JP2011165637A - Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery - Google Patents

Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery Download PDF

Info

Publication number
JP2011165637A
JP2011165637A JP2010106657A JP2010106657A JP2011165637A JP 2011165637 A JP2011165637 A JP 2011165637A JP 2010106657 A JP2010106657 A JP 2010106657A JP 2010106657 A JP2010106657 A JP 2010106657A JP 2011165637 A JP2011165637 A JP 2011165637A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
current collector
aluminum alloy
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010106657A
Other languages
Japanese (ja)
Inventor
Jun Suzuki
順 鈴木
Mamoru Hosokawa
護 細川
Shoo Katsura
翔生 桂
Takashi Onishi
隆 大西
Toshiki Sato
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010106657A priority Critical patent/JP2011165637A/en
Publication of JP2011165637A publication Critical patent/JP2011165637A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode collector excelling in adhesiveness to a positive electrode active material layer when used in a lithium ion battery, a method of manufacturing the same, and a positive electrode body for a lithium ion battery. <P>SOLUTION: The positive electrode collector 11 formed with a positive electrode active material layer on a surface and used as a positive electrode body for a lithium ion battery includes aluminum alloy foil 1, and has a plurality of holes 2 at a front surface side of the aluminum alloy foil 1 formed with the positive electrode active material layer where the average hole diameter of the plurality of holes 2 is ≥1.0 μm, and an average aspect ratio defined by (average hole diameter/average hole depth) is ≤1.0. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン電池に用いられる正極集電体、その製造方法およびリチウムイオン電池用正極体に関する。   The present invention relates to a positive electrode current collector used for a lithium ion battery, a method for producing the same, and a positive electrode body for a lithium ion battery.

リチウムイオン電池は、主に、負極体、正極体、これらの電極体を絶縁するセパレータ、電極体間の電荷移動を補助する電解液、これらを収容する電池ケースから構成される。そして、正極体は、アルミニウム合金箔からなる正極集電体の表面に正極活物質がコーティングされたものである。   Lithium ion batteries mainly include a negative electrode body, a positive electrode body, a separator that insulates these electrode bodies, an electrolyte solution that assists charge transfer between the electrode bodies, and a battery case that houses these. The positive electrode body is obtained by coating the surface of a positive electrode current collector made of an aluminum alloy foil with a positive electrode active material.

近年、携帯機器の小型化や高性能化により、搭載される電池のエネルギー密度への要求は益々高まっている。その中で、リチウムイオン電池は、ニッケル−カドミウム電池やニッケル−水素電池に比べて、高い電圧、高いエネルギー密度(充放電容量)を示すため、前記携帯機器の電源として広く使用され始めている。また、環境意識の高まりとともに、現在の化石燃料を用いる自動車から、CO排出量の少ない電気自動車、ハイブリッド自動車への移行が望まれており、これらに搭載される電池としてリチウムイオン電池への期待が高まっている。 In recent years, the demand for the energy density of a battery to be mounted is increasing more and more due to the miniaturization and high performance of portable devices. Among them, a lithium ion battery is starting to be widely used as a power source of the portable device because it shows a higher voltage and a higher energy density (charge / discharge capacity) than a nickel-cadmium battery or a nickel-hydrogen battery. In addition, as environmental awareness increases, there is a demand for a shift from automobiles that currently use fossil fuels to electric cars and hybrid cars that emit less CO 2 , and lithium ion batteries are expected to be installed in these vehicles. Is growing.

そこで、リチウムイオン電池を構成する正極体に求められる特性としては、充放電容量の減少や内部抵抗の増大がないことにある。このような特性は、充放電サイクル耐久性を高めることによって達成され、充放電サイクルを繰り返した際の正極集電体からの正極活物質層の剥離、脱落を抑制することが重要なこととなる。そして、正極集電体と正極活物質層との密着性を向上させることを目的として、特許文献1では、正極活物質層が一体化される正極集電体の表面側に所定厚さの粗面化層を形成させた正極体が記載され、その粗面化層が平均孔径:0.05〜0.5μmの海綿状の孔を有することが記載されている。   Therefore, the characteristics required for the positive electrode body constituting the lithium ion battery are that there is no decrease in charge / discharge capacity or increase in internal resistance. Such characteristics are achieved by increasing the charge / discharge cycle durability, and it is important to suppress peeling and dropping of the positive electrode active material layer from the positive electrode current collector when the charge / discharge cycle is repeated. . For the purpose of improving the adhesion between the positive electrode current collector and the positive electrode active material layer, Patent Document 1 discloses a rough surface having a predetermined thickness on the surface side of the positive electrode current collector with which the positive electrode active material layer is integrated. A positive electrode body on which a surface layer is formed is described, and it is described that the rough surface layer has spongy pores having an average pore diameter of 0.05 to 0.5 μm.

特開平11−86875号公報JP-A-11-86875

しかしながら、特許文献1に記載された正極体においては、正極集電体の表面に形成された粗面化層によって正極集電体と正極活物質層との密着性を高めているが、その粗面化層の孔の平均孔径が0.05〜0.5μmと小さく、孔形状も海綿状(図3参照)であるため、正極活物質層が孔内部まで入り込みにくい。その結果、近年高まっている自動車向けリチウムイオン電池の正極体としては、正極集電体と正極活物質層との密着性の観点で不十分であるという問題がある。   However, in the positive electrode body described in Patent Document 1, adhesion between the positive electrode current collector and the positive electrode active material layer is enhanced by a roughened layer formed on the surface of the positive electrode current collector. Since the average pore diameter of the pores in the surface layer is as small as 0.05 to 0.5 μm and the pore shape is spongy (see FIG. 3), the positive electrode active material layer is difficult to enter into the pores. As a result, there is a problem that the positive electrode body of a lithium ion battery for automobiles that has been increasing in recent years is insufficient from the viewpoint of adhesion between the positive electrode current collector and the positive electrode active material layer.

本発明は前記問題を鑑みてなされたものであって、リチウムイオン電池に用いた際、正極活物質層との密着性に優れた正極集電体、その製造方法、および、その正極集電体を用いたリチウムイオン電池用正極体を提供するものである。   The present invention has been made in view of the above problems, and when used in a lithium ion battery, a positive electrode current collector excellent in adhesion to the positive electrode active material layer, a method for producing the same, and the positive electrode current collector The positive electrode body for lithium ion batteries using this is provided.

前記課題を解決するための手段として、本発明に係る正極集電体は、表面に正極活物質層が形成されてリチウムイオン電池用正極体となる正極集電体であって、アルミニウム合金箔を備え、そのアルミニウム合金箔の前記正極活物質層が形成される表面側に複数の孔を有し、前記複数の孔の平均孔径が1.0μm以上で、かつ(平均孔径/平均孔深さ)で定義される平均アスペクト比が1.0以下であることを特徴とする。   As a means for solving the above-mentioned problems, a positive electrode current collector according to the present invention is a positive electrode current collector having a positive electrode active material layer formed on the surface thereof to be a positive electrode body for a lithium ion battery, wherein an aluminum alloy foil is used. And having a plurality of holes on the surface side of the aluminum alloy foil on which the positive electrode active material layer is formed, the average hole diameter of the plurality of holes being 1.0 μm or more, and (average hole diameter / average hole depth) The average aspect ratio defined by is 1.0 or less.

前記構成によれば、アルミニウム合金箔を備え、そのアルミニウム合金箔の正極活物質層が形成される表面側に所定の平均孔径および平均アスペクト比の複数の孔を有することによって、アルミニウム合金箔上に正極活物質層を形成する際に、複数の孔内部に正極活物質層が入り込み、アルミニウム合金箔の表面にアンカー効果が生じる。その結果、アルミニウム合金箔と正極活物質層との密着性が向上する。   According to the above configuration, the aluminum alloy foil is provided, and the aluminum alloy foil has a plurality of holes having a predetermined average pore diameter and an average aspect ratio on the surface side on which the positive electrode active material layer is formed. When the positive electrode active material layer is formed, the positive electrode active material layer enters the plurality of holes, and an anchor effect is generated on the surface of the aluminum alloy foil. As a result, the adhesion between the aluminum alloy foil and the positive electrode active material layer is improved.

また、本発明に係る正極集電体は、前記孔が、ピット状の孔であることが好ましい。
前記構成によれば、孔形状がピット状であることによって、正極活物質層が孔内部に入り込みやすくなり、アルミニウム合金箔表面のアンカー効果がさらに増加する。その結果、アルミニウム合金箔と正極活物質層との密着性がさらに向上する。
In the positive electrode current collector according to the present invention, the hole is preferably a pit-shaped hole.
According to the said structure, when a hole shape is a pit shape, a positive electrode active material layer becomes easy to penetrate | penetrate inside a hole, and the anchor effect on the aluminum alloy foil surface further increases. As a result, the adhesion between the aluminum alloy foil and the positive electrode active material layer is further improved.

また、本発明に係る正極集電体は、複数の孔を有する前記アルミニウム合金箔が、前記正極活物質層が形成される表面側に有機ホスホン酸を含む有機ホスホン酸層を備えることが好ましい。   In the positive electrode current collector according to the present invention, the aluminum alloy foil having a plurality of holes preferably includes an organic phosphonic acid layer containing organic phosphonic acid on the surface side on which the positive electrode active material layer is formed.

前記構成によれば、複数の孔を有するアルミニウム合金箔が、正極活物質層が形成される表面側に有機ホスホン酸層を備えることによって、アルミニウム合金箔上に正極活物質層を形成する際に、複数の孔内部に正極活物質層が入り込み、アルミニウム合金箔の表面にアンカー効果が生じると共に、有機ホスホン酸層と正極活物質層との間に化学的な結合が生じる。その結果、孔内部への正極活物質層の入り込みのアンカー効果による物理的な結合と、有機ホスホン酸層と正極活物質層との化学的な結合との相加効果により、アルミニウム合金箔と正極活物質層との密着性がさらに向上する。   According to the above configuration, when the aluminum alloy foil having a plurality of holes includes the organic phosphonic acid layer on the surface side on which the positive electrode active material layer is formed, the positive electrode active material layer is formed on the aluminum alloy foil. The positive electrode active material layer enters inside the plurality of holes, an anchor effect is generated on the surface of the aluminum alloy foil, and a chemical bond is generated between the organic phosphonic acid layer and the positive electrode active material layer. As a result, the aluminum alloy foil and the positive electrode are formed by an additive effect of a physical bond due to the anchor effect of entering the positive electrode active material layer into the hole and a chemical bond between the organic phosphonic acid layer and the positive electrode active material layer. Adhesiveness with the active material layer is further improved.

また、本発明に係る正極集電体は、前記有機ホスホン酸がメチルホスホン酸、エチルホスホン酸、ビニルホスホン酸のうちから選択される1種以上であることが好ましい。   In the positive electrode current collector according to the present invention, the organic phosphonic acid is preferably at least one selected from methylphosphonic acid, ethylphosphonic acid, and vinylphosphonic acid.

前記構成によれば、有機ホスホン酸がメチルホスホン酸、エチルホスホン酸、ビニルホスホン酸のうちから選択される1種以上であることによって、有機ホスホン酸層と正極活物質層との化学的な結合が強くなり、アルミニウム合金箔と正極活物質層との密着性がさらに向上する。   According to the above configuration, when the organic phosphonic acid is one or more selected from methylphosphonic acid, ethylphosphonic acid, and vinylphosphonic acid, chemical bonding between the organic phosphonic acid layer and the positive electrode active material layer is achieved. It becomes stronger and the adhesion between the aluminum alloy foil and the positive electrode active material layer is further improved.

本発明に係る正極集電体の製造方法は、アルミニウム合金箔の表面を直流電解エッチングすることを特徴とする。
前記手順によれば、アルミニウム合金箔の表面を直流電解エッチングすることによって、アルミニウム合金箔の表面に所定の平均孔径および平均アスペクト比を持った多数の孔が形成される。
The method for producing a positive electrode current collector according to the present invention is characterized in that the surface of an aluminum alloy foil is subjected to direct current electrolytic etching.
According to the above procedure, a number of holes having a predetermined average hole diameter and average aspect ratio are formed on the surface of the aluminum alloy foil by direct current electrolytic etching of the surface of the aluminum alloy foil.

また、本発明に係る正極集電体の製造方法は、直流電解エッチングした前記アルミニウム合金箔の表面を有機ホスホン酸水溶液で処理することが好ましい。   In the method for producing a positive electrode current collector according to the present invention, the surface of the aluminum alloy foil subjected to direct current electrolytic etching is preferably treated with an organic phosphonic acid aqueous solution.

前記手順によれば、直流電解エッチングしたアルミニウム合金箔の表面を有機ホスホン酸水溶液で処理することによって、直流電解エッチングによって形成された孔の凹凸形状をつぶすことなく、かつ、孔の凹凸形状に沿って均一に有機ホスホン酸層を形成することができる。   According to the above procedure, the surface of the aluminum alloy foil subjected to direct current electrolytic etching is treated with an organic phosphonic acid aqueous solution, so that the uneven shape of the hole formed by direct current electrolytic etching is not crushed and along the uneven shape of the hole. Thus, the organic phosphonic acid layer can be formed uniformly.

本発明に係るリチウムイオン電池用正極体は、前記正極集電体と、前記正極集電体の複数の孔を有する表面側に形成された正極活物質からなる正極活物質層とを備えることを特徴とする。
前記構成によれば、正極集電体と正極活物質層とを備え、正極活物質層が正極集電体の複数の孔を有する表面側に形成されていることによって、正極集電体と正極活物質層との密着性が向上する。
The positive electrode body for a lithium ion battery according to the present invention includes the positive electrode current collector and a positive electrode active material layer made of a positive electrode active material formed on a surface side having a plurality of holes of the positive electrode current collector. Features.
According to the configuration, the positive electrode current collector and the positive electrode active material layer are provided, and the positive electrode active material layer is formed on the surface side having the plurality of holes of the positive electrode current collector, whereby the positive electrode current collector and the positive electrode Adhesion with the active material layer is improved.

本発明の正極集電体およびリチウムイオン電池用正極体によれば、リチウムイオン電池に用いた際、正極活物質層との密着性に優れる。そして、リチウムイオン電池に優れた充放電サイクル耐久性を付加することができる。
本発明の正極集電体の製造方法によれば、正極活物質層との密着性に優れた正極集電体を得ることができる。
According to the positive electrode current collector and the positive electrode body for a lithium ion battery of the present invention, when used in a lithium ion battery, the adhesiveness with the positive electrode active material layer is excellent. And the charge / discharge cycle durability excellent in the lithium ion battery can be added.
According to the method for producing a positive electrode current collector of the present invention, a positive electrode current collector excellent in adhesion with the positive electrode active material layer can be obtained.

(a)、(b)は、本発明に係る正極集電体の構成を模式的に示す断面図である。(A), (b) is sectional drawing which shows typically the structure of the positive electrode electrical power collector which concerns on this invention. 本発明に係るリチウムイオン電池用正極体の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the positive electrode body for lithium ion batteries which concerns on this invention. 従来の正極集電体の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of the conventional positive electrode electrical power collector typically.

本発明に係る正極集電体について、図面を参照して説明する。
図1(a)に示すように、正極集電体11は、アルミニウム合金箔1からなり、その表面に複数(多数)の孔2を有する。また、アルミニウム合金箔1の厚さは、正極集電体が使用されるリチウムイオン電池用正極体の用途によって異なるが、一般的には10〜100μmである。ここで、表面とは、図2に示すように、リチウムイオン電池用正極体(以下、正極体と称する場合がある)10に使用した際に、正極活物質層12が形成される側の表面である。
A positive electrode current collector according to the present invention will be described with reference to the drawings.
As shown in FIG. 1A, the positive electrode current collector 11 is made of an aluminum alloy foil 1 and has a plurality of (many) holes 2 on the surface thereof. Moreover, although the thickness of the aluminum alloy foil 1 changes with uses of the positive electrode body for lithium ion batteries in which a positive electrode current collector is used, it is generally 10 to 100 μm. Here, as shown in FIG. 2, the surface is a surface on the side where the positive electrode active material layer 12 is formed when used for a positive electrode body for a lithium ion battery (hereinafter sometimes referred to as a positive electrode body) 10. It is.

アルミニウム合金箔1は、JIS規定の3000系合金、特に3003合金からなる3000系合金箔が好ましい。その理由は、3000系合金箔は箔自体の強度において優れているからである。また、アルミニウム合金箔1は、3000系合金箔と比較して強度が劣るが、1000系合金(純アルミニウム)からなる1000系合金箔であってもよい。   The aluminum alloy foil 1 is preferably a 3000 series alloy foil made of a JIS-defined 3000 series alloy, particularly a 3003 alloy. The reason is that 3000 series alloy foil is excellent in the intensity | strength of foil itself. The aluminum alloy foil 1 is inferior in strength to the 3000 series alloy foil, but may be a 1000 series alloy foil made of a 1000 series alloy (pure aluminum).

孔2は、平均孔径が1.0μm以上で、かつ(平均孔径/平均孔深さ)で定義される平均アスペクト比が1.0以下である。そして、孔2がこのような平均孔径および平均アスペクト比を持つことによって、正極体10に使用した際に、正極集電体11(アルミニウム合金箔1)のアンカー効果が向上し、正極集電体11と正極活物質層12との密着性が向上する。孔2の平均孔径が1.0μm未満では、平均孔径が小さいために、正極体10に使用した際に孔内部に正極活物質層12が入り込みにくくなり、アルミニウム合金箔1のアンカー効果が減少する。また、平均アスペクト比が1.0を超えると、平均孔深さが十分でないため、正極体10に使用した際に孔内部に入り込む正極活物質層12が少なくなり、アルミニウム合金箔1のアンカー効果が減少する。なお、平均孔径の上限は特に限定されないが、たとえば5μm以下とすることができる。また、平均アスペクト比の下限についても特に限定されないが、たとえば0.5以上とすることができる。   The holes 2 have an average hole diameter of 1.0 μm or more and an average aspect ratio defined by (average hole diameter / average hole depth) of 1.0 or less. And since the hole 2 has such an average hole diameter and average aspect ratio, when used for the positive electrode body 10, the anchor effect of the positive electrode current collector 11 (aluminum alloy foil 1) is improved, and the positive electrode current collector 11 and the positive electrode active material layer 12 are improved in adhesion. When the average hole diameter of the holes 2 is less than 1.0 μm, the average hole diameter is small, so that when used in the positive electrode body 10, the positive electrode active material layer 12 is difficult to enter inside the holes, and the anchor effect of the aluminum alloy foil 1 is reduced. . Further, when the average aspect ratio exceeds 1.0, the average hole depth is not sufficient, and therefore, when used in the positive electrode body 10, the positive electrode active material layer 12 entering the inside of the hole is reduced, and the anchor effect of the aluminum alloy foil 1 is reduced. Decrease. The upper limit of the average pore diameter is not particularly limited, but can be, for example, 5 μm or less. Further, the lower limit of the average aspect ratio is not particularly limited, but may be 0.5 or more, for example.

また、正極集電体11は、その表面に有する孔2の孔形状が、ピット形状(円筒形状)であることが好ましい。孔2がピット形状であることによって、正極体10に使用した際に孔内部に正極活物質層12が入り込みやすくなり、正極集電体11(アルミニウム合金箔1)のアンカー効果が向上し、正極集電体11と正極活物質層12との密着性が向上する。そして、図3に示すように、従来の正極集電体20(アルミニウム合金箔21)の表面に形成された粗面化層21aの孔22のように孔形状が海綿状であると、正極体に使用した際に孔内部に正極活物質層が入り込みにくくなり、正極集電体20のアンカー効果が減少し、正極集電体20と正極活物質層との密着性が低下する。また、このようなピット形状の孔の形成は、後記するように、正極集電体11の製造方法において、直流電解エッチングによりアルミニウム合金箔1の表面を粗面化することによって達成される。   Moreover, it is preferable that the positive electrode current collector 11 has a pit shape (cylindrical shape) in the shape of the holes 2 on the surface thereof. When the hole 2 has a pit shape, the positive electrode active material layer 12 can easily enter the hole when used in the positive electrode body 10, and the anchor effect of the positive electrode current collector 11 (aluminum alloy foil 1) is improved. The adhesion between the current collector 11 and the positive electrode active material layer 12 is improved. And as shown in FIG. 3, when the hole shape is spongy like the hole 22 of the roughening layer 21a formed in the surface of the conventional positive electrode collector 20 (aluminum alloy foil 21), a positive electrode body When used, the positive electrode active material layer is less likely to enter the hole, the anchor effect of the positive electrode current collector 20 is reduced, and the adhesion between the positive electrode current collector 20 and the positive electrode active material layer is reduced. Moreover, formation of such a pit-shaped hole is achieved by roughening the surface of the aluminum alloy foil 1 by direct current electrolytic etching in the method of manufacturing the positive electrode current collector 11 as described later.

図1(b)に示すように、正極集電体11は、複数(多数)の孔2を有するアルミニウム合金箔1が、正極活物質層12(図2参照)が形成される表面側に有機ホスホン酸を含む有機ホスホン酸層1aを備えることが好ましい。また、正極集電体11において、有機ホスホン酸層1aは、アルミニウム合金箔1の表面に形成された多数の孔2の凹凸面に沿って均一に形成されている。そして、有機ホスホン酸層1aが形成されたアルミニウム合金箔1の表面の孔2は、その平均孔径が1.0μm以上、平均アスペクト比が1.0以下である。また、孔2はピット状の孔であることが好ましい。孔2の詳細については、前記したとおりである。   As shown in FIG. 1B, the positive electrode current collector 11 has an aluminum alloy foil 1 having a plurality of (many) holes 2 formed on the surface side where the positive electrode active material layer 12 (see FIG. 2) is formed. It is preferable to provide an organic phosphonic acid layer 1a containing phosphonic acid. In the positive electrode current collector 11, the organic phosphonic acid layer 1 a is uniformly formed along the uneven surfaces of the numerous holes 2 formed on the surface of the aluminum alloy foil 1. And the hole 2 of the surface of the aluminum alloy foil 1 in which the organic phosphonic acid layer 1a was formed has an average pore diameter of 1.0 μm or more and an average aspect ratio of 1.0 or less. The hole 2 is preferably a pit-shaped hole. The details of the hole 2 are as described above.

有機ホスホン酸は、取り扱いのしやすさや密着性向上効果の優位性の点から、メチルホスホン酸(CHP(O)(OH))、エチルホスホン酸(CP(O)(OH))、ビニルホスホン酸(CP(O)(OH))のうちから選択される1種以上であることが好ましい。 Organic phosphonic acids are methylphosphonic acid (CH 3 P (O) (OH) 2 ), ethylphosphonic acid (C 2 H 5 P (O) (OH), from the viewpoint of ease of handling and superiority in adhesion improvement effect. 2 ) or vinylphosphonic acid (C 2 H 3 P (O) (OH) 2 ).

これらの有機ホスホン酸は、OH基を2個有しており、このOH基がアルミニウム合金材表面に必然的に存在している酸化皮膜(Al)のAlやOとの共有結合により強固に結合する。一方、図2に示すように、正極体10に使用された際には、正極集電体11上には、正極活物質層12が形成される。有機ホスホン酸は、この正極活物質層12との親和性が高く、化学的に結合する。特に、有機ホスホン酸は、正極活物質層12にバインダとして含まれるポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系バインダとの親和性が高く、化学的に結合する。その結果、正極集電体11上へ正極活物質層12を形成する際に、アルミニウム合金箔1の孔内部への正極活物質層12の入り込みのアンカー効果による物理的な結合と、有機ホスホン酸層1aと正極活物質層12との化学的な結合との相加効果により、正極集電体11(アルミニウム合金箔1)と正極活物質層12との密着性がさらに向上する。 These organic phosphonic acids have two OH groups, and these OH groups inevitably exist on the surface of the aluminum alloy material due to the covalent bond with Al or O of the oxide film (Al 2 O 3 ). Bond firmly. On the other hand, as shown in FIG. 2, when used in the positive electrode body 10, a positive electrode active material layer 12 is formed on the positive electrode current collector 11. The organic phosphonic acid has high affinity with the positive electrode active material layer 12 and is chemically bonded. In particular, the organic phosphonic acid has a high affinity with a fluorine-based binder such as polyvinylidene fluoride or polytetrafluoroethylene contained as a binder in the positive electrode active material layer 12 and is chemically bonded. As a result, when the positive electrode active material layer 12 is formed on the positive electrode current collector 11, physical bonding due to the anchor effect of the penetration of the positive electrode active material layer 12 into the pores of the aluminum alloy foil 1, and organic phosphonic acid Due to the additive effect of the chemical bond between the layer 1a and the positive electrode active material layer 12, the adhesion between the positive electrode current collector 11 (aluminum alloy foil 1) and the positive electrode active material layer 12 is further improved.

次に、本発明に係る正極集電体の製造方法について説明する。
正極集電体の製造方法は、アルミニウム合金箔の表面を所定条件で直流電解エッチングすることを特徴とする。そして、このような直流電解エッチング(粗面化処理)によって、アルミニウム合金箔の表面に前記した平均孔径および平均アスペクト比を持ったピット状の多数の孔が形成される。
Next, a method for manufacturing the positive electrode current collector according to the present invention will be described.
The method for producing the positive electrode current collector is characterized in that the surface of the aluminum alloy foil is subjected to direct current electrolytic etching under a predetermined condition. Then, by such direct current electrolytic etching (roughening treatment), a number of pit-shaped holes having the above average hole diameter and average aspect ratio are formed on the surface of the aluminum alloy foil.

アルミニウム合金箔の粗面化処理方法としては、交流電解エッチング、直流電解エッチング、化学エッチング等の方法がある。それぞれのエッチング方法において、エッチング液の組成、温度、時間、周波数、電流密度、多段エッチング手法等を適宜選択することで、粗面化の形態を変化させることができる。しかしながら、例えば、交流電解エッチングでは、図3に示すように、小さな平均孔径(平均孔径:1.0μm未満)の海綿状の孔が形成され、大きな平均孔径(平均孔径:1.0μm以上)のピット状の孔を形成することが容易ではない。また、化学エッチングでは、図1(a)、(b)に示すようなピット状の孔を形成しようとすると、アルミニウム合金箔の表面全体が化学溶解をうけるため、平均孔深さの深い孔を形成することが容易ではない。また、深い孔を形成するための化学エッチング条件を探索するにしても、処理液組成、処理液温度、添加剤等の各種調整が必要であり、その設定は容易ではない。したがって、本発明に係る正極集電体の製造方法では、アルミニウム合金箔の粗面化処理方法として直流電解エッチングを用いる。   Examples of the method for roughening the aluminum alloy foil include AC electrolytic etching, DC electrolytic etching, and chemical etching. In each etching method, the form of roughening can be changed by appropriately selecting the composition, temperature, time, frequency, current density, multistage etching method, and the like of the etching solution. However, for example, in AC electrolytic etching, as shown in FIG. 3, a spongy hole having a small average pore diameter (average pore diameter: less than 1.0 μm) is formed, and a large average pore diameter (average pore diameter: 1.0 μm or more) is formed. It is not easy to form a pit-shaped hole. In addition, in chemical etching, when the pit-shaped holes as shown in FIGS. 1A and 1B are formed, the entire surface of the aluminum alloy foil is chemically dissolved. It is not easy to form. Further, even when searching for chemical etching conditions for forming deep holes, various adjustments such as the treatment liquid composition, the treatment liquid temperature, and the additive are necessary, and the setting thereof is not easy. Therefore, in the method for producing a positive electrode current collector according to the present invention, DC electrolytic etching is used as a method for roughening the aluminum alloy foil.

直流電解エッチングの処理条件としては、上述した条件の孔が形成されれば特に限定されないが、一例として、電流密度が400mA/cm以下(好ましくは20〜400mA/cm)、電解時間が1秒以上(好ましくは1〜60秒、さらに好ましくは1〜30秒)とすることができる。電流密度を400mA/cm以下にすることにより、孔の平均孔径および表面密度を十分に確保することができ、電解時間を1秒以上にすることにより、十分な平均孔深さを確保することができる。 The treatment conditions for the direct current electrolytic etching are not particularly limited as long as the holes having the above-described conditions are formed. For example, the current density is 400 mA / cm 2 or less (preferably 20 to 400 mA / cm 2 ), and the electrolysis time is 1 Seconds or more (preferably 1 to 60 seconds, more preferably 1 to 30 seconds). By setting the current density to 400 mA / cm 2 or less, the average pore diameter and surface density of the pores can be sufficiently secured, and by ensuring the electrolysis time of 1 second or more, a sufficient average pore depth is secured. Can do.

直流電解エッチングに使用する電解エッチング溶液としては、電解エッチングで一般的に使用するものであれば特に限定されず、例えば、各種の酸溶液またはそれらの混合溶液を用いることができる。また、混合溶液を使用する際の各種の酸溶液の混合割合は、アルミニウム合金箔の表面に形成される孔の平均孔径、平均アスペクト比および表面密度に応じて適宜設定する。   The electrolytic etching solution used for direct current electrolytic etching is not particularly limited as long as it is generally used in electrolytic etching, and various acid solutions or a mixed solution thereof can be used, for example. The mixing ratio of various acid solutions when using the mixed solution is appropriately set according to the average pore diameter, average aspect ratio, and surface density of the holes formed on the surface of the aluminum alloy foil.

また、本発明に係る正極集電体の製造方法は、直流電解エッチングしたアルミニウム合金箔の表面を有機ホスホン酸水溶液で処理することが好ましい。そして、このような有機ホスホン酸水溶液で処理することによって、アルミニウム合金箔の表面に有機ホスホン酸層が形成され、その有機ホスホン酸層は、直流電解エッチングで形成された多数の孔の凹凸面に沿って均一に形成される。   Moreover, it is preferable that the manufacturing method of the positive electrode electrical power collector which concerns on this invention processes the surface of the aluminum alloy foil which carried out the direct current electrolytic etching with organic phosphonic acid aqueous solution. Then, by treating with such an organic phosphonic acid aqueous solution, an organic phosphonic acid layer is formed on the surface of the aluminum alloy foil, and the organic phosphonic acid layer is formed on the uneven surface of many holes formed by direct current electrolytic etching. It is formed uniformly along.

アルミニウム合金箔の直流電解エッチングの処理条件は、前記と同様である。そして、有機ホスホン酸水溶液での処理方法としては、有機ホスホン酸層が形成できれば特に限定されないが、例えば、直流電解エッチング後のアルミニウム合金箔表面に有機ホスホン酸水溶液を塗布する方法や、直流電解エッチング後のアルミニウム合金箔を有機ホスホン酸水溶液中に浸漬する方法が挙げられる。なお、処理方法は、有機ホスホン酸層形成の均一性の点から後者の浸漬による方法が好ましい。   The processing conditions for the DC electrolytic etching of the aluminum alloy foil are the same as described above. The treatment method with an organic phosphonic acid aqueous solution is not particularly limited as long as an organic phosphonic acid layer can be formed. For example, a method of applying an organic phosphonic acid aqueous solution to the surface of an aluminum alloy foil after direct current electrolytic etching, or direct current electrolytic etching. A method of immersing the later aluminum alloy foil in an organic phosphonic acid aqueous solution may be mentioned. The treatment method is preferably the latter method from the viewpoint of the uniformity of the formation of the organic phosphonic acid layer.

有機ホスホン酸水溶液への浸漬条件は、水溶液中の有機ホスホン酸濃度が0.01〜100g/L、水溶液の温度が30〜90℃、浸漬時間が10〜120秒であることが好ましい。水溶液中の有機ホスホン酸濃度が0.01g/Lよりも低く、水溶液の温度が30℃よりも低く、浸漬時間が10秒よりも短い場合には、表面内で有機ホスホン酸層が形成される領域が不均一となり易く、有機ホスホン酸層形成による密着性向上効果が得られにくい。一方、水溶液中の有機ホスホン酸濃度が100g/Lよりも高く、水溶液の温度が90℃よりも高く、浸漬時間が120秒よりも長い場合においても、有機ホスホン酸層の厚さが不均一となり易く、有機ホスホン酸層形成による密着性向上効果が得られにくい。   The immersion conditions in the organic phosphonic acid aqueous solution are preferably that the organic phosphonic acid concentration in the aqueous solution is 0.01 to 100 g / L, the temperature of the aqueous solution is 30 to 90 ° C., and the immersion time is 10 to 120 seconds. When the organic phosphonic acid concentration in the aqueous solution is lower than 0.01 g / L, the temperature of the aqueous solution is lower than 30 ° C., and the immersion time is shorter than 10 seconds, an organic phosphonic acid layer is formed in the surface. The region tends to be non-uniform, and it is difficult to obtain the effect of improving the adhesion by forming the organic phosphonic acid layer. On the other hand, even when the concentration of the organic phosphonic acid in the aqueous solution is higher than 100 g / L, the temperature of the aqueous solution is higher than 90 ° C., and the immersion time is longer than 120 seconds, the thickness of the organic phosphonic acid layer becomes uneven. It is easy to obtain the effect of improving the adhesion by forming the organic phosphonic acid layer.

有機ホスホン酸層の厚さは、特に限定されないが、数〜数十Åであることが好ましい。有機ホスホン酸層がこのような厚さであることによって、直流電解エッチングにより形成されるピット状の孔の凹凸形状をつぶすことなく、かつ、孔の凹凸面に沿って均一に有機ホスホン酸層が形成され易くなる。また、有機ホスホン酸層が非常に薄い皮膜であることから、正極活物質層とアルミニウム合金箔との間の電子の受け渡しを阻害し難くなる。   The thickness of the organic phosphonic acid layer is not particularly limited, but is preferably several to several tens of mm. Since the organic phosphonic acid layer has such a thickness, the organic phosphonic acid layer can be uniformly formed along the uneven surface of the hole without crushing the uneven shape of the pit-shaped hole formed by direct current electrolytic etching. It becomes easy to form. In addition, since the organic phosphonic acid layer is a very thin film, it is difficult to inhibit the transfer of electrons between the positive electrode active material layer and the aluminum alloy foil.

また、本発明に係る正極集電体の製造方法は、前記した直流電解エッチングを含むものであれば特に限定されず、他の処理を含むものでもよい。他の処理としては、例えば、直流電解エッチング前後でアルミニウム合金箔の表面を清浄化する水またはアルカリ等を用いた洗浄処理を行ってもよい。   Moreover, the manufacturing method of the positive electrode electrical power collector which concerns on this invention will not be specifically limited if the above-mentioned direct current | flow electrolysis etching is included, Other processes may be included. As another treatment, for example, a washing treatment using water or alkali that cleans the surface of the aluminum alloy foil before and after the direct current electrolytic etching may be performed.

次に、本発明に係るリチウムイオン電池用正極体について説明する。
図2に示すように、リチウムイオン電池用正極体10は、前記した正極集電体11と、正極集電体11の多数の孔を有する表面側に形成された正極活物質層12とを備えることを特徴とする。このように、正極活物質層12が正極集電体11の多数の孔を有する表面側に形成されることによって、正極集電体11と正極活物質層12との密着性が向上する。また、正極集電体11および正極活物質層12の厚さは、使用されるリチウムイオン電池の用途により異なるものであるが、厚さ:10〜100μmの正極集電体11、厚さ:10〜150μmの正極活物質層12が好ましい。なお、正極集電体11については、前記のとおりであるので、説明を省略する。
Next, the positive electrode body for a lithium ion battery according to the present invention will be described.
As shown in FIG. 2, the positive electrode body 10 for a lithium ion battery includes the above-described positive electrode current collector 11 and a positive electrode active material layer 12 formed on the surface side having a large number of holes of the positive electrode current collector 11. It is characterized by that. Thus, the positive electrode active material layer 12 is formed on the surface side of the positive electrode current collector 11 having a large number of holes, whereby the adhesion between the positive electrode current collector 11 and the positive electrode active material layer 12 is improved. Moreover, although the thickness of the positive electrode current collector 11 and the positive electrode active material layer 12 varies depending on the use of the lithium ion battery used, the thickness: 10 to 100 μm of the positive electrode current collector 11, the thickness: 10 A positive electrode active material layer 12 of ˜150 μm is preferable. Since the positive electrode current collector 11 is as described above, the description thereof is omitted.

正極活物質層12は、正極活物質からなり、その正極活物質としては、リチウムイオンを吸蔵、放出可能な物質であれば特に限定されず、例えばリチウム含有化合物が挙げられ、リチウム含有化合物の中でもリチウムとマンガンの複合酸化物、リチウムとコバルトの複合酸化物、リチウムとニッケルの複合酸化物が好ましい。また、正極活物質層12を正極集電体11の表面に形成させる際に使用される後記するスラリの安定化および正極活物質層12に十分な強度を持たせるために、正極活物質の平均粒径は30μm以下が好ましい。   The positive electrode active material layer 12 is made of a positive electrode active material, and the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions, and examples thereof include lithium-containing compounds, among lithium-containing compounds. A composite oxide of lithium and manganese, a composite oxide of lithium and cobalt, and a composite oxide of lithium and nickel are preferable. Further, in order to stabilize the slurry used later when the positive electrode active material layer 12 is formed on the surface of the positive electrode current collector 11 and to provide the positive electrode active material layer 12 with sufficient strength, an average of the positive electrode active material is used. The particle size is preferably 30 μm or less.

また、正極活物質層12は、正極活物質以外に必要に応じて導電材およびバインダを含有したものであってもよい。導電材としては、正極活物質層12の導電性を向上させる物質で、例えば、カーボン、アセチレンブラックやケッチェンブラック等のカーボンブラック等が挙げられる。また、バインダとしては、正極活物質を正極活物質層12の内部に固定化させる物質で、フッ素系バインダが挙げられ、フッ素系バインダの中でもポリビニリデンフロライド(PVDF、ポリフッ化ビニリデン)、ポリテトラフルオロエチレン(PTFE)が好ましい。   Moreover, the positive electrode active material layer 12 may contain a conductive material and a binder as necessary in addition to the positive electrode active material. The conductive material is a substance that improves the conductivity of the positive electrode active material layer 12, and examples thereof include carbon, carbon black such as acetylene black and ketjen black, and the like. The binder is a substance that immobilizes the positive electrode active material in the positive electrode active material layer 12 and includes a fluorine-based binder. Among the fluorine-based binders, polyvinylidene fluoride (PVDF, polyvinylidene fluoride), polytetra Fluoroethylene (PTFE) is preferred.

リチウムイオン電池用正極体10の製造方法としては、正極集電体11の表面に正極活物質層12を形成(一体化)させることができれば特に限定されず、例えば、正極活物質、導電材およびバインダを溶剤に加えて混合したスラリを、アルミニウム合金箔からなる正極集電体11の上にバーコータまたはドクターブレード等によって塗工し、乾燥する方法が好ましい。ここで、溶剤としては、沸点100℃以下の揮発性の有機溶媒であるテトラハイドロフラン(THF)、アセトン等が作業性の観点で好ましい。また、スラリにおける正極活物質、導電材およびバインダの含有量は、正極体10が使用されるリチウムイオン電池の用途によって異なるが、一般的には、正極活物質が70〜100質量%好ましくは90〜98質量%、導電材が1〜50質量%好ましくは2〜30質量%、バインダが1〜50質量%好ましくは5〜15質量%であることが好ましい。   The method for producing the positive electrode body 10 for a lithium ion battery is not particularly limited as long as the positive electrode active material layer 12 can be formed (integrated) on the surface of the positive electrode current collector 11. For example, the positive electrode active material, conductive material, and A method in which a slurry in which a binder is added to a solvent and mixed is applied onto the positive electrode current collector 11 made of an aluminum alloy foil by a bar coater or a doctor blade and dried is preferable. Here, as a solvent, tetrahydrofuran (THF) which is a volatile organic solvent having a boiling point of 100 ° C. or less, acetone, and the like are preferable from the viewpoint of workability. The contents of the positive electrode active material, the conductive material and the binder in the slurry vary depending on the use of the lithium ion battery in which the positive electrode body 10 is used, but generally the positive electrode active material is 70 to 100% by mass, preferably 90%. It is preferable that -98 mass%, a conductive material is 1-50 mass%, preferably 2-30 mass%, and a binder is 1-50 mass%, preferably 5-15 mass%.

次に、本発明に係る正極集電体の実施例について、本発明の要件を満たさない比較例と比較して具体的に説明する。
アルミニウム合金箔として、膜厚15μmの3003合金箔を用いた。アルミニウム合金箔を50×50mmに切断し、試料とした。表1に示すように、電解エッチング溶液として過塩素酸:酢酸=4:1(質量%比)の混合溶液を用い、冷却機を用いて電解エッチング溶液を10±1℃に保ち、僅かに攪拌を加えた電解エッチング溶液中で、試料の表面に直流電解エッチング処理を行った。電流密度は20〜450mA/cmの間で適宜設定した。また、電解時間は、正極集電体の強度の観点より、アルミニウム合金箔の厚さが著しく減少しない1〜30秒の間で適宜設定した。その後、純水を用いて十分に水洗し、乾燥することでアルミニウム合金箔表面に多数の孔を有する正極集電体(実施例の試料No.1〜5、比較例の試料No.6〜7)を得た。
Next, examples of the positive electrode current collector according to the present invention will be specifically described in comparison with comparative examples that do not satisfy the requirements of the present invention.
As the aluminum alloy foil, a 3003 alloy foil having a film thickness of 15 μm was used. The aluminum alloy foil was cut into 50 × 50 mm and used as a sample. As shown in Table 1, a mixed solution of perchloric acid: acetic acid = 4: 1 (mass% ratio) was used as the electrolytic etching solution, and the electrolytic etching solution was kept at 10 ± 1 ° C. using a cooler and was slightly stirred. The surface of the sample was subjected to direct current electrolytic etching treatment in an electrolytic etching solution to which was added. The current density was appropriately set between 20 and 450 mA / cm 2 . Moreover, the electrolysis time was appropriately set between 1 to 30 seconds in which the thickness of the aluminum alloy foil was not significantly reduced from the viewpoint of the strength of the positive electrode current collector. Then, the positive electrode current collector (sample No. 1-5 of an Example, sample No. 6-7 of a comparative example) which has many holes in the aluminum alloy foil surface by fully washing with pure water and drying. )

また、エッチング処理を行っていない未処理のアルミニウム合金箔を正極集電体(比較例の試料No.8)とした。さらに、表1に示すように、膜厚15μmの1000系合金箔を50×50mmに切断して試料とし、電解エッチング溶液として塩酸:リン酸:硝酸:硫酸=10:1:4:0.1(質量%比)の混合溶液を用い、僅かに攪拌を加えた電解エッチング溶液(25±1℃)中で、試料の表面に電流密度:300mA/cm、電解時間:10秒で交流電解エッチング処理を行い、水洗、乾燥して正極集電体(比較例の試料No.9)を得た。 In addition, an untreated aluminum alloy foil that was not subjected to etching treatment was used as a positive electrode current collector (sample No. 8 in the comparative example). Further, as shown in Table 1, a 1000 series alloy foil having a film thickness of 15 μm was cut into 50 × 50 mm to obtain a sample, and hydrochloric acid: phosphoric acid: nitric acid: sulfuric acid = 10: 1: 4: 0.1 as an electrolytic etching solution. Using a mixed solution of (mass% ratio), in an electrolytic etching solution (25 ± 1 ° C.) with slight stirring, AC electrolytic etching was performed on the surface of the sample with a current density of 300 mA / cm 2 and an electrolysis time of 10 seconds. It processed, washed with water, and dried and obtained the positive electrode electrical power collector (sample No. 9 of a comparative example).

得られた正極集電体(実施例の試料No.1〜5、比較例の試料No.6〜9)について、アルミニウム箔表面をレーザー顕微鏡(キーエンス社製 VK−9510)にて観察倍率500倍で観察し、平均孔径及び平均孔深さを測定した。その結果を表1に示す。なお、孔形状についても観察し、正極集電体(比較例の試料No.9)は海綿状の孔が観察され、それ以外の正極集電体(実施例の試料No.1〜5、比較例の試料No.6〜8)はピット状の孔が観察された。   About the obtained positive electrode collector (sample No. 1-5 of an Example, sample No. 6-9 of a comparative example), observation magnification 500 times in the aluminum foil surface with a laser microscope (Keyence Corporation VK-9510) And the average pore diameter and average pore depth were measured. The results are shown in Table 1. In addition, the hole shape was also observed, and the positive electrode current collector (Comparative Sample No. 9) showed spongy holes, and the other positive electrode current collectors (Example Sample Nos. 1 to 5, Comparative Example) In sample Nos. 6 to 8) of the example, pit-like holes were observed.

また、得られた正極集電体の表面に、正極活物質(コバルト酸リチウム、平均粒径3μm程度)92質量%、導電材(カーボン)3質量%、バインダ(ポリフッ化ビニリデン)5質量%を溶剤に加えて混合したスラリをバーコータにて塗布し、その後乾燥およびプレス工程を経て、正極集電体の表面に厚さ:80μmの正極活物質層が形成されたリチウムイオン電池用正極体(実施例の試料No.1〜5、比較例の試料No.6〜9)を得た。そして、得られたリチウムイオン電池用正極体について、正極活物質層と正極集電体(アルミニウム合金箔)との密着性評価試験を行った。   Further, 92% by mass of a positive electrode active material (lithium cobaltate, average particle size of about 3 μm), 3% by mass of a conductive material (carbon), and 5% by mass of a binder (polyvinylidene fluoride) were added to the surface of the obtained positive electrode current collector. A positive electrode body for a lithium ion battery in which slurry mixed in addition to a solvent is applied by a bar coater, and then dried and pressed to form a positive electrode active material layer having a thickness of 80 μm on the surface of the positive electrode current collector (implementation) Sample No. 1-5 of an example and sample No. 6-9 of a comparative example were obtained. And about the obtained positive electrode body for lithium ion batteries, the adhesive evaluation test of a positive electrode active material layer and a positive electrode electrical power collector (aluminum alloy foil) was done.

密着性評価試験としては、SAICAS試験(SAICAS法による薄膜のはく離強度評価,表面技術,Vol.58(2007),No.5,p.300参照)によって、単位刃幅当たりの水平力(kN/m)を算出した。具体的には、SAICAS−DN20型を用いて、アルミニウム合金箔と正極活物質層の界面に沿って切削をおこなった。最初は2軸方向、すなわち水平方向と垂直方向を同時に運動させ、正極活物質層への刃の切り込みを行った。正極活物質層内に切り込んだ刃がアルミニウム合金箔と正極活物質層の界面近傍に到達すると、刃にかかる力に大きな変化が観察される。この時点で、垂直方向の動きを止め、刃の動きを界面に平行な1軸方向(水平方向)のみに切り替えることにより、正極活物質層をアルミニウム合金箔との界面に沿って分離することができる。1軸運動の際の水平力が正極活物質層とアルミニウム合金箔との密着力に相当する。   As an adhesion evaluation test, a horizontal force (kN / per unit blade width) was determined by a SAICAS test (evaluation of peel strength of thin film by SAICAS method, surface technology, Vol. 58 (2007), No. 5, p. 300). m) was calculated. Specifically, cutting was performed along the interface between the aluminum alloy foil and the positive electrode active material layer using a SAICAS-DN20 type. Initially, two blade directions, that is, a horizontal direction and a vertical direction were moved simultaneously, and the blade was cut into the positive electrode active material layer. When the blade cut into the positive electrode active material layer reaches the vicinity of the interface between the aluminum alloy foil and the positive electrode active material layer, a large change is observed in the force applied to the blade. At this point, the positive electrode active material layer can be separated along the interface with the aluminum alloy foil by stopping the vertical movement and switching the movement of the blade to only one axial direction (horizontal direction) parallel to the interface. it can. The horizontal force during the uniaxial movement corresponds to the adhesion force between the positive electrode active material layer and the aluminum alloy foil.

この水平力を比較することによって各種のリチウムイオン電池用正極体の密着性を評価した。具体的には、エッチング処理を行っていない未処理のアルミニウム合金箔を正極集電体として用いたリチウムイオン電池用正極体(比較例の試料No.8)の水平力と比較して、水平力が飛躍的に向上するものを密着性が良好(○)、水平力が同等のものを密着性が不良(×)とした。その結果を表1に示す。   By comparing the horizontal force, the adhesion of various positive electrode bodies for lithium ion batteries was evaluated. Specifically, the horizontal force compared to the horizontal force of the positive electrode body for a lithium ion battery (sample No. 8 in the comparative example) using an untreated aluminum alloy foil that has not been subjected to etching treatment as the positive electrode current collector. Is markedly improved (◯), and those having the same horizontal force are considered poor (x). The results are shown in Table 1.

Figure 2011165637
Figure 2011165637

表1の結果から、実施例の試料No.1〜5のリチウムイオン電池用正極体は、アルミニウム合金箔の表面に平均孔径:1.0μm以上、平均アスペクト比(平均孔径/平均孔深さ):1.0以下の多数の孔が形成されたため、比較例の試料No.8と比較して水平力の顕著な向上が認められ、密着性が良好(○)であった。   From the results of Table 1, sample No. In the positive electrode body for lithium ion batteries of 1 to 5, a large number of pores having an average pore diameter of 1.0 μm or more and an average aspect ratio (average pore diameter / average pore depth) of 1.0 or less are formed on the surface of the aluminum alloy foil. Therefore, sample No. of the comparative example. A remarkable improvement in the horizontal force was observed compared to 8, and the adhesion was good (◯).

これに対して、比較例の試料No.6のリチウムイオン電池用正極体は、アルミニウム合金箔の表面に形成された多数の孔が、平均孔径:1.0μm以上ではあるが平均孔深さが十分でなく平均アスペクト比:1.0を超えるため、比較例の試料No.8と比較して水平力の顕著な向上が認められず、密着性が不良(×)であった。   In contrast, Sample No. In the positive electrode body for a lithium ion battery of No. 6, many holes formed on the surface of the aluminum alloy foil have an average hole diameter of 1.0 μm or more, but the average hole depth is not sufficient, and the average aspect ratio is 1.0. Therefore, the sample No. of the comparative example. Compared to 8, no significant improvement in horizontal force was observed, and the adhesion was poor (x).

比較例の試料No.7、9のリチウムイオン電池用正極体は、アルミニウム合金箔の表面に形成された多数の孔が、平均孔径:1.0μm未満であるため、平均孔径が小さく孔内部に正極活物質が入り込みにくく、比較例の試料No.8と比較して水平力の顕著な向上が認められず、密着性が不良(×)であった。   Sample No. of Comparative Example In the positive electrode body for lithium ion batteries 7 and 9, since many holes formed on the surface of the aluminum alloy foil have an average pore diameter of less than 1.0 μm, the average pore diameter is small and the positive electrode active material is difficult to enter inside the holes. Sample No. of the comparative example. Compared to 8, no significant improvement in horizontal force was observed, and the adhesion was poor (x).

また、有機ホスホン酸層を備えた正極集電体の実施例について、具体的に説明する。
アルミニウム合金箔として、膜厚15μmの3003合金箔を用いた。アルミニウム合金箔を50×50mmに切断し、試料とした。電解エッチング溶液として過塩素酸:酢酸=4:1(質量%比)の混合溶液を用い、冷却機を用いて電解エッチング溶液を10±1℃に保ち、僅かに攪拌を加えた電解エッチング溶液中で、試料の表面に直流電解エッチング処理を行った。電流密度は25〜400mA/cmの間で適宜設定した。また、電解時間は、正極集電体の強度の観点より、アルミニウム合金箔の厚さが著しく減少しない1〜30秒の間で適宜設定した。
Moreover, the Example of the positive electrode electrical power collector provided with the organic phosphonic acid layer is demonstrated concretely.
As the aluminum alloy foil, a 3003 alloy foil having a film thickness of 15 μm was used. The aluminum alloy foil was cut into 50 × 50 mm and used as a sample. In an electrolytic etching solution using a mixed solution of perchloric acid: acetic acid = 4: 1 (mass% ratio) as an electrolytic etching solution, keeping the electrolytic etching solution at 10 ± 1 ° C. using a cooler, and adding a little stirring. Then, the surface of the sample was subjected to direct current electrolytic etching. The current density was appropriately set between 25 and 400 mA / cm 2 . Moreover, the electrolysis time was appropriately set between 1 to 30 seconds in which the thickness of the aluminum alloy foil was not significantly reduced from the viewpoint of the strength of the positive electrode current collector.

電解エッチング処理の後、純水を用いて十分に水洗し、乾燥後、有機ホスホン酸層の形成を行った。有機ホスホン酸として、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸の3種類を用いた。それぞれの有機ホスホン酸を純水にて希釈して10g/Lの水溶液を調整して処理液とした。処理液を60℃に加温して、電解エッチング処理後のアルミニウム合金箔を60秒間浸漬し、その後、純水を用いて洗浄して、室温下で乾燥させ、有機ホスホン酸層を備えた正極集電体(実施例の試料No.10〜14)を得た。   After the electrolytic etching treatment, it was sufficiently washed with pure water, dried, and then an organic phosphonic acid layer was formed. Three types of organic phosphonic acids were used: methylphosphonic acid, ethylphosphonic acid, and vinylphosphonic acid. Each organic phosphonic acid was diluted with pure water to prepare a 10 g / L aqueous solution as a treatment solution. The treatment liquid is heated to 60 ° C., the aluminum alloy foil after the electrolytic etching treatment is immersed for 60 seconds, then washed with pure water, dried at room temperature, and provided with an organic phosphonic acid layer A current collector (Sample Nos. 10 to 14 in Examples) was obtained.

得られた正極集電体(実施例の試料No.10〜14)について、実施例1と同様の装置および方法で、アルミニウム合金箔表面に形成された孔の平均孔径及び平均孔深さを測定した。その結果を表2に示す。なお、孔形状についても観察し、ピット状の孔が観察された。また、FT−IR分析によって、有機ホスホン酸層が形成されていることが確認された。   With respect to the obtained positive electrode current collector (Sample Nos. 10 to 14 in Examples), the average hole diameter and average hole depth of the holes formed on the surface of the aluminum alloy foil were measured by the same apparatus and method as in Example 1. did. The results are shown in Table 2. The hole shape was also observed, and pit-shaped holes were observed. Further, it was confirmed by FT-IR analysis that an organic phosphonic acid layer was formed.

また、得られた正極集電体の表面に、実施例1と同様の正極活物質層を形成し、リチウムイオン電池用正極体(実施例の試料No.10〜14)を得た。そして、得られたリチウムイオン電池用正極体について、実施例1と同様にSAICAS試験による密着性評価を行った。その結果を表2に示す。   Moreover, the positive electrode active material layer similar to Example 1 was formed in the surface of the obtained positive electrode electrical power collector, and the positive electrode body for lithium ion batteries (sample No. 10-14 of an Example) was obtained. And about the obtained positive electrode body for lithium ion batteries, the adhesive evaluation by a SAICAS test was performed similarly to Example 1. FIG. The results are shown in Table 2.

Figure 2011165637
Figure 2011165637

表2の結果から、実施例の試料No.10〜14のリチウムイオン電池用正極体は、アルミニウム合金箔の表面に平均孔径:1.0μm以上、平均アスペクト比:1.0以下の多数の孔が形成されたため、比較例の試料No.8と比較して水平力の顕著な向上が認められ、密着性が良好(○)であった。   From the results in Table 2, sample No. In the positive electrode body for a lithium ion battery of Nos. 10 to 14, a large number of holes having an average pore diameter of 1.0 μm or more and an average aspect ratio of 1.0 or less were formed on the surface of the aluminum alloy foil. A remarkable improvement in the horizontal force was observed compared to 8, and the adhesion was good (◯).

また、実施例の試料No.10およびNo.11の結果を、同条件で電解エッチング処理を行なった実施例の試料No.2(表1参照)の結果と比較すると、有機ホスホン酸層が平均孔径及び平均孔深さに影響を及ぼしていないことが分かる。一方、水平力については、有機ホスホン酸層の形成により値が大きくなっており、密着性の向上が認められた。さらに、実施例の試料No.12と実施例の試料No.3(表1参照)との比較、実施例の試料No.13およびNo.14と実施例の試料No.5(表1参照)との比較においても、有機ホスホン酸層が平均孔径及び平均孔深さに影響を及ぼしていないことが分かると共に、有機ホスホン酸層の形成による密着性の向上が認められた。   In addition, Sample No. 10 and no. No. 11 is the same as the sample No. of Example in which the electrolytic etching treatment was performed under the same conditions. 2 (see Table 1), it can be seen that the organic phosphonic acid layer does not affect the average pore diameter and the average pore depth. On the other hand, the horizontal force increased due to the formation of the organic phosphonic acid layer, and improved adhesion was observed. Furthermore, sample No. of an Example. 12 and the sample No. of Example. 3 (see Table 1), Sample No. 13 and no. 14 and the sample No. of Example. 5 (see Table 1), it was found that the organic phosphonic acid layer did not affect the average pore diameter and average pore depth, and improved adhesion due to the formation of the organic phosphonic acid layer was observed. .

1 アルミニウム合金箔
1a 有機ホスホン酸層
2 孔
10 リチウムイオン電池用正極体(正極体)
11 正極集電体
12 正極活物質層
DESCRIPTION OF SYMBOLS 1 Aluminum alloy foil 1a Organic phosphonic acid layer 2 Hole 10 Positive electrode body for lithium ion batteries (positive electrode body)
11 Positive Current Collector 12 Positive Electrode Active Material Layer

Claims (7)

表面に正極活物質層が形成されてリチウムイオン電池用正極体となる正極集電体であって、アルミニウム合金箔を備え、そのアルミニウム合金箔の前記正極活物質層が形成される表面側に複数の孔を有し、前記複数の孔の平均孔径が1.0μm以上で、かつ(平均孔径/平均孔深さ)で定義される平均アスペクト比が1.0以下であることを特徴とする正極集電体。   A positive electrode current collector having a positive electrode active material layer formed on a surface thereof to be a positive electrode for a lithium ion battery, comprising an aluminum alloy foil, and a plurality of the aluminum alloy foil on the surface side where the positive electrode active material layer is formed Wherein the plurality of holes have an average hole diameter of 1.0 μm or more and an average aspect ratio defined by (average hole diameter / average hole depth) is 1.0 or less. Current collector. 前記孔が、ピット状の孔であることを特徴とする請求項1に記載の正極集電体。   The positive electrode current collector according to claim 1, wherein the hole is a pit-shaped hole. 複数の孔を有する前記アルミニウム合金箔が、前記正極活物質層が形成される表面側に有機ホスホン酸を含む有機ホスホン酸層を備えることを特徴とする請求項1または請求項2に記載の正極集電体。   3. The positive electrode according to claim 1, wherein the aluminum alloy foil having a plurality of holes includes an organic phosphonic acid layer containing organic phosphonic acid on a surface side on which the positive electrode active material layer is formed. Current collector. 前記有機ホスホン酸が、メチルホスホン酸、エチルホスホン酸、ビニルホスホン酸のうちから選択される1種以上であることを特徴とする請求項3に記載の正極集電体。   The positive electrode current collector according to claim 3, wherein the organic phosphonic acid is one or more selected from methylphosphonic acid, ethylphosphonic acid, and vinylphosphonic acid. 請求項1または請求項2に記載の正極集電体の製造方法であって、アルミニウム合金箔の表面を直流電解エッチングすることを特徴とする正極集電体の製造方法。   The method for producing a positive electrode current collector according to claim 1 or 2, wherein the surface of the aluminum alloy foil is subjected to direct current electrolytic etching. 請求項5に記載の正極集電体の製造方法であって、直流電解エッチングした前記アルミニウム合金箔の表面を有機ホスホン酸水溶液で処理することを特徴とする正極集電体の製造方法。   6. The method for producing a positive electrode current collector according to claim 5, wherein the surface of the aluminum alloy foil subjected to direct current electrolytic etching is treated with an organic phosphonic acid aqueous solution. 請求項1ないし請求項4のいずれか一項に記載の正極集電体と、前記正極集電体の複数の孔を有する表面側に形成された正極活物質からなる正極活物質層とを備えることを特徴とするリチウムイオン電池用正極体。   5. A positive electrode current collector according to claim 1, and a positive electrode active material layer made of a positive electrode active material formed on a surface side having a plurality of holes of the positive electrode current collector. The positive electrode body for lithium ion batteries characterized by the above-mentioned.
JP2010106657A 2010-01-12 2010-05-06 Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery Pending JP2011165637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106657A JP2011165637A (en) 2010-01-12 2010-05-06 Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010004360 2010-01-12
JP2010004360 2010-01-12
JP2010106657A JP2011165637A (en) 2010-01-12 2010-05-06 Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery

Publications (1)

Publication Number Publication Date
JP2011165637A true JP2011165637A (en) 2011-08-25

Family

ID=44596048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106657A Pending JP2011165637A (en) 2010-01-12 2010-05-06 Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery

Country Status (1)

Country Link
JP (1) JP2011165637A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110049A (en) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
WO2013133040A1 (en) * 2012-03-08 2013-09-12 株式会社 日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
EP2869323A1 (en) 2013-10-30 2015-05-06 Seiji Kagawa Method for producing porous metal foil
EP3012848A1 (en) 2014-10-21 2016-04-27 Kagawa, Seiji Method and apparatus for producing microporous metal foil
JP2016154112A (en) * 2015-02-20 2016-08-25 エレクセル株式会社 Lithium ion secondary battery
KR20160144444A (en) 2014-04-10 2016-12-16 세이지 까가와 Method and apparatus for producing microporous metal foil
US20170092955A1 (en) * 2014-06-06 2017-03-30 Uacj Corporation Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
CN110313086A (en) * 2017-02-21 2019-10-08 日本碍子株式会社 Sintered lithium complex oxide plate
US10879524B2 (en) 2014-09-23 2020-12-29 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
WO2023120048A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery, method for manufacturing same, and secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110049A (en) * 2011-11-24 2013-06-06 Mitsubishi Alum Co Ltd Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
WO2013133040A1 (en) * 2012-03-08 2013-09-12 株式会社 日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and battery module
JP2013187034A (en) * 2012-03-08 2013-09-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
US9889479B2 (en) 2013-10-30 2018-02-13 Seiji Kagawa Method for producing porous metal foil
EP2869323A1 (en) 2013-10-30 2015-05-06 Seiji Kagawa Method for producing porous metal foil
US10283284B2 (en) 2014-04-10 2019-05-07 Seiji Kagawa Method and apparatus for producing microporous metal foil
KR20160144444A (en) 2014-04-10 2016-12-16 세이지 까가와 Method and apparatus for producing microporous metal foil
US10418636B2 (en) * 2014-06-06 2019-09-17 Uacj Corporation Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
US20170092955A1 (en) * 2014-06-06 2017-03-30 Uacj Corporation Current-collector metal foil, current collector, and current-collector-metal-foil manufacturing method
US10879524B2 (en) 2014-09-23 2020-12-29 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US9968975B2 (en) 2014-10-21 2018-05-15 Seiji Kagawa Method and apparatus for producing microporous metal foil
EP3012848A1 (en) 2014-10-21 2016-04-27 Kagawa, Seiji Method and apparatus for producing microporous metal foil
EP3255708A4 (en) * 2015-02-20 2018-08-08 Elexcel Corporation Ltd. Lithium-ion secondary battery
JP2016154112A (en) * 2015-02-20 2016-08-25 エレクセル株式会社 Lithium ion secondary battery
CN110313086A (en) * 2017-02-21 2019-10-08 日本碍子株式会社 Sintered lithium complex oxide plate
WO2023120048A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery, method for manufacturing same, and secondary battery

Similar Documents

Publication Publication Date Title
JP2011165637A (en) Positive electrode collector, method of manufacturing the same, and positive electrode body for lithium ion battery
US9947918B2 (en) Porous silicon particulates with micropores and mesopores within macropores
KR101326623B1 (en) Positive Current Collector Coated with Primer and Magnesium Secondary Battery Comprising the Same
JP5280313B2 (en) Lithium ion polymer battery comprising a polyolefin microporous membrane surface-modified with a hydrophilic polymer, a surface modification method thereof, and a surface-modified polyolefin microporous membrane as a separator
CN101867037B (en) Iron-phosphate-based lithium-ion battery positive plate and preparation method thereof
JP5663976B2 (en) Polarized electrodes, electrochemical devices and lead-acid batteries
TW201633590A (en) Current collector, method for producing current collector, electrode, lithium ion secondary battery, redox flow battery, and electric double layer capacitor
CN112054212B (en) Porous aluminum foil for lithium ion battery current collector and preparation method and application thereof
JPWO2011148864A1 (en) Molten salt battery
CN103606703A (en) Lithium ion battery with uniform and stable current density
JP2014063676A (en) Aqueous binder liquid for secondary battery positive electrode, aqueous paste for secondary battery positive electrode produced with aqueous binder liquid, secondary battery positive electrode, and secondary battery
CN107968205A (en) A kind of method of the modified fluorinated carbon positive electrode of chemical reduction method
Wang et al. Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High‐Performance Lithium‐ion Batteries
JP2019519901A (en) Electrode materials and processes for their preparation
TW201427157A (en) Self-assembly carbon substrate cell negative electrode structure
JP4892236B2 (en) Active material separation method for electrode plates for storage batteries
US20230138359A1 (en) Method for composite delamination
US20200295333A1 (en) Separators for electrochemical cells and methods of making the same
US20140199578A1 (en) Flexible alkaline battery
JP2013175418A (en) Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2015053136A (en) Lithium air battery and positive complex
WO2014156068A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2017107826A (en) Electrode and method of manufacturing the same, and all-solid-state lithium ion battery
JP2013038070A (en) Negative electrode active material for lithium ion secondary battery, manufacturing method of negative electrode active material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019521499A (en) Flexible electrode-separator elements and processes for their preparation