場合、チタン、ジルコニウム、亜鉛は、充放電に係る電極反応を阻害しない。本発明の処理方法によって得られた活性炭は、リチウム二次電池の電極に適している。   The metal element preferably contains one or more metal elements selected from titanium, zirconium, and zinc. When the activated carbon treated by this treatment method is used for an electrode of a lithium secondary battery, titanium, zirconium, and zinc do not inhibit the electrode reaction related to charge / discharge. The activated carbon obtained by the treatment method of the present invention is suitable for an electrode of a lithium secondary battery.

処理液に、リン酸イオンが含まれていると好ましい。処理液にリン酸イオンが含まれていると、活性炭の細孔壁に絶縁性の金属リン酸塩を析出させることができる。   It is preferable that phosphate ion is contained in the treatment liquid. When phosphate ions are contained in the treatment liquid, insulating metal phosphate can be deposited on the pore walls of the activated carbon.

本発明の処理方法では、処理液にフッ素イオンが含まれており、pHが2以上で6以下であると好ましい。このような処理液を用いると、処理液の反応性が一定に保たれる。   In the treatment method of the present invention, the treatment liquid contains fluorine ions, and the pH is preferably 2 or more and 6 or less. When such a treatment liquid is used, the reactivity of the treatment liquid is kept constant.

発明は、細孔壁が改質された活性炭に具現化することもできる。本発明の活性炭は、活性炭の外周面では活性炭が露出しており、細孔壁面に絶縁性物質からなる皮膜を有することを特徴とする。
「活性炭の外周面では活性炭が露出している」とは、活性炭の外周面の領域に、実質的に絶縁性物質が付着していないことを言う。「細孔壁面に絶縁性物質からなる皮膜を有する」こととは、細孔壁の略全体に絶縁性物質の皮膜が形成されている。したがって、細孔壁の僅かな領域に絶縁性物質の皮膜が形成されていない領域がある活性炭は、細孔壁面に絶縁性物質からなる皮膜を有する活性炭に含まれる。同様に、外周面の僅かな領域に絶縁性物質が付着している活性炭も、外周面が露出している活性炭に含まれる。
本発明の活性炭は、有機電解液がしみこんだ状態で用いられる電極に採用すると、電解液の分解が生じにくい。また、活性炭に電気的な作用が加えられても、細孔に電界が生じにくい。本発明の活性炭を用いると、細孔に入り込んでいる有機電解液の分解が抑制される。
The invention can also be embodied in activated carbon with modified pore walls. The activated carbon of the present invention is characterized in that the activated carbon is exposed on the outer peripheral surface of the activated carbon and has a film made of an insulating material on the pore wall surface.
“The activated carbon is exposed on the outer peripheral surface of the activated carbon” means that the insulating material is not substantially attached to the region of the outer peripheral surface of the activated carbon. “Having a coating made of an insulating material on the pore wall surface” means that a coating of an insulating material is formed on substantially the entire pore wall. Therefore, activated carbon having a region where a coating of an insulating material is not formed in a small region of the pore wall is included in the activated carbon having a coating made of an insulating material on the pore wall surface. Similarly, activated carbon in which an insulating material adheres to a small area of the outer peripheral surface is also included in the activated carbon with the outer peripheral surface exposed.
When the activated carbon of the present invention is employed in an electrode used in a state where the organic electrolyte is soaked, the electrolyte is hardly decomposed. Moreover, even if an electrical action is applied to the activated carbon, an electric field is hardly generated in the pores. When the activated carbon of the present invention is used, decomposition of the organic electrolyte solution entering the pores is suppressed.

活性炭の細孔壁面に皮膜を形成している絶縁性物質は、無機金属化合物であると好ましい。無機金属化合物は、有機溶媒との反応性に乏しい。
無機金属化合物は、酸化物であってもよい。酸化物は、有機溶媒中に曝されても性質が安定している無機金属化合物の一つである。
無機金属化合物は、リン酸塩であってもよい。リン酸塩は、有機溶媒中に曝されても性質が安定している無機金属化合物の一つである。
The insulating substance forming a film on the pore wall surface of the activated carbon is preferably an inorganic metal compound. Inorganic metal compounds have poor reactivity with organic solvents.
The inorganic metal compound may be an oxide. An oxide is one of inorganic metal compounds whose properties are stable even when exposed to an organic solvent.
The inorganic metal compound may be a phosphate. Phosphate is one of inorganic metal compounds that have stable properties even when exposed to organic solvents.

金属化合物は、チタン、ジルコニウム、亜鉛から選択される1種又は2種以上の金属を含んでいると好ましい。チタンやジルコニウムや亜鉛は、リチウム二次電池の電極反応を阻害する物質になりづらい。チタンやジルコニウムや亜鉛の化合物からなる絶縁性物質が細孔壁面に皮膜を形成している活性炭は、リチウム二次電池の電極材料に適している。   The metal compound preferably contains one or more metals selected from titanium, zirconium, and zinc. Titanium, zirconium, and zinc are difficult to be substances that inhibit the electrode reaction of a lithium secondary battery. Activated carbon in which an insulating substance made of a compound of titanium, zirconium, or zinc forms a film on the pore wall surface is suitable for an electrode material of a lithium secondary battery.

本発明は、新規な蓄電装置をも提供する。本発明で提供される蓄電装置は、電解液が有機電解液であり、電極材料が上記したいずれかの活性炭を含んでいる。
前記したように、処理されていない活性炭の細孔に有機電解液が入り込んだ状態で放置されたり、活性炭に電気的な作用が加えられた場合、細孔に入り込んでいる有機電解液が分解する現象が生じる。本発明の活性炭を電極材料に採用すること、有機電解液の分解が抑制される。
The present invention also provides a novel power storage device. In the power storage device provided by the present invention, the electrolytic solution is an organic electrolytic solution, and the electrode material includes any one of the activated carbons described above.
As described above, when the organic electrolyte is left in the pores of the untreated activated carbon or when an electrical action is applied to the activated carbon, the organic electrolyte entering the pores is decomposed. A phenomenon occurs. Adoption of the activated carbon of the present invention as an electrode material suppresses decomposition of the organic electrolyte.

最初に、以下に説明する実施例の主要な特徴を列記する。
(特徴1)リチウム二次電池の電極材料が、細孔壁が改質された活性炭を含んでいる。
(特徴2)処理後の活性炭の細孔壁に絶縁性物質の皮膜が形成されている。この絶縁性物質には、リン酸亜鉛(Zn3(PO3)2)が含まれている。
(特徴3)処理後の活性炭の細孔壁に絶縁性物質の皮膜が形成されている。この絶縁性物質には、酸化ジルコニウム(ZrO2)が含まれている。
(特徴4)処理後の活性炭の細孔壁に絶縁性物質の皮膜が形成されている。この絶縁性皮膜には、酸化チタン(TiO2)と酸化ジルコニウム(ZrO2)が含まれている。
(特徴5)処理液中の金属イオンの濃度が、5ppm以上で5000ppm以下になるように調製されている。
(特徴6)処理液中のフッ素イオン濃度が、0.1ppm以上で100ppm以下になるように調製されている。
(特徴7)活性炭の表面のカルボキシル基を誘導体化するアミンは、ジエチルアミンである。
(特徴8)活性炭表面のアミン類の中和に用いる高粘性の酸は、濃硫酸である。
(特徴9)活性炭は、めっき浴液中の不純物を取り除く処理に用いられる活性炭である。
First, the main features of the embodiments described below are listed.
(Characteristic 1) The electrode material of the lithium secondary battery contains activated carbon with modified pore walls.
(Characteristic 2) A film of an insulating material is formed on the pore walls of the activated carbon after the treatment. This insulating material contains zinc phosphate (Zn 3 (PO 3 ) 2 ).
(Characteristic 3) A film of an insulating material is formed on the pore walls of the activated carbon after the treatment. This insulating substance contains zirconium oxide (ZrO 2 ).
(Feature 4) A coating of an insulating material is formed on the pore walls of the activated carbon after the treatment. This insulating film contains titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ).
(Characteristic 5) It is prepared so that the concentration of metal ions in the treatment liquid is 5 ppm or more and 5000 ppm or less.
(Characteristic 6) The fluorine ion concentration in the treatment liquid is adjusted to be 0.1 ppm or more and 100 ppm or less.
(Feature 7) The amine that derivatizes the carboxyl group on the surface of the activated carbon is diethylamine.
(Feature 8) The highly viscous acid used for neutralization of amines on the surface of activated carbon is concentrated sulfuric acid.
(Characteristic 9) Activated carbon is activated carbon used for the process of removing impurities in the plating bath.

<第1実施例:活性炭の処理1>
本実施例では、活性炭の細孔壁にリン酸亜鉛を付着させ、細孔壁に絶縁性物質領域を形成した。
先ず、処理前の活性炭の形状について図1、2を用いて説明する。図1は、処理前の活性炭1を示す模式図である。図2は、活性炭1の断面図である。
図1、2に示すように、活性炭1は、多数の細孔14を有する多孔質物質である。細孔14は外周面12から内部に向けて形成されている。
<First Example: Treatment 1 of activated carbon>
In this example, zinc phosphate was adhered to the pore walls of the activated carbon to form an insulating material region on the pore walls.
First, the shape of the activated carbon before processing will be described with reference to FIGS. FIG. 1 is a schematic diagram showing activated carbon 1 before treatment. FIG. 2 is a cross-sectional view of the activated carbon 1.
As shown in FIGS. 1 and 2, the activated carbon 1 is a porous material having a large number of pores 14. The pores 14 are formed from the outer peripheral surface 12 toward the inside.

図3は、本実施例の活性炭処理方法に係る手順を示すフローチャートである。本実施例の処理手順について、図3を参照しながら説明する。
本処理では、先ず、細孔壁と外周面にカルボキシル基が吸着している活性炭1を用意した(図3のステップS1)。図4の部分断面図に示すように、活性炭1の外周面12と細孔14の壁にカルボキシル基が吸着している。活性炭1のカルボキシル基(-COOH)は、賦活処理の時に吸着したものである。
FIG. 3 is a flowchart showing a procedure according to the activated carbon treatment method of the present embodiment. The processing procedure of the present embodiment will be described with reference to FIG.
In this process, first, activated carbon 1 having carboxyl groups adsorbed on the pore walls and the outer peripheral surface was prepared (step S1 in FIG. 3). As shown in the partial cross-sectional view of FIG. 4, carboxyl groups are adsorbed on the outer peripheral surface 12 and the walls of the pores 14 of the activated carbon 1. The carboxyl group (—COOH) of the activated carbon 1 is adsorbed during the activation process.

次に、一般式がNH2-R-NH2で示されるジアミンを10w%含む水溶液を用意する。上記一般式中のRは、アルキル基である。本実施例では、ジアミンとして、エチレンジアミンを用いた。ジアミン溶液の液性は、弱アルカリ性である。ジアミン溶液に活性炭1を浸漬した(図3のステップS2)。
ジアミン溶液に浸漬して得られた活性炭2を図5に示す。図6は、活性炭2の部分断面図である。ジアミン溶液に活性炭1を浸漬すると、表面の-COOHとジアミンの一方のアミノ基が、脱水反応してアミド結合する。活性炭2の表面は-CO-NH-R-NH2の領域16で覆われる。
Next, an aqueous solution containing 10 w% of a diamine represented by the general formula NH 2 —R—NH 2 is prepared. R in the above general formula is an alkyl group. In this example, ethylenediamine was used as the diamine. The liquid property of the diamine solution is weakly alkaline. Activated carbon 1 was immersed in the diamine solution (step S2 in FIG. 3).
The activated carbon 2 obtained by being immersed in a diamine solution is shown in FIG. FIG. 6 is a partial cross-sectional view of the activated carbon 2. When activated carbon 1 is immersed in a diamine solution, -COOH on the surface and one amino group of diamine are dehydrated to form an amide bond. The surface of the activated carbon 2 is covered with a region 16 of —CO—NH—R—NH 2 .

次に、活性炭2を濃硫酸に浸漬した(図3のステップS3)。濃硫酸を0℃の環境下で使用したために、濃硫酸の粘性は0.027Pa/secであった。
濃硫酸に浸漬して得られた活性炭3の構造を模式的に示す断面図を図8に示し、その部分断面図を図7に示す。濃硫酸は、高粘性であるので、活性炭2の細孔14に浸入できない。活性炭2の外周面12の-CO-NH-R-NH2は、濃硫酸と反応して、-CO-NH-R-NH-HSO3を生成する。ステップS3の処理で得られた活性炭3には、外周面に-CO-NH-R-NH-HSO3領域18が形成される。この-CO-NH-R-NH-HSO3領域18は活性が低いので、活性炭3の外周面12の反応性が低くなる。
一方、濃硫酸は細孔14に浸入できないので、細孔壁の-CO-NH-R-NH2は、濃硫酸と反応しない。したがって、活性炭3の細孔壁は、-CO-NH-R-NH2領域17が形成された状態に保たれる。
Next, the activated carbon 2 was immersed in concentrated sulfuric acid (step S3 in FIG. 3). Since concentrated sulfuric acid was used in an environment at 0 ° C., the viscosity of concentrated sulfuric acid was 0.027 Pa / sec.
FIG. 8 shows a sectional view schematically showing the structure of the activated carbon 3 obtained by immersing in concentrated sulfuric acid, and FIG. 7 shows a partial sectional view thereof. Since concentrated sulfuric acid is highly viscous, it cannot penetrate into the pores 14 of the activated carbon 2. -CO-NH-R-NH 2 in the outer peripheral surface 12 of the activated carbon 2 is reacted with concentrated sulfuric acid, to produce a -CO-NH-R-NH- HSO 3. In the activated carbon 3 obtained by the treatment in step S3, a —CO—NH—R—NH—HSO 3 region 18 is formed on the outer peripheral surface. Since this —CO—NH—R—NH—HSO 3 region 18 has low activity, the reactivity of the outer peripheral surface 12 of the activated carbon 3 becomes low.
On the other hand, since concentrated sulfuric acid cannot enter the pores 14, —CO—NH—R—NH 2 on the pore wall does not react with concentrated sulfuric acid. Therefore, the pore wall of the activated carbon 3 is maintained in a state in which the —CO—NH—R—NH 2 region 17 is formed.

次に、ステップS3で得られた活性炭3を処理液に浸漬した(図3のステップS4)。本実施例において、処理液は、亜鉛イオンの濃度が(Zn)1300ppmあり、リン酸イオン(PO4 3-)の濃度が12500ppmであり、フッ素イオン(F-)の濃度が200ppmとなるように調製されたものを用いた。
処理液は、常温で粘性が0.0006〜0.0013Pa/secになるように調製した。処理液を上記の範囲の粘性に保つことで、活性炭3の細孔14に処理液を浸入することができる。
また、処理液は、pHが2〜6になるように調製した。
Next, the activated carbon 3 obtained in step S3 was immersed in the treatment liquid (step S4 in FIG. 3). In this example, the treatment liquid has a zinc ion concentration of (Zn) of 1300 ppm, a phosphate ion (PO 4 3− ) concentration of 12500 ppm, and a fluorine ion (F ) concentration of 200 ppm. The prepared one was used.
The treatment liquid was prepared so that the viscosity was 0.0006 to 0.0013 Pa / sec at room temperature. By maintaining the viscosity of the treatment liquid in the above range, the treatment liquid can enter the pores 14 of the activated carbon 3.
The treatment liquid was prepared so that the pH was 2-6.

活性炭3を上記の処理液に浸漬すると、活性炭3の細孔14には、処理液が入り込む。処理液の液性が弱酸性なので、細孔14の壁面17の-CO-NH-R-NH2は、NにH+が配位して、-CO-NH-R-NH3 +領域19を形成する(この段階が図9に図示されている)。-CO-NH-R-NH3 +領域19は、+の電荷を帯びた状態になる。そのために、処理液中に含まれるPO3 3-は、+の電荷を帯びている細孔壁に引き寄せられる。そして、細孔壁に引き寄せられたPO3 3-とZn2+が反応してZn3(PO3)2を生成する。これにより、Zn3(PO3)2が、CO-NH-R-NH3 +が形成されている細孔壁の領域に選択的に析出する。この段階で、細孔14の細孔壁に、Zn3(PO3)2領域20が形成される(この段階が図10に図示されている)。Zn3(PO3)2は、絶縁性物質である。細孔14の細孔壁にZn3(PO3)2領域20が形成されることで、活性炭4の細孔14内の活性が低くなる。
以上のようにして、細孔の活性が低い活性炭4を得た。
When the activated carbon 3 is immersed in the treatment liquid, the treatment liquid enters the pores 14 of the activated carbon 3. Since the liquid of the treatment liquid is weakly acidic, —CO—NH—R—NH 2 on the wall surface 17 of the pore 14 is coordinated with H + to N, and —CO—NH—R—NH 3 + region 19 (This step is illustrated in FIG. 9). The —CO—NH—R—NH 3 + region 19 is in a positively charged state. Therefore, PO 3 3− contained in the treatment liquid is attracted to the pore wall having a positive charge. Then, PO 3 3− and Zn 2+ attracted to the pore wall react to generate Zn 3 (PO 3 ) 2 . As a result, Zn 3 (PO 3 ) 2 is selectively deposited in the pore wall region where CO—NH—R—NH 3 + is formed. At this stage, a Zn 3 (PO 3 ) 2 region 20 is formed on the pore wall of the pore 14 (this stage is illustrated in FIG. 10). Zn 3 (PO 3 ) 2 is an insulating material. By forming the Zn 3 (PO 3 ) 2 region 20 on the pore wall of the pore 14, the activity in the pore 14 of the activated carbon 4 becomes low.
As described above, activated carbon 4 having low pore activity was obtained.

<第2実施例:活性炭の処理2>
本実施例は、活性炭の細孔の細孔壁に酸化ジルコニウム(ZrO2)を付着させ、絶縁性物質の皮膜を形成する。本実施例の処理手順では、処理液の成分が異なる他は、第1実施例と同様である。本実施例の処理手順は、第1実施例の活性炭を濃硫酸に浸漬して活性炭3を得る工程までは同様の手順なので、重複する説明及び図面は省略する。
<Second Example: Treatment 2 of activated carbon>
In this embodiment, zirconium oxide (ZrO 2 ) is attached to the pore walls of the pores of the activated carbon to form a film of an insulating material. The processing procedure of this embodiment is the same as that of the first embodiment except that the components of the processing liquid are different. The processing procedure of the present embodiment is similar to the procedure up to the step of obtaining the activated carbon 3 by immersing the activated carbon of the first embodiment in concentrated sulfuric acid, and therefore redundant description and drawings are omitted.

先ず、本実施例の処理液の調製方法について説明する。本実施例の処理液は、先ず、オキシ硝酸ジルコニウム溶液と硝酸を用いて、ジルコニウム濃度が200ppmである水溶液を調製した。この水溶液に、フッ化水素酸(HF)を注入してフッ素イオン濃度が50ppmとなるように調製した。さらに水酸化ナトリウム(NaOH)を加えて、処理液を調製した。処理液は、NaOHの添加によりpHを略3に調製した。   First, a method for preparing the treatment liquid of this example will be described. As the treatment liquid of this example, first, an aqueous solution having a zirconium concentration of 200 ppm was prepared using a zirconium oxynitrate solution and nitric acid. Hydrofluoric acid (HF) was injected into this aqueous solution to prepare a fluorine ion concentration of 50 ppm. Further, sodium hydroxide (NaOH) was added to prepare a treatment solution. The treatment solution was adjusted to a pH of about 3 by adding NaOH.

そして、活性炭3を処理液に浸漬する。活性炭3の細孔14には、処理液が入り込む。処理液の液性が弱酸性なので、細孔14の壁面18の-CO-NH-R-NH2は、H+が配位して、-CO-NH-O-R-NH3 +となる。処理液中に含まれるZrイオンは、酸化されてZrO2を形成し、CO-NH-R-NH3 +が形成されている領域に選択的に析出する。細孔14の細孔壁には、ZrO2領域21が形成される(この段階が図11に図示されている)。ZrO2領域21は、絶縁性皮膜が形成されている領域である。ZrO2領域21が形成されることで、活性炭5は、細孔14内の活性が低い。
以上のようにして、細孔の活性が低い活性炭5を得た。
Then, the activated carbon 3 is immersed in the treatment liquid. The treatment liquid enters the pores 14 of the activated carbon 3. Since the treatment liquid is weakly acidic, -CO-NH-R-NH 2 on the wall surface 18 of the pore 14 is coordinated with H + to become -CO-NH-OR-NH 3 + . Zr ions contained in the treatment liquid are oxidized to form ZrO 2 and are selectively deposited in a region where CO—NH—R—NH 3 + is formed. A ZrO 2 region 21 is formed on the pore wall of the pore 14 (this step is illustrated in FIG. 11). The ZrO 2 region 21 is a region where an insulating film is formed. As the ZrO 2 region 21 is formed, the activated carbon 5 has low activity in the pores 14.
As described above, activated carbon 5 having low pore activity was obtained.

<第3実施例:活性炭の処理3>
本実施例は、活性炭の細孔の細孔壁に酸化ジルコニウム(ZrO2)と酸化チタン(TiO2)を付着させ、絶縁性物質の領域を形成する。本実施例の処理手順において、処理液の成分が異なる他は、第1実施例と同様である。本実施例の処理手順は、第1実施例の活性炭を濃硫酸に浸漬して活性炭3を得る工程までは同様の手順なので、重複する説明及び図面は省略する。
<Third embodiment: treatment 3 of activated carbon>
In this embodiment, zirconium oxide (ZrO 2 ) and titanium oxide (TiO 2 ) are attached to the pore walls of the pores of the activated carbon to form an insulating material region. The processing procedure of this embodiment is the same as that of the first embodiment except that the components of the processing liquid are different. The processing procedure of the present embodiment is similar to the procedure up to the step of obtaining the activated carbon 3 by immersing the activated carbon of the first embodiment in concentrated sulfuric acid, and therefore redundant description and drawings are omitted.

先ず、本実施例の処理液の調製方法について説明する。本実施例の処理液は、先ず、ヘキサフルオロジルコン酸(IV)水溶液と濃硫酸チタン(IV)水溶液と、濃硫酸カルシウムと硝酸を用いて、ジルコニウム濃度が1000ppm、チタン濃度が2000ppm、カルシウム濃度が5ppm、硝酸根が1000ppmの水溶液を調製した。この水溶液に水酸化カリウム(KOH)とフッ化水素酸(HF)を用い、pHが略5になるように処理液を調整した。HFはフッ素イオン濃度が2250ppmになるように注入した。   First, a method for preparing the treatment liquid of this example will be described. The treatment liquid of this example was first prepared using a hexafluorozirconic acid (IV) aqueous solution, a concentrated titanium sulfate (IV) aqueous solution, concentrated calcium sulfate and nitric acid, with a zirconium concentration of 1000 ppm, a titanium concentration of 2000 ppm, and a calcium concentration of An aqueous solution with 5 ppm and nitrate radical of 1000 ppm was prepared. Using potassium hydroxide (KOH) and hydrofluoric acid (HF) in this aqueous solution, the treatment solution was adjusted so that the pH was approximately 5. HF was injected so that the fluorine ion concentration was 2250 ppm.

そして、活性炭3を処理液に浸漬する。活性炭3を上記の処理液に浸漬すると、活性炭3の細孔14には、処理液が入り込む。処理液の液性が弱酸性なので、細孔14の壁面18の-CO-NH-R-NH2は、H+が配位して、-CO-NH-R-NH3 +となる。処理液中に含まれるZrイオンは酸化してZrO2を形成し、Tiイオンは酸化してTiO2を形成する。ZrO2とTiO2イオンは、CO-NH-R-NH3 +が形成されている領域に選択的に析出する。細孔の壁面に、ZrO2とTiO2からなるZrO2+TiO2領域22が形成される(この段階が図12に図示されている)。細孔14の細孔壁にZrO2+TiO2領域22が形成されている活性炭6は、細孔14内の活性が低い。
以上のようにして、細孔の活性が低い活性炭6を得た。
Then, the activated carbon 3 is immersed in the treatment liquid. When the activated carbon 3 is immersed in the treatment liquid, the treatment liquid enters the pores 14 of the activated carbon 3. Since the liquid of the treatment liquid is weakly acidic, H + coordinates to -CO-NH-R-NH 3 + in -CO-NH-R-NH 2 on the wall surface 18 of the pore 14. Zr ions contained in the treatment liquid are oxidized to form ZrO 2 , and Ti ions are oxidized to form TiO 2 . ZrO 2 and TiO 2 ions are selectively deposited in the region where CO—NH—R—NH 3 + is formed. A ZrO 2 + TiO 2 region 22 composed of ZrO 2 and TiO 2 is formed on the wall surface of the pore (this step is illustrated in FIG. 12). The activated carbon 6 in which the ZrO 2 + TiO 2 region 22 is formed on the pore wall of the pore 14 has low activity in the pore 14.
As described above, activated carbon 6 having low pore activity was obtained.

<第4実施例:リチウム二次電池の製造>
第1実施例で得られた活性炭4を正極に含む、リチウム二次電池(1)を製造した。
先ず、正極板の製作手順について説明する。
先ず、第1実施例で得られた活性炭4と、正極活物質と、導電材であるカーボンブラックと、結着材であるフッ素系樹脂(テトラフルオロエチレン)を水と混合して正極活物質ペーストを調製した。正極活物質には、リチウムニッケルコバルト複合酸化物を用いた。アルミニウム集電箔の両面に上記で得られた正極活物質ペーストを連続的に塗布し、乾燥した。このようにして正極シートを作製した。この正極シートを長尺形状に切り出し、リチウム二次電池(1)の正極板を製作した。正極板の端部には、正極リードを溶接した。
<Fourth Example: Production of Lithium Secondary Battery>
A lithium secondary battery (1) including the activated carbon 4 obtained in the first example as a positive electrode was produced.
First, the manufacturing procedure of the positive electrode plate will be described.
First, the activated carbon 4 obtained in the first embodiment, a positive electrode active material, carbon black as a conductive material, and a fluororesin (tetrafluoroethylene) as a binder are mixed with water to form a positive electrode active material paste. Was prepared. Lithium nickel cobalt composite oxide was used as the positive electrode active material. The positive electrode active material paste obtained above was continuously applied to both sides of the aluminum current collector foil and dried. In this way, a positive electrode sheet was produced. This positive electrode sheet was cut into a long shape, and a positive electrode plate of a lithium secondary battery (1) was produced. A positive electrode lead was welded to the end of the positive electrode plate.

次に、負極板の製作手順について説明する。
グラファイト活物質と、スチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)を水と混合して負極活物質ペーストを調製した。銅集電箔の両面に上記で得られた負極活物質ペーストを塗布し、乾燥した。このようにして負極シートを作製した。この負極シートを長尺形状に切り出し、リチウム二次電池(1)の負極板を製作した。負極板の端部には、負極リードを溶接した。
Next, the manufacturing procedure of the negative electrode plate will be described.
A graphite active material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed with water to prepare a negative electrode active material paste. The negative electrode active material paste obtained above was applied to both sides of the copper current collector foil and dried. In this way, a negative electrode sheet was produced. This negative electrode sheet was cut into a long shape, and a negative electrode plate of the lithium secondary battery (1) was produced. A negative electrode lead was welded to the end of the negative electrode plate.

次いで、セパレータを介した状態で正極板と負極板を重ね合わせて捲回する。セパレータには、微孔性ポリエチレンで構成された多孔質シートを使用した。正極板とセパレータと負極板からなる積層シートを捲回して捲回型電極体を作製した。電極体は、負極リードと正極リードが電池ケースの外方に引き出されるように、電池ケースに収容した。次いで、電池容器内に電解液を減圧注入した。電解液には、従来のリチウム二次電池に用いられる一般的な電解液等を用いることができる。ここではエチルメチルカーボネート(EMC)とエチレンカーボネート(EC)の70:30(質量比)の混合溶媒に1mol/LのLiPF6を溶解させた電解液を用いた。このようにして、活性炭4が備えられているリチウム二次電池(1)を製造した。 Next, the positive electrode plate and the negative electrode plate are overlapped and wound with the separator interposed therebetween. A porous sheet made of microporous polyethylene was used as the separator. A laminated electrode body was produced by winding a laminated sheet composed of a positive electrode plate, a separator and a negative electrode plate. The electrode body was accommodated in the battery case so that the negative electrode lead and the positive electrode lead were drawn out of the battery case. Next, the electrolytic solution was injected into the battery container under reduced pressure. As the electrolytic solution, a general electrolytic solution used in a conventional lithium secondary battery can be used. Here, an electrolytic solution in which 1 mol / L LiPF 6 was dissolved in a 70:30 (mass ratio) mixed solvent of ethyl methyl carbonate (EMC) and ethylene carbonate (EC) was used. Thus, the lithium secondary battery (1) provided with the activated carbon 4 was manufactured.

<比較例:比較用リチウム二次電池の製造>
本比較例は、細孔に絶縁性皮膜を形成する処理を行う前の活性炭1を正極に備えたリチウム二次電池(2)を製造した。本比較例は、正極に備える活性炭が活性炭1であることを除くと、第4実施例で製作したリチウム二次電池(1)の製造手順と同様である。本比較例では、リチウム二次電池(2)の製造に関する説明を省略する。
<Comparative example: Production of comparative lithium secondary battery>
In this comparative example, a lithium secondary battery (2) having activated carbon 1 before the treatment for forming an insulating film in the pores on the positive electrode was produced. This comparative example is the same as the manufacturing procedure of the lithium secondary battery (1) manufactured in the fourth example except that the activated carbon provided for the positive electrode is activated carbon 1. In this comparative example, the description about manufacture of a lithium secondary battery (2) is abbreviate | omitted.

<実験例:リチウム二次電池の保存試験>
本実験例では、実施例4で製造したリチウム二次電池(1)と比較例で製造したリチウム二次電池(2)を用いて、保存実験を行った。保存実験の手順は、次の通りである。
先ず、リチウム二次電池(1)とリチウム二次電池(2)の初期の出力を測定した。出力は、−10℃の低温条件における低温出力と、25℃の常温条件における常温出力を測定した。
次いで、リチウム二次電池(1)とリチウム二次電池(2)を60℃の恒温槽に入れ、100時間保持した。
その後リチウム二次電池(1)とリチウム二次電池(2)を恒温槽から取り出し、低温出力と常温出力を測定した。保存実験の結果を表1に示す
<Experimental example: Storage test of lithium secondary battery>
In this experimental example, a storage experiment was performed using the lithium secondary battery (1) manufactured in Example 4 and the lithium secondary battery (2) manufactured in Comparative Example. The procedure of the preservation experiment is as follows.
First, initial outputs of the lithium secondary battery (1) and the lithium secondary battery (2) were measured. As for the output, a low temperature output under a low temperature condition of −10 ° C. and a normal temperature output under a normal temperature condition of 25 ° C. were measured.
Subsequently, the lithium secondary battery (1) and the lithium secondary battery (2) were put into a 60 degreeC thermostat, and were hold | maintained for 100 hours.
Thereafter, the lithium secondary battery (1) and the lithium secondary battery (2) were taken out of the thermostatic chamber, and the low temperature output and the normal temperature output were measured. The results of the storage experiment are shown in Table 1.

Figure 2008037682
Figure 2008037682

表1に示すように、保存試験前の放電容量は、リチウム二次電池(1)、(2)ともに同等の容量が確保された。また、保存試験前の出力は、リチウム二次電池(1)、(2)ともに同等の出力が確保された。上記第1実施例の活性炭の処理の有無にかかわらず、活性炭を正極に備えているリチウム二次電池は、同等の初期出力と初期放電容量が得られることがわかった。
保存試験後の放電容量変化率は、リチウム二次電池(1)が96.33%であり、リチウム二次電池(2)が95.57%であった。放電容量変化率は、第1実施例の処理が施されているリチウム二次電池(1)のほうが僅かに改善されていることがわかった。
保存試験後の低温出力変化率は、リチウム二次電池(1)が70.59%であり、リチウム二次電池(2)が63.64%であった。低温出力変化率は、リチウム二次電池(1)がリチウム二次電池(2)よりも約7%改善されていることがわかった。保存試験後の常温出力変化率は、リチウム二次電池(1)が67.09%であり、リチウム二次電池(2)が63.75%であった。常温出力変化率は、リチウム二次電池(1)がリチウム二次電池(2)よりも約3%改善されていることがわかった。
As shown in Table 1, the discharge capacity before the storage test was assured for the lithium secondary batteries (1) and (2). Moreover, the output before a preservation | save test ensured the equivalent output in both lithium secondary batteries (1) and (2). Regardless of the treatment of the activated carbon of the first embodiment, it was found that the lithium secondary battery provided with activated carbon at the positive electrode can obtain the same initial output and initial discharge capacity.
The rate of change in discharge capacity after the storage test was 96.33% for the lithium secondary battery (1) and 95.57% for the lithium secondary battery (2). It was found that the rate of change in discharge capacity was slightly improved in the lithium secondary battery (1) subjected to the treatment of the first example.
The low-temperature output change rates after the storage test were 70.59% for the lithium secondary battery (1) and 63.64% for the lithium secondary battery (2). The low-temperature output change rate was found to be about 7% better for the lithium secondary battery (1) than the lithium secondary battery (2). The room temperature output change rate after the storage test was 67.09% for the lithium secondary battery (1) and 63.75% for the lithium secondary battery (2). The room temperature output change rate was found to be about 3% better for the lithium secondary battery (1) than the lithium secondary battery (2).

本実験例の結果から、細孔の細孔壁に絶縁性皮膜が形成されている活性炭を正極に備えたリチウム二次電池は、保存特性に優れることがわかった。リチウム二次電池(2)は、有機電解液が活性炭の孔内に浸入しても細孔壁でその有機電解液が分解しにくい。活性炭の細孔壁で、有機電解液の分解によるガスが発生しにくい。電池内圧が上昇すると、リチウム二次電池の内部抵抗が上昇する。リチウム二次電池(1)は、有機電解液の分解によるガスの発生が抑制されているので、リチウム二次電池(1)の電池内圧は上昇しにくい。結果、リチウム二次電池(1)は、内部抵抗の上昇が抑制され、保存試験後の出力も維持されたものと考えられる。   From the results of this experimental example, it was found that the lithium secondary battery provided with the activated carbon having the insulating film formed on the pore walls of the pores on the positive electrode has excellent storage characteristics. In the lithium secondary battery (2), even if the organic electrolyte enters the pores of the activated carbon, the organic electrolyte is difficult to decompose at the pore walls. Gas from decomposition of the organic electrolyte is unlikely to be generated at the pore walls of the activated carbon. When the battery internal pressure increases, the internal resistance of the lithium secondary battery increases. In the lithium secondary battery (1), since the generation of gas due to the decomposition of the organic electrolyte is suppressed, the battery internal pressure of the lithium secondary battery (1) is unlikely to increase. As a result, in the lithium secondary battery (1), it is considered that the increase in internal resistance is suppressed and the output after the storage test is also maintained.

一方、比較例であるリチウム二次電池(2)は、細孔の細孔壁に絶縁性皮膜が形成されていない。このため、保存試験中に活性炭の細孔壁部で有機電解液が分解し易い。本実験例の結果、リチウム二次電池(2)は、保存試験後に低温出力及び常温出力の低下が見られた。これは、活性炭の細孔に入り込んだ有機電解液が保存試験中に分解し、電池内圧が上昇したことに起因すると思われる。リチウム二次電池(2)は、電池内圧が上昇した結果、電池の内部抵抗が上昇し、保存試験後の出力が低下したものと思われる。
本実験例の結果から、第1実施例の処理で得られた活性炭4を正極材料に備えると、保存試験後の出力低下が抑制されることがわかった。
On the other hand, the lithium secondary battery (2) as a comparative example has no insulating film formed on the pore walls of the pores. For this reason, an organic electrolyte solution is easy to decompose | disassemble in the pore wall part of activated carbon during a storage test. As a result of this experimental example, the lithium secondary battery (2) showed a decrease in low-temperature output and normal-temperature output after the storage test. This is probably because the organic electrolyte that entered the pores of the activated carbon decomposed during the storage test and the internal pressure of the battery increased. As for the lithium secondary battery (2), it is considered that the internal resistance of the battery increased as a result of the increase of the battery internal pressure, and the output after the storage test decreased.
From the results of this experimental example, it was found that when the activated carbon 4 obtained by the treatment of the first example was provided in the positive electrode material, the output decrease after the storage test was suppressed.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

例えば、上記実施例では、リチウム二次電池を示したが、本発明の活性炭は、めっき用の浴液の不純物除去に使用してもよい。   For example, although the lithium secondary battery was shown in the said Example, you may use the activated carbon of this invention for the impurity removal of the bath liquid for plating.

電解めっき、無電解めっきの手法を問わず、めっき浴の浴液に不純物が混入していると、めっき処理中にガスが発生したり、めっき膜厚が不均一になる不具合が生じる。このため、浴液は、不純物を取り除く浄化処理が行われる。浄化処理前の浴液には、有機系不純物と無機系不純物が混入している。有機物系不純物は、活性炭処理によって除去される。この浄化法は、活性炭が有機物を吸着する性質を利用した方法である。無機物系不純物は、弱電解処理によって分解される。めっき材料の金属よりも電位の低い金属は、弱電解処理によって除去される。   Regardless of the method of electroplating or electroless plating, if impurities are mixed in the bath solution of the plating bath, gas is generated during the plating process or the plating film thickness becomes uneven. For this reason, the bath liquid is subjected to purification treatment to remove impurities. Organic impurities and inorganic impurities are mixed in the bath liquid before the purification treatment. Organic impurities are removed by activated carbon treatment. This purification method is a method utilizing the property that activated carbon adsorbs organic substances. Inorganic impurities are decomposed by weak electrolytic treatment. A metal having a lower potential than the metal of the plating material is removed by weak electrolysis.

活性炭処理に従来の活性炭(細孔壁に絶縁性物質からなる皮膜が形成されていない活性炭)を用いる場合、活性炭処理と弱電解処理を同期して行うことができなかった。活性炭は、細孔壁にも有機系不純物を取り込む。弱電解処理を行うと、活性炭に電気的な作用が加わる。細孔に有機系不純物を取り込んでいる状態で活性炭に電気的作用が加わると、細孔壁に電界が生じ、有機系不純物が細孔から再び浴液に溶解する現象が生じる。   When conventional activated carbon (activated carbon in which a film made of an insulating material is not formed on the pore walls) is used for the activated carbon treatment, the activated carbon treatment and the weak electrolytic treatment cannot be performed in synchronization. Activated carbon also incorporates organic impurities into the pore walls. When a weak electrolysis treatment is performed, an electrical effect is added to the activated carbon. When an electric action is applied to the activated carbon in a state where organic impurities are taken into the pores, an electric field is generated on the pore walls, and a phenomenon occurs in which the organic impurities are dissolved again into the bath liquid from the pores.

活性炭処理に本発明の処理が施された活性炭を用いると、活性炭処理と弱電解処理を同期して行うことができる。本発明に係る活性炭(細孔壁に絶縁性物質からなる皮膜が形成されていない活性炭)は、弱電解処理が行われても細孔壁で電界が生じない。細孔に有機系不純物を取り込んでいる状態で活性炭に電気的作用が加わっても、有機系不純物が分解して浴液に再び溶解する現象が生じない。活性炭処理と弱電界処理を同期して行うことができるので、浴液の浄化処理を短時間に済ませることができる。   When the activated carbon to which the treatment of the present invention is applied is used for the activated carbon treatment, the activated carbon treatment and the weak electrolysis treatment can be performed in synchronization. The activated carbon according to the present invention (activated carbon in which a coating made of an insulating material is not formed on the pore walls) does not generate an electric field on the pore walls even when a weak electrolytic treatment is performed. Even if an electric action is applied to the activated carbon in a state where the organic impurities are taken into the pores, the phenomenon that the organic impurities are decomposed and dissolved again in the bath liquid does not occur. Since the activated carbon treatment and the weak electric field treatment can be performed in synchronization, the purification treatment of the bath liquid can be completed in a short time.

本発明の処理が施された活性炭は、めっき処理中の電解めっきの浴液に浸漬させておくこともできる。
電解めっきは、めっき材料の金属からなる陽極と対象物の素材からなる陰極をめっき浴に浸漬し、両極間に直流電流を流して実行される。電解めっきの浴液には、光沢剤、応力減少剤、ピット防止剤、有機錯化剤などの添加剤が含まれる。めっき処理を実施して電解電流を流すと、添加剤は、陰極では還元され、陽極では酸化される。結果、添加剤は分解する。添加剤の分解生成物を浴液から除去するために、活性炭が加えられる。従来の活性炭を用いる場合、浴液に活性炭を入れた状態でめっき処理の電解電流を流すと、活性炭の細孔に入った分解生成物がさらに分解してガス化したり、分解して再び浴液中に溶解する現象が生じる。従来の活性炭を用いる場合は、めっき処理を中断して行う必要があった。
The activated carbon to which the treatment of the present invention has been applied can be immersed in a bath solution for electrolytic plating during the plating treatment.
Electrolytic plating is performed by immersing an anode made of a metal of a plating material and a cathode made of a material of an object in a plating bath and flowing a direct current between both electrodes. The bath solution for electrolytic plating contains additives such as brighteners, stress reducers, pit inhibitors, and organic complexing agents. When an electrolytic current is passed through the plating process, the additive is reduced at the cathode and oxidized at the anode. As a result, the additive decomposes. Activated carbon is added to remove the additive degradation products from the bath liquor. When conventional activated carbon is used, if an electrolytic current for plating is applied while the activated carbon is in the bath solution, the decomposition product that has entered the pores of the activated carbon is further decomposed and gasified, or decomposed and then the bath solution again. The phenomenon of melting inside occurs. When conventional activated carbon was used, it was necessary to interrupt the plating process.

本発明に係る活性炭は、細孔壁に絶縁性物質からなる皮膜が形成されている。本発明に係る活性炭は、浴液に浸漬しており、その浴液に電解電流が印加されている状態であっても、細孔壁に電界が生じない。細孔に添加剤の分解生成物を取り込んでいる状態で活性炭に電気的作用が加わっても、分解生成物は分解しにくい。本発明に係る活性炭を電解めっきの浴液に浸漬しておくと、分解生成物を除去しながらめっき処理を行うことができる。分解生成物による浴液の汚染が抑制されるので、めっき処理の回数が増加しても、めっき加工の質が落ちづらい。   In the activated carbon according to the present invention, a film made of an insulating material is formed on the pore walls. The activated carbon according to the present invention is immersed in a bath solution, and no electric field is generated on the pore walls even when an electrolytic current is applied to the bath solution. Even if an electrical action is applied to the activated carbon in a state where the decomposition product of the additive is taken into the pores, the decomposition product is difficult to decompose. When the activated carbon according to the present invention is immersed in an electroplating bath solution, plating can be performed while removing decomposition products. Since the contamination of the bath liquid by the decomposition products is suppressed, the quality of the plating process is not easily lowered even if the number of plating processes is increased.

本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

処理前の活性炭を模式的に示した平面図である。It is the top view which showed typically the activated carbon before a process. 処理前の活性炭の断面構造を模式的に示した断面図である。It is sectional drawing which showed typically the cross-sectional structure of the activated carbon before a process. 第1実施例の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of 1st Example. 処理前の活性炭の表面構造を示している部分断面図である。It is a fragmentary sectional view which shows the surface structure of the activated carbon before a process. アミン類が形成された活性炭の断面図である。It is sectional drawing of the activated carbon in which amines were formed. アミン類が形成された活性炭の表面構造を示している部分断面図である。It is a fragmentary sectional view which shows the surface structure of the activated carbon in which amines were formed. 濃硫酸処理後の活性炭の表面構造を示している部分断面図である。It is a fragmentary sectional view showing the surface structure of activated carbon after concentrated sulfuric acid treatment. 濃硫酸処理後の活性炭を示している断面図である。It is sectional drawing which shows the activated carbon after a concentrated sulfuric acid process. アミン類に水素イオンが配位した状態を示している部分断面図である。It is a fragmentary sectional view which shows the state which hydrogen ion coordinated to amines. 第1実施例で処理された活性炭の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the activated carbon processed by 1st Example. 第2実施例で処理された活性炭の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the activated carbon processed by 2nd Example. 第3実施例で処理された活性炭の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the activated carbon processed by 3rd Example.

符号の説明Explanation of symbols

1、2、3、4、5:活性炭
12:外周面
14:細孔
16、17:-CO-NH-R-NH2領域
18:-CO-NH-R-NH-HSO3領域
19:-CO-NH-R-NH3 +領域
20:Zn3(PO4)2領域
21:ZrO2領域
22:ZrO2+TiO2領域
1, 2, 3, 4, 5: activated carbon 12: outer peripheral surface 14: pores 16, 17: —CO—NH—R—NH 2 region 18: —CO—NH—R—NH—HSO 3 region 19: — CO-NH-R-NH 3 + region 20: Zn 3 (PO 4 ) 2 region 21: ZrO 2 region 22: ZrO 2 + TiO 2 region

Claims (12)

活性炭の細孔壁を改質する方法であり、
細孔壁を含む表面にカルボキシル基が吸着している活性炭を、アミン系化合物に接触させる工程と、
アミン系化合物に接触させた活性炭を、細孔に浸入できない高粘性の酸に浸漬する工程と、
酸から取り出した活性炭を、細孔に浸入できる低粘性の処理液に浸漬する工程と、
を備えている活性炭の処理方法。
A method of modifying the pore walls of activated carbon,
Contacting activated carbon having carboxyl groups adsorbed on the surface including the pore walls with an amine compound;
Immersing the activated carbon in contact with the amine compound in a highly viscous acid that cannot enter the pores;
A step of immersing the activated carbon extracted from the acid in a low-viscosity treatment liquid that can enter the pores;
A method for treating activated carbon.
前記酸の粘性が、0.020Pa/sec以上で0.95Pa/sec以下であり、
前記処理液の粘性が、0.0015Pa/sec以下であることを特徴とする請求項1の処理方法。
The acid has a viscosity of 0.020 Pa / sec or more and 0.95 Pa / sec or less,
The processing method according to claim 1, wherein the viscosity of the processing liquid is 0.0015 Pa / sec or less.
前記処理液が、金属元素を含有するイオンを含むことを特徴とする請求項1又は2の処理方法。   The processing method according to claim 1, wherein the processing liquid contains an ion containing a metal element. 前記金属元素が、チタン、ジルコニウム、亜鉛から選択される1種又は2種以上の金属元素であることを特徴とする請求項3の処理方法。   The processing method according to claim 3, wherein the metal element is one or more metal elements selected from titanium, zirconium, and zinc. 前記処理液が、リン酸イオンを含むことを特徴とする請求項3又は4の処理方法。   The processing method according to claim 3 or 4, wherein the processing liquid contains phosphate ions. 前記処理液が、フッ素イオンが含み、pHが2以上で6以下であることを特徴とする請求項3〜5のいずれかの処理方法。   The processing method according to claim 3, wherein the processing liquid contains fluorine ions and has a pH of 2 or more and 6 or less. 外周面と、外周面で開孔している細孔を有する活性炭であり、
外周面では、活性炭が露出しており、
細孔壁面に絶縁性物質からなる皮膜を有することを特徴とする活性炭。
An activated carbon having an outer peripheral surface and pores opened on the outer peripheral surface;
On the outer peripheral surface, the activated carbon is exposed,
An activated carbon having a coating made of an insulating material on the pore wall surface.
前記絶縁性物質が、無機金属化合物であることを特徴とする請求項7の活性炭。   The activated carbon according to claim 7, wherein the insulating substance is an inorganic metal compound. 前記無機金属化合物が、酸化物であることを特徴とする請求項8の活性炭。   The activated carbon according to claim 8, wherein the inorganic metal compound is an oxide. 前記無機金属化合物が、リン酸塩であることを特徴とする請求項8の活性炭。   The activated carbon according to claim 8, wherein the inorganic metal compound is a phosphate. 前記無機金属化合物が、チタン、ジルコニウム、亜鉛から選択される1種又は2種以上の金属を含んでいることを特徴とする請求項8〜10のいずれかの活性炭。   The activated carbon according to claim 8, wherein the inorganic metal compound contains one or more metals selected from titanium, zirconium, and zinc. 電解液が、有機電解液であり、
電極材料が、請求項7〜11のいずれかの活性炭を含むことを特徴とする蓄電装置。
The electrolyte is an organic electrolyte,
An electrode material includes the activated carbon according to any one of claims 7 to 11, and a power storage device.
JP2006212220A 2006-08-03 2006-08-03 Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon Pending JP2008037682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212220A JP2008037682A (en) 2006-08-03 2006-08-03 Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212220A JP2008037682A (en) 2006-08-03 2006-08-03 Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon

Publications (1)

Publication Number Publication Date
JP2008037682A true JP2008037682A (en) 2008-02-21

Family

ID=39173136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212220A Pending JP2008037682A (en) 2006-08-03 2006-08-03 Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon

Country Status (1)

Country Link
JP (1) JP2008037682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166839A1 (en) * 2014-04-28 2015-11-05 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for manufacturing said material
CN105879839A (en) * 2014-10-30 2016-08-24 南京农业大学 Novel multifunctional air purification material and preparation method thereof
JP2020149794A (en) * 2019-03-11 2020-09-17 トヨタ自動車株式会社 Nonaqueous lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166839A1 (en) * 2014-04-28 2015-11-05 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for manufacturing said material
CN106233408A (en) * 2014-04-28 2016-12-14 可乐丽化学株式会社 The electrode of energy storage device Porous material with carbon element and manufacture method thereof
JPWO2015166839A1 (en) * 2014-04-28 2017-04-20 クラレケミカル株式会社 Porous carbon material for electrode of energy storage device and method for producing the same
CN106233408B (en) * 2014-04-28 2018-09-07 株式会社可乐丽 The electrode of energy storage device Porous carbon material and its manufacturing method
US10297398B2 (en) 2014-04-28 2019-05-21 Kuraray Co., Ltd. Porous carbon material for electrode of energy storage device and method for manufacturing said material
CN105879839A (en) * 2014-10-30 2016-08-24 南京农业大学 Novel multifunctional air purification material and preparation method thereof
JP2020149794A (en) * 2019-03-11 2020-09-17 トヨタ自動車株式会社 Nonaqueous lithium ion secondary battery
JP7071701B2 (en) 2019-03-11 2022-05-19 トヨタ自動車株式会社 Non-aqueous lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
JP6044546B2 (en) Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for power storage device, electrode for power storage device, and power storage device
JP6374013B2 (en) Aluminum plate
CN106795646B (en) The manufacturing method of aluminium sheet and aluminium sheet
US9676034B2 (en) Method of manufacturing powder having high surface area
JP6636612B2 (en) Aluminum plate manufacturing method and aluminum plate manufacturing apparatus
JP2013247064A (en) Aluminum air battery
JP2011165637A (en) Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery
CN105140575A (en) High voltage battery containing aqueous electrolyte
WO2013132818A1 (en) Positive electrode for alkaline storage battery and alkaline storage battery using same
JP2008037682A (en) Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon
CN109791850B (en) Aluminum member for electrode and method for producing aluminum member for electrode
JP5154104B2 (en) Lithium ion secondary battery and method of manufacturing positive electrode plate thereof
JP5142254B2 (en) Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
KR102364363B1 (en) Process for preparing current collector for pseudo capacitor
RU2611722C1 (en) Method of production of non-polarizable electrode for electrochemical capacitor
JP2014075205A (en) Power storage device
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JP5356011B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP3406984B2 (en) Electrode for Li battery and Li battery using the same
JP2011129463A (en) Cadmium anode for alkaline secondary battery
Chaduang et al. Improving performance and cyclability of printed flexible zinc-air batteries using carbopol gel electrolyte
CN1211085A (en) Electrode for alkali accumulator and its producing method and alkaline accumulator
Takigawa et al. Coating Current Collector Surface with Ni–Al Layered Double Hydroxide by Liquid Phase Deposition to Reduce Charge-Transfer Resistance
FANG et al. A novel, environmentally friendly and facile method for oxidative energy storage in nickel hydroxide film electrodes
JP5920334B2 (en) Alkaline storage battery