JP2020149794A - Nonaqueous lithium ion secondary battery - Google Patents

Nonaqueous lithium ion secondary battery Download PDF

Info

Publication number
JP2020149794A
JP2020149794A JP2019043932A JP2019043932A JP2020149794A JP 2020149794 A JP2020149794 A JP 2020149794A JP 2019043932 A JP2019043932 A JP 2019043932A JP 2019043932 A JP2019043932 A JP 2019043932A JP 2020149794 A JP2020149794 A JP 2020149794A
Authority
JP
Japan
Prior art keywords
negative electrode
gas
ion secondary
secondary battery
gas adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019043932A
Other languages
Japanese (ja)
Other versions
JP7071701B2 (en
Inventor
伸典 松原
Shinsuke Matsubara
伸典 松原
洋人 浅野
Hiroto Asano
洋人 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019043932A priority Critical patent/JP7071701B2/en
Publication of JP2020149794A publication Critical patent/JP2020149794A/en
Application granted granted Critical
Publication of JP7071701B2 publication Critical patent/JP7071701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a nonaqueous lithium ion secondary battery, suppressed in generation of gas in a battery and high in Li precipitation resistance.SOLUTION: According to the present invention, there is provided a nonaqueous lithium ion secondary battery including a positive electrode, a negative electrode 10, and a nonaqueous electrolyte. The negative electrode 10 includes a negative electrode active material 16 and a gas adsorbent 18. The gas adsorbent 18 includes a carbon material 18A and an insulation coat layer 18B disposed on a surface of the carbon material 18A, and has a peak pore diameter in the range of 1 nm or more and 50 nm or less in a pore distribution curve obtained by the BJH method from a nitrogen adsorption isotherm.SELECTED DRAWING: Figure 1

Description

本発明は、非水系リチウムイオン二次電池に関する。 The present invention relates to a non-aqueous lithium ion secondary battery.

非水系リチウムイオン二次電池では、高温保存性や耐久性等を考慮すると、電池内で発生したガスに起因する電池膨れを抑制することが求められる。これに関連する従来技術文献として、特許文献1〜4が挙げられる。例えば特許文献1には、負極活物質層を備える負極と、正極活物質層を備える正極と、非水電解質と、を備え、負極活物質層および/または正極活物質層に、比表面積が30m/g以上の炭素材料からなるガス吸着炭素材を添加した非水系リチウムイオン二次電池が開示されている。特許文献1によれば、電池内で発生したガスを高比表面積のガス吸着炭素材に吸着させて電池内のガス量を低減し得、電池膨れを抑制しうる。 In a non-aqueous lithium ion secondary battery, it is required to suppress battery swelling caused by gas generated in the battery in consideration of high temperature storage property and durability. Patent documents 1 to 4 can be mentioned as prior art documents related to this. For example, Patent Document 1 includes a negative electrode having a negative electrode active material layer, a positive electrode having a positive electrode active material layer, and a non-aqueous electrolyte, and the negative electrode active material layer and / or the positive electrode active material layer has a specific surface area of 30 m. A non-aqueous lithium ion secondary battery to which a gas-adsorbed carbon material made of a carbon material of 2 / g or more is added is disclosed. According to Patent Document 1, the gas generated in the battery can be adsorbed on a gas-adsorbed carbon material having a high specific surface area to reduce the amount of gas in the battery and suppress the swelling of the battery.

特開2004−227818号公報Japanese Unexamined Patent Publication No. 2004-227818 特開2008−037682号公報Japanese Unexamined Patent Publication No. 2008-037682 国際公開2015/166839号公報International Publication No. 2015/166839 特開2016−134267号公報Japanese Unexamined Patent Publication No. 2016-134267

しかしながら、本発明者らの検討によれば、特許文献1のように高比表面積の炭素材料をガス吸着炭素材としてそのまま用いる場合、当該ガス吸着炭素材の表面で非水電解質が分解されうる。このため、ガス吸着炭素材そのものがガス発生の原因となりうる。したがって、特許文献1の技術では電池内のガス量を低減する効果が限定的であり、例えば車載用の電池のように高容量の非水系リチウムイオン二次電池では、効果が不十分であった。また、本発明者らの検討により、例えばハイレートサイクル充放電等では、電池内で発生したガスが気泡となって正負極間に滞留する結果、正負極間の距離にムラが生じてLi析出耐性が低下することも新たに判明した。 However, according to the study by the present inventors, when a carbon material having a high specific surface area is used as it is as the gas-adsorbed carbon material as in Patent Document 1, the non-aqueous electrolyte can be decomposed on the surface of the gas-adsorbed carbon material. Therefore, the gas-adsorbed carbon material itself can cause gas generation. Therefore, the technique of Patent Document 1 has a limited effect of reducing the amount of gas in the battery, and the effect is insufficient in a high-capacity non-aqueous lithium ion secondary battery such as an in-vehicle battery. .. Further, according to the study by the present inventors, for example, in high-rate cycle charging / discharging, the gas generated in the battery becomes bubbles and stays between the positive and negative electrodes, resulting in unevenness in the distance between the positive and negative electrodes and Li precipitation resistance. It was also newly found that

本発明はかかる点に鑑みてなされたものであり、その目的は、電池内でのガス発生が抑制され、Li析出耐性の高い非水系リチウムイオン二次電池を提供することにある。 The present invention has been made in view of this point, and an object of the present invention is to provide a non-aqueous lithium ion secondary battery in which gas generation in a battery is suppressed and Li precipitation resistance is high.

本発明によって、正極と、負極と、非水電解質と、を備えた非水系リチウムイオン二次電池が提供される。上記負極は、負極活物質と、ガス吸着材と、を備える。上記ガス吸着材は、炭素材料と、上記炭素材料の表面に配置されている絶縁コート層とを備え、かつ、窒素吸着等温線からBJH法で求められる細孔分布曲線において、ピーク細孔径が1nm以上50nm以下の範囲にある。 INDUSTRIAL APPLICABILITY The present invention provides a non-aqueous lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The negative electrode includes a negative electrode active material and a gas adsorbent. The gas adsorbent includes a carbon material and an insulating coat layer arranged on the surface of the carbon material, and has a peak pore diameter of 1 nm in a pore distribution curve obtained by the BJH method from a nitrogen adsorption isotherm. It is in the range of 50 nm or less.

上記構成の非水系リチウムイオン二次電池では、ガス吸着材の表面が絶縁性で、かつ、細孔径が最適化されている。このことにより、ガス吸着材の表面で非水電解質が分解されにくくなり、例えば高温環境下においても、電池内に溜まるガス量を低く抑えることができる。また、負極ではガス発生に起因したLi析出を低減することができ、例えばハイレートサイクル充放電においても、Li析出耐性を向上することができる。 In the non-aqueous lithium ion secondary battery having the above configuration, the surface of the gas adsorbent is insulating and the pore diameter is optimized. As a result, the non-aqueous electrolyte is less likely to be decomposed on the surface of the gas adsorbent, and the amount of gas accumulated in the battery can be kept low even in a high temperature environment, for example. Further, in the negative electrode, Li precipitation caused by gas generation can be reduced, and Li precipitation resistance can be improved even in, for example, high-rate cycle charging / discharging.

一実施形態に係る負極を模式的に示す断面図である。It is sectional drawing which shows typically the negative electrode which concerns on one Embodiment. 比較例1の負極を模式的に示す断面図である。It is sectional drawing which shows typically the negative electrode of the comparative example 1. FIG. 比較例2の負極を模式的に示す断面図である。It is sectional drawing which shows typically the negative electrode of the comparative example 2. 実施例3と比較例3に係るガス吸着材の細孔分布曲線である。3 is a pore distribution curve of the gas adsorbent according to Example 3 and Comparative Example 3. ハイレートサイクル試験における充放電パターンを表すグラフである。It is a graph which shows the charge / discharge pattern in a high rate cycle test. 放電容量測定時の充放電パターンを表すグラフである。It is a graph which shows the charge / discharge pattern at the time of the discharge capacity measurement.

以下、ここに開示される非水系リチウムイオン二次電池の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない正極や非水電解質等の電池構成要素や、電池の一般的な製造プロセス等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、本明細書において範囲を示す「A〜B」(A,Bは任意の数字)の表記は、A以上B以下の意と共に、「好ましくはAより大きい」および「好ましくはBより小さい」の意を包含するものとする。 Hereinafter, preferred embodiments of the non-aqueous lithium ion secondary battery disclosed herein will be described. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, battery components such as positive electrodes and non-aqueous electrolytes that do not characterize the present invention, and general batteries). Manufacturing process, etc.) can be grasped as a design item of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. Further, in the present specification, the notation of "A to B" (A and B are arbitrary numbers) indicating the range means "preferably larger than A" and "preferably smaller than B" with the meaning of A or more and B or less. It shall include the meaning of.

図示は省略するが、本実施形態に係る非水系リチウムイオン二次電池は、電極体と非水電解液とが外装体に収容されて構成されている。電極体は、正極と負極10(図1参照)とを備えている。電極体は、例えば帯状の正極と帯状の負極とが帯状のセパレータを介して積層され、長手方向に捲回された捲回電極体であってもよい。捲回電極体は、扁平形状であってもよい。外装体は、例えば扁平形状の捲回電極体に対応した角型(直方体形状)の外形を有していてもよい。外装体の材質は、例えばアルミニウム等の軽量な金属製であってもよいし、ラミネートフィルム製であってもよい。非水系リチウムイオン二次電池は、ラミネート型電池であってもよい。 Although not shown, the non-aqueous lithium ion secondary battery according to the present embodiment is configured such that an electrode body and a non-aqueous electrolytic solution are housed in an exterior body. The electrode body includes a positive electrode and a negative electrode 10 (see FIG. 1). The electrode body may be, for example, a wound electrode body in which a band-shaped positive electrode and a band-shaped negative electrode are laminated via a band-shaped separator and wound in the longitudinal direction. The wound electrode body may have a flat shape. The exterior body may have a square (rectangular parallelepiped shape) outer shape corresponding to, for example, a flat wound electrode body. The material of the exterior body may be a lightweight metal such as aluminum or a laminated film. The non-aqueous lithium ion secondary battery may be a laminated battery.

正極については従来と同様でよく、特に限定されない。正極は、典型的には、正極集電体と、正極集電体上に固着された正極活物質層とを備える。正極集電体は、導電性部材である。正極集電体の材質としては、例えばアルミニウムやニッケル等の導電性の良好な金属が例示される。正極活物質層は、電荷担体を可逆的に吸蔵および放出可能な正極活物質を必須として含み、その他の任意成分(例えば導電材やバインダ等)を含みうる。正極活物質としては、例えばリチウムニッケルマンガン複合酸化物やリチウムニッケルマンガンコバルト複合酸化物等のリチウム遷移金属複合酸化物が例示される。導電材としては、例えばカーボンブラック(典型的にはアセチレンブラック(AB))等の炭素材料が例示される。バインダとしては、例えばポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂が例示される。 The positive electrode may be the same as the conventional one, and is not particularly limited. The positive electrode typically comprises a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector. The positive electrode current collector is a conductive member. Examples of the material of the positive electrode current collector include metals having good conductivity such as aluminum and nickel. The positive electrode active material layer essentially contains a positive electrode active material capable of reversibly occluding and releasing charge carriers, and may contain other optional components (for example, a conductive material, a binder, etc.). Examples of the positive electrode active material include lithium transition metal composite oxides such as lithium nickel manganese composite oxide and lithium nickel manganese cobalt composite oxide. Examples of the conductive material include carbon materials such as carbon black (typically acetylene black (AB)). Examples of the binder include vinyl halide resins such as polyvinylidene fluoride (PVdF).

図1は、負極10を模式的に示す断面図である。負極10は、負極集電体12と、負極集電体12上に固着された負極活物質層14と、を備える。負極集電体12は、導電性部材である。負極集電体12の材質としては、例えば銅やニッケル等の導電性の良好な金属が例示される。負極活物質層14は、電荷担体を可逆的に吸蔵および放出可能な負極活物質16と、ガス吸着材18と、を含んでいる。 FIG. 1 is a cross-sectional view schematically showing the negative electrode 10. The negative electrode 10 includes a negative electrode current collector 12 and a negative electrode active material layer 14 fixed on the negative electrode current collector 12. The negative electrode current collector 12 is a conductive member. Examples of the material of the negative electrode current collector 12 include metals having good conductivity such as copper and nickel. The negative electrode active material layer 14 contains a negative electrode active material 16 capable of reversibly storing and releasing charge carriers, and a gas adsorbent 18.

負極活物質16は特に限定されず、従来用いられているものの中から1種または2種以上を適宜選択して用いることができる。負極活物質は、例えば、黒鉛系炭素材料や、チタン酸リチウム等のリチウム遷移金属複合酸化物、リチウム遷移金属複合窒化物、Si元素を含有するシリコン化合物等であってもよい。なお、黒鉛系炭素材料とは、黒鉛のみからなる炭素材料と、黒鉛が50質量%以上を占める炭素材料との総称をいう。負極活物質16は粒子状(粉末状)である。特に限定されるものではないが、負極活物質16の平均粒径(レーザー回折・光散乱法に基づく粒度分布おいて、体積基準の累積50%に相当する粒子径。以下同じ。)は、概ね1〜30μm、例えば5〜20μmであってもよい。負極活物質16の平均粒径は、ガス吸着材18の平均粒径よりも大きくてもよい。 The negative electrode active material 16 is not particularly limited, and one or more of the conventionally used ones can be appropriately selected and used. The negative electrode active material may be, for example, a graphite-based carbon material, a lithium transition metal composite oxide such as lithium titanate, a lithium transition metal composite nitride, a silicon compound containing a Si element, or the like. The graphite-based carbon material is a general term for a carbon material composed of only graphite and a carbon material in which graphite accounts for 50% by mass or more. The negative electrode active material 16 is in the form of particles (powder). Although not particularly limited, the average particle size of the negative electrode active material 16 (the particle size corresponding to the cumulative 50% of the volume standard in the particle size distribution based on the laser diffraction / light scattering method; the same applies hereinafter) is approximately the same. It may be 1 to 30 μm, for example 5 to 20 μm. The average particle size of the negative electrode active material 16 may be larger than the average particle size of the gas adsorbent 18.

ガス吸着材18は、炭素材料18Aと、炭素材料18Aの表面に配置されている絶縁コート層18Bと、を含んでいる。ガス吸着材18は、炭素材料18Aを主体(体積基準で最も多くを占めることをいう。以下同様。)として構成されていてもよい。ガス吸着材18は、粒子状(粉末状)であってもよい。ガス吸着材18は、例えばコア(母材)となる炭素材料18Aの一部または全部の表面に、炭素材料18Aよりも絶縁性の高い絶縁材料(子材)がコートされて構成されている。絶縁材料は、例えばスパッタリング法等の従来公知の方法によってコートすることができる。ガス吸着材18は、全表面積の半分以上に絶縁コート層18Bが形成されていてもよく、例えば表面の略全体に絶縁コート層18Bが形成されていてもよい。 The gas adsorbent 18 includes a carbon material 18A and an insulating coat layer 18B arranged on the surface of the carbon material 18A. The gas adsorbent 18 may be composed mainly of the carbon material 18A (meaning that it occupies the largest amount on a volume basis. The same shall apply hereinafter). The gas adsorbent 18 may be in the form of particles (powder). The gas adsorbent 18 is formed by coating, for example, a part or all of the surface of a carbon material 18A serving as a core (base material) with an insulating material (child material) having a higher insulating property than the carbon material 18A. The insulating material can be coated by a conventionally known method such as a sputtering method. In the gas adsorbent 18, the insulating coat layer 18B may be formed on more than half of the total surface area. For example, the insulating coat layer 18B may be formed on substantially the entire surface.

炭素材料18Aとしては、例えば、アセチレンブラック(AB)やケッチェンブラック(KB)等のカーボンブラックや、活性炭、炭素繊維等の非晶質炭素材料が例示される。炭素材料18Aは、粒子状(粉末状)であってもよい。絶縁コート層18Bは、絶縁材料を含んでいる。絶縁材料としては、例えば、チタン酸バリウム(BaTiO)や酸化アルミニウム(アルミナ、Al)等のセラミック材料が挙げられる。絶縁材料は、比誘電率が炭素材料18Aよりも高い誘電材料であるとよい。なかでもチタン酸バリウムのような強誘電体が好ましい。このことにより、負極活物質16の表面で反応活性が高まり、Li析出耐性をより高いレベルで向上することができる。なお、絶縁コート層18Bに含まれる元素の種類は、例えば負極活物質層14の表面を走査型電子顕微鏡(SEM)で観察し、得られた観察画像をエネルギー分散型X線分光法(EDX)で解析することによって確認しうる。また、誘電材料の組成については、例えばX線回折法(XRD)で得られた回折パターンで確認しうる。 Examples of the carbon material 18A include carbon black such as acetylene black (AB) and Ketjen black (KB), and amorphous carbon materials such as activated carbon and carbon fiber. The carbon material 18A may be in the form of particles (powder). The insulating coat layer 18B contains an insulating material. Examples of the insulating material include ceramic materials such as barium titanate (BaTIO 3 ) and aluminum oxide (alumina, Al 2 O 3 ). The insulating material is preferably a dielectric material having a relative permittivity higher than that of the carbon material 18A. Of these, a ferroelectric substance such as barium titanate is preferable. As a result, the reaction activity is increased on the surface of the negative electrode active material 16, and the Li precipitation resistance can be improved at a higher level. The type of element contained in the insulating coat layer 18B is, for example, the surface of the negative electrode active material layer 14 is observed with a scanning electron microscope (SEM), and the obtained observation image is observed by energy dispersive X-ray spectroscopy (EDX). It can be confirmed by analyzing with. Further, the composition of the dielectric material can be confirmed by, for example, a diffraction pattern obtained by an X-ray diffraction method (XRD).

ここに開示される技術では、ガス吸着材18の細孔分布が最適化されている。ガス吸着材18は、ピーク細孔径(窒素ガス吸着測定で得られる窒素吸着等温線からBJH法で求められる細孔分布曲線において、最大のピークを示す細孔直径。以下同じ。)が、1〜50nmの範囲にある。このことにより、電池内のガスを効果的に捕捉することができる。電池内のガス量をより高いレベルで低減する観点から、ガス吸着材18のピーク細孔径は、5〜26nmの範囲にあるとよい。ガス吸着材18は、BET比表面積(窒素ガス吸着測定で得られる窒素吸着等温線からBET法(例えばBET多点法)で求められる表面積。以下同じ。)が、概ね30m/g以上、典型的には30〜2000m/g、例えば100〜1000m/gであるとよい。このような高比表面積のガス吸着材18を用いることで、ここに開示される技術の効果をより高いレベルで発揮しうる。 In the technique disclosed herein, the pore distribution of the gas adsorbent 18 is optimized. The gas adsorbent 18 has a peak pore diameter (pore diameter showing the maximum peak in the pore distribution curve obtained by the BJH method from the nitrogen adsorption isotherm obtained by nitrogen gas adsorption measurement; the same applies hereinafter). It is in the range of 50 nm. As a result, the gas in the battery can be effectively captured. From the viewpoint of reducing the amount of gas in the battery at a higher level, the peak pore diameter of the gas adsorbent 18 is preferably in the range of 5 to 26 nm. The gas adsorbent 18 has a typical BET specific surface area (surface area obtained by the BET method (for example, the BET multipoint method) from the nitrogen adsorption isotherm obtained by nitrogen gas adsorption measurement. The same applies hereinafter) of about 30 m 2 / g or more. may is 30~2000m 2 / g, for example 100~1000m 2 / g in specific. By using the gas adsorbent 18 having such a high specific surface area, the effect of the technique disclosed herein can be exhibited at a higher level.

負極活物質層14は、負極活物質16とガス吸着材18とに加えて、任意成分(例えばバインダ、増粘剤、分散剤等)を含みうる。バインダとしては、例えばスチレンブタジエンゴム(SBR)等のゴム類や、ポリテトラフルオロエチレン(PTFE)等のフッ素化樹脂が例示される。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等のセルロース類が例示される。 The negative electrode active material layer 14 may contain an optional component (for example, a binder, a thickener, a dispersant, etc.) in addition to the negative electrode active material 16 and the gas adsorbent 18. Examples of the binder include rubbers such as styrene-butadiene rubber (SBR) and fluorinated resins such as polytetrafluoroethylene (PTFE). Examples of the thickener include celluloses such as carboxymethyl cellulose (CMC).

特に限定されるものではないが、負極活物質層14全体に占める負極活物質16の割合は、高エネルギー密度を実現する観点から、概ね80質量%以上であるとよく、典型的には80〜99質量%、例えば85〜95質量%であるとよい。負極活物質層14全体に占めるガス吸着材18の割合は、ここで開示される技術の効果を高いレベルで発揮する観点から、概ね1質量%以上であるとよく、典型的には1〜20質量%、例えば5〜15質量%であるとよい。また、負極活物質16を100質量部としたときに、ガス吸着材18の割合は、概ね1〜20質量部、例えば5〜15質量部であるとよい。 Although not particularly limited, the ratio of the negative electrode active material 16 to the entire negative electrode active material layer 14 is preferably about 80% by mass or more from the viewpoint of achieving high energy density, and is typically 80 to 80 to It is preferably 99% by mass, for example, 85 to 95% by mass. The ratio of the gas adsorbent 18 to the entire negative electrode active material layer 14 is preferably about 1% by mass or more, and typically 1 to 20 from the viewpoint of exerting the effect of the technique disclosed here at a high level. It is preferably mass%, for example 5 to 15 mass%. Further, when the negative electrode active material 16 is 100 parts by mass, the ratio of the gas adsorbent 18 is generally 1 to 20 parts by mass, for example, 5 to 15 parts by mass.

非水電解質については従来と同様でよく、特に限定されない。非水電解質は、非水系リチウムイオン二次電池の使用温度範囲内、例えば−20〜+60℃の温度範囲内で、液状もしくはポリマー状(ゲル状)であってもよい。非水電解質は、非水電解液であってもよい。非水電解質は、典型的には、非水溶媒に支持塩を含有させた組成を有する。非水溶媒としては、例えば、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等のカーボネート類や、エーテル類、エステル類等が例示される。支持塩としては、例えばLiPF、LiBF等のリチウム塩が例示される。 The non-aqueous electrolyte may be the same as the conventional one, and is not particularly limited. The non-aqueous electrolyte may be liquid or polymer-like (gel-like) within the operating temperature range of the non-aqueous lithium ion secondary battery, for example, within the temperature range of -20 to + 60 ° C. The non-aqueous electrolyte may be a non-aqueous electrolyte solution. The non-aqueous electrolyte typically has a composition in which a non-aqueous solvent contains a supporting salt. Examples of the non-aqueous solvent include carbonates such as ethylene carbonate, diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate, ethers and esters. Examples of the supporting salt include lithium salts such as LiPF 6 and LiBF 4 .

ここに開示される非水系リチウムイオン二次電池は各種用途に利用可能であるが、例えば2C以上、5C以上、さらには10C以上、例えば10〜30Cのハイレート充放電を繰り返す用途で好適に用いることができる。なお、「1C」とは、理論容量から予測される電池の定格容量(Ah)を1時間で充電できる電流値を意味する。好適な用途として、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が例示される。非水系リチウムイオン二次電池は、複数個を直列および/または並列に接続してなる組電池の形態で使用されうる。 The non-aqueous lithium ion secondary battery disclosed herein can be used for various purposes, but is preferably used in applications where high-rate charging / discharging of, for example, 2C or more, 5C or more, and further 10C or more, for example, 10 to 30C is repeated. Can be done. Note that "1C" means a current value capable of charging the rated capacity (Ah) of the battery predicted from the theoretical capacity in one hour. Suitable applications include drive power supplies mounted on vehicles such as electric vehicles (EVs), hybrid vehicles (HVs), and plug-in hybrid vehicles (PHVs). The non-aqueous lithium ion secondary battery can be used in the form of an assembled battery in which a plurality of batteries are connected in series and / or in parallel.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に限定することを意図したものではない。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to such examples.

〔比較例1〕
〈正極の作製〉まず、比較例1では、正極活物質としてのLiNiCoMnO(NCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、NCM:AB:PVdF=92:5:3の質量比率で混合して、正極スラリーを調製した。次に、上記調製した正極スラリーを帯状のアルミニウム箔(正極集電体、平均厚み15μm)の表面に塗布し、乾燥後、所定の厚みにプレスして、帯状の正極を作製した。
[Comparative Example 1]
<Preparation of Positive Electrode> First, in Comparative Example 1, LiNiComnO 2 (NCM) as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were used as NCM: AB. A positive electrode slurry was prepared by mixing at a mass ratio of PVdF = 92: 5: 3. Next, the prepared positive electrode slurry was applied to the surface of a band-shaped aluminum foil (positive electrode current collector, average thickness 15 μm), dried, and pressed to a predetermined thickness to prepare a band-shaped positive electrode.

〈負極の作製〉まず、負極活物質としての黒鉛(C、平均粒径10μm)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=99:0.5:0.5の質量比率で混合して、負極スラリーを調製した。次に、上記調製した負極スラリーを帯状の銅箔(負極集電体、平均厚み10μm)の表面に塗布し、乾燥後、所定の厚みにプレスして、帯状の負極を作製した。図2は、比較例1の負極20を模式的に示す断面図である。負極20は、負極集電体22と負極活物質層24とを備える。負極活物質層24は、負極活物質26を含むが、ガス吸着材は含んでいない。 <Preparation of Negative Electrode> First, graphite (C, average particle size 10 μm) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are used as C: SBR. A negative electrode slurry was prepared by mixing at a mass ratio of: CMC = 99: 0.5: 0.5. Next, the above-prepared negative electrode slurry was applied to the surface of a band-shaped copper foil (negative electrode current collector, average thickness 10 μm), dried, and pressed to a predetermined thickness to prepare a band-shaped negative electrode. FIG. 2 is a cross-sectional view schematically showing the negative electrode 20 of Comparative Example 1. The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24. The negative electrode active material layer 24 contains the negative electrode active material 26, but does not contain a gas adsorbent.

〈非水系リチウムイオン二次電池の構築〉まず、上記作製した帯状の正極と帯状の負極とを、帯状のセパレータを介して捲回し、扁平形状の捲回電極体を作製した。なお、セパレータとしては、PE層の両面にPP層が積層されたPP/PE/PPの三層構造を有する樹脂製の多孔質膜(平均厚み24μm)と、その片面に設けられ、セラミック粒子を含む耐熱層(平均厚み4μm)と、を備えたものを使用した。また、セパレータは、耐熱層が正極と対向するように配置した。次に、注液孔を有する角型の外装体に上記捲回電極体を収容し、外装体の開口部を封止した。次に、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを、EC:DMC:EMC=3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させ、非水電解液を調製した。次に、注液孔から非水電解液を注入し、当該注液孔に封止用のネジを締め付けることにより、外装体を気密に封止した。そして非水電解液が捲回電極体に含浸されるように所定時間放置した後、初期充電と60℃でのエージング処理を行った。
このようにして、比較例1の非水系リチウムイオン二次電池を構築した。
<Construction of Non-Aqueous Lithium Ion Secondary Battery> First, the band-shaped positive electrode and the band-shaped negative electrode produced above were wound via a band-shaped separator to prepare a flat-shaped wound electrode body. The separator is a resin porous film (average thickness 24 μm) having a three-layer structure of PP / PE / PP in which PP layers are laminated on both sides of the PE layer, and ceramic particles provided on one side thereof. A heat-resistant layer (average thickness 4 μm) including the heat-resistant layer was used. Further, the separator was arranged so that the heat-resistant layer faces the positive electrode. Next, the wound electrode body was housed in a square outer body having a liquid injection hole, and the opening of the outer body was sealed. Next, LiPF 6 as a supporting salt was added to a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of EC: DMC: EMC = 3: 3: 4. Was dissolved at a concentration of 1.0 mol / L to prepare a non-aqueous electrolytic solution. Next, a non-aqueous electrolytic solution was injected from the liquid injection hole, and a sealing screw was tightened in the liquid injection hole to hermetically seal the exterior body. Then, after leaving it for a predetermined time so that the wound electrode body was impregnated with the non-aqueous electrolytic solution, initial charging and aging treatment at 60 ° C. were performed.
In this way, the non-aqueous lithium ion secondary battery of Comparative Example 1 was constructed.

〔比較例2〕
負極の作製時に、ガス吸着炭素材としての活性炭(AC、BET比表面積:780m/g、ピーク細孔径:80.7nm)を用いて、C:AC:SBR:CMC=89:10:0.5:0.5の質量比率で混合して、負極スラリーを調製した。また、負極活物質の量が比較例1と同じになるように負極スラリーを塗布した。図3は、比較例2の負極30を模式的に示す断面図である。負極30は、負極集電体32と負極活物質層34とを備える。負極活物質層34は、負極活物質36と、活性炭からなるガス吸着炭素材38とを含んでいる。このこと以外は上記比較例1と同様にして、比較例2の非水系リチウムイオン二次電池を構築した。
[Comparative Example 2]
When the negative electrode was manufactured, activated carbon (AC, BET specific surface area: 780 m 2 / g, peak pore diameter: 80.7 nm) was used as the gas-adsorbed carbon material, and C: AC: SBR: CMC = 89: 10: 0. A negative electrode slurry was prepared by mixing at a mass ratio of 5: 0.5. Further, the negative electrode slurry was applied so that the amount of the negative electrode active material was the same as that in Comparative Example 1. FIG. 3 is a cross-sectional view schematically showing the negative electrode 30 of Comparative Example 2. The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34. The negative electrode active material layer 34 contains a negative electrode active material 36 and a gas-adsorbed carbon material 38 made of activated carbon. Except for this, the non-aqueous lithium ion secondary battery of Comparative Example 2 was constructed in the same manner as in Comparative Example 1.

〔実施例1〜5、比較例3〕
実施例1〜5、比較例3では、まずガス吸着材を作製した。
実施例1では、スパッタリング法により、母材としてのアセチレンブラックの表面に、子材としての酸化アルミニウムをコートして、ガス吸着材(実施例1)を作製した。
実施例2〜4、比較例3では、スパッタリング法により、母材としての活性炭の表面に、子材としての酸化アルミニウム(Al)をコートして、ガス吸着材(実施例2〜4、比較例3)を作製した。なお、母材としての活性炭の細孔構造は、各試験例で異なっている。
実施例5では、スパッタリング法により、母材としての活性炭の表面に、子材としてのチタン酸バリウム(BaTiO)をコートして、ガス吸着材(実施例5)を作製した。
なお、全ての試験例において、スパッタリングには、キヤノンアネルバ(株)製のスパッタ装置(型式:E−200S)を使用した。また、スパッタリングターゲットは、(株)高純度化学研究所製の純度99%のものを使用した。
[Examples 1 to 5, Comparative Example 3]
In Examples 1 to 5 and Comparative Example 3, a gas adsorbent was first produced.
In Example 1, a gas adsorbent (Example 1) was prepared by coating the surface of acetylene black as a base material with aluminum oxide as a child material by a sputtering method.
In Examples 2 to 4 and Comparative Example 3, the surface of activated carbon as a base material is coated with aluminum oxide (Al 2 O 3 ) as a child material by a sputtering method, and a gas adsorbent (Examples 2 to 4) is coated. , Comparative Example 3) was prepared. The pore structure of activated carbon as a base material is different in each test example.
In Example 5, a gas adsorbent (Example 5) was prepared by coating the surface of activated carbon as a base material with barium titanate (BaTIO 3 ) as a child material by a sputtering method.
In all the test examples, a sputtering apparatus (model: E-200S) manufactured by Canon Anerva Co., Ltd. was used for sputtering. As the sputtering target, a 99% pure one manufactured by High Purity Chemical Laboratory Co., Ltd. was used.

次に、上記作製したガス吸着材(実施例1〜5、比較例3)の窒素ガス吸着測定を行った。そして、得られた窒素吸着等温線からBET多点法により、BET比表面積を求めた。また、得られた窒素吸着等温線からBJH法により細孔分布曲線を得た。図4には、一例として、実施例3と比較例3に係るガス吸着材の細孔分布曲線を示している。図4に示す細孔分布曲線は、細孔直径(D)nmに対して、細孔容積(V)を細孔直径(D)で微分した値(dV/dD)をプロットした微分細孔容積分布である。そして、細孔分布曲線で最大のピークを示す細孔直径を、ピーク細孔径として求めた。結果を表1に示す。 Next, nitrogen gas adsorption measurement of the gas adsorbent (Examples 1 to 5 and Comparative Example 3) produced above was performed. Then, the BET specific surface area was determined from the obtained nitrogen adsorption isotherm by the BET multipoint method. Further, a pore distribution curve was obtained from the obtained nitrogen adsorption isotherm by the BJH method. FIG. 4 shows, as an example, the pore distribution curves of the gas adsorbent according to Example 3 and Comparative Example 3. The pore volume distribution curve shown in FIG. 4 is a differential pore volume obtained by plotting a value (dV / dD) obtained by differentiating the pore volume (V) by the pore diameter (D) with respect to the pore diameter (D) nm. It is a distribution. Then, the pore diameter showing the maximum peak on the pore distribution curve was determined as the peak pore diameter. The results are shown in Table 1.

そして、負極の作製時に活性炭にかえてガス吸着材を用いたこと以外は比較例2と同様にして、実施例1〜5、比較例3の非水系リチウムイオン二次電池を構築した。 Then, the non-aqueous lithium ion secondary batteries of Examples 1 to 5 and Comparative Example 3 were constructed in the same manner as in Comparative Example 2 except that a gas adsorbent was used instead of activated carbon when producing the negative electrode.

〈ガス量の測定〉まず、上記構築した非水系リチウムイオン二次電池を、SOC80%の充電状態に調整した後、60℃の温度環境下で30日間放置した。そして、試験前後のガス量の比較から、ガス増加率を算出した。結果を表1に示す。なお、表1では、比較例1のガス増加率を基準(100%)とした相対値で結果を表している。ガス量は、数値が小さいほど電池内に溜まるガスが少なく、電池膨れが抑えられていることを示す。 <Measurement of Gas Amount> First, the non-aqueous lithium ion secondary battery constructed above was adjusted to a state of charging with an SOC of 80%, and then left to stand in a temperature environment of 60 ° C. for 30 days. Then, the gas increase rate was calculated from the comparison of the amount of gas before and after the test. The results are shown in Table 1. In Table 1, the results are shown by relative values based on the gas increase rate of Comparative Example 1 (100%). As for the amount of gas, the smaller the value, the less gas accumulates in the battery, indicating that the battery swelling is suppressed.

〈Li析出耐性の評価〉まず、上記構築した非水系リチウムイオン二次電池を、SOC56%の充電状態に調整した後、−10℃の温度環境下において、図5に示す充放電パターン(充放電電流値:20Cのレート)でハイレート定電流充放電を1000サイクル繰り返した。次に、図6に示す充放電パターン(充放電電流値:0.5Cのレート)で試験前後の放電容量を測定した。そして、サイクル後の放電容量をサイクル前の放電容量で割って100を掛けることにより、容量維持率を算出した。得られた結果を、Li析出耐性として表1に示す。なお、表1では、比較例1の容量維持率を基準(100%)とした相対値で結果を表している。Li析出耐性(容量維持率)は、数値が大きいほどLi析出耐性が高く、容量劣化が小さいことを示す。 <Evaluation of Li Precipitation Resistance> First, the non-aqueous lithium ion secondary battery constructed above is adjusted to a state of charge with an SOC of 56%, and then the charge / discharge pattern (charge / discharge) shown in FIG. 5 is observed in a temperature environment of −10 ° C. High-rate constant current charging / discharging was repeated for 1000 cycles at a current value (rate of 20C). Next, the discharge capacity before and after the test was measured using the charge / discharge pattern (charge / discharge current value: 0.5 C rate) shown in FIG. Then, the capacity retention rate was calculated by dividing the discharge capacity after the cycle by the discharge capacity before the cycle and multiplying by 100. The obtained results are shown in Table 1 as Li precipitation resistance. In Table 1, the results are shown by relative values based on the capacity retention rate of Comparative Example 1 (100%). As for the Li precipitation resistance (capacity retention rate), the larger the value, the higher the Li precipitation resistance and the smaller the capacity deterioration.

Figure 2020149794
Figure 2020149794

表1の「ガス量」の欄に示すように、活性炭そのものをガス吸着材として負極に含む比較例2では、ガス吸着材を含まない比較例1に比べて電池内のガス量が増加していた。この理由としては、活性炭が導電性を有するために、負極で非水電解液が還元分解され、活性炭の存在がガス発生を促進したことが考えられる。これに対して、実施例1〜5および比較例3では、炭素材料の表面が絶縁コートされたガス吸着材を用いることで、比較例1、2に比べて電池内のガス量が低く抑えられていた。この理由としては、ガス吸着材の表面で非水電解質が分解されにくくなり、ガスの発生が抑制されたことが考えられる。また、ガス吸着材が効果を発揮して、例えば負極で発生したガスがガス吸着材に吸着された結果、負極からのガス流出が抑えられたことが考えられる。 As shown in the column of "gas amount" in Table 1, in Comparative Example 2 in which the activated carbon itself is contained in the negative electrode as a gas adsorbent, the amount of gas in the battery is increased as compared with Comparative Example 1 in which the gas adsorbent is not included. It was. It is considered that the reason for this is that since the activated carbon has conductivity, the non-aqueous electrolytic solution is reduced and decomposed at the negative electrode, and the presence of the activated carbon promotes gas generation. On the other hand, in Examples 1 to 5 and Comparative Example 3, the amount of gas in the battery can be suppressed to be lower than that in Comparative Examples 1 and 2 by using the gas adsorbent whose surface of the carbon material is coated with insulation. Was there. It is considered that the reason for this is that the non-aqueous electrolyte is less likely to be decomposed on the surface of the gas adsorbent, and the generation of gas is suppressed. Further, it is considered that the gas adsorbent exerts its effect, for example, the gas generated at the negative electrode is adsorbed by the gas adsorbent, and as a result, the gas outflow from the negative electrode is suppressed.

表1の「Li析出耐性」の欄に示すように、比較例2では、ガス吸着材を含まない比較例1に比べてLi析出耐性が大幅に悪化していた。この理由としては、負極で発生したガスがセパレータと負極との界面に気泡となって存在し、正負極間の距離にムラができた結果、負極のなかに充放電に寄与しない未反応部分が生じたことが考えられる。すなわち、負極の実質的な反応領域が減少した結果、抵抗が増大したことが考えられる。これに対して、ピーク細孔径が1nm以上50nm以下であるガス吸着材を負極に含む実施例1〜5では、比較例1、2に比べて大幅にLi析出耐性が向上していた。この理由としては、ガス吸着材の作用によって負極からのガス流出が抑えられた結果、負極の反応領域を安定に維持することができたことが考えられる。 As shown in the column of "Li precipitation resistance" in Table 1, in Comparative Example 2, the Li precipitation resistance was significantly deteriorated as compared with Comparative Example 1 which did not contain the gas adsorbent. The reason for this is that the gas generated at the negative electrode exists as bubbles at the interface between the separator and the negative electrode, and as a result of unevenness in the distance between the positive and negative electrodes, there are unreacted portions in the negative electrode that do not contribute to charging and discharging. It is possible that it has occurred. That is, it is considered that the resistance increased as a result of the substantial reaction region of the negative electrode decreasing. On the other hand, in Examples 1 to 5 in which the negative electrode contained a gas adsorbent having a peak pore diameter of 1 nm or more and 50 nm or less, the Li precipitation resistance was significantly improved as compared with Comparative Examples 1 and 2. The reason for this is considered to be that the reaction region of the negative electrode could be stably maintained as a result of suppressing the outflow of gas from the negative electrode by the action of the gas adsorbent.

以上のことから、炭素材料の表面が絶縁コートされ、かつピーク細孔径が1nm以上50nm以下であるガス吸着材を負極に含むことで、電池内でのガス発生を抑制することができ、優れたLi析出耐性を発揮することができるとわかった。かかる結果は、本発明の技術的意義を示すものである。 From the above, by including a gas adsorbent in which the surface of the carbon material is insulatingly coated and the peak pore diameter is 1 nm or more and 50 nm or less in the negative electrode, gas generation in the battery can be suppressed, which is excellent. It was found that Li precipitation resistance can be exhibited. Such a result shows the technical significance of the present invention.

さらに、表1の「Li析出耐性」の欄に示すように、ガス吸着材の絶縁コートにチタン酸バリウムを用いた実施例5では、Li析出耐性をより高いレベルで向上することができた。この理由として、定かではないが、チタン酸バリウムの誘電分極によって、負極活物質とガス吸着材との界面で例えば電荷担体(リチウムイオン)の脱溶媒和が促進され、界面抵抗が低減された結果、負極活物質の表面での反応が促進されたことが考えられる。 Further, as shown in the column of "Li precipitation resistance" in Table 1, in Example 5 in which barium titanate was used for the insulating coating of the gas adsorbent, the Li precipitation resistance could be improved at a higher level. The reason for this is not clear, but as a result of the dielectric polarization of barium titanate, for example, desolvation of charge carriers (lithium ions) is promoted at the interface between the negative electrode active material and the gas adsorbent, and the interface resistance is reduced. It is considered that the reaction on the surface of the negative electrode active material was promoted.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.

10 負極
12 負極集電体
14 負極活物質層
16 負極活物質
18 ガス吸着材
18A 炭素材料
18B 絶縁コート層
10 Negative electrode 12 Negative electrode current collector 14 Negative electrode active material layer 16 Negative electrode active material 18 Gas adsorbent 18A Carbon material 18B Insulation coat layer

Claims (1)

正極と、負極と、非水電解質と、を備えた非水系リチウムイオン二次電池であって、
前記負極は、負極活物質と、ガス吸着材と、を備え、
前記ガス吸着材は、
炭素材料と、前記炭素材料の表面に配置されている絶縁コート層とを備え、かつ、
窒素吸着等温線からBJH法で求められる細孔分布曲線において、ピーク細孔径が1nm以上50nm以下の範囲にある、
非水系リチウムイオン二次電池。
A non-aqueous lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte.
The negative electrode includes a negative electrode active material and a gas adsorbent.
The gas adsorbent is
It is provided with a carbon material and an insulating coat layer arranged on the surface of the carbon material, and
In the pore distribution curve obtained by the BJH method from the nitrogen adsorption isotherm, the peak pore diameter is in the range of 1 nm or more and 50 nm or less.
Non-aqueous lithium-ion secondary battery.
JP2019043932A 2019-03-11 2019-03-11 Non-aqueous lithium-ion secondary battery Active JP7071701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043932A JP7071701B2 (en) 2019-03-11 2019-03-11 Non-aqueous lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043932A JP7071701B2 (en) 2019-03-11 2019-03-11 Non-aqueous lithium-ion secondary battery

Publications (2)

Publication Number Publication Date
JP2020149794A true JP2020149794A (en) 2020-09-17
JP7071701B2 JP7071701B2 (en) 2022-05-19

Family

ID=72429760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043932A Active JP7071701B2 (en) 2019-03-11 2019-03-11 Non-aqueous lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP7071701B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151558A (en) * 2001-11-14 2003-05-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008037682A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
WO2016084909A1 (en) * 2014-11-26 2016-06-02 デンカ株式会社 Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell
JP2017091885A (en) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018530878A (en) * 2016-01-06 2018-10-18 エルジー・ケム・リミテッド Secondary battery containing gas adsorbing polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151558A (en) * 2001-11-14 2003-05-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008037682A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Method for treating active carbon, treated active carbon, and storage battery using the treated active carbon
WO2014112401A1 (en) * 2013-01-18 2014-07-24 ソニー株式会社 Composite material for electrodes, method for producing same, and secondary battery
WO2016084909A1 (en) * 2014-11-26 2016-06-02 デンカ株式会社 Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell
JP2017091885A (en) * 2015-11-12 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018530878A (en) * 2016-01-06 2018-10-18 エルジー・ケム・リミテッド Secondary battery containing gas adsorbing polymer

Also Published As

Publication number Publication date
JP7071701B2 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
JP5497177B2 (en) Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP7152360B2 (en) Positive electrode of secondary battery, and secondary battery using the same
JP2021176123A (en) Positive electrode material for lithium secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
TW201731144A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode material for lithium ion secondary battery and lithium ion secondary battery
JP6123674B2 (en) Lithium secondary battery and vehicle using the same
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP6950342B2 (en) Negative and non-aqueous electrolyte power storage elements
WO2011074083A1 (en) Lithium ion secondary battery
KR20230032918A (en) Positive electrode active material and nonaqueous electrolyte secondary battery including the same
JP7071701B2 (en) Non-aqueous lithium-ion secondary battery
JP2017168258A (en) Lithium ion secondary battery
JP6658608B2 (en) Positive electrode for non-aqueous electrolyte storage element, non-aqueous electrolyte storage element, and method for manufacturing positive electrode mixture paste
JP2020136114A (en) Positive electrode material of lithium secondary battery
JP7510399B2 (en) Positive electrode and non-aqueous electrolyte secondary battery using the same
JP7434230B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
EP4283706A1 (en) Negative electrode plate and application thereof
JP2012028177A (en) Lithium ion secondary battery
JP6960091B2 (en) Positive electrode for non-aqueous electrolyte secondary batteries
JP2023034699A (en) Positive electrode and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R151 Written notification of patent or utility model registration

Ref document number: 7071701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151