JP2015053136A - Lithium air battery and positive complex - Google Patents

Lithium air battery and positive complex Download PDF

Info

Publication number
JP2015053136A
JP2015053136A JP2013184280A JP2013184280A JP2015053136A JP 2015053136 A JP2015053136 A JP 2015053136A JP 2013184280 A JP2013184280 A JP 2013184280A JP 2013184280 A JP2013184280 A JP 2013184280A JP 2015053136 A JP2015053136 A JP 2015053136A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
air battery
aqueous electrolyte
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013184280A
Other languages
Japanese (ja)
Inventor
カリール ラーマン
Khalilur Rahman
カリール ラーマン
重日 密岡
Shigeaki Mitsuoka
重日 密岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013184280A priority Critical patent/JP2015053136A/en
Priority to DE102014112191.0A priority patent/DE102014112191A1/en
Priority to CN201410449593.XA priority patent/CN104425856B/en
Publication of JP2015053136A publication Critical patent/JP2015053136A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium air battery that enables continuous heavy-current discharge.SOLUTION: A lithium air battery comprises at least a positive complex that uses oxygen as a cathode active substance, an anode that uses lithium as an anode active substance, and an aqueous electrolyte that is interposed between a cathode and the anode. The aqueous electrolyte includes lithium chloride and a boric acid, a phosphoric acid or a combination of them. The positive complex comprises at least the cathode, the boric acid and a metal catalyst.

Description

本発明は、リチウム空気電池および正極複合体に関し、特に、継続的な大電流の放電を可能とするリチウム空気電池に関する。   The present invention relates to a lithium-air battery and a positive electrode composite, and more particularly to a lithium-air battery that enables continuous high-current discharge.

正極活物質として空気中の酸素を利用し、負極活物質としてリチウムを用いるリチウム空気電池は、理論的にエネルギー密度が高い。そのため、リチウム空気電池は、電気自動車の本格的な普及に必要とされるリチウムイオン電池を数倍上回るエネルギー密度を得ることができる電池として、期待されている。   A lithium air battery that uses oxygen in the air as the positive electrode active material and lithium as the negative electrode active material has a theoretically high energy density. Therefore, a lithium air battery is expected as a battery capable of obtaining an energy density several times higher than that of a lithium ion battery required for full-scale spread of electric vehicles.

リチウム空気電池は、電解質の種類により、水系電解質を用いる電池と非水系電解質を用いる電池に大別される。水系電解質としては、水酸化リチウム水溶液や水酸化カリウム水溶液等が用いられる。また、非水系電解質としては、炭酸エチレン等が用いられる。   Lithium-air batteries are broadly classified into batteries using aqueous electrolytes and batteries using non-aqueous electrolytes, depending on the type of electrolyte. As the aqueous electrolyte, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or the like is used. Moreover, ethylene carbonate etc. are used as a non-aqueous electrolyte.

リチウム空気電池の研究開発の主流は、非水系電解質を用いる電池である。これは、電池の構造が単純であり、また、正極以外はリチウムイオン電池の技術を利用することができるからである。   The mainstream of lithium-air battery research and development is a battery using a non-aqueous electrolyte. This is because the structure of the battery is simple and the technology of the lithium ion battery can be used except for the positive electrode.

その一方で、いまだ数は少ないものの、水系電解質を用いるリチウム空気電池についての検討がされている(例えば、特許文献1)。水系電解質を用いるリチウム空気電池は、非水系電解質を用いるリチウム空気電池と比べて使用する水系電解質が安価で不燃性である、といった長所がある。   On the other hand, a lithium-air battery using a water-based electrolyte has been studied although the number is still small (for example, Patent Document 1). Lithium air batteries using aqueous electrolytes have the advantage that the aqueous electrolyte used is cheaper and nonflammable compared to lithium air batteries using non-aqueous electrolytes.

一般的に、電池において、電流が同じであれば、放電電圧を上げることにより電流(A)×電圧(V)であらわされる電力(W)が大きくなる。そのため、電力(W)×時間(h)であらわされる電力量(Wh)も大きくなることから、放電電圧を上げることにより、電池の放電電力量を大きくすることができる。すなわち、電池の電力量を向上するためには、初期電圧を増加させる必要がある。   Generally, in a battery, if the current is the same, the electric power (W) expressed as current (A) × voltage (V) increases by increasing the discharge voltage. Therefore, the amount of electric power (Wh) expressed by electric power (W) × time (h) is also increased, so that the discharge electric energy of the battery can be increased by increasing the discharge voltage. That is, in order to improve the electric energy of the battery, it is necessary to increase the initial voltage.

ここで、リチウム空気電池の放電時の正極および負極の反応は、下記式(1)、式(2)のとおりである。   Here, the reaction of the positive electrode and the negative electrode during discharge of the lithium-air battery is as shown in the following formulas (1) and (2).

Figure 2015053136
Figure 2015053136

Figure 2015053136
Figure 2015053136

放電時には、式(2)により生成したLiと、式(1)により生成したOHが反応して、水酸化リチウム(LiOH)を生成する。水酸化リチウムが水系電解質に溶解すると、水系電解質はアルカリ性となる。ここで、水系電解質のpHが上昇してアルカリ性になると、正極の活性が低くなり、式(1)のOHの生成量が少なくなる。すなわち、水系電解質がアルカリ性になると、式(1)の反応が起こりにくくなり、電子eの量も少なくなるため、電流値が小さくなる。電流値が大きい場合には瞬間的、部分的にpHが上昇してしまうため継続して放電することが困難である。 At the time of discharging, Li + generated by the formula (2) and OH generated by the formula (1) react to generate lithium hydroxide (LiOH). When lithium hydroxide is dissolved in the aqueous electrolyte, the aqueous electrolyte becomes alkaline. Here, when the pH of the aqueous electrolyte rises and becomes alkaline, the activity of the positive electrode is lowered, and the amount of OH − in the formula (1) is reduced. That is, when the aqueous electrolyte becomes alkaline, the reaction of the formula (1) does not easily occur, and the amount of electrons e decreases, so the current value decreases. When the current value is large, the pH rises momentarily and partially, making it difficult to continuously discharge.

特許第4298234号公報Japanese Patent No. 4298234

上記問題点に鑑み、本発明は、継続的な大電流の放電が可能となるリチウム空気電池を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a lithium-air battery capable of continuously discharging a large current.

上記の問題を解決するため、本発明者は、大電流の放電が可能なリチウム水系の空気電池について、鋭意検討を行った。その結果、水系電解質のpHを弱酸性にすることで、正極複合体の金属触媒の活性が増大し、正極での反応が促進される結果、大電流の放電が可能となることを見出した。さらに、正極複合体に所定の無機酸を含有させれば、水系電解質のpHを弱酸性に維持することが可能となり、大電流の放電を継続することが可能となった。本発明者は、これらの知見から、本発明を想到するに至った。   In order to solve the above problems, the present inventor has intensively studied a lithium water-based air battery capable of discharging a large current. As a result, it has been found that by making the pH of the aqueous electrolyte weakly acidic, the activity of the metal catalyst of the positive electrode composite is increased and the reaction at the positive electrode is promoted, so that a large current can be discharged. Furthermore, if a predetermined inorganic acid is contained in the positive electrode composite, the pH of the aqueous electrolyte can be kept weakly acidic, and a large current discharge can be continued. The present inventor has come up with the present invention from these findings.

すなわち、本発明に係るリチウム空気電池は、酸素を正極活物質とする正極複合体と、リチウムを負極活物質とする負極と、前記正極と前記負極との間に介在する水系電解質と、を少なくとも備え、前記水系電解質は、塩化リチウムと、ホウ酸、もしくはリン酸、またはこれらの組み合わせとを含み、前記正極複合体は、正極と、ホウ酸と、金属触媒とを少なくとも含むリチウム空気電池、である。   That is, the lithium-air battery according to the present invention includes at least a positive electrode composite having oxygen as a positive electrode active material, a negative electrode having lithium as a negative electrode active material, and an aqueous electrolyte interposed between the positive electrode and the negative electrode. And the aqueous electrolyte includes lithium chloride and boric acid or phosphoric acid, or a combination thereof, and the positive electrode composite is a lithium-air battery including at least a positive electrode, boric acid, and a metal catalyst. is there.

本発明は、別の側面で、リチウム空気電池に用いる正極複合体であり、該正極複合体は、正極と、ホウ酸と、金属触媒とを少なくとも含む。   In another aspect, the present invention is a positive electrode composite used for a lithium-air battery, and the positive electrode composite includes at least a positive electrode, boric acid, and a metal catalyst.

本発明のリチウム空気電池によれば、継続的な大電流の放電を可能とすることができる。   According to the lithium air battery of the present invention, it is possible to continuously discharge a large current.

本発明のリチウム空気電池1の断面模式図である。It is a cross-sectional schematic diagram of the lithium air battery 1 of the present invention. 正極複合体2の模式図である。2 is a schematic diagram of a positive electrode composite 2. FIG. リチウム空気電池の放電特性を示す図である。It is a figure which shows the discharge characteristic of a lithium air battery.

以下、本発明について、その一般的形態を詳細に説明する。ただし、本発明は、以下に説明する形態によって限定されるものではない。   Hereinafter, the general form of the present invention will be described in detail. However, this invention is not limited by the form demonstrated below.

本発明のリチウム空気電池は、正極複合体と、負極と、水系電解質と、を少なくとも備える。正極複合体は、酸素を正極活物質とし、負極は、リチウムを負極活物質とする。   The lithium-air battery of the present invention includes at least a positive electrode composite, a negative electrode, and an aqueous electrolyte. The positive electrode composite uses oxygen as a positive electrode active material, and the negative electrode uses lithium as a negative electrode active material.

そして、水系電解質は、正極と負極との間に介在し、塩化リチウムと、ホウ酸、もしくはリン酸、またはこれらの組み合わせと、を含む。電解質は、正極と負極との間に介在することにより、直流の電力を生み出す電池となる。そして、塩化リチウムは、放電時に生製するLiOHを析出させ、過度な溶解によるpHの上昇を防ぐものである。   The aqueous electrolyte is interposed between the positive electrode and the negative electrode, and includes lithium chloride, boric acid, phosphoric acid, or a combination thereof. The electrolyte is a battery that generates direct-current power by being interposed between the positive electrode and the negative electrode. And lithium chloride precipitates LiOH produced at the time of discharge, and prevents the increase in pH due to excessive dissolution.

ホウ酸、およびリン酸は、水系電解質のpHを弱酸性とする無機酸である。水系電解質が弱酸性となることにより、正極での反応が促進される結果、大電流の放電が可能となる。ホウ酸およびリン酸は、いずれかのみを含むことができ、また、組み合わせて含むことができる。水系電解質のpHは、放電時に式(2)により生成したLiと式(1)により生成したOHが反応して水酸化リチウムを生成することにより、pHが徐々に上昇することとなる。大電流の放電を継続するためには、水系電解質のpHを弱酸性領域に長く維持する必要がある。そのためには、無機酸の濃度が高いことが好ましく、飽和量の無機酸が水系電解質に溶解していることが、より好ましい。 Boric acid and phosphoric acid are inorganic acids that make the pH of the aqueous electrolyte weakly acidic. Since the aqueous electrolyte becomes weakly acidic, the reaction at the positive electrode is promoted, so that a large current can be discharged. Boric acid and phosphoric acid can contain only one or in combination. The pH of the aqueous electrolyte gradually increases as Li + generated by the formula (2) and OH generated by the formula (1) react to generate lithium hydroxide during discharge. In order to continue discharging with a large current, it is necessary to maintain the pH of the aqueous electrolyte in a weakly acidic region for a long time. For that purpose, it is preferable that the concentration of the inorganic acid is high, and it is more preferable that a saturated amount of the inorganic acid is dissolved in the aqueous electrolyte.

本発明のリチウム空気電池は、正極複合体、負極複合体、および水系電解質のほか、有機電解質、固体電解質を備えることができる。有機電解質は、負極と固体電解質との間に介在して負極のリチウムから溶け出たリチウムイオン(Li)の通り道となる役割を果たし、例えば高分子から構成されるドライポリマー電解質が挙げられる。また、固体電解質は、有機電解質と水系電解質との間に介在してLiのみを負極から水系電解質へ選択的に通過する役割を果たし、例えばガラスセラミックスのLTAP(Li1+x+yTi2−xAl3−ySi12)が挙げられる。 The lithium air battery of the present invention can include an organic electrolyte and a solid electrolyte in addition to the positive electrode composite, the negative electrode composite, and the aqueous electrolyte. The organic electrolyte is interposed between the negative electrode and the solid electrolyte and serves as a path for lithium ions (Li + ) dissolved from lithium of the negative electrode, and examples thereof include a dry polymer electrolyte composed of a polymer. In addition, the solid electrolyte is interposed between the organic electrolyte and the aqueous electrolyte and selectively passes only Li + from the negative electrode to the aqueous electrolyte. For example, LTAP (Li 1 + x + y Ti 2-x Al x of glass ceramics). P 3-y Si y O 12 ) can be mentioned.

本発明において、正極複合体は、正極と、ホウ酸と、金属触媒とを少なくとも含む。ホウ酸は、水系電解質へ徐々に溶解することにより、水系電解質のpHを弱酸性に維持することができ、大電流の放電を継続することができる。また、金属触媒は、正極における式(1)の反応を促進することのできる触媒である。金属触媒としては、白金を担持したカーボン粉末、遷移金属酸化物等が挙げられる。ホウ酸は、金属触媒の近傍に配置することにより、金属触媒の活性を高めることができる。   In the present invention, the positive electrode composite includes at least a positive electrode, boric acid, and a metal catalyst. Boric acid gradually dissolves in the aqueous electrolyte, so that the pH of the aqueous electrolyte can be kept weakly acidic, and a large current discharge can be continued. Moreover, a metal catalyst is a catalyst which can accelerate | stimulate reaction of Formula (1) in a positive electrode. Examples of the metal catalyst include platinum-supported carbon powder and transition metal oxide. Boric acid can increase the activity of the metal catalyst by arranging it in the vicinity of the metal catalyst.

本発明において、正極は、カーボンクロス、カーボン不織布、またはカーボンペーパーのようなものであることが好ましい。これらの材料は、空気中の酸素を取り入れるために多孔質である上に、集電体としての導電性とアルカリ電解質に耐える耐食性があるため、リチウム空気電池の正極として好適な材料である。   In the present invention, the positive electrode is preferably a carbon cloth, carbon non-woven fabric, or carbon paper. These materials are suitable for use as a positive electrode of a lithium air battery because they are porous for taking in oxygen in the air, have conductivity as a current collector, and have corrosion resistance to withstand alkaline electrolyte.

正極複合体は、例えばカーボンクロスを正極とし、カーボンクロスの表面に白金を担持したカーボン粉末と、ホウ酸を結着することにより形成することができる。正極複合体の製造方法の具体例としては、まず、白金を担持したカーボン粉末と、ホウ酸粉末と、結着材としてポリフッ化ビニリデン(PVDF)を混合して混合粉末とし、混合粉末に溶媒としてN−メチルピロリドン(NMP)を加えてペースト化する。次にペーストをカーボンクロスに200μm〜400μmの厚さで均等に塗布し、約90℃に加熱して真空乾燥する。これらの工程により、正極複合体を製造することができる。   The positive electrode composite can be formed, for example, by binding boric acid to carbon powder having carbon cloth as a positive electrode and carrying platinum on the surface of the carbon cloth. As a specific example of the manufacturing method of the positive electrode composite, first, carbon powder carrying platinum, boric acid powder, and polyvinylidene fluoride (PVDF) as a binder are mixed to form a mixed powder, and the mixed powder is used as a solvent. N-methylpyrrolidone (NMP) is added to form a paste. Next, the paste is evenly applied to the carbon cloth with a thickness of 200 μm to 400 μm, heated to about 90 ° C. and vacuum dried. Through these steps, the positive electrode composite can be produced.

結着材としては、上記PVDFの他、ポリテトラフルオロエチレン(PTFE)や、カルボキシメチルセルロース(CMC)等を用いることができる。また、溶媒としては、上記NMPの他、ジメチルスルフォキサイド(DMSO)、ジメチルフォルムアミド(DMF)、テトラヒドロフラン(THF)等、結着材を溶解させることのできる有機溶媒を用いることができる。   As the binder, polytetrafluoroethylene (PTFE), carboxymethylcellulose (CMC), or the like can be used in addition to the PVDF. As the solvent, in addition to NMP, an organic solvent that can dissolve the binder, such as dimethyl sulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), or the like can be used.

本発明のリチウム空気電池において、負極は、金属リチウム、LiSiO、LiSn、LiSn、LiSn、LiSOO、Mg−9%Li、LiAlH、LiBHまたはLiCのいずれかとすることができる。これらのリチウム化合物であれば、式(2)の反応を起こすことが可能であり、負極とすることができる。 In the lithium-air battery of the present invention, the negative electrode is made of metallic lithium, Li 4 SiO 4 , Li 7 Sn 3 , LiSn, Li 2 Sn 5 , Li 2 SO 4 H 2 O, Mg-9% Li, LiAlH 4 , LiBH 4. Or LiC 6 . If these lithium compounds are used, the reaction of the formula (2) can be caused and a negative electrode can be obtained.

以下、本発明のリチウム空気電池について、その実施の形態を、図面を参照して説明する。この場合において、本発明は図面の実施形態に限定されるものではない。   Hereinafter, embodiments of the lithium-air battery of the present invention will be described with reference to the drawings. In this case, the present invention is not limited to the embodiments of the drawings.

図1は、本発明のリチウム空気電池1の断面模式図である。酸素を正極活物質とする正極複合体2と、リチウムを負極活物質とする負極3と、正極複合体2と負極3との間に介在する水系電解質4を備える。有機電解質5は、負極3と固体電解質6との間に介在し、固体電解質6は、有機電解質5と水系電解質4との間に介在する。   FIG. 1 is a schematic cross-sectional view of a lithium air battery 1 of the present invention. A positive electrode composite 2 using oxygen as a positive electrode active material, a negative electrode 3 using lithium as a negative electrode active material, and an aqueous electrolyte 4 interposed between the positive electrode composite 2 and the negative electrode 3 are provided. The organic electrolyte 5 is interposed between the negative electrode 3 and the solid electrolyte 6, and the solid electrolyte 6 is interposed between the organic electrolyte 5 and the aqueous electrolyte 4.

下記式(2)に示す反応のように、負極3のリチウムは、有機電解質5に溶解してLiとなり、電子eは導線7を通って正極複合体2へ供給される。溶解したLiは、固体電解質6を通過して水系電解質4に移動する。 Like the reaction shown in the following formula (2), lithium in the negative electrode 3 is dissolved in the organic electrolyte 5 to become Li + , and the electron e is supplied to the positive electrode composite 2 through the conductive wire 7. The dissolved Li + passes through the solid electrolyte 6 and moves to the aqueous electrolyte 4.

Figure 2015053136
Figure 2015053136

下記式(1)に示す反応のように、空気中の酸素と水系電解質4中の水、および負極3から供給された電子eが反応して、水酸化物イオン(OH)が生成する。このOHと、負極から移動したLiが反応して、水酸化リチウム(LiOH)となる。 Like the reaction shown in the following formula (1), oxygen in the air, water in the aqueous electrolyte 4 and the electron e supplied from the negative electrode 3 react to generate hydroxide ions (OH ). . This OH and Li + moved from the negative electrode react to form lithium hydroxide (LiOH).

Figure 2015053136
Figure 2015053136

水酸化リチウムが水系電解質に溶解し、水系電解質のpHが上昇してアルカリ性になると、正極の活性が低くなり、式(1)のOHの生成量が少なくなる。そこで、水系電解質4を弱酸性に保持するべく、水系電解質4中には無機酸が溶解している。 When lithium hydroxide is dissolved in the aqueous electrolyte and the pH of the aqueous electrolyte is increased to become alkaline, the activity of the positive electrode is lowered, and the amount of OH of the formula (1) is reduced. Therefore, an inorganic acid is dissolved in the aqueous electrolyte 4 in order to keep the aqueous electrolyte 4 weakly acidic.

図2は、正極複合体2の模式図である。正極8の表面に金属触媒9とホウ酸10が結着材11により結着している。金属触媒9は上記式(1)の反応を促進する。一方、ホウ酸10は水系電解質4へ徐々に溶解して、水酸化リチウムの溶解による水系電解質4のpHの上昇を抑制し、弱酸性に維持する。   FIG. 2 is a schematic diagram of the positive electrode composite 2. A metal catalyst 9 and boric acid 10 are bound to the surface of the positive electrode 8 by a binder 11. The metal catalyst 9 promotes the reaction of the above formula (1). On the other hand, the boric acid 10 is gradually dissolved in the aqueous electrolyte 4 to suppress an increase in pH of the aqueous electrolyte 4 due to the dissolution of lithium hydroxide and to maintain weak acidity.

以上説明したように、本発明のリチウム空気電池によれば、水系電解質のpHを弱酸性にすることで、大電流の放電が可能となる。さらに、正極複合体に無機酸を含有させることにより、水系電解質のpHを弱酸性に維持し、大電流の放電を継続することができる。   As described above, according to the lithium-air battery of the present invention, a large current can be discharged by making the pH of the aqueous electrolyte weakly acidic. Furthermore, by containing an inorganic acid in the positive electrode composite, the pH of the aqueous electrolyte can be kept weakly acidic, and a large current discharge can be continued.

以下、実施例等を示して本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example etc. are shown and this invention is demonstrated concretely, this invention is not limited to these.

[水系電解質の作製]
イオン交換水100mlにホウ酸粉末4.328gを溶解して0.7Mの飽和ホウ酸溶液を調製した後、更に塩化リチウム8.4gを加えて水系電解質Aを作製した。
[Production of aqueous electrolyte]
A boric acid powder (4.328 g) was dissolved in ion-exchanged water (100 ml) to prepare a 0.7M saturated boric acid solution, and then lithium chloride (8.4 g) was added to prepare an aqueous electrolyte A.

また、ホウ酸を加えることなく、イオン交換水100mlに塩化リチウム8.4gを加えて、水系電解質Bを作製した。   Further, 8.4 g of lithium chloride was added to 100 ml of ion-exchanged water without adding boric acid to prepare an aqueous electrolyte B.

[正極複合体の作製]
カーボン粉末(平均粒子径50μm)に白金粉末(平均粒子径3nm)を45.8質量%担持した金属触媒(田中貴金属販売株式会社製 TEC10E50E)60mg、ホウ酸粉末(平均粒子径100μm)60mg、およびポリフッ化ビニリデン(和光純薬工業株式会社)25mgをビーカーに測り取り、混合して混合粉末とした。この混合粉末にN−メチルピロリドン1.5mlを加え、超音波洗浄機(アズワン製)により35KHzの超音波振動を常温で30分加え、触媒ペーストを得た。このペーストを、カーボンクロスの上に四角の型枠を置いてカーボンクロス上に流し込むことにより、厚さが300μmで均等となるようにペーストをカーボンクロスに塗布した。その後、ペーストを塗布したカーボンクロスを90℃で1時間真空乾燥させ、正極複合体Aを作製した。
[Preparation of positive electrode composite]
60 mg of a metal catalyst (TEC10E50E manufactured by Tanaka Kikinzoku Co., Ltd.) carrying platinum powder (average particle diameter 3 nm) on carbon powder (average particle diameter 50 μm) 45.8 mass%, boric acid powder (average particle diameter 100 μm) 60 mg, and 25 mg of polyvinylidene fluoride (Wako Pure Chemical Industries, Ltd.) was weighed into a beaker and mixed to obtain a mixed powder. To this mixed powder, 1.5 ml of N-methylpyrrolidone was added, and 35 KHz ultrasonic vibration was added at room temperature for 30 minutes with an ultrasonic cleaner (manufactured by ASONE) to obtain a catalyst paste. The paste was applied to the carbon cloth so that the thickness was equal to 300 μm by placing a square formwork on the carbon cloth and pouring the paste onto the carbon cloth. Thereafter, the carbon cloth to which the paste was applied was vacuum-dried at 90 ° C. for 1 hour to produce a positive electrode composite A.

また、ホウ酸粉末を加えないこと以外は、正極複合体Aと同様の方法により、正極複合体Bを作製した。   Moreover, the positive electrode composite B was produced by the method similar to the positive electrode composite A except not adding a boric acid powder.

[リチウム空気電池の製造]
ガラスセラミックスのLTAPを固体電解質とし、固体電解質の端部にSBRゴム系接着剤を付着させ、アルミラミネート(PP樹脂/Al/PET樹脂)包材を接着した。そして、不活性ガスのArガス雰囲気下で負極である銅箔の片面に貼り付けられた金属リチウムをアルミラミネート包材の間に入れて、ガラスセラミックスと金属リチウムの間には、セルロースセパレータに有機電解液を浸した保護層を配置した。密閉構造とするため、アルミラミネート包材の端部四辺を熱溶着して密閉した。また、金属リチウムは、複合負極において、厚さを200μm、面積を0.25cmで21mh相当となる複合負極を作製した。水系電解質Aおよび正極複合体Bを使用し、複合負極のLTAP上にセルロースセパレーターに水系電解質A500μlを浸し、その上に正極複合体Bを載せ、ホウ酸を含む水系電解質Aを用いた比較例1のリチウム空気電池を製造した。
[Manufacture of lithium-air batteries]
Glass ceramic LTAP was used as a solid electrolyte, an SBR rubber adhesive was adhered to the end of the solid electrolyte, and an aluminum laminate (PP resin / Al / PET resin) packaging material was adhered. Then, the metallic lithium attached to one side of the copper foil as the negative electrode in an Ar gas atmosphere of an inert gas is placed between the aluminum laminate wrapping materials, and between the glass ceramics and the metallic lithium, the cellulose separator is organic. A protective layer soaked with the electrolyte was disposed. In order to obtain a sealed structure, the four sides of the aluminum laminate packaging material were thermally welded and sealed. In addition, as for metallic lithium, a composite negative electrode having a thickness of 200 μm and an area of 0.25 cm 2 and corresponding to 21 mh was prepared. Comparative Example 1 using aqueous electrolyte A and positive electrode composite B, 500 μl of aqueous electrolyte A in a cellulose separator on LTAP of the composite negative electrode, placing positive electrode composite B thereon, and using aqueous electrolyte A containing boric acid A lithium air battery was manufactured.

水系電解質Aおよび正極複合体Aを使用し、実施例1と同様の工程により、ホウ酸を含む水系電解質、およびホウ酸を含む正極複合体を用いた実施例1のリチウム空気電池を製造した。   Using the aqueous electrolyte A and the positive electrode composite A, the lithium-air battery of Example 1 using the aqueous electrolyte containing boric acid and the positive electrode composite containing boric acid was manufactured by the same process as in Example 1.

水系電解質Bおよび正極複合体Bを使用し、実施例1と同様の工程により、ホウ酸を含まない比較例2のリチウム空気電池を製造した。   Using the aqueous electrolyte B and the positive electrode composite B, a lithium air battery of Comparative Example 2 containing no boric acid was produced by the same process as in Example 1.

[放電特性の評価]
作製した空気電池のタブを充放電装置(ALS製electrochemical analyzer)に接続し、表1.に示した電流密度にて定電流放電することにより、実施例1および比較例1、2のリチウム空気電池の放電特性を評価した。結果を表1、および図3に示す。
[Evaluation of discharge characteristics]
Lithium-air batteries of Example 1 and Comparative Examples 1 and 2 were connected by connecting the tab of the produced air battery to a charge / discharge device (ALS electrochemical analyzer) and performing constant current discharge at the current density shown in Table 1. The discharge characteristics of were evaluated. The results are shown in Table 1 and FIG.

Figure 2015053136
Figure 2015053136

電流密度は、放電レートが大きくなると増大する。表1では、初期電圧と放電300秒後の電圧を測定した結果を示しており、図3では、初期電圧の結果を示している。また、表1中、×は、電圧の測定ができなかったことを示すものである。表1、図3の結果より、比較例2のリチウム空気電池では電圧が測定出来なかった放電レートが12mA/cmの場合において、比較例1、および実施例1の空気電池では、電圧を測定することができた。また、実施例1のリチウム空気電池のみが、放電レートが16mA/cmの場合において、電圧を測定することができた。 The current density increases as the discharge rate increases. Table 1 shows the results of measuring the initial voltage and the voltage after 300 seconds of discharge, and FIG. 3 shows the results of the initial voltage. Further, in Table 1, “x” indicates that the voltage could not be measured. From the results of Table 1 and FIG. 3, when the discharge rate was 12 mA / cm 2 where the voltage could not be measured in the lithium air battery of Comparative Example 2, the voltage was measured in Comparative Example 1 and the air battery of Example 1. We were able to. Moreover, only the lithium air battery of Example 1 was able to measure the voltage when the discharge rate was 16 mA / cm 2 .

また、開回路電圧が高ければ同じ抵抗でも放電時の電圧が高くなるため、有利となる。開回路電圧の結果から、実施例1の開回路電圧は、比較例1、2と比べて高くなった。   Further, if the open circuit voltage is high, the voltage at the time of discharge is high even with the same resistance, which is advantageous. From the result of the open circuit voltage, the open circuit voltage of Example 1 was higher than those of Comparative Examples 1 and 2.

以上の結果から、水系電解質へホウ酸を加えることにより、電流密度が大きい状態における継続的な放電が可能であり、さらに正極複合体にホウ酸を混合することにより、より電流密度の大きい状態における継続的な放電が可能となることがわかった。   From the above results, by adding boric acid to the aqueous electrolyte, continuous discharge in a state where the current density is large is possible, and by further mixing boric acid into the positive electrode composite, in a state where the current density is higher It was found that continuous discharge becomes possible.

本発明によれば、継続的な大電流の放電が可能となるリチウム空気電池を提供することができるため、産業上有用である。   According to the present invention, a lithium-air battery capable of continuously discharging a large current can be provided, which is industrially useful.

1 リチウム空気電池
2 正極複合体
3 負極
4 水系電解質
5 有機電解質
6 固体電解質
7 導線
8 正極
9 金属触媒
10 ホウ酸
11 結着材
DESCRIPTION OF SYMBOLS 1 Lithium air battery 2 Positive electrode composite body 3 Negative electrode 4 Water-system electrolyte 5 Organic electrolyte 6 Solid electrolyte 7 Conductor 8 Positive electrode 9 Metal catalyst 10 Boric acid 11 Binder

Claims (4)

酸素を正極活物質とする正極複合体と、リチウムを負極活物質とする負極と、前記正極と前記負極との間に介在する水系電解質と、を少なくとも備え、
前記水系電解質は、塩化リチウムと、ホウ酸、もしくはリン酸、またはこれらの組み合わせとを含み、
前記正極複合体は、正極と、ホウ酸と、金属触媒とを少なくとも含むリチウム空気電池。
A positive electrode composite having oxygen as a positive electrode active material, a negative electrode having lithium as a negative electrode active material, and an aqueous electrolyte interposed between the positive electrode and the negative electrode,
The aqueous electrolyte includes lithium chloride, boric acid, phosphoric acid, or a combination thereof,
The positive electrode composite is a lithium air battery including at least a positive electrode, boric acid, and a metal catalyst.
前記正極は、カーボンクロス、カーボン不織布、またはカーボンペーパーのいずれかである請求項1記載のリチウム空気電池。   The lithium-air battery according to claim 1, wherein the positive electrode is one of carbon cloth, carbon non-woven fabric, or carbon paper. 前記負極は、金属リチウム、LiSiO、LiSn、LiSn、LiSn、LiSOO、Mg−9%Li、LiAlH、LiBHまたはLiCのいずれかである請求項1または請求項2に記載のリチウム空気電池。 The negative electrode is any one of metallic lithium, Li 4 SiO 4 , Li 7 Sn 3 , LiSn, Li 2 Sn 5 , Li 2 SO 4 H 2 O, Mg-9% Li, LiAlH 4 , LiBH 4 or LiC 6. The lithium air battery according to claim 1 or 2. 正極と、ホウ酸と、金属触媒とを少なくとも含むリチウム空気電池に用いる正極複合体。   A positive electrode composite used for a lithium air battery including at least a positive electrode, boric acid, and a metal catalyst.
JP2013184280A 2013-09-05 2013-09-05 Lithium air battery and positive complex Pending JP2015053136A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013184280A JP2015053136A (en) 2013-09-05 2013-09-05 Lithium air battery and positive complex
DE102014112191.0A DE102014112191A1 (en) 2013-09-05 2014-08-26 Lithium-air battery and composite positive electrode
CN201410449593.XA CN104425856B (en) 2013-09-05 2014-09-04 Lithium-air battery and positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184280A JP2015053136A (en) 2013-09-05 2013-09-05 Lithium air battery and positive complex

Publications (1)

Publication Number Publication Date
JP2015053136A true JP2015053136A (en) 2015-03-19

Family

ID=52470606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184280A Pending JP2015053136A (en) 2013-09-05 2013-09-05 Lithium air battery and positive complex

Country Status (3)

Country Link
JP (1) JP2015053136A (en)
CN (1) CN104425856B (en)
DE (1) DE102014112191A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208291A (en) * 2016-05-20 2017-11-24 スズキ株式会社 Metal air battery
WO2018056307A1 (en) * 2016-09-20 2018-03-29 マクセルホールディングス株式会社 Air cell and patch
CN116062796A (en) * 2021-11-01 2023-05-05 四川大学 Method for modifying positive electrode material by reducing compound and high-performance lithium battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910679B2 (en) * 2016-07-19 2021-02-02 Uchicago Argonne, Llc Photo-assisted fast charging of lithium manganese oxide spinel (LiMn2O4) in lithium-ion batteries

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128291A (en) 1990-12-11 1992-07-07 Wax Michael J Porous titania or zirconia spheres
US8557449B2 (en) * 2010-06-24 2013-10-15 Wilson Hago Cathode for metal-air rechargeable battery
CN102157763A (en) * 2011-03-09 2011-08-17 哈尔滨工业大学 Lithium/air battery
WO2013028574A2 (en) * 2011-08-19 2013-02-28 Polyplus Battery Company Aqueous lithium air batteries
CN103219527B (en) * 2013-04-12 2015-05-20 中国科学院长春应用化学研究所 Air electrode for lithium-air battery and preparation method for air electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208291A (en) * 2016-05-20 2017-11-24 スズキ株式会社 Metal air battery
WO2018056307A1 (en) * 2016-09-20 2018-03-29 マクセルホールディングス株式会社 Air cell and patch
JPWO2018056307A1 (en) * 2016-09-20 2019-07-04 マクセルホールディングス株式会社 Air battery and patch
US10950910B2 (en) 2016-09-20 2021-03-16 Maxell Holdings, Ltd. Air cell and patch
JP7008630B2 (en) 2016-09-20 2022-01-25 マクセル株式会社 Air batteries and patches
CN116062796A (en) * 2021-11-01 2023-05-05 四川大学 Method for modifying positive electrode material by reducing compound and high-performance lithium battery

Also Published As

Publication number Publication date
CN104425856B (en) 2017-04-12
DE102014112191A1 (en) 2015-03-05
CN104425856A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
Zhou et al. A high-level N-doped porous carbon nanowire modified separator for long-life lithium–sulfur batteries
Wang et al. Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device
RU2576670C2 (en) Hybrid negative plate for lead-acid accumulator battery and lead-acid accumulator battery
JP4487219B1 (en) Method for producing electrode for non-aqueous secondary battery
JP6070671B2 (en) Air battery
JP6361599B2 (en) Power storage device
CN103636058A (en) Lithium-air battery
KR102182496B1 (en) Electrochemical device electrode including cobalt oxyhydroxide
JP5900144B2 (en) Inorganic magnesium solid electrolyte, magnesium battery, and method for producing inorganic magnesium solid electrolyte
KR20170129238A (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
CN103078076A (en) Composite diaphragm and lithium ion battery employing same
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
US20030036002A1 (en) Electrode body evaluation method and lithium secondary cell using the same
JP2015053136A (en) Lithium air battery and positive complex
CN106469821B (en) A kind of half fluidised form lithium flow battery
Saravanan et al. Enhanced electrochemical performance of a lead–acid battery by a surface modified negative grid with multiwall carbon nanotube coating
JP6187868B2 (en) Composite cathode for lithium air battery, method for producing the same, and lithium air battery
JP2014035963A (en) Positive electrode material, lithium ion power storage device, and method of manufacturing the same
TWI359524B (en) A method of identifying defective electrodes durin
JP2012028150A (en) Lithium ion secondary battery
JP2008269824A (en) Electrochemical cell
JP2019186266A (en) Electricity storage device
JP2018174096A (en) Power storage element
CN115995351A (en) Preparation method of transition metal nickel doped manganese dioxide electrode material