JP2008037674A - Method of manufacturing vitreous carbon-made core tube - Google Patents

Method of manufacturing vitreous carbon-made core tube Download PDF

Info

Publication number
JP2008037674A
JP2008037674A JP2006211126A JP2006211126A JP2008037674A JP 2008037674 A JP2008037674 A JP 2008037674A JP 2006211126 A JP2006211126 A JP 2006211126A JP 2006211126 A JP2006211126 A JP 2006211126A JP 2008037674 A JP2008037674 A JP 2008037674A
Authority
JP
Japan
Prior art keywords
cylindrical body
semi
core tube
glassy carbon
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211126A
Other languages
Japanese (ja)
Inventor
Maki Hamaguchi
眞基 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006211126A priority Critical patent/JP2008037674A/en
Publication of JP2008037674A publication Critical patent/JP2008037674A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a vitreous carbon-made core tube by which the vitreous carbon-made core tube is manufactured without causing dimensional distortion even in a joined body comprising a cylindrical body and a half-cylindrical body. <P>SOLUTION: The method of manufacturing the vitreous carbon-made core tube includes a step for making the joined body by joining both parallel edges of the half-cylindrical body having a shape formed by halving a cylinder having nearly the same length as that of the cylindrical body and smaller diameter than that of the cylindrical body and formed from the thermosetting resin to the outer surface of the cylindrical body formed from a thermosetting resin so that the axial direction of the cylindrical body is parallel to the axial direction of the half-cylindrical body, a step for carbonizing the joined body and a step for processing to remove a removing part of the cylindrical body which is surrounded by both edges of the half-cylindrical body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコンウェハを熱処理したり、化学気相成長によりシリコンウェハ表面に膜形成したりするためのウェハ熱処理装置において、気密を保持するための反応容器(石英製のアウターチューブ)の中に収納して使用されるガラス状炭素製炉心管(インナーチューブ)の製造方法に関するものである。   The present invention relates to a wafer heat treatment apparatus for heat-treating a silicon wafer or forming a film on a silicon wafer surface by chemical vapor deposition, in a reaction vessel (quartz outer tube) for maintaining airtightness. The present invention relates to a method for manufacturing a glassy carbon core tube (inner tube) that is housed and used.

従来から円形断面の炉心管(インナーチューブ)の材料としては、石英、炭化珪素、或いはガラス状炭素が使用されていた。しかし、最近、ウェハ処理の均一性や、反応ガスや冷却ガスを流通させる使用勝手を重視した結果、断面が円形でない炉心管が製品化されてきている。但し、この種の非円形断面の炉心管は石英製や炭化珪素製に限られているのが現状であって、化学的に安定で汚染物質を発生し難い等のメリットを有するガラス状炭素でも非円形断面の炉心管を製造できる技術が開発されることが待ち望まれていた。   Conventionally, quartz, silicon carbide, or glassy carbon has been used as a material for a core tube (inner tube) having a circular cross section. Recently, however, as a result of emphasizing the uniformity of wafer processing and the ease of use for distributing reaction gas and cooling gas, reactor core tubes having a non-circular cross section have been commercialized. However, this type of non-circular cross-section core tube is currently limited to quartz or silicon carbide, and even glassy carbon that has the advantages of being chemically stable and less likely to generate contaminants. There has been a long-awaited development of a technology capable of manufacturing a core tube having a non-circular cross section.

ガラス状炭素製の炉心管は、特許文献1に示すように、従来専ら断面が円形であって、非円形断面のガラス状炭素製炉心管は、実現していない。これは、ガラス状炭素の製造方法に起因していると考えられる。すなわち、ガラス状炭素は、一般にフェノール樹脂等の熱硬化性樹脂で成る成形体を、1000℃以上の高温の不活性雰囲気中で炭素化することにより得られるものであるが、炭素化の工程で、成形体の寸法が20%程度収縮し寸法歪みが生じやすいためである。断面が円形であれば、特許文献1に示すように、寸法精度を改善するための種々の工夫を施すことは可能であるが、断面が非円形の場合、寸法の狂いが生じることを避けるための手立てがないのが実情であった。
特開2000−313666号公報
As shown in Patent Document 1, a glassy carbon core tube is conventionally circular only in cross section, and a glassy carbon core tube having a non-circular cross section has not been realized. This is thought to be due to the glassy carbon production method. That is, glassy carbon is generally obtained by carbonizing a molded body made of a thermosetting resin such as a phenol resin in an inert atmosphere at a high temperature of 1000 ° C. or higher. This is because the size of the molded body shrinks by about 20% and dimensional distortion is likely to occur. If the cross section is circular, various devices for improving the dimensional accuracy can be applied as shown in Patent Document 1, but if the cross section is non-circular, in order to avoid a dimensional deviation. It was the actual situation that there was no way.
JP 2000-313666 A

本発明は上記従来の実情に鑑みて発明したものであって、円筒と半円筒で成る接合体であっても寸法の狂いが生じることなくガラス状炭素製の炉心管を製造することができ、化学的に安定で汚染物質を発生し難い非円形断面のガラス状炭素製炉心管を製造することができるガラス状炭素製炉心管の製造方法を提供することを課題とするものである。   The present invention was invented in view of the above-mentioned conventional situation, and even a joined body composed of a cylinder and a semi-cylinder can produce a core tube made of glassy carbon without causing dimensional deviation, It is an object of the present invention to provide a method for producing a glassy carbon core tube that can produce a glassy carbon core tube having a non-circular cross section that is chemically stable and hardly generates contaminants.

請求項1記載の発明は、熱硬化性樹脂で形成された円筒体の外表面に、その円筒体と略同一長であって且つ小径の熱硬化性樹脂で形成された円筒を略二分割した形状の半円筒体の平行な両端縁を、前記円筒体と前記半円筒体の軸方向が平行になるように接合して接合体とする工程と、その接合体を炭素化処理する工程と、前記円筒体のうち前記半円筒体の両端縁で囲まれた除去部を除去加工する工程を含むことを特徴とするガラス状炭素製炉心管の製造方法である。   According to the first aspect of the present invention, a cylinder formed of a thermosetting resin having the same length as that of the cylinder and a small diameter is substantially divided into two on the outer surface of the cylinder formed of the thermosetting resin. Joining both parallel edges of the shape semi-cylindrical body so that the axial directions of the cylindrical body and the semi-cylindrical body are parallel, and a step of carbonizing the joined body; It is a manufacturing method of the glass-like carbon core tube characterized by including the process of removing the removal part enclosed by the both ends of the said semi-cylindrical body among the said cylindrical bodies.

請求項2記載の発明は、前記円筒体と前記半円筒体を形成する熱硬化性樹脂が液状フェノール樹脂であって、前記円筒体と前記半円筒体を接合する工程で、前記と同じ液状フェノール樹脂を接着剤として接合することを特徴とする請求項1記載のガラス状炭素製炉心管の製造方法である。   According to a second aspect of the present invention, the thermosetting resin forming the cylindrical body and the semi-cylindrical body is a liquid phenol resin, and in the step of joining the cylindrical body and the semi-cylindrical body, the same liquid phenol as described above 2. A method for producing a glassy carbon furnace core tube according to claim 1, wherein the resin is bonded as an adhesive.

請求項3記載の発明は、前記円筒体の前記半円筒体の両端縁で囲まれた除去部のうち、少なくとも前記両端縁間を連結した複数箇所の連結部分を残して事前除去部とし、炭素化処理する工程の前に事前除去部を事前除去することを特徴とする請求項1または2記載のガラス状炭素製炉心管の製造方法である。   The invention according to claim 3 is a pre-removal part, leaving at least a plurality of connecting parts connecting the two end edges among the removal parts surrounded by the both end edges of the semi-cylindrical body of the cylindrical body, 3. The method for producing a glassy carbon furnace core tube according to claim 1, wherein the pre-removal part is pre-removed before the step of performing the chemical conversion treatment.

本発明のガラス状炭素製炉心管の製造方法によると、円筒と半円筒で成る接合体であっても寸法の狂いが生じることなくガラス状炭素製の炉心管を製造することができ、化学的に安定で汚染物質を発生し難い非円形断面のガラス状炭素製炉心管を製造することができる。   According to the method for manufacturing a glassy carbon core tube of the present invention, a glassy carbon core tube can be manufactured without any dimensional deviation even in a joined body composed of a cylinder and a semi-cylinder. It is possible to produce a glassy carbon core tube having a non-circular cross section that is stable and hardly generates pollutants.

以下、本発明を添付図面に示す実施形態に基づいてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.

本発明で示すガラス状炭素は、一般に熱硬化性樹脂の硬化物を炭素化処理して得ることができる。熱硬化性樹脂の例示として、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラン樹脂、メラミン樹脂、アルキット樹脂、キシレン樹脂等や、これらの混合物をあげることができるが、その中でも特性の良好なガラス状炭素が得られるフェノール樹脂を用いることが望ましい。さらには、液状フェノール樹脂を用いることが望ましい。なぜなら、液状であるために実施例で示す遠心成形法により大口径の円筒体1を比較的容易に製造することが出来るからである。   The glassy carbon shown in the present invention can be generally obtained by carbonizing a cured product of a thermosetting resin. Examples of thermosetting resins include phenolic resins, epoxy resins, unsaturated polyester resins, furan resins, melamine resins, alkit resins, xylene resins, and mixtures thereof, among which glass with good characteristics It is desirable to use a phenol resin from which carbon-like carbon is obtained. Furthermore, it is desirable to use a liquid phenol resin. This is because, since it is liquid, the large-diameter cylindrical body 1 can be manufactured relatively easily by the centrifugal molding method shown in the embodiment.

図1は、本発明のガラス状炭素製の炉心管の製造方法を製造の工程順に示した図面である。1は前記した液状フェノール樹脂等の熱硬化性樹脂で形成された円筒体、2は同じ熱硬化性樹脂で形成された半円筒体である。円筒体1と半円筒体2は略同一の長さであり、半円筒体2の半径は、円筒体1の半径より小さい。図1に示す実施形態では、半径は10分の1以下である。   FIG. 1 is a drawing showing a method for manufacturing a glassy carbon core tube of the present invention in the order of manufacturing steps. Reference numeral 1 denotes a cylindrical body made of a thermosetting resin such as the liquid phenol resin described above, and 2 denotes a semi-cylindrical body made of the same thermosetting resin. The cylindrical body 1 and the semi-cylindrical body 2 have substantially the same length, and the radius of the semi-cylindrical body 2 is smaller than the radius of the cylindrical body 1. In the embodiment shown in FIG. 1, the radius is one tenth or less.

まず、円筒体1と半円筒体2を接合する前に、半円筒体2が、熱硬化性樹脂で形成された円筒4を略半分に切断分割して形成される。出来上がった半円筒体2は、円筒体1の外表面上にお互いの軸方向が平行になるように配置され、その平行な両端縁2a,2aを円筒体1の外表面に接着剤を介して圧接することにより円筒体1と接合される。   First, before the cylindrical body 1 and the semi-cylindrical body 2 are joined, the semi-cylindrical body 2 is formed by cutting and dividing the cylinder 4 formed of a thermosetting resin into approximately half. The completed semi-cylindrical body 2 is arranged on the outer surface of the cylindrical body 1 so that the axial directions thereof are parallel to each other, and both parallel edges 2a and 2a are connected to the outer surface of the cylindrical body 1 with an adhesive. It joins with the cylindrical body 1 by press-contacting.

次に、接合された円筒体1と半円筒体2で成る接合体3は、炭素化処理されてガラス状炭素と成る。(詳細の炭素化処理法は、実施例に示す。)   Next, the joined body 3 composed of the joined cylindrical body 1 and semi-cylindrical body 2 is carbonized to become glassy carbon. (Detailed carbonization treatment methods are shown in the examples.)

最後に、円筒体1の、半円筒体2の両端縁2a,2aで囲まれた部位、すなわち除去部1aを切断して除去加工することによりガラス状炭素製の炉心管Aは完成する。なお、この半円筒体2で囲まれた空間は、特殊な形状のボード、インジェクターノズル等が収納される空間として利用される。   Finally, the glass tube core A is completed by cutting and removing the portion of the cylindrical body 1 surrounded by the two end edges 2a, 2a of the semi-cylindrical body 2, that is, the removing portion 1a. The space surrounded by the semi-cylindrical body 2 is used as a space for storing a specially shaped board, injector nozzle, and the like.

なお、円筒体1と半円筒体2は、高温熱処理により接合して一体化しても構わないが、前記したように接着剤を介して接合することが、接合強度などの点から望ましい。また、接着剤の種類は特には限定しないが、円筒体1や半円筒体2と同じ液状フェノール樹脂を用いるのが最適である。なぜなら、接着剤が、円筒体1や半円筒体2と同じ樹脂であれば、炭素化工程で同じ寸法収縮率を示すため、接合部分の寸法歪みが小さくなるからである。   The cylindrical body 1 and the semi-cylindrical body 2 may be joined and integrated by high-temperature heat treatment, but it is desirable to join them with an adhesive as described above from the viewpoint of joining strength and the like. The type of the adhesive is not particularly limited, but it is optimal to use the same liquid phenol resin as that of the cylindrical body 1 and the semi-cylindrical body 2. This is because if the adhesive is the same resin as the cylindrical body 1 and the semi-cylindrical body 2, the dimensional distortion of the joint portion is reduced because the same dimensional shrinkage rate is exhibited in the carbonization process.

図2は本発明の別の実施形態を示す図面である。この実施形態では、炭素化処理する工程の前に、円筒体1の半円筒体2の両端縁で囲まれた除去部1aのうち一部を事前除去部1bとし、炭素化処理する工程の前に除去する。すなわち、ガラス状炭素は加工性が良い材料ではないから、事前除去部1bを先に除去しておくことで、炭素化工程での接合部分の寸法歪みをできるだけ小さくし、且つ、炭素化処理後の機械加工の生産性を向上させることができる。なお、除去部1aを全て炭素化工程の前に除去してしまうと円筒体1と半円筒体2の両方に比較的大きな歪みができてしまうので好ましくない。   FIG. 2 shows another embodiment of the present invention. In this embodiment, before the carbonization treatment step, a part of the removal portion 1a surrounded by the both end edges of the semi-cylindrical body 2 of the cylindrical body 1 is used as the preliminary removal portion 1b, and before the carbonization treatment step. To remove. That is, since glassy carbon is not a material with good workability, by removing the pre-removal portion 1b first, the dimensional distortion of the joint portion in the carbonization process is minimized, and after the carbonization treatment The productivity of machining can be improved. Note that if all of the removal portion 1a is removed before the carbonization step, both the cylindrical body 1 and the semi-cylindrical body 2 are relatively undesirably strained.

図2には、両端が丸みを帯びた矩形孔で成る複数の事前除去部1bを一定間隔を開け等ピッチに配列したものを示したが、少なくとも半円筒体2の両端縁2a,2a間を連結した複数箇所の連結部分を残して事前除去部1bを形成したものなら、事前除去部1bはどのような形状のものであっても良い。例えば、円形の孔、事前除去部1b自体が前記両端縁2a,2aにまで達する窓状のもの、複数の孔の形状が全て異なるもの等であっても良い。   FIG. 2 shows a plurality of pre-removal portions 1b made of rectangular holes with rounded ends arranged at regular intervals with a constant interval between them, but at least between both end edges 2a, 2a of the semi-cylindrical body 2. The pre-removal unit 1b may have any shape as long as the pre-removal unit 1b is formed while leaving a plurality of connected portions. For example, it may be a circular hole, a window shape in which the pre-removal portion 1b itself reaches the both end edges 2a and 2a, a plurality of holes having different shapes, or the like.

(実施例1)
実施例1では、ガラス状炭素製の炉心管の原料として、市販の液状フェノール樹脂(群栄化学工業株式会社製PL−4804)を使用した。この原料の特性値は、密度(於25℃):1198kg/m、粘度(於25℃):690cP、ゲル化時間(於150℃):7分50秒、不揮発成分:72.5質量%である。この液状フェノール樹脂を100℃で5時間熱処理し、成形原料とした。
(Example 1)
In Example 1, a commercially available liquid phenol resin (PL-4804 manufactured by Gunei Chemical Industry Co., Ltd.) was used as a raw material for a glass core carbon core tube. The characteristic values of this raw material are as follows: density (at 25 ° C.): 1198 kg / m 3 , viscosity (at 25 ° C.): 690 cP, gelation time (at 150 ° C.): 7 minutes 50 seconds, nonvolatile component: 72.5% by mass It is. This liquid phenol resin was heat-treated at 100 ° C. for 5 hours to obtain a molding raw material.

まず、内径450mm、長さ1500mmの円筒金型(図示せず)に樹脂12kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径445mm、長さ1460mmの円筒体1を得た。   First, 12 kg of resin was loaded into a cylindrical mold (not shown) having an inner diameter of 450 mm and a length of 1500 mm, and the mold was kept at 100 ° C. and centrifuged at 300 rpm for 20 hours to obtain an outer diameter of 445 mm. A cylindrical body 1 having a length of 1460 mm was obtained.

それと並行し、内径35mm、長さ1500mmの円筒金型(図示せず)に樹脂0.9kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径34mm、長さ1460mmの円筒4を成形した。この円筒4を軸と平行に2分割し、半円筒体2を得た。   At the same time, 0.9 kg of resin was loaded into a cylindrical mold (not shown) with an inner diameter of 35 mm and a length of 1500 mm, and the mold was kept at 100 ° C. and centrifuged at 300 rpm for 20 hours. A cylinder 4 having an outer diameter of 34 mm and a length of 1460 mm was formed. This cylinder 4 was divided into two parallel to the axis to obtain a semi-cylindrical body 2.

次に、円筒体1の外表面に、半円筒体2の両端縁2a,2aを、液状フェノール樹脂を接着剤として圧接し、100℃で10時間保持して円筒体1と半円筒体2を接着して接合体3を得た。   Next, both end edges 2a and 2a of the semi-cylindrical body 2 are pressed against the outer surface of the cylindrical body 1 using a liquid phenol resin as an adhesive, and held at 100 ° C. for 10 hours, so that the cylindrical body 1 and the semi-cylindrical body 2 are The bonded body 3 was obtained by bonding.

次に、この接合体3を、空気中200℃で50時間加熱するキュアリング処理を行った後、窒素雰囲気中2℃/hで昇温して1000℃まで加熱処理し、さらに、2000℃まで10℃/hで昇温して炭素化した。以上の製造方法で得た製造途中のガラス状炭素製炉心管Aは、長さ1180mm、円筒体1部分の外径が360mm、半円筒体2部分の外径が30mmであった。   Next, this bonded body 3 was subjected to a curing process in which it was heated in air at 200 ° C. for 50 hours, and then heated in a nitrogen atmosphere at 2 ° C./h to 1000 ° C., and further to 2000 ° C. The temperature was raised at 10 ° C./h to carbonize. The glassy carbon furnace core tube A in the middle of production obtained by the above production method had a length of 1180 mm, the outer diameter of the cylindrical body 1 part was 360 mm, and the outer diameter of the semi-cylindrical body 2 part was 30 mm.

最後に、円筒体1の除去部1aを除去した最終形状のガラス状炭素製炉心管Aは、断面の寸法歪が±1mm以内であり、炉心管として好適であった。   Finally, the final shape glassy carbon core tube A from which the removal portion 1a of the cylindrical body 1 has been removed has a cross-sectional dimensional distortion within ± 1 mm, and is suitable as a core tube.

(実施例2)
実施例2では、実施例1と同じ市販の液状フェノール樹脂(群栄化学工業株式会社製PL−4804)を成形原料とした。
(Example 2)
In Example 2, the same commercially available liquid phenolic resin as that in Example 1 (PL-4804 manufactured by Gunei Chemical Industry Co., Ltd.) was used as a forming raw material.

まず、内径450mm、長さ1500mmの円筒金型(図示せず)に樹脂12kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径445mm、長さ1460mmの円筒体1を得た。その円筒体1の外表面の軸方向に、幅30mm、長さ100mmの矩形孔で成る事前除去部1bを、20mm毎のピッチを開け等間隔に12個形成した。   First, 12 kg of resin was loaded into a cylindrical mold (not shown) having an inner diameter of 450 mm and a length of 1500 mm, and the mold was kept at 100 ° C. and centrifuged at 300 rpm for 20 hours to obtain an outer diameter of 445 mm. A cylindrical body 1 having a length of 1460 mm was obtained. In the axial direction of the outer surface of the cylindrical body 1, twelve pre-removal portions 1b made of rectangular holes having a width of 30 mm and a length of 100 mm were formed at regular intervals with a pitch of 20 mm.

それとは別に、内径35mm、長さ1500mmの円筒金型(図示せず)に樹脂0.9kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径34mm、長さ1460mmの円筒4を成形した。この円筒4を軸と平行に2分割し、半円筒体2を得た。   Separately, 0.9 kg of resin is loaded into a cylindrical mold (not shown) with an inner diameter of 35 mm and a length of 1500 mm, the mold is kept at 100 ° C., and is centrifuged at 300 rpm for 20 hours. A cylinder 4 having an outer diameter of 34 mm and a length of 1460 mm was formed. This cylinder 4 was divided into two parallel to the axis to obtain a semi-cylindrical body 2.

次に、前記事前除去部1bの配列をまたぐように、半円筒体2の両端縁2a,2aを、液状フェノール樹脂を接着剤として、円筒体1外表面に圧接し、100℃で10時間保持して円筒体1と半円筒体2を接着して接合体3を得た。   Next, both end edges 2a and 2a of the semi-cylindrical body 2 are pressed against the outer surface of the cylindrical body 1 using a liquid phenol resin as an adhesive so as to straddle the arrangement of the pre-removing portions 1b, and are performed at 100 ° C. for 10 hours. The cylindrical body 1 and the semi-cylindrical body 2 were bonded to obtain a joined body 3.

次に、この接合体3を、空気中200℃で50時間加熱するキュアリング処理を行った後、窒素雰囲気中2℃/hで昇温して1000℃まで加熱処理し、さらに、2000℃まで10℃/hで昇温して炭素化した。以上の製造方法で得た製造途中のガラス状炭素製炉心管Aは、長さ1180mm、円筒体1部分の外径が360mm、半円筒体2部分の外径が30mmであった。   Next, this bonded body 3 was subjected to a curing process in which it was heated in air at 200 ° C. for 50 hours, and then heated in a nitrogen atmosphere at 2 ° C./h to 1000 ° C., and further to 2000 ° C. The temperature was raised at 10 ° C./h to carbonize. The glassy carbon furnace core tube A in the middle of production obtained by the above production method had a length of 1180 mm, the outer diameter of the cylindrical body 1 part was 360 mm, and the outer diameter of the semi-cylindrical body 2 part was 30 mm.

最後に、円筒体1の事前除去部1bを含む除去部1aを除去した最終形状のガラス状炭素製炉心管Aは、断面の寸法歪が±1mm以内であり、炉心管として好適であった。   Finally, the final shape glassy carbon furnace core tube A from which the removal portion 1a including the pre-removal portion 1b of the cylindrical body 1 has been removed has a cross-sectional dimensional distortion within ± 1 mm, and is suitable as a furnace core tube.

(比較例)
比較例でも、実施例1と同じ市販の液状フェノール樹脂(群栄化学工業株式会社製PL−4804)を成形原料とした。
(Comparative example)
Also in the comparative example, the same commercially available liquid phenolic resin as that of Example 1 (PL-4804 manufactured by Gunei Chemical Industry Co., Ltd.) was used as a forming raw material.

まず、内径450mm、長さ1500mmの円筒金型(図示せず)に樹脂12kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径445mm、長さ1460mmの円筒体1を得た。その円筒体1の外表面に軸方向と平行な幅35mmのスリットを切断除去により設け、円筒体1を断面C字形とした。(断面C字形であるが、以下も円筒体1という。)   First, 12 kg of resin was loaded into a cylindrical mold (not shown) having an inner diameter of 450 mm and a length of 1500 mm, and the mold was kept at 100 ° C. and centrifuged at 300 rpm for 20 hours to obtain an outer diameter of 445 mm. A cylindrical body 1 having a length of 1460 mm was obtained. A slit having a width of 35 mm parallel to the axial direction was formed on the outer surface of the cylindrical body 1 by cutting and removing, so that the cylindrical body 1 had a C-shaped cross section. (Although it has a C-shaped cross section, the following is also referred to as the cylindrical body 1)

それとは別に、内径35mm、長さ1500mmの円筒金型(図示せず)に樹脂0.9kgを装填し、金型内の温度を100℃に保ち、300rpmで回転させながら20時間遠心成形を行い、外径34mm、長さ1460mmの円筒4を成形した。この円筒4を軸と平行に2分割し、半円筒体2を得た。   Separately, 0.9 kg of resin is loaded into a cylindrical mold (not shown) with an inner diameter of 35 mm and a length of 1500 mm, the mold is kept at 100 ° C., and is centrifuged at 300 rpm for 20 hours. A cylinder 4 having an outer diameter of 34 mm and a length of 1460 mm was formed. This cylinder 4 was divided into two parallel to the axis to obtain a semi-cylindrical body 2.

次に、円筒体1のスリットをまたぐように、半円筒体2の両端縁2a,2aを、液状フェノール樹脂を接着剤として、円筒体1外表面に圧接し、100℃で10時間保持して円筒体1と半円筒体2を接着して接合体3を得た。   Next, both end edges 2a and 2a of the semi-cylindrical body 2 are pressed against the outer surface of the cylindrical body 1 using a liquid phenol resin as an adhesive so as to straddle the slit of the cylindrical body 1, and held at 100 ° C. for 10 hours. The cylindrical body 1 and the semi-cylindrical body 2 were bonded to obtain a joined body 3.

次に、この接合体3を、空気中200℃で50時間加熱するキュアリング処理を行った後、窒素雰囲気中2℃/hで昇温して1000℃まで加熱処理し、さらに、2000℃まで10℃/hで昇温して炭素化した。以上の製造方法で得たガラス状炭素製炉心管Aは、長さ1180mm、円筒体1部分の外径が360mm、半円筒体2部分の外径が30mmであったが、円筒体1部分の断面の寸法歪みは±5mm以上あり、炉心管としては実用に耐えることができるものではなかった。   Next, this bonded body 3 was subjected to a curing process in which it was heated in air at 200 ° C. for 50 hours, and then heated in a nitrogen atmosphere at 2 ° C./h to 1000 ° C., and further to 2000 ° C. The temperature was raised at 10 ° C./h to carbonize. The glassy carbon furnace core tube A obtained by the above manufacturing method has a length of 1180 mm, the outer diameter of the cylindrical body 1 part is 360 mm, and the outer diameter of the semi-cylindrical body 2 part is 30 mm. The dimensional distortion of the cross section was ± 5 mm or more, and it could not be practically used as a core tube.

本発明の一実施形態を製造の工程順に示した縦断面図である。It is the longitudinal cross-sectional view which showed one Embodiment of this invention in order of the manufacturing process. 本発明の別の実施形態の製造途中段階を示す斜視図である。It is a perspective view which shows the manufacture middle stage of another embodiment of this invention.

符号の説明Explanation of symbols

A…ガラス状炭素製炉心管
1…円筒体
1a…除去部
1b…事前除去部
2…半円筒体
2a…両端縁
3…接合体
4…円筒

A ... Glass-like carbon furnace core tube 1 ... Cylindrical body 1a ... Removal part 1b ... Pre-removal part 2 ... Semi-cylindrical body 2a ... Both ends edge 3 ... Joined body 4 ... Cylinder

Claims (3)

熱硬化性樹脂で形成された円筒体の外表面に、その円筒体と略同一長であって且つ小径の熱硬化性樹脂で形成された円筒を略二分割した形状の半円筒体の平行な両端縁を、前記円筒体と前記半円筒体の軸方向が平行になるように接合して接合体とする工程と、
その接合体を炭素化処理する工程と、
前記円筒体のうち前記半円筒体の両端縁で囲まれた除去部を除去加工する工程を含む
ことを特徴とするガラス状炭素製炉心管の製造方法。
The outer surface of the cylinder formed of the thermosetting resin is parallel to a semi-cylindrical body having a substantially the same length as the cylinder and a half cylinder formed by dividing the cylinder formed of the small-diameter thermosetting resin. Joining both end edges so that the axial directions of the cylindrical body and the semi-cylindrical body are parallel;
A step of carbonizing the joined body;
A method of manufacturing a glassy carbon core tube, comprising a step of removing a removal portion surrounded by both end edges of the semi-cylindrical body of the cylindrical body.
前記円筒体と前記半円筒体を形成する熱硬化性樹脂が液状フェノール樹脂であって、前記円筒体と前記半円筒体を接合する工程で、前記と同じ液状フェノール樹脂を接着剤として接合することを特徴とする請求項1記載のガラス状炭素製炉心管の製造方法。   The thermosetting resin that forms the cylindrical body and the semi-cylindrical body is a liquid phenol resin, and in the step of joining the cylindrical body and the semi-cylindrical body, the same liquid phenol resin as described above is joined as an adhesive. The method for producing a glassy carbon core tube according to claim 1. 前記円筒体の前記半円筒体の両端縁で囲まれた除去部のうち、少なくとも前記両端縁間を連結した複数箇所の連結部分を残して事前除去部とし、炭素化処理する工程の前に事前除去部を事前除去することを特徴とする請求項1または2記載のガラス状炭素製炉心管の製造方法。   Among the removal parts surrounded by the both end edges of the semi-cylindrical body of the cylindrical body, at least a plurality of connecting parts connecting between the both end edges are left as pre-removal parts, and prior to the step of carbonization treatment 3. The method for producing a glassy carbon furnace core tube according to claim 1, wherein the removing portion is removed in advance.
JP2006211126A 2006-08-02 2006-08-02 Method of manufacturing vitreous carbon-made core tube Pending JP2008037674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211126A JP2008037674A (en) 2006-08-02 2006-08-02 Method of manufacturing vitreous carbon-made core tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211126A JP2008037674A (en) 2006-08-02 2006-08-02 Method of manufacturing vitreous carbon-made core tube

Publications (1)

Publication Number Publication Date
JP2008037674A true JP2008037674A (en) 2008-02-21

Family

ID=39173128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211126A Pending JP2008037674A (en) 2006-08-02 2006-08-02 Method of manufacturing vitreous carbon-made core tube

Country Status (1)

Country Link
JP (1) JP2008037674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174885A1 (en) * 2012-05-23 2013-11-28 Sgl Carbon Se Method for producing a heat insulating body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174885A1 (en) * 2012-05-23 2013-11-28 Sgl Carbon Se Method for producing a heat insulating body
CN104334270A (en) * 2012-05-23 2015-02-04 西格里碳素欧洲公司 Method for producing a heat insulating body

Similar Documents

Publication Publication Date Title
KR100659446B1 (en) Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR101553387B1 (en) Method for growing single crystal silicon carbide
KR20090092248A (en) Crucible holding member and method for producing the same
JP2001332373A (en) Heater encapsulated with carbon wire exothermic body
JP2008037674A (en) Method of manufacturing vitreous carbon-made core tube
KR20090092247A (en) Crucible holding member and method for producing the same
KR20090092249A (en) Container holding member and method for producing the same
KR20160148935A (en) Method for preparing porous carbon materials using polymer
WO2012133614A1 (en) Carbon fiber bulk
JP2007161544A (en) Method for manufacturing glassy carbon
KR100600919B1 (en) Method for producing glass-like carbon pipe, and glass-like carbon pipe produced by such method
KR101281551B1 (en) Manufacturing method for focus ring of dry etching device
JP2014141356A (en) Production method of crystallized glass bent plate
JP5766064B2 (en) Die manufacturing method and hot press apparatus equipped with a die
JP2007131526A (en) Vitreous carbon chamber for semiconductor manufacturing apparatus
JP2007302502A (en) Method for producing optical lens, lens material used for the same, and method for producing the lens material
JP2005272204A (en) Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe
KR101125480B1 (en) Carbon heating element and manufacturing method of the same
JP3863308B2 (en) Method for producing glassy carbon pipe
JP2005039212A (en) Dummy wafer and manufacturing method therefor
US20190210915A1 (en) Glassy carbon roll-type mold manufacturing method for fine pattern formation, and glassy carbon roll-type mold manufactured by the method
JPH08225375A (en) Unidirectional carbon fiber-reinforced carbon composite material assembly and production of prismatic unit of the same carbon composite material and its assembly
JP2003226576A (en) Method of manufacturing vitreous carbon cylinder
JP2006045011A (en) Glassy carbon-made component, and its production method
JP2005174882A (en) Manufacturing method of fuel cell separator