WO2016084909A1 - Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell - Google Patents

Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell Download PDF

Info

Publication number
WO2016084909A1
WO2016084909A1 PCT/JP2015/083267 JP2015083267W WO2016084909A1 WO 2016084909 A1 WO2016084909 A1 WO 2016084909A1 JP 2015083267 W JP2015083267 W JP 2015083267W WO 2016084909 A1 WO2016084909 A1 WO 2016084909A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
silica
coated carbon
dbp absorption
electrode
Prior art date
Application number
PCT/JP2015/083267
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 名古
みか 西川
哲哉 伊藤
横田 博
崇人 今井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2016561949A priority Critical patent/JP6604965B2/en
Priority to CN201580074376.XA priority patent/CN107207876B/en
Publication of WO2016084909A1 publication Critical patent/WO2016084909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to silica-coated carbon black, an electrode composition using the same, a secondary battery electrode, and a secondary battery.
  • the lithium ion secondary battery in which the negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to the lithium battery in which the negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
  • Patent Document 1 discloses a positive electrode material for a lithium ion secondary battery in which a halide is coated on the surface of the positive electrode material.
  • Patent Document 2 discloses a positive electrode mixture in which the surface of the positive electrode current collector is coated with a fluorine compound.
  • Patent Document 3 discloses a BET specific surface area, DBP absorption amount, electric resistivity, sulfur content, and volatile component content as carbon black for non-aqueous secondary batteries excellent in conductivity and dispersibility. Carbon blacks each in a predetermined range are disclosed. Patent Document 4 discloses a carbon black slurry having good slurry stability.
  • Carbon black has been conventionally used as a conductive agent for secondary batteries.
  • a positive electrode active material having a high potential is used as described above, the carbon black that is a conductive agent has a large contact area with the electrolytic solution, which is a factor that easily causes oxidative decomposition and gas generation of the electrolytic solution. ing.
  • Patent Documents 1 and 2 None of the methods described in Patent Documents 1 and 2 has improved carbon black, and the effect of suppressing gas generation due to oxidative decomposition of the electrolyte is insufficient.
  • carbon black has a structure in which primary particles close to a spherical shape are connected on a bead as a common structure, and such a structure is called a structure.
  • a structure In general, the longer the structure is connected, the greater the distance that can be conducted without contact resistance, so that the electron conductivity is improved.
  • the length of the structure is indirectly evaluated using a DBP absorption amount generally measured in accordance with JIS K6217-4.
  • carbon black having a long structure is excellent in conductivity, but has an aspect that the interaction between particles becomes large, so that it is difficult to disintegrate and easily aggregates.
  • the present invention is a silica-coated carbon black that suppresses decomposition and gas generation of an electrolyte in a high-potential secondary battery, particularly a lithium ion secondary battery, and has excellent conductivity and dispersibility.
  • An object of the present invention is to provide a secondary battery electrode and a secondary battery having excellent durability using the same.
  • the present invention employs the following means in order to solve the above problems.
  • It includes carbon black and silica that covers the surface of the carbon black, and a ratio of DBP absorption to compression DBP absorption of the carbon black (DBP absorption / compression DBP absorption) is 2.2 or less.
  • n represents an integer of 1 or more and 5 or less.
  • the silica is obtained by hydrolysis and condensation of the tetraalkoxysilane having a mass ratio of 20 to 250 with respect to the ammonium salt in the presence of the ammonium salt represented by the formula (2).
  • the silica-coated carbon black described in 1. In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.
  • a coating amount of the silica is 10% by mass to 30% by mass with respect to a total amount of the silica and the carbon black.
  • the carbon black is acetylene black.
  • the silica-coated carbon black according to any one of (1) to (9), a positive electrode active material capable of occluding and releasing cations, and a negative electrode active capable of occluding and releasing cations An electrode composition comprising at least one selected from the group consisting of substances and a binder.
  • An electrode for a secondary battery comprising a metal foil and a coating film of the electrode composition according to claim 10 provided on the metal foil.
  • a secondary battery comprising the secondary battery electrode according to (11) on at least one of a positive electrode and a negative electrode.
  • the tetraalkoxysilane represented by the formula (1) is hydrolyzed and condensed, and the surface of the carbon black is silica containing the hydrolyzed condensate of the tetraalkoxysilane.
  • a method for producing silica-coated carbon black comprising a step of coating, wherein a ratio of DBP absorption to compression DBP absorption of carbon black (DBP absorption / compression DBP absorption) is 2.2 or less.
  • n represents an integer of 1 to 5, inclusive.
  • the dispersion further contains an ammonium salt represented by the formula (2), and a mass ratio of the tetraalkoxysilane to the ammonium salt is 20 to 250.
  • X represents Cl, Br or I, and m represents an integer of 3 to 30.
  • the present inventors have found that the silica-coated carbon black of the present invention can suppress decomposition of the electrolyte and gas generation in the secondary battery.
  • the silica-coated carbon black of the present invention has excellent dispersibility and good conductivity.
  • the secondary electrode and the secondary battery using the silica-coated carbon black of the present invention have a feature that they have a long life.
  • FIG. 1 is a scanning electron micrograph of silica-coated carbon black of Example 1.
  • FIG. FIG. 2 is a scanning electron micrograph of carbon black of Comparative Example 1.
  • the silica-coated carbon black of the present embodiment includes carbon black and silica that coats the surface of the carbon black, and the ratio of DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount). 2.2 or less, and the silica contains a hydrolyzed condensate of tetraalkoxysilane represented by the formula (1).
  • the coating in this specification means a state where silica is adsorbed or adhered to at least a part or all of the surface of the carbon black particles as shown in FIG. (In the formula, n represents an integer of 1 or more and 5 or less.)
  • the silica-coated carbon black of the present embodiment is a silica-coated carbon black obtained by coating the surface of carbon black with silica, and the ratio of the DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount). Is 2.2 or less, and it can be said that the silica-coated carbon black is a hydrolysis-condensation product of tetraalkoxysilane represented by the formula (1).
  • the carbon black in the present embodiment is selected from acetylene black, furnace black, channel black, and the like, like carbon black as a general battery conductive agent. Among these, acetylene black having excellent crystallinity and purity is more preferable.
  • the DBP absorption amount of carbon black in the present embodiment is a value measured according to JIS K6217-4.
  • the compressed DBP absorption amount is a value measured by the same method as the DBP absorption amount for a compressed sample produced according to JIS K6217-4 Annex A.
  • the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black in this embodiment is 2.2 or less, and more preferably 1.4 to 2.1.
  • a large DBP absorption value compared to the compressed DBP absorption amount means that the amount of agglomerated particles that are destroyed when producing a compressed sample is large, and that more energy is required to break them up. . Therefore, by setting the ratio of the DBP absorption amount to the compressed DBP absorption amount to 2.2 or less, the energy necessary for crushing the agglomerated particles can be suppressed, and the dispersibility becomes good.
  • the DBP absorption amount of carbon black in the present embodiment is preferably 280 mL / 100 g or less, and more preferably 200 mL / 100 g or less. By setting the DBP absorption amount to 280 mL / 100 g or less, aggregation due to entanglement between structures is suppressed, and dispersibility is improved.
  • the DBP absorption amount of carbon black in the present embodiment may be 90 mL / 100 g or more, or 150 mL / 100 g or more.
  • Silica in the present embodiment is a hydrolyzed condensate of tetraalkoxysilane.
  • the hydrolysis reaction and the condensation reaction are preferably performed in the presence of an ammonium salt represented by the formula (2) (also referred to as a halogenated alkyltrimethylammonium salt). Since the hydrolysis reaction of tetraalkoxysilane goes through an anionic intermediate, in the presence of alkyltrimethylammonium halide, which is a cationic surfactant, on the carbon black surface where the alkyltrimethylammonium halide molecule is adsorbed. A hydrolysis reaction and a condensation reaction proceed selectively.
  • silica obtained as a hydrolysis condensate in the presence of alkyltrimethylammonium halide of tetraalkoxysilane is easy to take a shape that coats the surface of carbon black in a shell shape, so the effect of preventing oxidative decomposition of the electrolyte is even better. It becomes.
  • X represents Cl, Br or I
  • m represents an integer of 3 to 30.
  • halogenated alkyltrimethylammonium halide one having an arbitrary halogen atom and alkyl group can be selected within the range in which the above-described effects can be obtained.
  • halogen atom represented by X chlorine is preferable.
  • the alkyl group preferably has 3 to 30 carbon atoms (that is, m), more preferably 10 to 20 carbon atoms. Among these, hexadecyltrimethylammonium chloride and dodecyltrimethylammonium chloride are preferable.
  • the mass ratio of tetraalkoxysilane to alkyltrimethylammonium halide is preferably 20 to 250.
  • the mass ratio the mass of tetraalkoxysilane / the mass of alkyltrimethylammonium halide
  • the amount of the cation relative to the anionic intermediate is sufficiently large, so that the hydrolysis reaction and the condensation reaction are more carbon. It progresses selectively on the black surface, and the silica coverage increases.
  • mass ratio mass of tetraalkoxysilane / mass of halogenated alkyltrimethylammonium
  • the carbon number of the alkyl group of tetraalkoxysilane is 5 or less, and preferably 3 or less. Since the hydrolysis reaction of tetraalkoxysilane proceeds faster as the carbon number of the alkyl group is smaller, the yield of silica is increased by setting the carbon number to 5 or less even if the reaction time is short.
  • the coating amount of silica is preferably 10% by mass to 30% by mass with respect to the total amount of silica and carbon black.
  • the coating amount is preferably 10% by mass to 30% by mass with respect to the total amount of silica and carbon black.
  • Free silica it is preferable in terms of conductivity to be removed from the produced silica-coated carbon black.
  • Free silica can be filtered to the filtrate side after synthesis of silica-coated carbon black, for example, with a filter having a mesh diameter of 1 to 9 ⁇ m.
  • the volume resistivity of silica-coated carbon black is a value obtained by measuring a powder sample compressed in a disk shape at a pressure of 24 MPa in an environment of 25 ° C. and a relative humidity of 50% by a four-terminal four-probe method.
  • the volume resistivity of the silica-coated carbon black is preferably 1 ⁇ 10 6 ⁇ ⁇ cm or less, and more preferably 1 ⁇ 10 3 ⁇ ⁇ cm or less.
  • the method for producing the silica-coated carbon black of the present embodiment is not particularly limited.
  • Langmuir 2012, 28, 7055-7062 A known method as described in 1) can be used. Specifically, prepare a dispersion in which the original carbon black is dispersed in ethanol and a solution in which tetraethoxysilane is dissolved in ethanol. After mixing both, add aqueous ammonia to make it alkaline. By doing so, a method of hydrolyzing tetraethoxysilane can be used.
  • the silica-coated carbon black can be dispersed in a medium together with a positive electrode active material or a negative electrode active material and a binder and used as an electrode composition.
  • the positive electrode active material may be any positive electrode active material that can occlude and release cations.
  • composite oxides having a layered rock salt structure such as lithium cobaltate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt lithium aluminum oxide, and spinel structures such as lithium manganate and lithium nickel manganate
  • composite oxides having an olivine structure such as lithium iron phosphate, lithium manganese phosphate, and lithium iron manganese phosphate.
  • the negative electrode active material may be any negative electrode active material that can occlude and release cations.
  • Examples of the negative electrode active material include carbon-based materials such as artificial graphite, natural graphite, soft carbon, and hard carbon, metal-based materials alloyed with alkali metals such as silicon and tin, and metal composite oxides such as lithium titanate. .
  • binder examples include polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Among these, polyvinylidene fluoride is preferable from the viewpoint of oxidation resistance when used for the positive electrode, and polyvinylidene fluoride or styrene-butadiene copolymer is preferable from the viewpoint of adhesion when used for the negative electrode.
  • polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Among these,
  • Examples of the dispersion medium for the electrode composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone.
  • N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility, and when using a styrene-butadiene copolymer, water is preferable.
  • a mixing machine such as a rachi machine, a universal mixer, a Henschel mixer or a ribbon blender, or a medium stirring type mixer such as a bead mill, a vibration mill or a ball mill is used.
  • the manufactured electrode coating liquid is preferably subjected to vacuum defoaming at a stage before coating in order to ensure smoothness without causing defects in the coating film. If air bubbles are present in the coating solution, the coating film will be defective when applied to the electrode, which may impair smoothness.
  • the electrode composition can contain components other than silica-coated carbon black, a positive electrode active material, a negative electrode active material, and a binder as long as the above-described effects are obtained.
  • a positive electrode active material a positive electrode active material
  • a negative electrode active material a binder
  • carbon nanotubes, carbon nanofibers, graphite, graphene, carbon fibers, elemental carbon, glassy carbon, metal particles, and the like may be included in addition to silica-coated carbon black for the purpose of further improving conductivity.
  • polyvinyl pyrrolidone polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, a carboxylic acid-modified (meth) acrylic acid ester copolymer and the like may be included.
  • the present invention may relate to an electrode composition containing the silica-coated carbon black described above.
  • the electrode composition may include the silica-coated carbon black, at least one selected from the group consisting of a positive electrode active material and a negative electrode active material, and a binder.
  • the present invention may also relate to a secondary battery electrode comprising a metal foil and a coating film of the electrode composition provided on the metal foil.
  • the metal foil may be, for example, an aluminum foil when used as a positive electrode. Moreover, when using as a negative electrode, copper foil etc. may be sufficient, for example.
  • the shape of the metal foil is not particularly limited. From the viewpoint of facilitating workability, the thickness of the metal foil is preferably 5 to 30 ⁇ m.
  • the coating film of the electrode composition is, for example, a slot die method, a lip method, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze. It may be formed by applying a composition for an electrode on a metal foil by a method such as a method. Of these, the slot die method, the lip method, and the reverse roll method are preferable. The coating method may be appropriately selected according to the solution physical properties, drying properties, etc. of the binder. The coating film of the electrode composition may be formed on one side of the metal foil or on both sides.
  • the electrode composition When the coating film of the electrode composition is formed on both surfaces of the metal foil, the electrode composition may be sequentially applied to the metal foil one side at a time or may be simultaneously applied to both surfaces of the metal foil.
  • the application mode of the electrode composition may be continuous, intermittent, or striped.
  • the thickness, length and width of the coating film of the electrode composition may be appropriately determined according to the size of the battery.
  • the thickness of the coating film may be in the range of 10 ⁇ m to 500 ⁇ m.
  • the coating film of the electrode composition may be formed by applying and drying the electrode composition.
  • the electrode composition can be dried using, for example, means such as hot air, vacuum, infrared rays, far infrared rays, electron beams, and low-temperature air, alone or in combination.
  • the secondary battery electrode may be pressed as necessary.
  • a generally adopted method may be used, and for example, a die pressing method, a calendar pressing method (cold or hot roll) and the like are preferable.
  • the pressing pressure in the calender pressing method is not limited, but is preferably 0.02 to 3 ton / cm, for example.
  • the present invention may also relate to a secondary battery provided with the secondary battery electrode on at least one of a positive electrode and a negative electrode.
  • the secondary battery may be, for example, a lithium ion secondary battery, a sodium ion secondary battery, a magnesium ion secondary battery, a nickel hydride secondary battery, or an electric double layer capacitor.
  • the present invention may also relate to a method for producing silica-coated carbon black.
  • the method for producing a silica-coated carbon black comprises hydrolyzing and condensing the tetraalkoxysilane in a dispersion containing the carbon black, so that the surface of the carbon black is made of the tetraalkoxysilane. It may include a step of coating with silica containing a hydrolysis condensate.
  • the dispersion may further contain the alkyltrimethylammonium halide.
  • the mass ratio of the tetraalkoxysilane to the ammonium salt may be 20 to 250.
  • the present invention may also relate to a conductive agent for a secondary battery containing the silica-coated carbon black, and may relate to the use of the silica-coated carbon black as a conductive agent for a secondary battery.
  • the present invention may also relate to the use of the silica-coated carbon black for the production of a secondary battery electrode, and may relate to the use of the silica-coated carbon black for the production of a secondary battery. .
  • silica-coated carbon black according to the present invention will be described in detail with reference to Examples and Comparative Examples.
  • the present invention is not limited to the following examples unless it exceeds the gist.
  • Example 1 (Carbon black)
  • acetylene black (HS100, manufactured by Denki Kagaku Kogyo K.K.) having a DBP absorption of 171 mL / 100 g and a compressed DBP absorption of 83 mL / 100 g was used as carbon black.
  • the DBP absorption amount and compression DBP absorption amount of carbon black were measured by the following methods.
  • DBP absorption and compressed DBP absorption DBP absorption was measured by a method according to JIS K6217-4. Further, the compressed DBP absorption amount was measured by the same method as the DBP absorption amount for a compressed sample prepared by compressing four times at 165 MPa according to JIS K6217-4 Annex A.
  • Electrode composition and electrode 90 parts by mass of spinel-type lithium nickel manganate (manufactured by Hosen Co., Ltd.) as an active material, 5 parts by mass of silica-coated carbon black, and a polyvinylidene fluoride solution (manufactured by Kureha Chemical Co., Ltd., “KF Polymer (registered trademark) 1120” as a binder
  • This electrode composition was applied to a 20 ⁇ m thick aluminum foil using a Baker-type applicator, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery.
  • Electrode composition evaluation of dispersibility (electrode composition)
  • the dispersibility of the silica-coated carbon black in the electrode composition was evaluated by a method using a crush gauge described in JIS K5600-2-5. Specifically, a scraper was used to apply the coating solution, and the graduations were measured at locations where three or more linear traces of 10 mm or more continuous on the sample surface were arranged in one groove. The lower the numerical value, the better the dispersibility.
  • the dispersibility of the silica-coated carbon black in the secondary battery electrode was judged by the appearance of the positive electrode for the lithium secondary battery. Specifically, five 100 mm square electrodes were prepared and evaluated according to the following scale. A: No streak of coating marks and aggregates were observed on the electrode surfaces of all five sheets. B: Streaky coating marks or aggregates less than 1 mm were observed on one or more electrode surfaces. C: Agglomerates of 1 mm or more were observed on one or more electrode surfaces.
  • a positive electrode for a secondary battery produced using the electrode composition as a positive electrode was cut into 40 mm length and 40 mm width, and a negative electrode for the secondary battery cut into 44 mm length and 44 mm width was used as a negative electrode. Then, a non-woven fabric made of olefin fiber was used as a separator for electrically isolating them, and an aluminum laminate film was used as an exterior to make a laminated battery.
  • EC ethylene carbonate, manufactured by Aldrich
  • DEC diethyl carbonate, manufactured by Aldrich
  • LiPF6 lithium hexafluorophosphate
  • the secondary battery produced above was evaluated as follows. The results are shown in Table 1. Unless otherwise specified, the evaluation value is an arithmetic average value of the evaluation values of the three batteries.
  • a positive electrode active material amount (g) present on the positive electrode was determined from the mass of the positive electrode, and a value (mA) obtained by dividing this by 140 was defined as a current value “1C”.
  • a constant current / constant voltage charge is performed with a current of 1 C and an upper limit voltage of 5.0 V, and a constant current discharge is performed with a current of 1 C and a lower limit voltage of 3.0 V.
  • the charge capacity per 1 g of the positive electrode active material The ratio (%) of the discharge capacity (mAh / g) per gram of the positive electrode active material to the mAh / g) was defined as the Coulomb efficiency.
  • the volume change (mL) of the battery before and after the cycle characteristic test was measured as a gas generation amount.
  • the volume of the battery was measured in a constant temperature room at 25 ⁇ 1 ° C. using a specific gravity measuring device (AUW220D manufactured by Shimadzu Corporation).
  • AUW220D specific gravity measuring device manufactured by Shimadzu Corporation
  • Examples 2 to 8> A silica-coated carbon black and an electrode composition were prepared in the same manner as in Example 1 except that the addition amounts of hexadecyltrimethylammonium chloride and tetraethoxysilane in Example 1 were changed to the mass ratio shown in Table 1. A secondary battery electrode and a secondary battery were prepared and evaluated. The results are shown in Table 1.
  • Example 9 Except for changing the carbon black of Example 1 to furnace black (SuperPLi, manufactured by Timcal Graphite and Carbon, Inc.) having a DBP absorption of 234 mL / 100 g and a compressed DBP absorption of 115 mL / 100 g, the same as in Example 1
  • the silica-coated carbon black, the electrode composition, the secondary battery electrode and the secondary battery were prepared by various methods, and each evaluation was performed. The results are shown in Table 2.
  • Example 10 The same method as in Example 1 except that the carbon black in Example 1 was changed to acetylene black (AB powder, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 228 mL / 100 g and a compressed DBP absorption of 125 mL / 100 g.
  • acetylene black ABS powder, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the silica-coated carbon black, the electrode composition, the secondary battery electrode and the secondary battery were prepared and evaluated. The results are shown in Table 2.
  • Example 11 In the same manner as in Example 1, except that the carbon black of Example 1 was changed to acetylene black (SAB, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 338 mL / 100 g and a compressed DBP absorption of 240 mL / 100 g. Coated carbon black, an electrode composition, an electrode for a secondary battery, and a secondary battery were prepared and evaluated. The results are shown in Table 2.
  • SAB acetylene black
  • Example 12 The tetraethoxysilane of Example 1 was changed to tetrabutoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), and the addition amounts of tetrabutoxysilane and hexadecyltrimethylammonium chloride were changed so that the mass ratio shown in Table 2 was obtained.
  • Example 13 The tetraethoxysilane in Example 1 was changed to tetrapropoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), and the addition amount of tetrabutoxysilane and hexadecyltrimethylammonium chloride was changed to the mass ratio shown in Table 2.
  • tetraethoxysilane in Example 1 was changed to tetrapropoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), and the addition amount of tetrabutoxysilane and hexadecyltrimethylammonium chloride was changed to the mass ratio shown in Table 2.
  • Example 14 Except that hexadecyltrimethylammonium chloride of Example 1 was changed to dodecyltrimethylammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), silica-coated carbon black, electrode composition, secondary battery electrode were obtained in the same manner as in Example 1. And the secondary battery was produced and each evaluation was implemented. The results are shown in Table 2.
  • Example 1 Except that the amount of tetraethoxysilane added in Example 1 was changed to 0, silica-coated carbon black, an electrode composition, a secondary battery electrode, and a secondary battery were prepared in the same manner as in Example 1, Evaluation was performed. The results are shown in Table 3. In the secondary battery of Comparative Example 1, the discharge capacity was zero in less than 200 cycles in the measurement of cycle characteristics.
  • FIG. 2 is a scanning electron micrograph of carbon black of Comparative Example 1.
  • Example 2 The carbon black of Example 1 was changed to Furnace Black (SuperC65 manufactured by Timcal Graphite and Carbon) having a DBP absorption of 254 mL / 100 g and a compressed DBP absorption of 104 mL / 100 g.
  • Silica-coated carbon black, an electrode composition, a secondary battery electrode, and a secondary battery were prepared by the method, and each evaluation was performed. The results are shown in Table 3.
  • the secondary battery electrode of Comparative Example 2 was inferior in electrode appearance. Further, the secondary battery of Comparative Example 2 had a low cycle characteristic.
  • an electrode composition and a secondary battery electrode excellent in conductivity and dispersibility can be obtained. Thereby, a long-life secondary battery in which decomposition of the electrolyte and generation of gas can be suppressed can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The ratio of DBP absorption to compressed DBP absorption of carbon black (DBP absorption/compressed DBP absorption) is 2.2 or less, and silica-coated carbon black in which the silica is a hydrolyzed condensate of a tetraalkoxysilane having a specific structure is used to obtain longer service life of a cell, as well as good electroconductive characteristics and dispersibility.

Description

シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池Silica-coated carbon black, electrode composition using the same, secondary battery electrode and secondary battery
 本発明は、シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池に関する。 The present invention relates to silica-coated carbon black, an electrode composition using the same, a secondary battery electrode, and a secondary battery.
 リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウムイオン二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。 The lithium ion secondary battery in which the negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to the lithium battery in which the negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
 近年ではこのリチウムイオン二次電池の出力密度のさらなる向上が求められている。これを実現するための一つの手段として、従来よりも放電電圧の高い正極活物質を用いることで、小さい電流密度でも高い出力密度を得る方法が検討されている。例えば、スピネル型の結晶構造を持つニッケルマンガン酸リチウム(LiNi0.5Mn1.5)を正極活物質として用いることで、4.5V程度の高い放電電圧を実現することができる。 In recent years, further improvement in the output density of this lithium ion secondary battery has been demanded. As one means for realizing this, a method of obtaining a high output density even at a small current density by using a positive electrode active material having a higher discharge voltage than that of the prior art has been studied. For example, by using lithium nickel manganate (LiNi 0.5 Mn 1.5 O 2 ) having a spinel crystal structure as a positive electrode active material, a high discharge voltage of about 4.5 V can be realized.
 しかしながら、前記のような高電位の正極活物質を用いると、正極及びその近傍の電解液が強い酸化環境におかれるため、電解液の酸化分解によるガス発生が進行し、電池寿命が低下するという課題がある。 However, when a positive electrode active material having a high potential as described above is used, the positive electrode and the electrolyte solution in the vicinity thereof are placed in a strong oxidizing environment, so that gas generation due to oxidative decomposition of the electrolyte solution proceeds and the battery life is reduced. There are challenges.
 電池寿命の改善に、例えば特許文献1では、正極材料表面にハロゲン化物を被覆したリチウムイオン二次電池用正極材料の開示がある。また、特許文献2では、正極集電体表面をフッ素化合物でコートした正極合剤の開示がある。 In order to improve battery life, for example, Patent Document 1 discloses a positive electrode material for a lithium ion secondary battery in which a halide is coated on the surface of the positive electrode material. Patent Document 2 discloses a positive electrode mixture in which the surface of the positive electrode current collector is coated with a fluorine compound.
 ところで、特許文献3には、導電性及び分散性に優れた非水系二次電池用カーボンブラックとして、BET比表面積、DBP吸収量、電気抵抗率、硫黄分の含有量及び揮発成分の含有量がそれぞれ所定の範囲にあるカーボンブラックが開示されている。また、特許文献4には、スラリー安定性が良好なカーボンブラックスラリーが開示されている。 By the way, Patent Document 3 discloses a BET specific surface area, DBP absorption amount, electric resistivity, sulfur content, and volatile component content as carbon black for non-aqueous secondary batteries excellent in conductivity and dispersibility. Carbon blacks each in a predetermined range are disclosed. Patent Document 4 discloses a carbon black slurry having good slurry stability.
特開2009-104815号公報JP 2009-104815 A 特開2011-205095号公報JP 2011-205095 A 特開2012-221684号公報JP 2012-221684 A 特開2003-157846号公報Japanese Patent Laid-Open No. 2003-157846
 カーボンブラックは、従来から二次電池の導電剤として利用されている。しかし、上述のように高電位の正極活物質を用いた場合、導電剤であるカーボンブラックは、電解液との接触面積が大きく、電解液の酸化分解及びガス発生を起こしやすくする一因となっている。 Carbon black has been conventionally used as a conductive agent for secondary batteries. However, when a positive electrode active material having a high potential is used as described above, the carbon black that is a conductive agent has a large contact area with the electrolytic solution, which is a factor that easily causes oxidative decomposition and gas generation of the electrolytic solution. ing.
 特許文献1及び2に記載の方法は、いずれもカーボンブラックに対する改善はなされておらず、電解液の酸化分解によるガス発生の抑制効果は不十分である。 None of the methods described in Patent Documents 1 and 2 has improved carbon black, and the effect of suppressing gas generation due to oxidative decomposition of the electrolyte is insufficient.
 ところで、カーボンブラックはその共通の構造として球形に近い1次粒子が数珠上に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。一般に、ストラクチャが長く連結しているほど、接触抵抗なく電子伝導できる距離が大きくなるため、電子伝導性が向上する。 By the way, carbon black has a structure in which primary particles close to a spherical shape are connected on a bead as a common structure, and such a structure is called a structure. In general, the longer the structure is connected, the greater the distance that can be conducted without contact resistance, so that the electron conductivity is improved.
 ストラクチャの長さは、一般的にJIS K6217-4に準拠して測定されるDBP吸収量を用いて間接的に評価され、DBP吸収量が大きいほどストラクチャが長く、導電性に優れるとされる。一方、ストラクチャが長いカーボンブラックは、導電性に優れる反面、粒子同士の相互作用が大きくなるため、解砕し難く凝集し易いという側面を持つ。したがって、一般に電極製造時には活物質、導電剤及びバインダーを水又は有機溶剤に分散した電極用組成物を金属箔に塗布する方法がとられるが、ストラクチャが長いカーボンブラックを導電剤として用いた場合、この塗工液中に導電剤の凝集物が残存して電極に凹凸が生じたり、塗工液の粘度が高すぎて塗布不能になったりといった問題が発生しやすい。また、例えば特許文献4に記載されるようなスラリー化では、機械的な解砕によるストラクチャの切断が懸念され、十分な電子伝導性を担保できないおそれがある。 The length of the structure is indirectly evaluated using a DBP absorption amount generally measured in accordance with JIS K6217-4. The larger the DBP absorption amount, the longer the structure and the better the conductivity. On the other hand, carbon black having a long structure is excellent in conductivity, but has an aspect that the interaction between particles becomes large, so that it is difficult to disintegrate and easily aggregates. Therefore, in general, when an electrode is produced, a method of applying an electrode composition in which an active material, a conductive agent and a binder are dispersed in water or an organic solvent is applied to a metal foil, but when carbon black having a long structure is used as a conductive agent, The conductive solution aggregates remain in the coating solution, causing irregularities on the electrodes, and the coating solution is too viscous to make application impossible. In addition, in the slurrying described in, for example, Patent Document 4, there is a concern that the structure is cut by mechanical crushing, and there is a possibility that sufficient electronic conductivity cannot be ensured.
 本発明は、上記問題と実情に鑑み、高電位系二次電池、特にリチウムイオン二次電池における電解液の分解及びガス発生を抑制し、かつ導電性と分散性に優れるシリカ被覆カーボンブラック、並びにこれを用いた耐久性に優れる二次電池用電極及び二次電池を提供することを目的とする。 In view of the above problems and circumstances, the present invention is a silica-coated carbon black that suppresses decomposition and gas generation of an electrolyte in a high-potential secondary battery, particularly a lithium ion secondary battery, and has excellent conductivity and dispersibility. An object of the present invention is to provide a secondary battery electrode and a secondary battery having excellent durability using the same.
 すなわち、本発明は上記の課題を解決するために、以下の手段を採用する。
(1)カーボンブラックと、前記カーボンブラックの表面を被覆するシリカと、を含み、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、前記シリカが式(1)で表されるテトラアルコキシシランの加水分解縮合物を含む、シリカ被覆カーボンブラック。
Figure JPOXMLDOC01-appb-C000005
(式中、nは1以上5以下の整数を表す。)
(2)前記シリカが、式(2)で表されるアンモニウム塩の共存下、前記アンモニウム塩に対する質量比が20~250の前記テトラアルコキシシランを、加水分解及び縮合したものである、(1)に記載のシリカ被覆カーボンブラック。
Figure JPOXMLDOC01-appb-C000006
(式中、XはCl、Br又はIを表し、mは3以上30以下の整数を表す。)
(3)前記アンモニウム塩が、ヘキサデシルトリメチルアンモニウムクロリドである、(2)に記載のシリカ被覆カーボンブラック。
(4)前記nが1以上3以下の整数である、(1)~(3)のいずれか一つに記載のシリカ被覆カーボンブラック。
(5)前記シリカの被覆量が、前記シリカ及び前記カーボンブラックの総量に対し10質量%~30質量%である、(1)~(4)のいずれか一つに記載のシリカ被覆カーボンブラック。
(6)前記カーボンブラックがアセチレンブラックである、(1)~(5)のいずれか一つに記載のシリカ被覆カーボンブラック。
(7)体積抵抗率が1×10Ω・cm以下である、(1)~(6)のいずれか一つに記載のシリカ被覆カーボンブラック。
(8)前記カーボンブラックのDBP吸収量が280mL/100gである、(1)~(7)のいずれか一つに記載のシリカ被覆カーボンブラック。
(9)体積抵抗率が1×10Ω・cm以下である、(1)~(8)のいずれか一つに記載のシリカ被覆カーボンブラック。
(10)(1)~(9)のいずれか一つに記載のシリカ被覆カーボンブラックと、カチオンを吸蔵及び放出することが可能な正極活物質並びにカチオンを吸蔵及び放出することが可能な負極活物質からなる群より選択される少なくとも一種と、バインダーと、を含む電極用組成物。
(11)金属箔と、前記金属箔上に設けられた請求項10に記載の電極用組成物の塗膜と、を備える二次電池用電極。
(12)(11)に記載の二次電池用電極を、正極及び負極のうち少なくとも一方に備えた二次電池。
(13)カーボンブラックを含む分散液中で、式(1)で表されるテトラアルコキシシランを加水分解及び縮合させて、前記カーボンブラックの表面を前記テトラアルコキシシランの加水分解縮合物を含むシリカで被覆する工程を含み、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下である、シリカ被覆カーボンブラックの製造方法。
Figure JPOXMLDOC01-appb-C000007
(式中、nは1以上5以下の整数を表す。)
(14)前記分散液が、式(2)で表されるアンモニウム塩をさらに含み、前記アンモニウム塩に対する前記テトラアルコキシシランの質量比が20~250である、(13)に記載の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、XはCl、Br又はIを表し、mは3以上30以下の整数を表す。)
That is, the present invention employs the following means in order to solve the above problems.
(1) It includes carbon black and silica that covers the surface of the carbon black, and a ratio of DBP absorption to compression DBP absorption of the carbon black (DBP absorption / compression DBP absorption) is 2.2 or less. Silica-coated carbon black, wherein the silica contains a hydrolyzed condensate of tetraalkoxysilane represented by the formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the formula, n represents an integer of 1 or more and 5 or less.)
(2) The silica is obtained by hydrolysis and condensation of the tetraalkoxysilane having a mass ratio of 20 to 250 with respect to the ammonium salt in the presence of the ammonium salt represented by the formula (2). The silica-coated carbon black described in 1.
Figure JPOXMLDOC01-appb-C000006
(In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.)
(3) The silica-coated carbon black according to (2), wherein the ammonium salt is hexadecyltrimethylammonium chloride.
(4) The silica-coated carbon black according to any one of (1) to (3), wherein n is an integer of 1 to 3.
(5) The silica-coated carbon black according to any one of (1) to (4), wherein a coating amount of the silica is 10% by mass to 30% by mass with respect to a total amount of the silica and the carbon black.
(6) The silica-coated carbon black according to any one of (1) to (5), wherein the carbon black is acetylene black.
(7) The silica-coated carbon black according to any one of (1) to (6), wherein the volume resistivity is 1 × 10 5 Ω · cm or less.
(8) The silica-coated carbon black according to any one of (1) to (7), wherein the carbon black has a DBP absorption of 280 mL / 100 g.
(9) The silica-coated carbon black according to any one of (1) to (8), wherein the volume resistivity is 1 × 10 3 Ω · cm or less.
(10) The silica-coated carbon black according to any one of (1) to (9), a positive electrode active material capable of occluding and releasing cations, and a negative electrode active capable of occluding and releasing cations An electrode composition comprising at least one selected from the group consisting of substances and a binder.
(11) An electrode for a secondary battery comprising a metal foil and a coating film of the electrode composition according to claim 10 provided on the metal foil.
(12) A secondary battery comprising the secondary battery electrode according to (11) on at least one of a positive electrode and a negative electrode.
(13) In a dispersion containing carbon black, the tetraalkoxysilane represented by the formula (1) is hydrolyzed and condensed, and the surface of the carbon black is silica containing the hydrolyzed condensate of the tetraalkoxysilane. A method for producing silica-coated carbon black, comprising a step of coating, wherein a ratio of DBP absorption to compression DBP absorption of carbon black (DBP absorption / compression DBP absorption) is 2.2 or less.
Figure JPOXMLDOC01-appb-C000007
(In the formula, n represents an integer of 1 to 5, inclusive.)
(14) The production method according to (13), wherein the dispersion further contains an ammonium salt represented by the formula (2), and a mass ratio of the tetraalkoxysilane to the ammonium salt is 20 to 250.
Figure JPOXMLDOC01-appb-C000008
(In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.)
 本発明者らは鋭意研究の結果、本発明のシリカ被覆カーボンブラックによれば、二次電池における電解液の分解及びガス発生を抑制できることを見出した。また、本発明のシリカ被覆カーボンブラックは分散性に優れ、導電性が良好となる。また、本発明のシリカ被覆カーボンブラックを用いた二次電極及び二次電池は、長寿命であるという特長を持つ。 As a result of intensive studies, the present inventors have found that the silica-coated carbon black of the present invention can suppress decomposition of the electrolyte and gas generation in the secondary battery. In addition, the silica-coated carbon black of the present invention has excellent dispersibility and good conductivity. Further, the secondary electrode and the secondary battery using the silica-coated carbon black of the present invention have a feature that they have a long life.
図1は実施例1のシリカ被覆カーボンブラックの走査型電子顕微鏡写真である。1 is a scanning electron micrograph of silica-coated carbon black of Example 1. FIG. 図2は比較例1のカーボンブラックの走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of carbon black of Comparative Example 1.
 以下、本発明の好適な実施形態について詳細に説明する。本実施形態のシリカ被覆カーボンブラックは、カーボンブラックとカーボンブラックの表面を被覆するシリカとを含み、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、前記シリカが式(1)で表されるテトラアルコキシシランの加水分解縮合物を含むものである。尚、本明細書における被覆とは、図1に示すようにシリカがカーボンブラック粒子の表面の少なくとも一部分又は全部に吸着又は付着した状態を意味する。
Figure JPOXMLDOC01-appb-C000009
(式中、nは1以上5以下の整数を表す。)
Hereinafter, preferred embodiments of the present invention will be described in detail. The silica-coated carbon black of the present embodiment includes carbon black and silica that coats the surface of the carbon black, and the ratio of DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount). 2.2 or less, and the silica contains a hydrolyzed condensate of tetraalkoxysilane represented by the formula (1). In addition, the coating in this specification means a state where silica is adsorbed or adhered to at least a part or all of the surface of the carbon black particles as shown in FIG.
Figure JPOXMLDOC01-appb-C000009
(In the formula, n represents an integer of 1 or more and 5 or less.)
 本実施形態のシリカ被覆カーボンブラックは、カーボンブラックの表面をシリカで被覆したシリカ被覆カーボンブラックであって、カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、シリカが式(1)で表されるテトラアルコキシシランの加水分解縮合物であるシリカ被覆カーボンブラック、ということもできる。 The silica-coated carbon black of the present embodiment is a silica-coated carbon black obtained by coating the surface of carbon black with silica, and the ratio of the DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount). Is 2.2 or less, and it can be said that the silica-coated carbon black is a hydrolysis-condensation product of tetraalkoxysilane represented by the formula (1).
 本実施形態におけるカーボンブラックは、一般の電池用導電剤としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックがより好ましい。 The carbon black in the present embodiment is selected from acetylene black, furnace black, channel black, and the like, like carbon black as a general battery conductive agent. Among these, acetylene black having excellent crystallinity and purity is more preferable.
 本実施形態におけるカーボンブラックのDBP吸収量はJIS K6217-4に準拠して測定される値である。また、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠して作製される圧縮試料についてDBP吸収量と同様の方法で測定される値である。 The DBP absorption amount of carbon black in the present embodiment is a value measured according to JIS K6217-4. The compressed DBP absorption amount is a value measured by the same method as the DBP absorption amount for a compressed sample produced according to JIS K6217-4 Annex A.
 本実施形態におけるカーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比は2.2以下であり、1.4~2.1であることがより好ましい。圧縮DBP吸収量に比べてDBP吸収量の値が大きいことは圧縮試料を作製する際に破壊される凝集粒子の量が多く、それらを解砕するためにより大きいエネルギーを必要とすることを意味する。したがって、圧縮DBP吸収量に対するDBP吸収量の比を2.2以下とすることで、凝集粒子を解砕するために必要なエネルギーが抑えられ、分散性が良好となる。 In the present embodiment, the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black in this embodiment is 2.2 or less, and more preferably 1.4 to 2.1. A large DBP absorption value compared to the compressed DBP absorption amount means that the amount of agglomerated particles that are destroyed when producing a compressed sample is large, and that more energy is required to break them up. . Therefore, by setting the ratio of the DBP absorption amount to the compressed DBP absorption amount to 2.2 or less, the energy necessary for crushing the agglomerated particles can be suppressed, and the dispersibility becomes good.
 本実施形態におけるカーボンブラックのDBP吸収量は280mL/100g以下であることが好ましく、200mL/100g以下であることがより好ましい。DBP吸収量を280mL/100g以下とすることで、ストラクチャ同士の絡み合いによる凝集が抑えられ、分散性が良好となる。本実施形態におけるカーボンブラックのDBP吸収量は、90mL/100g以上であってよく、150mL/100g以上であってもよい。 The DBP absorption amount of carbon black in the present embodiment is preferably 280 mL / 100 g or less, and more preferably 200 mL / 100 g or less. By setting the DBP absorption amount to 280 mL / 100 g or less, aggregation due to entanglement between structures is suppressed, and dispersibility is improved. The DBP absorption amount of carbon black in the present embodiment may be 90 mL / 100 g or more, or 150 mL / 100 g or more.
 本実施形態におけるシリカは、テトラアルコキシシランの加水分解縮合物である。加水分解反応及び縮合反応は、式(2)で表されるアンモニウム塩(ハロゲン化アルキルトリメチルアンモニウムともいう)の共存下で行うことが好ましい。テトラアルコキシシランの加水分解反応はアニオン型の中間体を経由するため、カチオン型の界面活性剤であるハロゲン化アルキルトリメチルアンモニウムの共存下においては、ハロゲン化アルキルトリメチルアンモニウム分子の吸着するカーボンブラック表面において選択的に加水分解反応及び縮合反応が進行する。したがって、テトラアルコキシシランのハロゲン化アルキルトリメチルアンモニウムの共存下における加水分解縮合物として得られるシリカはカーボンブラック表面を殻状に被覆する形状をとりやすいため、電解液の酸化分解を防ぐ効果が一層良好となる。
Figure JPOXMLDOC01-appb-C000010
(式中、XはCl、Br又はIを表し、mは3以上30以下の整数を表す。)
Silica in the present embodiment is a hydrolyzed condensate of tetraalkoxysilane. The hydrolysis reaction and the condensation reaction are preferably performed in the presence of an ammonium salt represented by the formula (2) (also referred to as a halogenated alkyltrimethylammonium salt). Since the hydrolysis reaction of tetraalkoxysilane goes through an anionic intermediate, in the presence of alkyltrimethylammonium halide, which is a cationic surfactant, on the carbon black surface where the alkyltrimethylammonium halide molecule is adsorbed. A hydrolysis reaction and a condensation reaction proceed selectively. Therefore, silica obtained as a hydrolysis condensate in the presence of alkyltrimethylammonium halide of tetraalkoxysilane is easy to take a shape that coats the surface of carbon black in a shell shape, so the effect of preventing oxidative decomposition of the electrolyte is even better. It becomes.
Figure JPOXMLDOC01-appb-C000010
(In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.)
 ハロゲン化アルキルトリメチルアンモニウムとしては、上述の効果が得られる範囲で、任意のハロゲン原子及びアルキル基を有するものを選択することができる。Xで表されるハロゲン原子としては塩素が好ましい。また、アルキル基としては炭素数(すなわち、m)が3~30のものが好ましく、10~20のものがより好ましい。これらの中では、ヘキサデシルトリメチルアンモニウムクロリドやドデシルトリメチルアンモニウムクロリドが好ましい。 As the halogenated alkyltrimethylammonium halide, one having an arbitrary halogen atom and alkyl group can be selected within the range in which the above-described effects can be obtained. As the halogen atom represented by X, chlorine is preferable. Further, the alkyl group preferably has 3 to 30 carbon atoms (that is, m), more preferably 10 to 20 carbon atoms. Among these, hexadecyltrimethylammonium chloride and dodecyltrimethylammonium chloride are preferable.
 テトラアルコキシシランとハロゲン化アルキルトリメチルアンモニウムの質量比(テトラアルコキシシランの質量/ハロゲン化アルキルトリメチルアンモニウムの質量)は20~250が好ましい。質量比(テトラアルコキシシランの質量/ハロゲン化アルキルトリメチルアンモニウムの質量)を250以下とすることで、アニオン型の中間体に対するカチオンの物質量が十分多くなるため、加水分解反応及び縮合反応がよりカーボンブラック表面で選択的に進行するようになり、シリカの被覆量が高くなる。また、質量比(テトラアルコキシシランの質量/ハロゲン化アルキルトリメチルアンモニウムの質量)を20以上とすることで、溶媒中に遊離生成するシリカが抑制され、やはりシリカの被覆量が高くなる。 The mass ratio of tetraalkoxysilane to alkyltrimethylammonium halide (mass of tetraalkoxysilane / mass of alkyltrimethylammonium halide) is preferably 20 to 250. By setting the mass ratio (the mass of tetraalkoxysilane / the mass of alkyltrimethylammonium halide) to 250 or less, the amount of the cation relative to the anionic intermediate is sufficiently large, so that the hydrolysis reaction and the condensation reaction are more carbon. It progresses selectively on the black surface, and the silica coverage increases. Further, by setting the mass ratio (mass of tetraalkoxysilane / mass of halogenated alkyltrimethylammonium) to 20 or more, silica that is generated free in the solvent is suppressed, and the coating amount of silica is also increased.
 テトラアルコキシシランのアルキル基の炭素数は5以下であり、3以下であることが好ましい。テトラアルコキシシランの加水分解反応はアルキル基の炭素数が小さいほど早く進行するため、炭素数を5以下とすることで反応時間が短くてもシリカの収率が高くなる。 The carbon number of the alkyl group of tetraalkoxysilane is 5 or less, and preferably 3 or less. Since the hydrolysis reaction of tetraalkoxysilane proceeds faster as the carbon number of the alkyl group is smaller, the yield of silica is increased by setting the carbon number to 5 or less even if the reaction time is short.
 シリカの被覆量は、シリカ及びカーボンブラックの総量に対し10質量%~30質量%であることが好ましい。被覆量を10質量%以上とすることで、カーボンブラックの表面を十分にシリカが被覆するため、電解液の酸化分解を防ぐ効果が良好となる。一方、被覆量が30質量%を超えるとシリカがカーボンブラックの導電性を阻害する効果が大きくなるため、被覆量は30質量%以下が好ましい。尚、カーボンブラックをシリカで被覆する際に、カーボンブラックの被覆に関与しない、シリカの単独粒子(以下遊離シリカと略す)が痕跡量副生する。遊離シリカに関しては、生成したシリカ被覆カーボンブラックから除去することが導電性の面で好ましい。遊離シリカは、シリカ被覆カーボンブラックを合成後、例えばメッシュ口径が1~9μmのフィルターで、ろ液側にろ別することができる。 The coating amount of silica is preferably 10% by mass to 30% by mass with respect to the total amount of silica and carbon black. By setting the coating amount to 10% by mass or more, the surface of the carbon black is sufficiently covered with silica, so that the effect of preventing the oxidative decomposition of the electrolytic solution is improved. On the other hand, when the coating amount exceeds 30% by mass, the effect of silica inhibiting the conductivity of the carbon black is increased. Therefore, the coating amount is preferably 30% by mass or less. When carbon black is coated with silica, trace amounts of single particles of silica (hereinafter abbreviated as free silica) that are not involved in the coating of carbon black are by-produced. Regarding the free silica, it is preferable in terms of conductivity to be removed from the produced silica-coated carbon black. Free silica can be filtered to the filtrate side after synthesis of silica-coated carbon black, for example, with a filter having a mesh diameter of 1 to 9 μm.
 シリカ被覆カーボンブラックの体積抵抗率は、25℃、相対湿度50%の環境下、圧力24MPaで円盤状に圧縮した粉末試料を4端子4探針法にて測定した値である。 The volume resistivity of silica-coated carbon black is a value obtained by measuring a powder sample compressed in a disk shape at a pressure of 24 MPa in an environment of 25 ° C. and a relative humidity of 50% by a four-terminal four-probe method.
 シリカ被覆カーボンブラックの体積抵抗率は1×10Ω・cm以下が好ましく、1×10Ω・cm以下がより好ましい。シリカ被覆カーボンブラックの体積抵抗率を1×10Ω・cm以下とすることで、電極内部における導電性が良好となり、電池の内部抵抗が低くなる。 The volume resistivity of the silica-coated carbon black is preferably 1 × 10 6 Ω · cm or less, and more preferably 1 × 10 3 Ω · cm or less. By setting the volume resistivity of the silica-coated carbon black to 1 × 10 6 Ω · cm or less, the conductivity inside the electrode is improved and the internal resistance of the battery is lowered.
 本実施形態のシリカ被覆カーボンブラックを製造する方法は、特に限定されるものではないが、例えばLangmuir 2012,28, 7055-7062.に記載のような公知の方法を用いることができる。具体的にはエタノール中に元となるカーボンブラックを分散させた分散液と、エタノールにテトラエトキシシランを溶解させた溶液とを用意しておき、両者を混合した後、アンモニア水を加えてアルカリ性にすることによってテトラエトキシシランを加水分解させる方法などを用いることができる。 The method for producing the silica-coated carbon black of the present embodiment is not particularly limited. For example, Langmuir 2012, 28, 7055-7062. A known method as described in 1) can be used. Specifically, prepare a dispersion in which the original carbon black is dispersed in ethanol and a solution in which tetraethoxysilane is dissolved in ethanol. After mixing both, add aqueous ammonia to make it alkaline. By doing so, a method of hydrolyzing tetraethoxysilane can be used.
 本実施形態のシリカ被覆カーボンブラックを用いて電極を作製する際はシリカ被覆カーボンブラックを、正極活物質又は負極活物質とバインダーと共に媒体に分散させ、電極用組成物として使用することができる。正極活物質は、カチオンを吸蔵及び放出することが可能な正極活物質であればよい。正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムなどの層状岩塩型構造を持つ複合酸化物、マンガン酸リチウム、ニッケルマンガン酸リチウムなどのスピネル型構造を持つ複合酸化物、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸鉄マンガンリチウムなどのオリビン型構造を持つ複合酸化物などが挙げられる。これらの中では、スピネル型構造を持つニッケルマンガン酸リチウムを用いることが、ガス発生抑制効果を顕著に発揮できる点から好ましい。 When producing an electrode using the silica-coated carbon black of the present embodiment, the silica-coated carbon black can be dispersed in a medium together with a positive electrode active material or a negative electrode active material and a binder and used as an electrode composition. The positive electrode active material may be any positive electrode active material that can occlude and release cations. As the positive electrode active material, composite oxides having a layered rock salt structure such as lithium cobaltate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt lithium aluminum oxide, and spinel structures such as lithium manganate and lithium nickel manganate And composite oxides having an olivine structure such as lithium iron phosphate, lithium manganese phosphate, and lithium iron manganese phosphate. Among these, it is preferable to use lithium nickel manganate having a spinel structure from the viewpoint that the gas generation suppressing effect can be remarkably exhibited.
 負極活物質は、カチオンを吸蔵及び放出することが可能な負極活物質であればよい。負極活物質としては人造黒鉛、天然黒鉛、ソフトカーボン、ハードカーボンなどの炭素系材料、ケイ素、スズなどのアルカリ金属と合金化する金属系材料、チタン酸リチウムなどの金属複合酸化物などが挙げられる。 The negative electrode active material may be any negative electrode active material that can occlude and release cations. Examples of the negative electrode active material include carbon-based materials such as artificial graphite, natural graphite, soft carbon, and hard carbon, metal-based materials alloyed with alkali metals such as silicon and tin, and metal composite oxides such as lithium titanate. .
 バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、正極に用いる場合は耐酸化性の点でポリフッ化ビニリデンが好ましく、負極に用いる場合は接着力の点でポリフッ化ビニリデン又はスチレン-ブタジエン共重合体が好ましい。 Examples of the binder include polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Among these, polyvinylidene fluoride is preferable from the viewpoint of oxidation resistance when used for the positive electrode, and polyvinylidene fluoride or styrene-butadiene copolymer is preferable from the viewpoint of adhesion when used for the negative electrode.
 電極用組成物の分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。バインダーとしてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチル-2-ピロリドンが好ましく、スチレン-ブタジエン共重合体を使用する際は水が好ましい。 Examples of the dispersion medium for the electrode composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone. When using polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility, and when using a styrene-butadiene copolymer, water is preferable.
 電極用組成物を製造するための混合装置としては、らいかい機、万能混合機、ヘンシェルミキサー若しくはリボンブレンダーなどの混合機、又はビーズミル、振動ミル若しくはボールミルなどの媒体撹拌型混合機を用いて行うことができる。また、製造した電極用塗工液は、塗膜に欠陥が生じないようにして平滑性を確保するため、塗工前の段階で真空脱泡を行うことが好ましい。塗工液に気泡が存在すると、電極に塗布した際に、塗膜に欠陥が生じ、平滑性を損なう原因となる。 As a mixing apparatus for producing an electrode composition, a mixing machine such as a rachi machine, a universal mixer, a Henschel mixer or a ribbon blender, or a medium stirring type mixer such as a bead mill, a vibration mill or a ball mill is used. be able to. In addition, the manufactured electrode coating liquid is preferably subjected to vacuum defoaming at a stage before coating in order to ensure smoothness without causing defects in the coating film. If air bubbles are present in the coating solution, the coating film will be defective when applied to the electrode, which may impair smoothness.
 また、電極用組成物は、上述の効果が得られる範囲で、シリカ被覆カーボンブラック、正極活物質、負極活物質及びバインダー以外の成分を含むことができる。例えば、導電性をさらに向上させる目的で、シリカ被覆カーボンブラック以外にカーボンナノチューブ、カーボンナノファイバー、黒鉛、グラフェン、炭素繊維、元素状炭素、グラッシーカーボン、金属粒子などを含んでもよい。また、分散性を向上させる目的でポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロース又はカルボン酸変性(メタ)アクリル酸エステル共重合体などを含んでもよい。 The electrode composition can contain components other than silica-coated carbon black, a positive electrode active material, a negative electrode active material, and a binder as long as the above-described effects are obtained. For example, carbon nanotubes, carbon nanofibers, graphite, graphene, carbon fibers, elemental carbon, glassy carbon, metal particles, and the like may be included in addition to silica-coated carbon black for the purpose of further improving conductivity. Further, for the purpose of improving dispersibility, polyvinyl pyrrolidone, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, a carboxylic acid-modified (meth) acrylic acid ester copolymer and the like may be included.
 以上、本発明に係るシリカ被覆カーボンブラックの好適な一実施形態について説明したが、本発明はこれに限定されるものではない。 The preferred embodiment of the silica-coated carbon black according to the present invention has been described above, but the present invention is not limited to this.
 例えば、本発明は、上述のシリカ被覆カーボンブラックを含む電極用組成物に関するものであってよい。本発明の一実施形態において、電極用組成物は、前記シリカ被覆カーボンブラックと、正極活物質及び負極活物質からなる群より選択される少なくとも一種と、バインダーと、を含むものであってよい。 For example, the present invention may relate to an electrode composition containing the silica-coated carbon black described above. In one embodiment of the present invention, the electrode composition may include the silica-coated carbon black, at least one selected from the group consisting of a positive electrode active material and a negative electrode active material, and a binder.
 本発明はまた、金属箔と、金属箔上に設けられた前記電極用組成物の塗膜と、を備える、二次電池用電極に関するものであってよい。 The present invention may also relate to a secondary battery electrode comprising a metal foil and a coating film of the electrode composition provided on the metal foil.
 前記金属箔は、正極として用いる場合は、例えば、アルミニウム箔等であってよい。また、負極として用いる場合は、例えば、銅箔等であってよい。金属箔の形状は特に限定されない。加工性を容易にする観点からは、金属箔の厚さは5~30μmであることが好ましい。 The metal foil may be, for example, an aluminum foil when used as a positive electrode. Moreover, when using as a negative electrode, copper foil etc. may be sufficient, for example. The shape of the metal foil is not particularly limited. From the viewpoint of facilitating workability, the thickness of the metal foil is preferably 5 to 30 μm.
 前記電極用組成物の塗膜は、例えば、スロットダイ法、リップ法、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法等の方法で金属箔上に電極用組成物を塗布して形成されたものであってよい。これらのなかでもスロットダイ法、リップ法及びリバースロール法が好ましい。塗布方法は、バインダーの溶液物性、乾燥性等に応じて適宜選定してよい。電極用組成物の塗膜は、金属箔の片面に形成してよく、両面に形成してもよい。電極用組成物の塗膜を金属箔の両面に形成する場合、電極用組成物は、金属箔に片面ずつ逐次で塗布されてよく、金属箔の両面に同時に塗布されてもよい。電極用組成物の塗布の態様は、連続でも間欠でもストライプでもよい。 The coating film of the electrode composition is, for example, a slot die method, a lip method, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze. It may be formed by applying a composition for an electrode on a metal foil by a method such as a method. Of these, the slot die method, the lip method, and the reverse roll method are preferable. The coating method may be appropriately selected according to the solution physical properties, drying properties, etc. of the binder. The coating film of the electrode composition may be formed on one side of the metal foil or on both sides. When the coating film of the electrode composition is formed on both surfaces of the metal foil, the electrode composition may be sequentially applied to the metal foil one side at a time or may be simultaneously applied to both surfaces of the metal foil. The application mode of the electrode composition may be continuous, intermittent, or striped.
 前記電極用組成物の塗膜の厚さ、長さ及び巾は、電池の大きさに合わせて適宜決定すればよい。例えば、塗膜の厚さは、10μm~500μmの範囲であってよい。 The thickness, length and width of the coating film of the electrode composition may be appropriately determined according to the size of the battery. For example, the thickness of the coating film may be in the range of 10 μm to 500 μm.
 前記電極用組成物の塗膜は、前記電極用組成物を塗布及び乾燥して形成されたものであってよい。前記電極用組成物の乾燥は、例えば、熱風、真空、赤外線、遠赤外線、電子線及び低温風等の手段を、単独で又は組み合わせて用いて行うことができる。 The coating film of the electrode composition may be formed by applying and drying the electrode composition. The electrode composition can be dried using, for example, means such as hot air, vacuum, infrared rays, far infrared rays, electron beams, and low-temperature air, alone or in combination.
 二次電池用電極は、必要に応じてプレスされたものであってよい。プレス法としては、一般に採用されている方法を用いてよく、例えば、金型プレス法、カレンダープレス法(冷間又は熱間ロール)等が好ましい。カレンダープレス法でのプレス圧力は、と限定されないが、例えば0.02~3ton/cmが好ましい。 The secondary battery electrode may be pressed as necessary. As the pressing method, a generally adopted method may be used, and for example, a die pressing method, a calendar pressing method (cold or hot roll) and the like are preferable. The pressing pressure in the calender pressing method is not limited, but is preferably 0.02 to 3 ton / cm, for example.
 本発明はまた、前記二次電池用電極を、正極及び負極のうち少なくとも一方に備えた二次電池に関するものであってよい。 The present invention may also relate to a secondary battery provided with the secondary battery electrode on at least one of a positive electrode and a negative electrode.
 前記二次電池は、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池、マグネシウムイオン二次電池、ニッケル水素二次電池又は電気二重層キャパシタ等であってよい。 The secondary battery may be, for example, a lithium ion secondary battery, a sodium ion secondary battery, a magnesium ion secondary battery, a nickel hydride secondary battery, or an electric double layer capacitor.
 本発明はまた、シリカ被覆カーボンブラックの製造方法に関するものであってよい。本発明の一実施形態において、シリカ被覆カーボンブラックの製造方法は、前記カーボンブラックを含む分散液中で、前記テトラアルコキシシランを加水分解及び縮合させて、前記カーボンブラックの表面を前記テトラアルコキシシランの加水分解縮合物を含むシリカで被覆する工程を含むものであってよい。また、前記分散液は、前記ハロゲン化アルキルトリメチルアンモニウムをさらに含んでいてよい。また、前記アンモニウム塩に対する前記テトラアルコキシシランの質量比は20~250であってよい。 The present invention may also relate to a method for producing silica-coated carbon black. In one embodiment of the present invention, the method for producing a silica-coated carbon black comprises hydrolyzing and condensing the tetraalkoxysilane in a dispersion containing the carbon black, so that the surface of the carbon black is made of the tetraalkoxysilane. It may include a step of coating with silica containing a hydrolysis condensate. The dispersion may further contain the alkyltrimethylammonium halide. The mass ratio of the tetraalkoxysilane to the ammonium salt may be 20 to 250.
 本発明はまた、前記シリカ被覆カーボンブラックを含む二次電池用導電剤に関するものであってよく、前記シリカ被覆カーボンブラックの二次電池用導電剤としての使用に関するものであってよい。本発明はまた、前記シリカ被覆カーボンブラックの二次電池用電極の製造のための使用に関するものであってよく、前記シリカ被覆カーボンブラックの二次電池の製造のための使用に関するものであってよい。 The present invention may also relate to a conductive agent for a secondary battery containing the silica-coated carbon black, and may relate to the use of the silica-coated carbon black as a conductive agent for a secondary battery. The present invention may also relate to the use of the silica-coated carbon black for the production of a secondary battery electrode, and may relate to the use of the silica-coated carbon black for the production of a secondary battery. .
 以下、実施例及び比較例により、本発明に係るシリカ被覆カーボンブラックの一形態を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, one embodiment of the silica-coated carbon black according to the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
<実施例1>
(カーボンブラック)
 本実施例ではカーボンブラックとして、DBP吸収量171mL/100g、圧縮DBP吸収量83mL/100gであるアセチレンブラック(電気化学工業社製、HS100)を用いた。なお、カーボンブラックのDBP吸収量及び圧縮DBP吸収量は、以下の方法により測定した。
<Example 1>
(Carbon black)
In this example, acetylene black (HS100, manufactured by Denki Kagaku Kogyo K.K.) having a DBP absorption of 171 mL / 100 g and a compressed DBP absorption of 83 mL / 100 g was used as carbon black. In addition, the DBP absorption amount and compression DBP absorption amount of carbon black were measured by the following methods.
[DBP吸収量及び圧縮DBP吸収量]
 DBP吸収量はJIS K6217-4に準拠する方法で測定した。また、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠する方法で、165MPaで4回圧縮して作製した圧縮試料について、DBP吸収量と同様の測定法で測定した。
[DBP absorption and compressed DBP absorption]
DBP absorption was measured by a method according to JIS K6217-4. Further, the compressed DBP absorption amount was measured by the same method as the DBP absorption amount for a compressed sample prepared by compressing four times at 165 MPa according to JIS K6217-4 Annex A.
(シリカ被覆カーボンブラックの製造)
 アセチレンブラック2.0g及びヘキサデシルトリメチルアンモニウムクロリド(関東化学社製)44mgを水/エタノール=1/1(質量比)混合溶媒200gに精密分散乳化機(エム・テクニック社製、クレアミックス)を用いて分散させ、次いで1Nアンモニア水(関東化学社製)を加えてpH11に調製した。この分散液をマグネチックスターラーで撹拌しながらテトラエトキシシラン(東京化成工業社製)4.0gを室温下で10時間かけて滴下し、さらに2時間撹拌し、反応させた。その後反応液を吸引ろ過し、純水で洗浄を行い、乾燥させたところ、シリカ被覆カーボンブラック2.1gが黒色粉末として得られた。このとき、テトラエトキシシランとヘキサデシルトリメチルアンモニウムクロリドの質量比(テトラエトキシシランの質量/ヘキサデシルトリメチルアンモニウムクロリドの質量)は91あった。図1は実施例1のシリカ被覆カーボンブラックの走査型電子顕微鏡写真である。
(Manufacture of silica-coated carbon black)
Using 2.0g of acetylene black and 44mg of hexadecyltrimethylammonium chloride (manufactured by Kanto Chemical Co., Inc.) in 200g of water / ethanol = 1/1 (mass ratio) mixed solvent using a precision dispersion emulsifier (manufactured by M Technique Co., Ltd., Claremix). Then, 1N ammonia water (manufactured by Kanto Chemical Co., Inc.) was added to adjust the pH to 11. While stirring this dispersion with a magnetic stirrer, 4.0 g of tetraethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise at room temperature over 10 hours, and the mixture was further stirred for 2 hours to be reacted. Thereafter, the reaction solution was suction filtered, washed with pure water and dried to obtain 2.1 g of silica-coated carbon black as a black powder. At this time, the mass ratio of tetraethoxysilane to hexadecyltrimethylammonium chloride (mass of tetraethoxysilane / mass of hexadecyltrimethylammonium chloride) was 91. 1 is a scanning electron micrograph of silica-coated carbon black of Example 1. FIG.
(シリカ被覆カーボンブラックの評価)
 シリカ被覆カーボンブラックの物性等は、各々次のようにして評価した。結果を表1に示す。
(Evaluation of silica-coated carbon black)
The physical properties and the like of silica-coated carbon black were evaluated as follows. The results are shown in Table 1.
[シリカ被覆量]
 熱重量分析装置(ブルカー社製 TG-DTA2000SA)を用いて、シリカ被覆カーボンブラックAgを大気下、1000℃で1時間保持した。この状態で、カーボンブラックは燃焼し試料より焼失するため残査はシリカのみからなる。その後、室温まで冷却し、残査の質量Bgを測定した。シリカ被覆率は以下の式により求めた。
 シリカ被覆率=B/A×100(%)
[Silica coverage]
Using a thermogravimetric analyzer (TG-DTA2000SA manufactured by Bruker), the silica-coated carbon black Ag was held at 1000 ° C. for 1 hour in the air. In this state, the carbon black burns and burns away from the sample, so the residue consists only of silica. Then, it cooled to room temperature and measured the mass Bg of the residue. The silica coverage was determined by the following formula.
Silica coverage = B / A × 100 (%)
[体積抵抗率]
 シリカ被覆カーボンブラック0.5gを量り取り、25±1℃、相対湿度50±2%の環境に24時間静置し、粉体抵抗測定システム(三菱化学アナリテック社製、MCP-PD51型)を用いて、24MPaの荷重下で直径20mmの円盤状に圧縮した状態で体積抵抗率を測定した。
[Volume resistivity]
Weigh 0.5 g of silica-coated carbon black and leave it in an environment of 25 ± 1 ° C and relative humidity of 50 ± 2% for 24 hours. Use a powder resistance measurement system (MCP-PD51, manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The volume resistivity was measured in a state of being compressed into a disk shape having a diameter of 20 mm under a load of 24 MPa.
(電極用組成物及び電極の作製)
 シリカ被覆カーボンブラック5質量部に、活物質としてスピネル型ニッケルマンガン酸リチウム(宝泉社製)を90質量部、バインダーとしてポリフッ化ビニリデン溶液(呉羽化学社製、「KFポリマー(登録商標)1120」、固形分濃度12質量%)を溶質量で5質量部、さらに分散媒としてN-メチル-2-ピロリドン(キシダ化学社製)30質量部を加えて自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて混合し、電極用組成物を得た。この電極用組成物を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用正極電極を得た。
(Production of electrode composition and electrode)
90 parts by mass of spinel-type lithium nickel manganate (manufactured by Hosen Co., Ltd.) as an active material, 5 parts by mass of silica-coated carbon black, and a polyvinylidene fluoride solution (manufactured by Kureha Chemical Co., Ltd., “KF Polymer (registered trademark) 1120” as a binder In addition, 5 parts by mass of a solid content concentration of 12% by mass) and 30 parts by mass of N-methyl-2-pyrrolidone (manufactured by Kishida Chemical Co., Ltd.) as a dispersion medium, Mixing was performed using Tori Netaro ARV-310) to obtain an electrode composition. This electrode composition was applied to a 20 μm thick aluminum foil using a Baker-type applicator, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery.
(電極用組成物及び電極の評価)
 上記で作製した電極用組成物及び二次電池用電極について、次のようにして分散性の評価を行った。結果を表1に示す。
(Evaluation of electrode composition and electrode)
The dispersibility of the electrode composition and secondary battery electrode prepared above was evaluated as follows. The results are shown in Table 1.
[分散性の評価(電極用組成物)]
 電極用組成物におけるシリカ被覆カーボンブラックの分散性はJIS K5600-2-5に記載されるつぶゲージを用いた方法で評価した。具体的には、スクレパーを用い、塗工液を塗布し、試料面に10mm以上連続した線状痕が、一つの溝について3本以上並んだ箇所の目盛りを測定した。分散性は数値が低い程、良好な分散性を意味する。
[Evaluation of dispersibility (electrode composition)]
The dispersibility of the silica-coated carbon black in the electrode composition was evaluated by a method using a crush gauge described in JIS K5600-2-5. Specifically, a scraper was used to apply the coating solution, and the graduations were measured at locations where three or more linear traces of 10 mm or more continuous on the sample surface were arranged in one groove. The lower the numerical value, the better the dispersibility.
[分散性の評価(二次電池用電極)]
 二次電池用電極におけるシリカ被覆カーボンブラックの分散性はリチウム二次電池用正極電極の外観によって判断した。具体的には100mm四方の電極5枚を作製し、以下の尺度で評価した。
 A:5枚とも電極面に筋状の塗工跡及び凝集塊が観られなかった。
 B:1枚以上の電極面に筋状の塗工跡又は1mm未満の凝集塊が観られた。
 C:1枚以上の電極面に1mm以上の凝集塊が観察された。
[Evaluation of dispersibility (secondary battery electrode)]
The dispersibility of the silica-coated carbon black in the secondary battery electrode was judged by the appearance of the positive electrode for the lithium secondary battery. Specifically, five 100 mm square electrodes were prepared and evaluated according to the following scale.
A: No streak of coating marks and aggregates were observed on the electrode surfaces of all five sheets.
B: Streaky coating marks or aggregates less than 1 mm were observed on one or more electrode surfaces.
C: Agglomerates of 1 mm or more were observed on one or more electrode surfaces.
(二次電池の作製)
 前記二次電池用電極を正極として用いて、次のようにして二次電池を作製した。
(Production of secondary battery)
Using the secondary battery electrode as a positive electrode, a secondary battery was produced as follows.
(負極の作製)
 活物質として黒鉛粉末(日立化成社製 MAG-D)98質量部、バインダーとしてポリフッ化ビニリデン溶液を溶質量で2質量部、さらに分散媒としてN-メチル-2-ピロリドン30質量部を加えて自転公転式混合機を用いて混合し、負極用電極用組成物を得た。これをベーカー式アプリケーターを用いて厚さ15μmの銅箔に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用負極電極を得た。
(Preparation of negative electrode)
Rotating by adding 98 parts by mass of graphite powder (MAG-D manufactured by Hitachi Chemical Co., Ltd.) as an active material, 2 parts by mass of a polyvinylidene fluoride solution as a binder, and 30 parts by mass of N-methyl-2-pyrrolidone as a dispersion medium It mixed using the revolution type mixer, and the composition for electrodes for negative electrodes was obtained. This was applied to a copper foil having a thickness of 15 μm using a Baker type applicator, dried, and then pressed and cut to obtain a negative electrode for a lithium secondary battery.
(電池の作製)
 正極として前記電極用組成物を用いて作製した二次電池用正極電極を縦40mm、横40mmに裁断したもの、負極として前記二次電池用負極電極を縦44mm、横44mmに裁断したものを用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布、外装としてアルミラミネートフィルムを用いてラミネート型電池とした。電解液にはEC(エチレンカーボネート、Aldrich社製)、DEC(ジエチルカーボネート、Aldrich社製)を体積比で1:2に混合した溶液中に六フッ化リン酸リチウム(LiPF6、ステラケミファ社製)を1mol/L溶解したものを用いた。
(Production of battery)
A positive electrode for a secondary battery produced using the electrode composition as a positive electrode was cut into 40 mm length and 40 mm width, and a negative electrode for the secondary battery cut into 44 mm length and 44 mm width was used as a negative electrode. Then, a non-woven fabric made of olefin fiber was used as a separator for electrically isolating them, and an aluminum laminate film was used as an exterior to make a laminated battery. As electrolyte, EC (ethylene carbonate, manufactured by Aldrich), DEC (diethyl carbonate, manufactured by Aldrich) was mixed in a volume ratio of 1: 2, lithium hexafluorophosphate (LiPF6, manufactured by Stella Chemifa) 1 mol / L dissolved was used.
(二次電池の評価)
 上記で作製した二次電池について、次のようにして評価を行った。結果を表1に示す。なお特に記載のない場合は、評価値は3個の電池の評価値の算術平均値である。
(Evaluation of secondary battery)
The secondary battery produced above was evaluated as follows. The results are shown in Table 1. Unless otherwise specified, the evaluation value is an arithmetic average value of the evaluation values of the three batteries.
[放電容量、クーロン効率]
 まず正極の質量から正極上に存在する正極活物質量(g)を求め、これを140で除した値(mA)を電流値「1C」とした。電流を1C、上限電圧を5.0Vとして定電流・定電圧充電を行い、さらに電流を1C、下限電圧を3.0Vとして定電流放電を行い、この際の正極活物質1gあたりの充電容量(mAh/g)に対する、正極活物質1gあたりの放電容量(mAh/g)の比(%)をクーロン効率とした。尚、放電容量が高いほど、電極の導電性が優れ、電池の抵抗が低いことを意味する。また、クーロン効率が高いほど、電解液の酸化反応等の寿命低下をもたらす副反応が少ないことを意味する。
[Discharge capacity, Coulomb efficiency]
First, a positive electrode active material amount (g) present on the positive electrode was determined from the mass of the positive electrode, and a value (mA) obtained by dividing this by 140 was defined as a current value “1C”. A constant current / constant voltage charge is performed with a current of 1 C and an upper limit voltage of 5.0 V, and a constant current discharge is performed with a current of 1 C and a lower limit voltage of 3.0 V. The charge capacity per 1 g of the positive electrode active material ( The ratio (%) of the discharge capacity (mAh / g) per gram of the positive electrode active material to the mAh / g) was defined as the Coulomb efficiency. In addition, it means that the electrical conductivity of an electrode is excellent and the resistance of a battery is so low that discharge capacity is high. Moreover, it means that there are few side reactions which bring about lifetime reduction, such as an oxidation reaction of electrolyte solution, so that Coulomb efficiency is high.
[サイクル特性]
 寿命の評価として、次の要領でサイクル特性の測定を行った。電流を1C、上限電圧を5.0Vとして定電流・定電圧充電を行ったあと、電流を1C、下限電圧を3.0Vとして定電流を行うことを1サイクルとして、これを200回繰り返した。1回目の放電容量に対する200回目の放電容量の比(%)をサイクル特性値とした。200サイクル未満で放電容量が0となった場合は、その電池のサイクル特性値は0として3個の電池の算術平均値を計算した。
[Cycle characteristics]
As an evaluation of the life, the cycle characteristics were measured as follows. A constant current / constant voltage charge was performed with a current of 1 C and an upper limit voltage of 5.0 V, and then a constant current was performed with a current of 1 C and a lower limit voltage of 3.0 V, which was repeated 200 times. The ratio (%) of the 200th discharge capacity to the first discharge capacity was defined as the cycle characteristic value. When the discharge capacity became zero after less than 200 cycles, the cycle characteristic value of the battery was assumed to be 0, and the arithmetic average value of the three batteries was calculated.
[ガス発生量]
 ガス発生抑制効果の評価として、サイクル特性試験前後の電池の体積変化(mL)をガス発生量として測定した。電池の体積は比重測定装置(島津製作所社製 AUW220D)を用いて25±1℃の恒温室内で測定した。また、200サイクル未満で放電容量が0となった電池については、はじめて放電容量が0となったサイクル後に測定した。
[Gas generation amount]
As an evaluation of the gas generation suppression effect, the volume change (mL) of the battery before and after the cycle characteristic test was measured as a gas generation amount. The volume of the battery was measured in a constant temperature room at 25 ± 1 ° C. using a specific gravity measuring device (AUW220D manufactured by Shimadzu Corporation). Moreover, about the battery in which the discharge capacity became 0 in less than 200 cycles, it measured after the cycle in which the discharge capacity became 0 for the first time.
<実施例2~8>
 実施例1のヘキサデシルトリメチルアンモニウムクロリド及びテトラエトキシシランの添加量を、表1に示す質量比となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表1に示す。
<Examples 2 to 8>
A silica-coated carbon black and an electrode composition were prepared in the same manner as in Example 1 except that the addition amounts of hexadecyltrimethylammonium chloride and tetraethoxysilane in Example 1 were changed to the mass ratio shown in Table 1. A secondary battery electrode and a secondary battery were prepared and evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例9>
 実施例1のカーボンブラックを、DBP吸収量234mL/100g、圧縮DBP吸収量115mL/100gであるファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製、SuperPLi)へ変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 9>
Except for changing the carbon black of Example 1 to furnace black (SuperPLi, manufactured by Timcal Graphite and Carbon, Inc.) having a DBP absorption of 234 mL / 100 g and a compressed DBP absorption of 115 mL / 100 g, the same as in Example 1 The silica-coated carbon black, the electrode composition, the secondary battery electrode and the secondary battery were prepared by various methods, and each evaluation was performed. The results are shown in Table 2.
<実施例10>
 実施例1のカーボンブラックを、DBP吸収量228mL/100g、圧縮DBP吸収量125mL/100gであるアセチレンブラック(電気化学工業社製、AB粉状)へ変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 10>
The same method as in Example 1 except that the carbon black in Example 1 was changed to acetylene black (AB powder, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 228 mL / 100 g and a compressed DBP absorption of 125 mL / 100 g. The silica-coated carbon black, the electrode composition, the secondary battery electrode and the secondary battery were prepared and evaluated. The results are shown in Table 2.
<実施例11>
 実施例1のカーボンブラックを、DBP吸収量338mL/100g、圧縮DBP吸収量240mL/100gであるアセチレンブラック(電気化学工業社製、SAB)へ変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 11>
In the same manner as in Example 1, except that the carbon black of Example 1 was changed to acetylene black (SAB, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 338 mL / 100 g and a compressed DBP absorption of 240 mL / 100 g. Coated carbon black, an electrode composition, an electrode for a secondary battery, and a secondary battery were prepared and evaluated. The results are shown in Table 2.
<実施例12>
 実施例1のテトラエトキシシランをテトラブトキシシラン(東京化成工業社製)に変更し、さらにテトラブトキシシラン及びヘキサデシルトリメチルアンモニウムクロリドの添加量を、表2に示す質量比となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 12>
The tetraethoxysilane of Example 1 was changed to tetrabutoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), and the addition amounts of tetrabutoxysilane and hexadecyltrimethylammonium chloride were changed so that the mass ratio shown in Table 2 was obtained. Produced a silica-coated carbon black, an electrode composition, an electrode for a secondary battery, and a secondary battery in the same manner as in Example 1, and performed each evaluation. The results are shown in Table 2.
<実施例13>
 実施例1のテトラエトキシシランをテトラプロポキシシラン(東京化成工業社製)に変更し、さらにテトラブトキシシラン及びヘキサデシルトリメチルアンモニウムクロリドの添加量を、表2に示す質量比となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 13>
The tetraethoxysilane in Example 1 was changed to tetrapropoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), and the addition amount of tetrabutoxysilane and hexadecyltrimethylammonium chloride was changed to the mass ratio shown in Table 2. Produced a silica-coated carbon black, an electrode composition, an electrode for a secondary battery, and a secondary battery in the same manner as in Example 1, and performed each evaluation. The results are shown in Table 2.
<実施例14>
 実施例1のヘキサデシルトリメチルアンモニウムクロリドをドデシルトリメチルアンモニウムクロリド(東京化成工業社製)に変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表2に示す。
<Example 14>
Except that hexadecyltrimethylammonium chloride of Example 1 was changed to dodecyltrimethylammonium chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), silica-coated carbon black, electrode composition, secondary battery electrode were obtained in the same manner as in Example 1. And the secondary battery was produced and each evaluation was implemented. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<比較例1>
 実施例1のテトラエトキシシランの添加量を0に変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表3に示す。比較例1の二次電池では、サイクル特性の測定において200サイクル未満で放電容量が0となった。なお、図2は比較例1のカーボンブラックの走査型電子顕微鏡写真である。
<Comparative Example 1>
Except that the amount of tetraethoxysilane added in Example 1 was changed to 0, silica-coated carbon black, an electrode composition, a secondary battery electrode, and a secondary battery were prepared in the same manner as in Example 1, Evaluation was performed. The results are shown in Table 3. In the secondary battery of Comparative Example 1, the discharge capacity was zero in less than 200 cycles in the measurement of cycle characteristics. FIG. 2 is a scanning electron micrograph of carbon black of Comparative Example 1.
<比較例2>
 実施例1のカーボンブラックを、DBP吸収量254mL/100g、圧縮DBP吸収量104mL/100gであるファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製 SuperC65)へ変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極及び二次電池を作製し、各評価を実施した。結果を表3に示す。比較例2の二次電池用電極は電極外観に劣るものであった。また、比較例2の二次電池はサイクル特性が低い値となった。
<Comparative example 2>
The carbon black of Example 1 was changed to Furnace Black (SuperC65 manufactured by Timcal Graphite and Carbon) having a DBP absorption of 254 mL / 100 g and a compressed DBP absorption of 104 mL / 100 g. Silica-coated carbon black, an electrode composition, a secondary battery electrode, and a secondary battery were prepared by the method, and each evaluation was performed. The results are shown in Table 3. The secondary battery electrode of Comparative Example 2 was inferior in electrode appearance. Further, the secondary battery of Comparative Example 2 had a low cycle characteristic.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1、2及び3の結果から、実施例のシリカ被覆カーボンブラックは導電性と分散性に優れ、さらにこれらを用いて製造される電池は寿命に優れることが分かった。 From the results of Tables 1, 2 and 3, it was found that the silica-coated carbon black of the examples was excellent in conductivity and dispersibility, and further, the batteries produced using these were excellent in life.
 以上の結果は、実施例で用いたリチウムイオン二次電池正極のほか、同様に作製したリチウムイオン二次電池負極、さらにはナトリウムイオン二次電池用の電極に対しても同様であった。 The above results were the same for the lithium ion secondary battery negative electrode produced in the same manner as the lithium ion secondary battery positive electrode used in the examples, and also for the electrode for the sodium ion secondary battery.
 本発明のシリカ被覆カーボンブラックを利用することで、導電性及び分散性に優れた電極用組成物及び二次電池用電極を得ることができる。これにより、電解液の分解及びガス発生を抑制した長寿命の二次電池を得ることができる。 By using the silica-coated carbon black of the present invention, an electrode composition and a secondary battery electrode excellent in conductivity and dispersibility can be obtained. Thereby, a long-life secondary battery in which decomposition of the electrolyte and generation of gas can be suppressed can be obtained.

Claims (14)

  1.  カーボンブラックと、
     前記カーボンブラックの表面を被覆するシリカと、
    を含み、
     前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、
     前記シリカが式(1)で表されるテトラアルコキシシランの加水分解縮合物を含む、シリカ被覆カーボンブラック。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1以上5以下の整数を表す。)
    Carbon black,
    Silica covering the surface of the carbon black;
    Including
    The ratio of the DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount) is 2.2 or less,
    Silica-coated carbon black, wherein the silica contains a hydrolytic condensate of tetraalkoxysilane represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, n represents an integer of 1 or more and 5 or less.)
  2.  前記シリカが、式(2)で表されるアンモニウム塩の共存下、前記アンモニウム塩に対する質量比が20~250の前記テトラアルコキシシランを、加水分解及び縮合したものである、請求項1に記載のシリカ被覆カーボンブラック。
    Figure JPOXMLDOC01-appb-C000002
    (式中、XはCl、Br又はIを表し、mは3以上30以下の整数を表す。)
    The silica according to claim 1, wherein the tetraalkoxysilane having a mass ratio of 20 to 250 with respect to the ammonium salt is hydrolyzed and condensed in the presence of the ammonium salt represented by the formula (2). Silica coated carbon black.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.)
  3.  前記アンモニウム塩が、ヘキサデシルトリメチルアンモニウムクロリドである、請求項2に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to claim 2, wherein the ammonium salt is hexadecyltrimethylammonium chloride.
  4.  前記nが1以上3以下の整数である、請求項1~3のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 3, wherein n is an integer of 1 to 3.
  5.  前記シリカの被覆量が、前記シリカ及び前記カーボンブラックの総量に対し10質量%~30質量%である、請求項1~4のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 4, wherein a coating amount of the silica is 10% by mass to 30% by mass with respect to a total amount of the silica and the carbon black.
  6.  前記カーボンブラックがアセチレンブラックである、請求項1~5のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 5, wherein the carbon black is acetylene black.
  7.  体積抵抗率が1×10Ω・cm以下である、請求項1~6のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 6, having a volume resistivity of 1 x 10 5 Ω · cm or less.
  8.  前記カーボンブラックのDBP吸収量が280mL/100gである、請求項1~7のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 7, wherein the DBP absorption amount of the carbon black is 280 mL / 100 g.
  9.  体積抵抗率が1×10Ω・cm以下である、請求項1~8のいずれか一項に記載のシリカ被覆カーボンブラック。 The silica-coated carbon black according to any one of claims 1 to 8, having a volume resistivity of 1 × 10 3 Ω · cm or less.
  10.  請求項1~9のいずれか一項に記載のシリカ被覆カーボンブラックと、
     カチオンを吸蔵及び放出することが可能な正極活物質並びにカチオンを吸蔵及び放出することが可能な負極活物質からなる群より選択される少なくとも一種と、
     バインダーと、
    を含む電極用組成物。
    Silica-coated carbon black according to any one of claims 1 to 9,
    At least one selected from the group consisting of a positive electrode active material capable of occluding and releasing cations and a negative electrode active material capable of occluding and releasing cations;
    A binder,
    An electrode composition comprising:
  11.  金属箔と、
     前記金属箔上に設けられた請求項10に記載の電極用組成物の塗膜と、
    を備える二次電池用電極。
    Metal foil,
    The coating film of the composition for electrodes according to claim 10 provided on the metal foil,
    A secondary battery electrode.
  12.  請求項11に記載の二次電池用電極を、正極及び負極のうち少なくとも一方に備えた二次電池。 A secondary battery comprising the secondary battery electrode according to claim 11 on at least one of a positive electrode and a negative electrode.
  13.  カーボンブラックを含む分散液中で、式(1)で表されるテトラアルコキシシランを加水分解及び縮合させて、前記カーボンブラックの表面を前記テトラアルコキシシランの加水分解縮合物を含むシリカで被覆する工程を含み、
     前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下である、シリカ被覆カーボンブラックの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、nは1以上5以下の整数を表す。)
    A step of hydrolyzing and condensing the tetraalkoxysilane represented by the formula (1) in a dispersion containing carbon black and coating the surface of the carbon black with silica containing the hydrolyzed condensate of the tetraalkoxysilane. Including
    A method for producing silica-coated carbon black, wherein a ratio of DBP absorption amount to compressed DBP absorption amount of carbon black (DBP absorption amount / compression DBP absorption amount) is 2.2 or less.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, n represents an integer of 1 or more and 5 or less.)
  14.  前記分散液が、式(2)で表されるアンモニウム塩をさらに含み、
     前記アンモニウム塩に対する前記テトラアルコキシシランの質量比が20~250である、請求項13に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、XはCl、Br又はIを表し、mは3以上30以下の整数を表す。)
    The dispersion further contains an ammonium salt represented by the formula (2),
    The production method according to claim 13, wherein a mass ratio of the tetraalkoxysilane to the ammonium salt is 20 to 250.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, X represents Cl, Br or I, and m represents an integer of 3 to 30.)
PCT/JP2015/083267 2014-11-26 2015-11-26 Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell WO2016084909A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016561949A JP6604965B2 (en) 2014-11-26 2015-11-26 Silica-coated carbon black, electrode composition using the same, secondary battery electrode and secondary battery
CN201580074376.XA CN107207876B (en) 2014-11-26 2015-11-26 Silica covers carbon black and composition for electrodes, electrode for secondary battery and secondary cell using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014238359 2014-11-26
JP2014-238359 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016084909A1 true WO2016084909A1 (en) 2016-06-02

Family

ID=56074459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083267 WO2016084909A1 (en) 2014-11-26 2015-11-26 Silica-coated carbon black, electrode composition in which same is used, electrode for secondary cell, and secondary cell

Country Status (3)

Country Link
JP (1) JP6604965B2 (en)
CN (1) CN107207876B (en)
WO (1) WO2016084909A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186065A1 (en) * 2015-05-19 2016-11-24 デンカ株式会社 Silica-coated carbon black, electrode composition using same, secondary-battery electrode, and secondary battery
CN110676445A (en) * 2019-09-19 2020-01-10 安徽清泉新能源科技集团有限责任公司 Sol-coated lithium battery material and preparation method thereof
JP2020149794A (en) * 2019-03-11 2020-09-17 トヨタ自動車株式会社 Nonaqueous lithium ion secondary battery
WO2023176099A1 (en) * 2022-03-15 2023-09-21 株式会社村田製作所 Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343096B (en) * 2023-12-04 2024-04-02 瑞浦兰钧能源股份有限公司 Ionized conductive agent and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668869A (en) * 1992-08-21 1994-03-11 Central Res Inst Of Electric Power Ind Lithium secondary battery
JPH09296072A (en) * 1996-04-30 1997-11-18 Yokohama Rubber Co Ltd:The Molding containing high-electrical-resistance carbon black
JP2006210007A (en) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp Electrode for electrochemistry element, and lithium secondary battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514541A (en) * 1984-05-21 1985-04-30 E. I. Du Pont De Nemours And Company Fiber containing particulate elastomeric composition
ATE304576T1 (en) * 1995-05-22 2005-09-15 Cabot Corp RUBBER COMPOSITIONS CONTAINING SILICON-MODIFIED CARBON
KR101439216B1 (en) * 2009-08-07 2014-09-11 파나소닉 주식회사 Method for producing fine mesoporous silica particles, fine mesoporous silica particles, liquid dispersion of fine mesoporous silica particles, composition containing fine mesoporous silica particles, and molded article containing fine mesoporous silica particles
FR2992230B1 (en) * 2012-06-21 2014-07-25 Michelin & Cie PROCESS FOR THE PREPARATION OF A CARBONACEUS SPECIES COVERED WITH SILICA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668869A (en) * 1992-08-21 1994-03-11 Central Res Inst Of Electric Power Ind Lithium secondary battery
JPH09296072A (en) * 1996-04-30 1997-11-18 Yokohama Rubber Co Ltd:The Molding containing high-electrical-resistance carbon black
JP2006210007A (en) * 2005-01-25 2006-08-10 Mitsubishi Chemicals Corp Electrode for electrochemistry element, and lithium secondary battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186065A1 (en) * 2015-05-19 2016-11-24 デンカ株式会社 Silica-coated carbon black, electrode composition using same, secondary-battery electrode, and secondary battery
JPWO2016186065A1 (en) * 2015-05-19 2018-04-12 デンカ株式会社 Silica-coated carbon black, electrode composition using the same, secondary battery electrode and secondary battery
JP2020149794A (en) * 2019-03-11 2020-09-17 トヨタ自動車株式会社 Nonaqueous lithium ion secondary battery
JP7071701B2 (en) 2019-03-11 2022-05-19 トヨタ自動車株式会社 Non-aqueous lithium-ion secondary battery
CN110676445A (en) * 2019-09-19 2020-01-10 安徽清泉新能源科技集团有限责任公司 Sol-coated lithium battery material and preparation method thereof
WO2023176099A1 (en) * 2022-03-15 2023-09-21 株式会社村田製作所 Secondary battery

Also Published As

Publication number Publication date
JPWO2016084909A1 (en) 2017-10-05
CN107207876B (en) 2019-01-01
JP6604965B2 (en) 2019-11-13
CN107207876A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6604965B2 (en) Silica-coated carbon black, electrode composition using the same, secondary battery electrode and secondary battery
JP5871543B2 (en) Modified vanadium phosphate lithium carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4794619B2 (en) Method for producing positive electrode for lithium ion secondary battery, method for producing lithium ion secondary battery, and positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR101595625B1 (en) Transition metal oxidegraphene composite microparticle and cathode for lithium secondary battery comprising the same
JP6581991B2 (en) Battery carbon black, mixed powder, battery coating solution, battery electrode and battery
CN105226283B (en) Electrode material, paste for use in electrode and lithium ion battery
KR101699601B1 (en) Method for producing anode active material for secondary battery, anode active material for secondary battery, method for producing anode for secondary battery, anode for secondary battery, and secondary battery
KR20120093756A (en) Active material for electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2014006948A1 (en) Nonaqueous-solvent type electricity storage device
JP6769878B2 (en) Conductive composition for electrodes, electrodes for non-aqueous batteries and non-aqueous batteries
CN110495026A (en) Negative electrode material and non-aqueous electrolyte secondary battery
JP2015056208A (en) Electrode having protective layer formed on active material layer
TW201902822A (en) Carbon black for electrodes and electrode slurry
JP5846453B2 (en) Method for producing positive electrode active material
WO2014112329A1 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary battery
JP7337600B2 (en) Power storage device positive electrode active material, power storage device positive electrode, and power storage device
JP6552788B2 (en) Electrode and lithium ion secondary battery using the same
WO2016186065A1 (en) Silica-coated carbon black, electrode composition using same, secondary-battery electrode, and secondary battery
JP2019220401A (en) Carbon black slurry for electrode and composition for forming electrode
CN108689404B (en) Activated carbon microsphere, electrode and supercapacitor
JP2016194015A (en) Carbon black having core-shell structure, production method of the black, and electrode mixture, electrode, and power storage device obtained by using the black
JP2024061526A (en) Slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JP2015170554A (en) Method for producing composition including positive electrode active materials, binding agent, and solvent
JP2013118126A (en) Carbon nano-tube carrying metal composite oxide, positive electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863903

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863903

Country of ref document: EP

Kind code of ref document: A1