JP5154104B2 - Lithium ion secondary battery and method of manufacturing positive electrode plate thereof - Google Patents

Lithium ion secondary battery and method of manufacturing positive electrode plate thereof Download PDF

Info

Publication number
JP5154104B2
JP5154104B2 JP2007059441A JP2007059441A JP5154104B2 JP 5154104 B2 JP5154104 B2 JP 5154104B2 JP 2007059441 A JP2007059441 A JP 2007059441A JP 2007059441 A JP2007059441 A JP 2007059441A JP 5154104 B2 JP5154104 B2 JP 5154104B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode plate
electrode active
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007059441A
Other languages
Japanese (ja)
Other versions
JP2008226515A (en
Inventor
達也 橋本
健一 大嶋
征吾 井▲崎▼
康晃 一高
雅敏 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007059441A priority Critical patent/JP5154104B2/en
Publication of JP2008226515A publication Critical patent/JP2008226515A/en
Application granted granted Critical
Publication of JP5154104B2 publication Critical patent/JP5154104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池およびその正極板の製造方法の製造方法に関し、特にその好適な正極用ペーストの製造工程に関する。   The present invention relates to a method for producing a lithium ion secondary battery and a method for producing the positive electrode plate, and more particularly to a preferred production process for a positive electrode paste.

近年、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられるリチウムイオン二次電池の代表として、リチウムイオンの吸蔵・放出が可能な炭素材料等を負極活物質とし、リチウム選移金属複合酸化物を正極活物質とするリチウムイオン二次電池が実用化されている。   In recent years, as a representative of lithium ion secondary batteries used in portable electronic and communication devices such as mobile phones and laptop computers, carbon materials that can occlude and release lithium ions are used as negative electrode active materials, and lithium selected metals. A lithium ion secondary battery using a composite oxide as a positive electrode active material has been put into practical use.

リチウム含有金属酸化物のような正極活物質、導電材、結着剤、及び増粘剤を加え、混練分散し、ペースト化する。   A positive electrode active material such as a lithium-containing metal oxide, a conductive material, a binder, and a thickener are added, kneaded and dispersed to form a paste.

例えば上記電池の極板作製手段の一例を示すと、特許文献1に示されている方法では、正極活物質と増粘剤を練合して作製したペースト中のアルカリ成分を炭酸ガスでpH7〜11に中和させた後、そのペーストを集電体表面に塗着し、乾燥後圧延して正極板としている。   For example, as an example of the above-mentioned battery electrode plate preparation means, in the method disclosed in Patent Document 1, an alkaline component in a paste prepared by kneading a positive electrode active material and a thickener is pH 7 to 7 with carbon dioxide gas. 11, the paste was applied to the surface of the current collector, dried and rolled to obtain a positive electrode plate.

また特許文献2に示されている方法では、正極活物質と炭酸ガスを密閉されたミキサー内で乾式混合して、正極活物質中のアルカリ成分を中和した後、増粘剤と結着剤を添加して練合したペーストを集電体表面に塗着,乾燥して正極板としている。これらについて、ペーストをpH7〜11にする理由として、強アルカリのペーストを集電体のアルミニウム箔に塗着すると、アルミニウム箔が腐食され、箔と活物質との界面で水素ガスが発生し、活物質が箔から脱落したり、あるいは浮き上がったりして塗着工程の歩留まりを低下させるためである。
特開平8−69791号公報 特開平11−204108号公報
In the method disclosed in Patent Document 2, the positive electrode active material and carbon dioxide are dry-mixed in a sealed mixer to neutralize the alkali component in the positive electrode active material, and then the thickener and the binder. The paste paste is added to the surface of the current collector and dried to form a positive electrode plate. For these reasons, the paste is made to have a pH of 7 to 11, when a strong alkali paste is applied to the aluminum foil of the current collector, the aluminum foil is corroded, and hydrogen gas is generated at the interface between the foil and the active material. This is because the substance drops off from the foil or floats to reduce the yield of the coating process.
Japanese Patent Laid-Open No. 8-67991 Japanese Patent Laid-Open No. 11-204108

しかしながら、正極活物質,導電剤,結着剤,増粘剤を練合して、ペーストとした後に、炭酸ガスを注入してペーストをバブリングして中和する場合、pH7〜11の範囲にするまでペースト中に炭酸ガスによりバブリングしていることから、ペースト中に泡が巻き込まれやすく、塗着乾燥後の極板表面に亀裂が発生することもあり、塗着工程の歩留まり低下を招くことがあった。   However, when a positive electrode active material, a conductive agent, a binder, and a thickener are kneaded to form a paste, carbon dioxide gas is injected and the paste is bubbled to neutralize, so that the pH is in the range of 7 to 11. Since the bubbling with carbon dioxide gas in the paste, bubbles are easily caught in the paste, and cracks may occur on the surface of the electrode plate after coating and drying, leading to a decrease in the yield of the coating process. there were.

また、極活物質と炭酸ガスを密閉されたミキサー内で乾式混合して、正極活物質中のアルカリ成分を中和する場合、pH7〜11の範囲にするまで活物質と中和ガスを接触させる際、活物質固体表層部分しか中和ガスと接することができないため、内部まで均一に中和させることが難しく、ペーストを集電体のアルミニウム箔に塗着すると、アルミニウム箔が腐食されたり、箔と活物質との界面で水素ガスが発生し、活物質が箔から脱落したり、あるいは浮き上がったりして塗着工程の歩留まりを低下させることがあった。   Further, when the active material and carbon dioxide gas are dry-mixed in a hermetically sealed mixer to neutralize the alkali component in the positive electrode active material, the active material and the neutralizing gas are brought into contact until the pH is in the range of 7 to 11. At this time, since only the active material solid surface layer portion can be in contact with the neutralizing gas, it is difficult to uniformly neutralize the inside, and when the paste is applied to the aluminum foil of the current collector, the aluminum foil is corroded, Hydrogen gas is generated at the interface between the active material and the active material, and the active material may fall off from the foil or float up, which may reduce the yield of the coating process.

そのため、中和には多量の炭酸ガスを必要とし、かつ、中和処理時間に数時間を要していた為に、リチウムイオン二次電池の正極材として高い生産性を有することができないという問題点もあった。   For this reason, a large amount of carbon dioxide gas is required for neutralization, and the neutralization treatment time required several hours, so that it cannot have high productivity as a positive electrode material of a lithium ion secondary battery. There was also a point.

本発明は、このような技術的背景に鑑みてなされたものであって、簡単な工程で実施でき、ペーストを集電体のアルミニウム箔に塗着する際のアルミニウム箔への腐食をさせることなく、かつ、生産性も低減することなくできる正極活物質中のアルカリ成分を均一に中和する方法の提供を目的とする。   The present invention has been made in view of such a technical background, and can be carried out by a simple process without causing corrosion to the aluminum foil when the paste is applied to the aluminum foil of the current collector. An object of the present invention is to provide a method for uniformly neutralizing an alkali component in a positive electrode active material that can be produced without reducing productivity.

前述の目的を達成するために、本発明のリチウムイオン二次電池用正極板の製造法は、導電材と正極活物質の混合粉体を作成する混合工程と、前記混合粉体に対して炭酸ガスを接触させることで、正極活物質であるリチウム複合酸化物のアルカリ成分を中和する中和工程と、中和された正極活物質に増粘剤と結着剤を加えて練合してペーストを作製する練合工程と、作製されたペーストを正極集電体となるアルミニウム箔表面に塗着,乾燥して正極活物質層を形成させる形成工程を少なくとも含み、中和工程に用いる炭酸ガスの体積をV1、正極活物質と導電材のかさ密度から求めた前記混合粉体の体積をV2としたとき、V1とV2の比(V1/V2)は、2以上30以下である。 In order to achieve the above-described object, a method for producing a positive electrode plate for a lithium ion secondary battery according to the present invention includes a mixing step of preparing a mixed powder of a conductive material and a positive electrode active material, and carbonation with respect to the mixed powder. A neutralization step of neutralizing the alkaline component of the lithium composite oxide, which is a positive electrode active material, by contacting the gas , and a thickener and a binder are added to the neutralized positive electrode active material and kneaded. a kneading step of preparing a paste, Nurigi the prepared paste aluminum foil surface to be positive electrode current collector, seen at least including the formation step of forming a dried positive electrode active material layer, carbonate used in the neutralization step When the volume of the gas is V1, and the volume of the mixed powder obtained from the bulk density of the positive electrode active material and the conductive material is V2, the ratio of V1 and V2 (V1 / V2) is 2 or more and 30 or less .

本発明にかかるリチウム二次電池正極用ペーストの製造方法によれば、あらかじめ導電材と正極活物質の混合粉体に対して中和ガスを接触させることで導電材表面に中和ガスが吸着されたままになるため、正極活物質表面と中和ガスの接触時間および接触確率が高くなり、より少ないガス量かつより短時間にて中和処理を可能となり、高い生産性を保ちながら塗着工程の歩留まりを向上させることができる。   According to the method for producing a positive electrode paste for a lithium secondary battery according to the present invention, the neutralization gas is adsorbed on the surface of the conductive material by bringing the neutralized gas into contact with the mixed powder of the conductive material and the positive electrode active material in advance. As a result, the contact time and contact probability between the surface of the positive electrode active material and the neutralization gas are increased, and the neutralization process can be performed in a shorter amount of gas and in a shorter time. The yield can be improved.

本発明の本旨は、中和工程はあらかじめ導電材と正極活物質の混合粉体に対して中和ガスを接触させた後、増粘剤を添加して練合することにあり、このことにより、効率的に中和されて作製されたペーストを集電体表面に塗着することができる。   The gist of the present invention is that in the neutralization step, the neutralized gas is previously brought into contact with the mixed powder of the conductive material and the positive electrode active material, and then a thickener is added and kneaded. The paste prepared by neutralizing efficiently can be applied to the surface of the current collector.

この中和工程において、導電材と正極活物質の混合粉体をあらかじめ作成する必要は無く、導電材と正極活物質の混合を、中和ガスの接触と同時に行っても良く、例えば、密閉されたミキサー内に中和ガスと正極活物質と導電材とを投入し、混合することも好ましい。あらかじめ混合しておくと、比重差による粉体分離が生じ易く、分散性を著しく阻害場合がある。   In this neutralization step, it is not necessary to prepare a mixed powder of the conductive material and the positive electrode active material in advance, and the conductive material and the positive electrode active material may be mixed simultaneously with the contact with the neutralizing gas. It is also preferable that the neutralizing gas, the positive electrode active material, and the conductive material are put into a mixer and mixed. When mixed in advance, powder separation due to a difference in specific gravity is likely to occur, and the dispersibility may be significantly impaired.

また、中和ガスには硫酸、硝酸、塩酸等があるが、炭酸ガスが設備への耐食性や、ガス反応によって生じる残存物による活物質への腐食反応などが少ないため好適である。   Further, the neutralizing gas includes sulfuric acid, nitric acid, hydrochloric acid, and the like, but carbon dioxide gas is suitable because it has little corrosion resistance to the equipment and corrosion reaction to the active material due to the residue generated by the gas reaction.

さらに、中和ガスとして炭酸ガスを使用する場合、中和工程に用いる炭酸ガスの体積をV1、正極活物質と導電材のかさ密度から求めた前記混合粉体の体積をV2としたとき、V1とV2の比率(V1/V2)は、2以上30以下であることが好ましい。   Further, when carbon dioxide is used as the neutralizing gas, V1 represents the volume of carbon dioxide used in the neutralization step, and V1 represents the volume of the mixed powder obtained from the bulk density of the positive electrode active material and the conductive material. The ratio of V2 to V2 (V1 / V2) is preferably 2 or more and 30 or less.

前記比率が2以下であると、中和を行うために必要な絶対量が不足し、30以上になると過剰なガスがペースト中に気泡として残存して、ピンホールの原因となる。   If the ratio is 2 or less, the absolute amount necessary for neutralization is insufficient, and if it is 30 or more, excess gas remains as bubbles in the paste, causing pinholes.

以上述べた製造方法によると、正極板の集電体露出がないため導電性が向上し、それらの正極板を用いることにより、電池特性も向上したリチウムイオン二次電池が実現できるものである。   According to the manufacturing method described above, the conductivity is improved because there is no current collector exposure of the positive electrode plate, and by using these positive electrode plates, a lithium ion secondary battery with improved battery characteristics can be realized.

以下、本発明の実施例を図1および2を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.

(実施例1)
本発明のリチウムイオン二次電池は図1に示すような円筒型リチウムイオン二次電池で
、極板群と、電解液と、これらを収容する電池ケースからなる。
Example 1
The lithium ion secondary battery of the present invention is a cylindrical lithium ion secondary battery as shown in FIG. 1 and comprises an electrode plate group, an electrolytic solution, and a battery case that houses them.

極板群は、シート状の正極板5と、シート状の負極板6と、正極板5と負極板6間を絶縁するシート状のセパレータ7と、正極リード3と、負極リード9と、上部絶縁板4と、下部絶縁板10とからなる。正極板5はアルミニウム箔の両面に塗着形成したものである。   The electrode plate group includes a sheet-like positive electrode plate 5, a sheet-like negative electrode plate 6, a sheet-like separator 7 that insulates between the positive electrode plate 5 and the negative electrode plate 6, a positive electrode lead 3, a negative electrode lead 9, and an upper portion. It consists of an insulating plate 4 and a lower insulating plate 10. The positive electrode plate 5 is formed by coating on both surfaces of an aluminum foil.

セパレータ7は多孔質ポリプロピレンフィルムであり、これらが重ねられて渦巻き状に巻回されて、円筒型のケース本体8内にきっちりと収容され、封口板1で封口されている。電池は、直径17mm、高さ50mmのサイズのものを作製した。   The separator 7 is a porous polypropylene film, and these are overlapped and wound in a spiral shape. The separator 7 is tightly accommodated in the cylindrical case body 8 and sealed by the sealing plate 1. A battery having a diameter of 17 mm and a height of 50 mm was produced.

先ず、図1の本発明に用いた電池の断面図を用いて、正極板5の製造法を詳細に説明する。   First, the manufacturing method of the positive electrode plate 5 is demonstrated in detail using sectional drawing of the battery used for this invention of FIG.

はじめに、正極活物質粉体としてLiCoO2粉末(かさ密度2.5g/cm3)を50質量部、導電材粉体としてアセチレンブラック(かさ密度0.03g/cm3)を1.5質量部添加する。 First, 50 parts by weight of LiCoO 2 powder (bulk density 2.5 g / cm 3) as a positive electrode active material powder, acetylene black as a conductive material powder (bulk density 0.03 g / cm 3) 1.5 parts by weight additive To do.

このときのV2(正極活物質粉体と導電材粉体の混合粉体の合計体積)とV1(炭酸ガスの体積)は以下のようにして求めた。   V2 (total volume of the mixed powder of positive electrode active material powder and conductive material powder) and V1 (volume of carbon dioxide gas) were obtained as follows.

まず、粉体の体積は粉体投入量をかさ密度で除して求められることから、正極活物質粉体投入量をMとした場合の体積はM(投入量)/2.5(かさ密度)となる。   First, since the volume of the powder is obtained by dividing the powder input amount by the bulk density, the volume when the positive electrode active material powder input amount is M is M (input amount) /2.5 (bulk density). )

導電材の体積も正極活物質粉体と同様に、導電材投入量をかさ密度で除して求められる。ここで、導電材の投入量は正極活物質50質量部に対して1.5質量部(正極活物質粉体の3%)の投入量であることから、正極活物質粉体投入量Mの場合の導電材粉体投入量は0.03×Mとなることから、導電材粉体の体積は0.03×M/0.03(かさ密度)で求められる。   Similarly to the positive electrode active material powder, the volume of the conductive material is also obtained by dividing the input amount of the conductive material by the bulk density. Here, since the input amount of the conductive material is 1.5 parts by mass (3% of the positive electrode active material powder) with respect to 50 parts by mass of the positive electrode active material, the positive electrode active material powder input amount M In this case, the conductive material powder input amount is 0.03 × M, and therefore the volume of the conductive material powder is determined by 0.03 × M / 0.03 (bulk density).

以上のようにして求めた正極活物質粉体と導電材粉体体積を合計したV2はM/2.5+0.03×M/0.03=1.4×Mとなる。   V2 obtained by adding the positive electrode active material powder and the conductive material powder volume obtained as described above is M / 2.5 + 0.03 × M / 0.03 = 1.4 × M.

炭酸ガスの体積V1は正極活物質粉体と導電材粉体のかさ密度から求めた体積の合計V2との比率V1/V2=S(比率数値)とした場合、V1=V2×Sとなることから、炭酸ガスの体積V1はV1=1.4×M×Sとして求めることができ、本発明のV1/V2の比率から求める比率数値Sは、S=V1/1.4×Mに変換することができる。   When the volume V1 of the carbon dioxide gas is a ratio V1 / V2 = S (ratio value) of the total volume V2 obtained from the bulk density of the positive electrode active material powder and the conductive material powder, V1 = V2 × S. Therefore, the volume V1 of the carbon dioxide gas can be obtained as V1 = 1.4 × M × S, and the ratio numerical value S obtained from the ratio of V1 / V2 of the present invention is converted to S = V1 / 1.4 × M. be able to.

本式より、正極活物質粉体の投入量を固定した場合、炭酸ガスの投入体積量を変更することにより、比率数値Sは任意に調整することが可能となる。   From this equation, when the input amount of the positive electrode active material powder is fixed, the ratio numerical value S can be arbitrarily adjusted by changing the input volume of carbon dioxide gas.

本実施例では、正極活物質粉体投入量としてM=20kgとし、投入する炭酸ガスの体積量を420cm3としてV1/V2=15ととなるように密閉されたミキサー内にて封入後2分間混合を行い、これを混合粉末とした。ここで、炭酸ガスは市販の流量計を用いて計測し、必要体積量となるようにした。 In this example, the positive electrode active material powder input amount is set to M = 20 kg, the volume of carbon dioxide gas to be input is set to 420 cm 3 , and the mixture is sealed in a mixer sealed so that V1 / V2 = 15 for 2 minutes. Mixing was performed to obtain a mixed powder. Here, carbon dioxide gas was measured using a commercially available flow meter so that the required volume was obtained.

その後、増粘剤としてカルボキシメチルセルロースを用い、増粘剤1質量部を水99質量部に溶解した水溶液を作製し、この水溶液を溶媒とし、このようにして作製した溶媒30質量部と、結着剤としてポリテトラフルオロエチレン(PTFE)50質量部と水溶液3質量部を中和工程の完了した混合粉末に添加後、10分間混練分散して得られた水性ペ
ースト1を作製した。次に、この本発明の正極用ペーストを、集電体として用いる厚み20μmのアルミニウム箔に、ダイコーターを用いて片側の厚さを180μmとし、両面塗布して乾燥し、PTFEの溶融温度である200から300℃で正極板を加熱した。その後、厚み0.18mmに圧延し、切断して正極板を作製した。このとき得られた正極板の表面状態を確認した。上記の正極板を本実施例の極板1とした。
Then, using carboxymethylcellulose as a thickener, an aqueous solution in which 1 part by weight of the thickener was dissolved in 99 parts by weight of water was prepared, and this aqueous solution was used as a solvent. An aqueous paste 1 obtained by adding 50 parts by mass of polytetrafluoroethylene (PTFE) and 3 parts by mass of an aqueous solution as an agent to the mixed powder after the neutralization step and kneading and dispersing for 10 minutes was prepared. Next, the positive electrode paste of the present invention is applied to a 20 μm-thick aluminum foil used as a current collector with a die coater so that one side has a thickness of 180 μm, both sides are applied and dried, and the melting temperature of PTFE. The positive electrode plate was heated at 200 to 300 ° C. Thereafter, it was rolled to a thickness of 0.18 mm and cut to prepare a positive electrode plate. The surface state of the positive electrode plate obtained at this time was confirmed. The above positive electrode plate was used as the electrode plate 1 of this example.

次に負極板6の製造方法を説明する。先ず、鱗片状黒鉛粉末50質量部、結着剤としてスチレンブタジエンゴム5質量部、そして増粘剤としてカルボキシルメチルセルロース1質量部に対して水99質量部に溶解した水溶液23質量部とを混合分散して負極用ペーストを得た。得られた負極用ペーストをダイコーターを用いて厚さ40μmの銅箔からなる負極集電体の両面に塗布乾燥し、厚み0.2mmに圧延し、切断してシート状の負極板6を作製した。電解液は、25℃において炭酸エチレン30vol%、炭酸ジエチル50vol%、プロピオン酸メチル20vol%となる混合液に、LiPF6を1mol/literの濃度に溶解したものを用いた。この電解液は、電池ケース内に収容され、正極活物質層および負極活物質層内に含浸されて、電池反応において、多孔質なセパレータ7の微少孔を通して正極板5と負極板6間のLiイオンの移動を担う。 Next, a method for manufacturing the negative electrode plate 6 will be described. First, 50 parts by mass of flaky graphite powder, 5 parts by mass of styrene butadiene rubber as a binder, and 23 parts by mass of an aqueous solution dissolved in 99 parts by mass of water with respect to 1 part by mass of carboxymethyl cellulose as a thickener were mixed and dispersed. Thus, a negative electrode paste was obtained. The obtained negative electrode paste was applied and dried on both sides of a negative electrode current collector made of a copper foil having a thickness of 40 μm using a die coater, rolled to a thickness of 0.2 mm, and cut to produce a sheet-like negative electrode plate 6. did. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution of ethylene carbonate 30 vol%, diethyl carbonate 50 vol%, and propionate methyl 20 vol% at 25 ° C. was used. This electrolytic solution is accommodated in the battery case, impregnated in the positive electrode active material layer and the negative electrode active material layer, and in the battery reaction, the Li between the positive electrode plate 5 and the negative electrode plate 6 passes through the minute holes of the porous separator 7. Responsible for the movement of ions.

電池ケースは、耐有機電解液性のステンレス鋼板を深絞り成形して得たケース本体8と、封口板1と、封口板1とケース本体8との間を絶縁する絶縁ガスケット2とからなる。   The battery case includes a case main body 8 obtained by deep drawing an organic electrolyte resistant stainless steel plate, a sealing plate 1, and an insulating gasket 2 that insulates the sealing plate 1 from the case main body 8.

このように電池を作製し、その初期放電容量またサイクル特性を確認した。また、電池を作製する前に、電池に用いた正極極板の質量を測定し、初期放電容量と比較した。上記の電池を本実施例の電池1とした。   A battery was produced in this way, and its initial discharge capacity and cycle characteristics were confirmed. Moreover, before producing a battery, the mass of the positive electrode plate used for the battery was measured and compared with the initial discharge capacity. The above battery was designated as battery 1 of this example.

(実施例2)
投入する炭酸ガスの体積量を56cm3 に調整してV1/V2=2となるようにした以外は、実施例1と全く同様の条件で作製した正極板を本実施例2の極板2とし、これを用いた電池を本実施例2の電池2とした。
(Example 2)
The positive electrode plate produced under the same conditions as in Example 1 was used as the electrode plate 2 of Example 2 except that the volume of carbon dioxide gas to be added was adjusted to 56 cm 3 so that V1 / V2 = 2. A battery using this was designated as a battery 2 of Example 2.

(実施例3)
投入する炭酸ガスの体積量を840cm3 に調整してV1/V2=30となるようにした以外は、実施例1と全く同様の条件で作製した正極板を本実施例3の極板3とし、これを用いた電池を本実施例2の電池2とした。
(Example 3)
The positive electrode plate produced under the same conditions as in Example 1 was used as the electrode plate 3 of Example 3 except that the volume of carbon dioxide gas input was adjusted to 840 cm 3 so that V1 / V2 = 30. A battery using this was designated as a battery 2 of Example 2.

(比較例1)
炭酸ガスを投入しなかった以外は、実施例1と全く同様の条件で作製した正極板を比較例1の極板1とし、これを用いた電池を本比較例1の電池1とした。
(Comparative Example 1)
A positive electrode plate produced under exactly the same conditions as in Example 1 except that carbon dioxide gas was not added was used as the electrode plate 1 of Comparative Example 1, and a battery using this was used as the battery 1 of this Comparative Example 1.

本比較例では、炭酸ガスを投入しなかったことからV1=0となり、ことからV1/V2の比率数値も0となる。   In this comparative example, V1 = 0 because no carbon dioxide gas was added, and thus the ratio value of V1 / V2 is also 0.

(比較例2)
導電材粉体を投入しないで、V1/V2の比率が20となるように密閉されたミキサー内にて封入後2分間混合を行った以外は、本発明の実施例1と全く同様の条件で作製した正極板を比較例の極板2とし、これを用いた電池を本比較例の電池2とした。
(Comparative Example 2)
Except for charging the conductive material powder, the mixture was sealed in a sealed mixer so that the ratio of V1 / V2 would be 20 and then mixed for 2 minutes, under exactly the same conditions as in Example 1 of the present invention. The produced positive electrode plate was used as an electrode plate 2 of a comparative example, and a battery using this was used as a battery 2 of this comparative example.

ただし、本比較例においては、導電材粉体を投入しないことから、V2は正極活物質粉体だけの体積となり、V2=M/2.5+0=M/2.5となることを考慮して、V1/V2の比率が20となるように、投入する炭酸ガスの体積量を160cm3に調整した。 However, in this comparative example, since the conductive material powder is not added, V2 is the volume of the positive electrode active material powder alone, and it is considered that V2 = M / 2.5 + 0 = M / 2.5. The volume of carbon dioxide gas to be added was adjusted to 160 cm 3 so that the ratio of V1 / V2 was 20.

(比較例3)
投入する炭酸ガスの体積量を28cm3 に調整してV1/V2=1となるようにした以外は、実施例1と全く同様の条件で作製した正極板を本比較例3の極板3とし、これを用いた電池を本比較例3の電池3とした。
(Comparative Example 3)
A positive electrode plate produced under exactly the same conditions as in Example 1 was used as the electrode plate 3 of Comparative Example 3, except that the volume of carbon dioxide gas to be added was adjusted to 28 cm 3 so that V1 / V2 = 1. The battery using this was designated as Battery 3 of Comparative Example 3.

(比較例4)
投入する炭酸ガスの体積量を1120cm3 に調整してV1/V2=40となるようにした以外は、実施例1と全く同様の条件で作製した正極板を本比較例4の極板4とし、これを用いた電池を本比較例4の電池4とした。
(Comparative Example 4)
The positive electrode plate produced under the same conditions as in Example 1 is used as the electrode plate 4 of Comparative Example 4, except that the volume of carbon dioxide gas to be added is adjusted to 1120 cm 3 so that V1 / V2 = 40. A battery using this was designated as a battery 4 of Comparative Example 4.

前記実施例1、2、3及び比較例1、2、3,4で得られた正極板を下記に示すように評価した。正極板1000cm2の表面に存在する凝集塊、ピンホールを目視により計数し、表1に示した。   The positive plates obtained in Examples 1, 2, 3 and Comparative Examples 1, 2, 3, and 4 were evaluated as described below. Agglomerates and pinholes present on the surface of the positive electrode plate 1000 cm 2 were visually counted and are shown in Table 1.

中和が不十分な場合、アルミニウム箔が腐食され、箔と活物質との界面で水素ガスが発生しピンホールが発生することで、そこからの極板脱落が生じる。また不均一な中和条件であれば、結着剤や導電材中との混合分散が不十分となるため凝集塊が発生しやすいため、これらの数を計測すれば本効果の評価に値するものである。   When neutralization is insufficient, the aluminum foil is corroded, and hydrogen gas is generated at the interface between the foil and the active material to generate pinholes. Also, under non-uniform neutralization conditions, the mixture and dispersion in the binder and conductive material become insufficient, and agglomerates are likely to be generated. Therefore, measuring these numbers is worth evaluating this effect. It is.

Figure 0005154104
Figure 0005154104

表1に示すように、実施例1,2,3のように正極活物質粉体と導電材粉体のかさ密度に対して所定条件で中和ガスと混合を行うことによって、中和ガスを投入しない比較例1や正極活物質粉体と中和ガスのみを混合させた比較例2と比較して十分に中和されているために、アルミニウム箔の腐食が抑制され、箔と活物質との界面で水素ガスが発生しにくく、活物質が箔から脱落したり、あるいは浮き上がったりすることがなく塗着工程の歩留が向上する。   As shown in Table 1, the neutralization gas was mixed with the neutralization gas under predetermined conditions for the bulk density of the positive electrode active material powder and the conductive material powder as in Examples 1, 2, and 3. Since it is sufficiently neutralized as compared with Comparative Example 1 that is not charged and Comparative Example 2 in which only the positive electrode active material powder and the neutralizing gas are mixed, the corrosion of the aluminum foil is suppressed, and the foil and the active material It is difficult for hydrogen gas to be generated at the interface, and the yield of the coating process is improved without the active material falling off or floating from the foil.

一方、比較例3に示すようにV1/V2=1の場合は、十分に中和できず、また比較例4に示すようにV1/V2が40を超える場合は、中和ガスが過剰となり、ピンホールが増加した。また、そこからの亀裂が入り活物質の脱落が発生した。   On the other hand, when V1 / V2 = 1 as shown in Comparative Example 3, neutralization is not sufficient, and when V1 / V2 exceeds 40 as shown in Comparative Example 4, the neutralization gas becomes excessive, Pinholes increased. In addition, cracks occurred from there, and the active material fell off.

これらの正極板を用いた電池と本発明品のサイクル寿命特性を図2に示す。   FIG. 2 shows the cycle life characteristics of a battery using the positive electrode plate and the product of the present invention.

充電は500mAの定電流で行い、4.1Vになった時点で4.1Vの定電圧充電にきりかえ、合計2時間充電を行った。放電は、20℃720mAで行い、放電電位が3.0Vになった時点で放電を終了し次の充電を開始した。   Charging was performed at a constant current of 500 mA. When the voltage reached 4.1 V, charging was replaced with constant voltage charging of 4.1 V, and charging was performed for a total of 2 hours. Discharge was performed at 20 ° C. and 720 mA, and when the discharge potential reached 3.0 V, the discharge was terminated and the next charge was started.

図2は本発明の実施例で用いた電池の容量維持率とサイクル数の関係を示した図であり、サイクル寿命特性を比較したものである。   FIG. 2 is a diagram showing the relationship between the capacity retention rate of the battery used in the example of the present invention and the number of cycles, and compares the cycle life characteristics.

図から明らかなように、本実施例1、2、3(図2中の101〜103)の電池は比較例1、2、3、4(図2中の104〜107)に比べて、充放電を繰り返しても容量の劣化が少なく、サイクル特性に優れていることがわかった。   As is apparent from the figure, the batteries of Examples 1, 2, and 3 (101 to 103 in FIG. 2) are more charged than Comparative Examples 1, 2, 3, and 4 (104 to 107 in FIG. 2). It was found that even when the discharge was repeated, the capacity was hardly deteriorated and the cycle characteristics were excellent.

これは本実施例の電池はアルミニウム箔の腐食が抑制され、箔と活物質との界面で水素ガスが発生しにくく、活物質が箔から脱落したり、あるいは浮き上がったりすることがなくなり、正極合剤の集電体との密着性が改良されたために、充放電での合剤の膨張収縮でも、集電体から合剤がはがれにくく、活物質の集電性が保持され電池特性が改善されたと考えられる。   This is because in the battery of this example, corrosion of the aluminum foil is suppressed, hydrogen gas is not easily generated at the interface between the foil and the active material, and the active material does not fall off or float up from the foil. Since the adhesion of the agent to the current collector has been improved, even during expansion and contraction of the mixture during charge and discharge, the mixture is difficult to peel off from the current collector, and the current collection of the active material is maintained, improving battery characteristics. It is thought.

本発明によって集電体が露出することがなくなり、正極板の歩留まりが向上する。また、正極板の集電体露出がないため導電性,電池特性も向上するリチウムイオン二次電池が実現できるものである。そのため、ポータブル電気機器の電源等として有用である。   According to the present invention, the current collector is not exposed and the yield of the positive electrode plate is improved. Further, since there is no current collector exposure of the positive electrode plate, a lithium ion secondary battery with improved conductivity and battery characteristics can be realized. Therefore, it is useful as a power source for portable electric devices.

本発明の実施例で用いた電池の断面図Sectional view of the battery used in the examples of the present invention 本発明の実施例で用いた電池の容量維持率とサイクル数の関係を示す図The figure which shows the relationship between the capacity maintenance rate of the battery used in the Example of this invention, and the cycle number.

符号の説明Explanation of symbols

1 封口板
2 絶縁ガスケット
3 正極リード
4 上部絶縁板
5 正極用極板
6 負極用極板
7 セパレータ
8 ケース本体
9 負極リード
10 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Insulation gasket 3 Positive electrode lead 4 Upper insulating plate 5 Positive electrode plate 6 Negative electrode plate 7 Separator 8 Case body 9 Negative electrode lead 10 Lower insulating plate

Claims (2)

導電材と正極活物質の混合粉体を作成する混合工程と、前記混合粉体に対して炭酸ガスを接触させることで、正極活物質であるリチウム複合酸化物のアルカリ成分を中和する中和工程と、中和された正極活物質に増粘剤と結着剤を加えて練合してペーストを作製する練合工程と、作製されたペーストを正極集電体となるアルミニウム箔表面に塗着,乾燥して正極活物質層を形成させる形成工程を少なくとも含み、
中和工程に用いる炭酸ガスの体積をV1、正極活物質と導電材のかさ密度から求めた前記混合粉体の体積をV2としたとき、V1とV2の比(V1/V2)は、2以上30以下であることを特徴とするリチウムイオン二次電池用正極板の製造方法。
A mixing step for preparing a mixed powder of a conductive material and a positive electrode active material, and neutralization for neutralizing an alkali component of a lithium composite oxide that is a positive electrode active material by bringing carbon dioxide gas into contact with the mixed powder A kneading step of adding a thickener and a binder to the neutralized positive electrode active material and kneading to prepare a paste; and applying the prepared paste to the surface of the aluminum foil serving as the positive electrode current collector wear, at least it viewed including the formation step of forming a dried positive electrode active material layer,
When the volume of carbon dioxide used in the neutralization step is V1, and the volume of the mixed powder obtained from the bulk density of the positive electrode active material and the conductive material is V2, the ratio of V1 and V2 (V1 / V2) is 2 or more. The manufacturing method of the positive electrode plate for lithium ion secondary batteries characterized by being 30 or less .
請求項に記載のリチウムイオン二次電池用正極板の製造法によって得られた正極板を具備したリチウムイオン二次電池。
The lithium ion secondary battery which comprised the positive electrode plate obtained by the manufacturing method of the positive electrode plate for lithium ion secondary batteries of Claim 1 .
JP2007059441A 2007-03-09 2007-03-09 Lithium ion secondary battery and method of manufacturing positive electrode plate thereof Expired - Fee Related JP5154104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059441A JP5154104B2 (en) 2007-03-09 2007-03-09 Lithium ion secondary battery and method of manufacturing positive electrode plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059441A JP5154104B2 (en) 2007-03-09 2007-03-09 Lithium ion secondary battery and method of manufacturing positive electrode plate thereof

Publications (2)

Publication Number Publication Date
JP2008226515A JP2008226515A (en) 2008-09-25
JP5154104B2 true JP5154104B2 (en) 2013-02-27

Family

ID=39844897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059441A Expired - Fee Related JP5154104B2 (en) 2007-03-09 2007-03-09 Lithium ion secondary battery and method of manufacturing positive electrode plate thereof

Country Status (1)

Country Link
JP (1) JP5154104B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752550B (en) * 2008-12-10 2014-01-08 深圳市比克电池有限公司 Method for confecting lithium ion battery anode sizing agent
KR101145973B1 (en) 2009-07-06 2012-05-15 도요타지도샤가부시키가이샤 Method for manufacturing electrode for battery
KR20130081055A (en) 2012-01-06 2013-07-16 삼성에스디아이 주식회사 Positive electrode material for lithium battery, positive material prepared from the material, and lithium battery including the positive electrode
KR102311509B1 (en) 2014-12-12 2021-10-08 삼성에스디아이 주식회사 Positive electrode composition for rechargable lithium battery, and positive electrode for rechargable lithium battery and rechargable lithium battery including the same
EP3416217B1 (en) * 2016-02-08 2021-03-17 National Institute of Advanced Industrial Science and Technology Non-aqueous electrolyte secondary battery positive electrode slurry production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232910B2 (en) * 1994-08-30 2001-11-26 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2006128135A (en) * 1994-11-22 2006-05-18 Sumitomo Chemical Co Ltd Active material for positive electrode and production method for positive electrode
JP3769871B2 (en) * 1997-04-25 2006-04-26 ソニー株式会社 Method for producing positive electrode active material
JPH11204108A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP2002141059A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode and non- aqueous electrolyte secondary battery using the same
JP3877147B2 (en) * 2001-12-20 2007-02-07 株式会社デンソー Method for producing positive electrode for lithium battery
JP4003759B2 (en) * 2003-05-13 2007-11-07 三菱化学株式会社 Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP2004355824A (en) * 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous secondary battery and cathode

Also Published As

Publication number Publication date
JP2008226515A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
WO2016154887A1 (en) Zinc ion battery adopting graphene oxide as positive electrode
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
JP2017524235A (en) Positive electrode active material slurry containing two kinds of binders and positive electrode produced therefrom
JP5154104B2 (en) Lithium ion secondary battery and method of manufacturing positive electrode plate thereof
JP2013134838A (en) Negative electrode mixture for iron-air secondary battery, negative electrode mixture slurry, negative electrode for iron-air secondary battery, method of manufacturing the same, and iron-air secondary battery
EP3627611A1 (en) Zinc salts which can be used as liquid electrolyte of zinc-ion battery
KR101622808B1 (en) Composite and manufacturing method of anode slurry comprising the same
JP4876535B2 (en) Manufacturing method of positive electrode plate for lithium secondary battery and lithium secondary battery using positive electrode by this manufacturing method
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2020155266A (en) Zinc battery electrolyte and zinc battery
JP4114247B2 (en) Non-aqueous electrolyte secondary battery
JP2007042486A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JP2017043496A (en) Lithium transition metal complex oxide and method of producing the same
JP5835581B2 (en) Binder composition for electrode of power storage device
JP2009224188A (en) Method of manufacturing lithium-ion secondary battery and its positive electrode plate
KR101748914B1 (en) Lithium electrode, method for the same and lithium battery compring the same
WO2013058079A1 (en) Method for operating molten salt battery
CN108963198A (en) Anode, cathode, preparation method and the lithium ion battery including it
WO1999062133A1 (en) Battery plate and battery
JP2013206583A (en) Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012178309A (en) Lithium ion secondary battery anode and lithium ion secondary battery using the same
JP2016051622A (en) Active material for negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees