JP2005272204A - Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe - Google Patents

Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe Download PDF

Info

Publication number
JP2005272204A
JP2005272204A JP2004087196A JP2004087196A JP2005272204A JP 2005272204 A JP2005272204 A JP 2005272204A JP 2004087196 A JP2004087196 A JP 2004087196A JP 2004087196 A JP2004087196 A JP 2004087196A JP 2005272204 A JP2005272204 A JP 2005272204A
Authority
JP
Japan
Prior art keywords
thermosetting resin
deformed
glassy carbon
tube
deformed tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004087196A
Other languages
Japanese (ja)
Inventor
Maki Hamaguchi
眞基 濱口
Takayasu Fujiura
貴保 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004087196A priority Critical patent/JP2005272204A/en
Priority to TW094107317A priority patent/TW200604096A/en
Priority to US11/077,254 priority patent/US20050230859A1/en
Priority to KR1020050024211A priority patent/KR100755575B1/en
Publication of JP2005272204A publication Critical patent/JP2005272204A/en
Priority to KR1020060071956A priority patent/KR100659446B1/en
Priority to US11/738,907 priority patent/US20070190274A1/en
Priority to US12/119,965 priority patent/US20090315323A1/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glassy carbon-made profiled pipe by which a profiled pipe-like glassy carbon product having a profiled cross-section typically composed of an ellipse or a partial circle and a straight line part is relatively easily manufactured with a proper dimensional precision. <P>SOLUTION: The method of manufacturing the glassy carbon-made profiled pipe includes a process for obtaining a thermosetting resin-made cylindrical molding by molding a thermosetting resin, a process for obtaining a thermosetting resin-made profiled pipe by heating and plastically deforming the thermosetting resin-made cylindrical molding and a process for carbonizing resultant thermosetting resin-made profiled pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温ないし腐蝕性環境下で使用される部品材料として好適なガラス状炭素製異形管の製造方法及びガラス状炭素製異形管に関し、特に、半導体製造装置のチャンバーとして好適なガラス状炭素製異形管の製造方法及びガラス状炭素製異形管に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing a glassy carbon deformed tube suitable as a component material used in a high temperature or corrosive environment and a glassy carbon deformed tube, and particularly to a glassy carbon suitable as a chamber of a semiconductor manufacturing apparatus. The present invention relates to a method for manufacturing a modified tube and a glassy carbon modified tube.

ガラス状炭素は、不活性雰囲気では2000℃以上の耐熱性を有し、フッ化水素やフッ素に対しても優れた耐蝕性を示す。このため、半導体製造装置、なかでもCVD装置など、腐食性ガスを扱い、しかも不純物の発生の少ないことが要求される装置部品へ適用することが考えられている。このガラス状炭素は、一般に、フラン樹脂やフェノール樹脂などの熱硬化性樹脂の成形体を高温で炭化焼成して製造される。その製造に際しての製造技術上の問題は、原料である前記熱硬化性樹脂の成形性が低いことと、炭化焼成において20%前後の収縮が起こることである。ゆえに、複雑な形状の部品を精度よく成形することは、容易ではない。   Glassy carbon has a heat resistance of 2000 ° C. or higher in an inert atmosphere, and exhibits excellent corrosion resistance against hydrogen fluoride and fluorine. For this reason, it is considered that the present invention is applied to apparatus parts that handle corrosive gas and are required to generate less impurities, such as semiconductor manufacturing apparatuses, especially CVD apparatuses. This glassy carbon is generally produced by carbonizing and firing a molded body of a thermosetting resin such as a furan resin or a phenol resin at a high temperature. The problems in the manufacturing technology at the time of manufacture are that the thermosetting resin as a raw material has low moldability and shrinkage of about 20% occurs during carbonization firing. Therefore, it is not easy to accurately mold a component having a complicated shape.

ところで、本発明が対象とするガラス状炭素製異形管は、図5に例示するように、管9の断面(管軸方向と直交する断面)形状が、四隅に曲率を有する長方形状、二辺が平行な長孔形状(トラック形状)、あるいは楕円形などを対象とするものである。   By the way, as illustrated in FIG. 5, the glass-like carbon deformed tube targeted by the present invention is a rectangular shape in which the cross section of the tube 9 (cross section perpendicular to the tube axis direction) has a curvature at four corners, two sides. Are intended for a long hole shape (track shape) or an ellipse shape in parallel.

断面が単純な円形のガラス状炭素製成形体(円筒体)であれば、熱硬化性樹脂を用い遠心成形など常法に従って製造することができるが、半導体成膜装置など多様な部品をガラス状炭素で製作するためには、断面が円でない、上記形状の異形管も必要とされる。しかし、そのような異形管を遠心成形で製造することは原理的に不可能である。   If it is a glassy carbon molded body (cylindrical body) with a simple cross section, it can be manufactured according to conventional methods such as centrifugal molding using a thermosetting resin. In order to fabricate with carbon, a deformed tube of the above shape with a non-circular cross section is also required. However, it is impossible in principle to manufacture such a deformed tube by centrifugal molding.

円筒や異形管状のガラス状炭素部品を製造する際には、製品の寸法精度を確保するために、一般には中子が使用される。ここで、中子とは、製品形状を保持するための部品であり、その寸法の少なくとも一部は、炭化処理後、すなわち収縮した後の製品の寸法の一部にほぼ等しくなるように設計される。そして、炭化処理前の熱硬化性樹脂成形体の内部に挿入して使用され、製品を内側から支えることにより製品形状と寸法を所定の範囲に抑える機能を有する(特開2002−179463号公報(特許文献1)参照)。   When manufacturing cylindrical or irregular-shaped glassy carbon parts, a core is generally used to ensure the dimensional accuracy of the product. Here, the core is a part for maintaining the product shape, and at least a part of its dimensions is designed to be approximately equal to a part of the dimension of the product after carbonization, that is, after shrinkage. The And it is inserted and used inside the thermosetting resin molded body before carbonization treatment, and has a function of suppressing the product shape and dimensions within a predetermined range by supporting the product from the inside (Japanese Patent Laid-Open No. 2002-179463 ( See Patent Document 1)).

例えば、円筒状のガラス状炭素を製造する際には、熱硬化性樹脂円筒の内部に、その内径より小さく、炭化処理後のガラス状炭素製円筒の内径にほぼ等しい内径を有する、黒鉛円筒を中子として挿入した状態で炭化処理を行う。   For example, when producing cylindrical glassy carbon, a graphite cylinder having an inner diameter smaller than its inner diameter and approximately equal to the inner diameter of the glassy carbon cylinder after carbonization treatment is provided inside the thermosetting resin cylinder. Carbonization is performed with the core inserted.

特開2000−313666号公報(特許文献2)には、円筒を分割した形状の熱硬化性樹脂成形体を作り、それらを接合して円筒状成形体とし、それを炭化処理する、というガラス状炭素製円筒の製造方法が提案されている。しかしながら、特許文献2には、断面が楕円であったり、部分円と直線部からなるような異形管の製造については触れられていない。また、前記提案の製造方法の要領で、異形管の部分を高い寸法精度で製作し、それらを正確に位置決めして接合することはそもそも困難である。また、ガラス状炭素製異形管をチャンバーとして使用する際には、接合された部分はできるだけ少ないか、ないことが望ましい。なぜなら、接合線は、寸法歪み、残留応力や、発塵の原因となることが多いからである。   JP-A-2000-313666 (Patent Document 2) discloses a glass-like shape in which a thermosetting resin molded body having a shape obtained by dividing a cylinder is made, joined to form a cylindrical molded body, and carbonized. A method for producing a carbon cylinder has been proposed. However, Patent Document 2 does not mention the production of a deformed tube having an elliptical cross section or a partial circle and a straight line. In addition, it is difficult in the first place to manufacture the deformed tube portions with high dimensional accuracy and accurately position and join them in the manner of the proposed manufacturing method. In addition, when using a glassy carbon deformed tube as a chamber, it is desirable that there are as few or no joined portions as possible. This is because the joining line often causes dimensional distortion, residual stress, and dust generation.

また、寸法精度の問題については、中子も問題である。中子を使用する方式の欠点は、炭化処理を開始する時点において、中子と製品である熱硬化性樹脂成形体の間の空隙が大きいため、中子による寸法矯正効果が十分でないことである。すなわち、中子と製品が接触するのは炭化処理が概ね完了する時点であるので、それまでに製品が大きく変形した場合には、中子によっても寸法を十分矯正することは困難であった。このような困難は、製品が異形管の場合に顕著になる。
特開2002−179463号公報 特開2000−313666号公報
As for the problem of dimensional accuracy, the core is also a problem. The disadvantage of the method using the core is that the dimensional correction effect by the core is not sufficient because the gap between the core and the thermosetting resin molded product that is the product is large at the time of starting the carbonization treatment. . That is, since the core and the product come into contact with each other when the carbonization treatment is almost completed, it has been difficult to sufficiently correct the dimensions with the core if the product has been greatly deformed until then. Such difficulty becomes remarkable when the product is a deformed pipe.
JP 2002-179463 A JP 2000-313666 A

本発明は、上記の事情に鑑みなしたものであって、その目的は、断面が異形の、典型的には、楕円や部分円と直線部からなるような、異形管状のガラス状炭素部品を比較的容易に、しかも寸法精度よく製造し得る、ガラス状炭素製異形管の製造方法及びガラス状炭素製異形管を提供するものである。   The present invention has been made in view of the above circumstances, and its purpose is to provide a deformed tubular glassy carbon part having an irregular cross section, typically consisting of an ellipse, a partial circle and a straight part. It is an object of the present invention to provide a glassy carbon deformed tube manufacturing method and a glassy carbon deformed tube that can be manufactured relatively easily and with high dimensional accuracy.

上記の目的を達成するために、本発明(請求項1)に係るガラス状炭素製異形管の製造方法は、熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して熱硬化性樹脂製異形管を得る工程と、得られた熱硬化性樹脂製異形管を炭素化する工程と、を含むものである。   In order to achieve the above object, a method for producing a glassy carbon deformed tube according to the present invention (Claim 1) includes a step of forming a thermosetting resin cylindrical molded body by molding a thermosetting resin. And a step of obtaining a thermosetting resin deformed pipe by plastic deformation while heating the thermosetting resin cylindrical molded body and a step of carbonizing the obtained thermosetting resin deformed pipe. .

本発明(請求項2)に係るガラス状炭素製異形管の製造方法は、上記請求項1に記載のガラス状炭素製異形管の製造方法において、熱硬化性樹脂製円筒状成形体がそのガラス転移点をTg℃としたとき、塑性変形工程を、下記式(1)を満たす温度T℃で行うものである。
(Tg+5)≦T≦(Tg+100) ……(1)
The method for producing a glassy carbon modified tube according to the present invention (Claim 2) is the method for producing a glassy carbon modified tube according to Claim 1, wherein the thermosetting resin cylindrical molded body is formed of the glass. When the transition point is Tg ° C., the plastic deformation step is performed at a temperature T ° C. that satisfies the following formula (1).
(Tg + 5) ≦ T ≦ (Tg + 100) (1)

本発明(請求項3)に係るガラス状炭素製異形管の製造方法は、上記請求項1又は2に記載のガラス状炭素製異形管の製造方法において、熱硬化性樹脂製円筒状成形体のTgが25℃以上100℃以下とするものである。   The method for producing a glassy carbon deformed tube according to the present invention (Claim 3) is the method for producing a glassy carbon deformed tube according to claim 1 or 2, wherein the thermosetting resin cylindrical molded body Tg is 25 ° C. or more and 100 ° C. or less.

本発明(請求項4)に係るガラス状炭素製異形管の製造方法は、上記請求項1〜3の何れかに記載のガラス状炭素製異形管の製造方法において、更に、塑性変形された熱硬化性樹脂製異形管の片方又は両方の端面に、フランジを形成する工程を含むものである。   The method for producing a glassy carbon deformed tube according to the present invention (Claim 4) is the method for producing a glassy carbon deformed tube according to any one of Claims 1 to 3, further comprising plastically deformed heat. The method includes a step of forming a flange on one or both end faces of the curable resin deformed tube.

本発明(請求項5)に係るガラス状炭素製異形管の製造方法は、上記請求項1〜4の何れかに記載のガラス状炭素製異形管の製造方法において、炭素化する工程で、熱硬化性樹脂製異形管の中空部に、該熱硬化性樹脂製異形管と実質的に同一の炭化収縮率を有する中子を配して炭素化するものである。なお、この場合、前記中子として、前記熱硬化性樹脂製異形管と実質的に同じ材質の熱硬化性樹脂を用いることが好ましい(請求項6)。   The method for producing a glassy carbon deformed tube according to the present invention (Claim 5) is the method for producing a glassy carbon deformed tube according to any one of Claims 1 to 4, in the carbonization step, A core having substantially the same carbonization shrinkage rate as that of the thermosetting resin deformed tube is arranged in the hollow portion of the deformed tube made of curable resin and carbonized. In this case, it is preferable to use, as the core, a thermosetting resin made of substantially the same material as that of the deformed pipe made of thermosetting resin (Claim 6).

本発明(請求項7)に係るガラス状炭素製異形管の製造方法は、上記請求項5又は6に記載のガラス状炭素製異形管の製造方法において、前記熱硬化性樹脂製異形管が、平行平面とそれを繋ぐ曲部とを有し、前記中子が、前記平行平面間の距離に等しい辺を有し異形管長手方向に延びた直方体であって、前記熱硬化性樹脂製異形管の平行平面間に任意の間隔で複数個配されるものである。   The method for producing a glassy carbon deformed tube according to the present invention (Claim 7) is the method for producing a glassy carbon deformed tube according to claim 5 or 6, wherein the thermosetting resin deformed tube is: The thermosetting resin deformed pipe having a parallel plane and a curved portion connecting the parallel planes, the core having a side equal to the distance between the parallel planes and extending in the longitudinal direction of the deformed pipe Are arranged at an arbitrary interval between the parallel planes.

本発明(請求項8)に係るガラス状炭素製異形管は、ガラス状炭素からなる断面異形管であって、管の長手方向と平行な方向に接合部が存在しない構造のものである。   The deformed tube made of glassy carbon according to the present invention (invention 8) is a deformed tube made of glassy carbon and has a structure in which no joint exists in a direction parallel to the longitudinal direction of the tube.

本発明に係るガラス状炭素製異形管の製造方法によれば、熱硬化性樹脂の円筒状成形体を用いて、断面が異形の、典型的には、楕円や部分円と直線部からなるような、異形管状のガラス状炭素部品を比較的容易に、しかも寸法精度よく製造できる。また更に、熱硬化性樹脂の円筒状成形体として円筒状成形体の軸方向と平行な方向に接合線の無いものを用いることで、耐食性や強度に優れたガラス状炭素製異形管を製造することができる。また、このように接合部が存在しないガラス状炭素製異形管であれば、接合部が存在するものに比して耐食性や強度に優れており、ガラス状炭素管が腐食環境下に晒される半導体製造装置のチャンバーなどに適用しやすい。   According to the method for producing a glass-like carbon-shaped deformed tube according to the present invention, a cylindrical molded body of a thermosetting resin is used, and the cross-section is typically formed of an ellipse, a partial circle, and a straight portion. In addition, a deformed tubular glassy carbon part can be manufactured relatively easily and with high dimensional accuracy. Furthermore, a glass-like carbon deformed tube having excellent corrosion resistance and strength is manufactured by using a thermosetting resin cylindrical molded body having no joint line in a direction parallel to the axial direction of the cylindrical molded body. be able to. In addition, the glass-like carbon deformed tube having no joints as described above is superior in corrosion resistance and strength compared to those having joints, and the semiconductor in which the glassy carbon tubes are exposed to a corrosive environment. Easy to apply to chambers of manufacturing equipment.

以下、本発明について具体的に説明する。
本発明のガラス状炭素製異形管の製造方法は、熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して熱硬化性樹脂製異形管を得る工程と、得られた熱硬化性樹脂製異形管を炭素化する工程と、を含むものである。
Hereinafter, the present invention will be specifically described.
The method for producing a glassy carbon deformed tube according to the present invention includes a step of molding a thermosetting resin to obtain a cylindrical molded body made of thermosetting resin, and plasticity while heating the cylindrical molded body made of thermosetting resin. The method includes a step of obtaining a deformed tube made of thermosetting resin by deforming, and a step of carbonizing the obtained deformed tube made of thermosetting resin.

熱硬化性樹脂製円筒状成形体を得る工程では、原料樹脂を円筒形に成形するが、この場合の成形法は特に限定されず、遠心成形法、射出成形法、押出成形法など公知の技術を採用することができる。これらの成形法のうち、特に遠心成形法を採用することが好ましい。その理由としては、遠心成形法では、遠心力により溶融状態の原料樹脂を成形型の内面側に流動させて硬化させるため、円筒状物の成形が容易で成形体の寸法精度も高く、更には成形時において内面側が開放されているのでガス抜きも良好に実施できること、更には最終製品であるガラス状炭素製異形管の使用の態様からして接合線は少ないほど有利であることが挙げられる。なお、原料樹脂としては、例えば、フェノール樹脂やフラン樹脂など、公知の熱硬化性樹脂を好適に採用できる。   In the process of obtaining a cylindrical molded body made of thermosetting resin, the raw material resin is molded into a cylindrical shape. In this case, the molding method is not particularly limited, and known techniques such as a centrifugal molding method, an injection molding method, and an extrusion molding method are used. Can be adopted. Of these molding methods, it is particularly preferable to employ a centrifugal molding method. The reason is that, in the centrifugal molding method, the molten raw material resin is flowed to the inner surface side of the mold by the centrifugal force to be cured, so that the cylindrical product can be easily molded and the dimensional accuracy of the molded body is high. Since the inner surface side is open at the time of molding, it is possible to carry out gas venting well. Further, from the aspect of using a glassy carbon deformed tube as a final product, it is advantageous that the number of joint lines is smaller. In addition, as a raw material resin, well-known thermosetting resins, such as a phenol resin and a furan resin, can be employ | adopted suitably, for example.

熱硬化性樹脂製異形管を得る工程では、上記で得た熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形するが、その塑性変形の手段は特に限定されず、例えば、異形管形状を備える割り型を用い加熱しつつプレスにより荷重を加えて型に嵌めるか、あるいは、熱硬化性樹脂製円筒状成形体の内周面に少なくとも2本の棒状治具を設け、加熱しつつ前記棒状治具を径方向に押し開く手段を挙げることができる。図1は、その後者の塑性加工方法の一態様を示す説明図である。この図1に示す塑性加工は、熱硬化性樹脂製円筒状成形体1の内周面に2本の丸棒治具2を設ける(図1a参照)。次いで、熱硬化性樹脂製円筒状成形体1を所定温度に加熱しながら丸棒治具2を、図示省略する押し開き手段によって径方向に押し開く(図1b参照)ことで加工が行われる。このように加工して得られた熱硬化性樹脂製異形管3を図2に示す。   In the step of obtaining the thermosetting resin deformed tube, the thermosetting resin cylindrical molded body obtained above is plastically deformed while being heated, but the means of the plastic deformation is not particularly limited, for example, the deformed tube shape While applying a split mold comprising heating, a load is applied by a press and fitted into the mold, or at least two rod-shaped jigs are provided on the inner peripheral surface of a thermosetting resin cylindrical molded body, A means for pushing the rod-shaped jig in the radial direction can be mentioned. FIG. 1 is an explanatory view showing an embodiment of the latter plastic working method. In the plastic working shown in FIG. 1, two round bar jigs 2 are provided on the inner peripheral surface of a cylindrical body 1 made of a thermosetting resin (see FIG. 1a). Next, the processing is performed by pushing the round bar jig 2 in the radial direction by a push-out means (not shown) while heating the thermosetting resin cylindrical molded body 1 to a predetermined temperature (see FIG. 1 b). FIG. 2 shows a thermosetting resin deformed tube 3 obtained by processing in this way.

上記の塑性加工について更に詳細に説明する。
一般に、熱硬化性樹脂製円筒状成形体は、靭性に乏しいので、機械加工は容易でないことが知られている。したがって、複雑な形状の成形体(異形管)を部品を接合することによって製造することは容易ではない。そこで、本発明者等は、熱硬化性樹脂の異形管製造を種々検討した結果、熱硬化性樹脂製円筒状成形体をそのガラス転移点(以下Tgという)以上に加熱して力を加えると、容易に塑性変形させられることを見出し、本発明を完成したものである。
The above plastic working will be described in more detail.
In general, it is known that a cylindrical molded body made of a thermosetting resin is not easy to machine because of poor toughness. Therefore, it is not easy to manufacture a compact shaped body (deformed pipe) by joining parts. Therefore, as a result of various studies on the production of deformed pipes of thermosetting resins, the present inventors applied a force by heating the thermosetting resin cylindrical molded body to its glass transition point (hereinafter referred to as Tg) or higher. The present invention has been completed by finding that it can be easily plastically deformed.

塑性変形させる温度としては、Tgより5℃以上高い温度が好ましい。温度差が5℃より小さい場合には、塑性変形に大きな力を必要とし、しばしば破断に至る。また、その温度の差の上限は、100℃、より好ましくは50℃とする。100℃を超えると、熱硬化性樹脂製円筒状成形体の硬化反応が急速に進行して塑性変形させることができなくなるからである。   The temperature for plastic deformation is preferably a temperature 5 ° C. higher than Tg. When the temperature difference is smaller than 5 ° C., a large force is required for plastic deformation, and often breaks. The upper limit of the temperature difference is 100 ° C., more preferably 50 ° C. This is because when the temperature exceeds 100 ° C., the curing reaction of the thermosetting resin cylindrical molded body rapidly proceeds and cannot be plastically deformed.

塑性変形に供する熱硬化性樹脂製円筒状成形体はTgが100℃以下、好ましくは60℃以下であることが望ましい。Tgが高い場合は、塑性変形のためにより高温に熱する必要がある。このため、変形操作が困難であるばかりでなく、塑性変形操作中に硬化反応が急速に進むため、変形させることが難しくなるためである。Tgの下限は特になく、一般に低い方が望ましい。ただし、過剰に低い場合には室温での強度が不足して取り扱いが困難となるため、室温近傍以上、25℃以上のTgを有することが望ましい。   The cylindrical molded body made of a thermosetting resin subjected to plastic deformation has a Tg of 100 ° C. or lower, preferably 60 ° C. or lower. When Tg is high, it is necessary to heat to a higher temperature for plastic deformation. For this reason, not only is the deformation operation difficult, but also the curing reaction proceeds rapidly during the plastic deformation operation, which makes it difficult to deform. There is no particular lower limit of Tg, and generally a lower one is desirable. However, if it is excessively low, the strength at room temperature is insufficient and handling becomes difficult, so it is desirable to have a Tg of around room temperature or higher and 25 ° C. or higher.

塑性変形は、上記したように、熱硬化性樹脂製円筒状成形体を、異形管形状を備える割り型を用い加熱しつつプレスにより荷重を加えて型に嵌めるか、あるいは、加熱しつつ内周面に設けた少なくとも2本の棒状治具を径方向に押し開く加工手段によって行われるが、熱硬化性樹脂製円筒状成形体を塑性変形させられる範囲にはもちろん限りがある。つまり、その限界を超えて塑性変形させると、破断や亀裂などの欠陥が生じるような変形限界である。塑性変形前後の曲率半径をそれぞれR、R´、その比(R´/R)をt、肉厚と塑性変形前の半径Rの比(肉厚/R)をwとする。肉厚の中心部が変形に対して中立(寸法が変化しない)で、外側と内側で均等に塑性変形が発生し、肉厚の変化が無視できると仮定すると、外周部、内周部の周方向の長さの変化率lo、liは、次式で表される。
lo=(t+w/2)/[t(1+w/2)]
li=(t−w/2)/[t(1−w/2)]
As described above, plastic deformation is performed by applying a load by a press while applying a thermosetting resin cylindrical molded body using a split mold having a deformed tube shape, or by applying heat to the inner periphery while heating. Although it is performed by a processing means that pushes at least two rod-shaped jigs provided on the surface in the radial direction, the range in which the thermosetting resin cylindrical molded body can be plastically deformed is of course limited. That is, it is a deformation limit that causes defects such as fractures and cracks when plastic deformation is performed beyond the limit. The curvature radii before and after plastic deformation are R, R ′, the ratio (R ′ / R) is t, and the ratio of the wall thickness to the radius R before plastic deformation (wall thickness / R) is w. Assuming that the central part of the wall thickness is neutral with respect to deformation (the dimensions do not change), plastic deformation occurs evenly on the outside and inside, and the change in wall thickness is negligible, the circumference of the outer and inner circumferences The direction length change rates lo and li are expressed by the following equations.
lo = (t + w / 2) / [t (1 + w / 2)]
li = (t−w / 2) / [t (1−w / 2)]

樹脂の性状によっても異なるが、一般に、変化率loないしliが、10%以下、好ましくは5%以下とすることが望ましい。例えば、肉の中心直径が320mm、肉厚が3mmの円筒の一部を、肉の中心直径が60mmの円弧を有する異形管に塑性変形するとき、外周、内周の変化率は、およそ4%となる。   Generally, it is desirable that the rate of change lo to li is 10% or less, preferably 5% or less, although it varies depending on the properties of the resin. For example, when a part of a cylinder having a center diameter of 320 mm and a thickness of 3 mm is plastically deformed into a deformed pipe having an arc with a center diameter of 60 mm, the rate of change of the outer and inner circumferences is approximately 4%. It becomes.

上式に記したとおり、外周、内周の変化率は肉厚とRの比にも影響を受ける。端的には肉厚が大きいほど変化率が大きくなる。上記の例において、肉厚を3mmから6mmにすると同一の変形で約2倍の変化を生じる。つまり、肉厚は、部品設計上、問題のない範囲で、比較的薄い方が望ましい。10%以上の大きな塑性変形を起こす場合には、樹脂成形体に欠陥が生じるおそれが高いので好ましくない。塑性変形の速度はとくに限定されないが、一般には数分から数時間にわたって荷重をかけておこなうことがよい結果を与える。急激な変形をおこすと、樹脂の劣化が進むことがある。   As described in the above equation, the rate of change of the outer periphery and inner periphery is also affected by the ratio of wall thickness to R. In short, the greater the wall thickness, the greater the rate of change. In the above example, when the wall thickness is changed from 3 mm to 6 mm, the same deformation causes a change of about twice. That is, it is desirable that the wall thickness be relatively thin as long as there is no problem in designing the parts. When large plastic deformation of 10% or more is caused, there is a high possibility that defects will occur in the resin molded body, which is not preferable. The speed of plastic deformation is not particularly limited, but generally, good results are obtained by applying a load over several minutes to several hours. Sudden deformation may cause deterioration of the resin.

このように塑性変形させた後は、さらに高い温度でキュアリング(化学反応を促進するための加熱)を行なうことで、それ以上の好ましくない変形を防止させることができる。キュアリング条件は、塑性変形温度によって異なるが、例えばフェノール樹脂を用いる場合では、空気中で、温度:180〜350℃、時間:10〜100時間、とすることができる。   After plastic deformation in this way, further undesired deformation can be prevented by performing curing (heating for promoting chemical reaction) at a higher temperature. The curing conditions vary depending on the plastic deformation temperature. For example, when a phenol resin is used, the temperature can be set to 180 to 350 ° C. and the time can be set to 10 to 100 hours in the air.

次に、熱硬化性樹脂製異形管を炭素化する工程について説明する。
この炭素化工程では、上記塑性変形工程で得た熱硬化性樹脂製異形管に対して炭素化処理を施し、ガラス状炭素製異形管とする。炭素化処理の条件としては、例えば、非酸素雰囲気中(不活性ガス雰囲気中など)で、温度:800〜2500℃で熱処理することが一般的である。
Next, the process of carbonizing the thermosetting resin deformed pipe will be described.
In this carbonization step, the thermosetting resin-made deformed tube obtained in the plastic deformation step is subjected to carbonization to obtain a glassy carbon-shaped deformed tube. As conditions for the carbonization treatment, for example, heat treatment is generally performed at a temperature of 800 to 2500 ° C. in a non-oxygen atmosphere (such as an inert gas atmosphere).

上述のようにして、所望の形状のガラス状炭素製異形管を得ることができる。例えば、図2に示す熱硬化性樹脂製異形管3と同形状の収縮したガラス状炭素製異形管を得ることができる。   As described above, a glass-like carbon deformed tube having a desired shape can be obtained. For example, a deformed glassy carbon deformed tube having the same shape as the thermosetting resin deformed tube 3 shown in FIG. 2 can be obtained.

ところで、上記ガラス状炭素製異形管をより寸法精度よく得るためには、製品(ガラス状炭素製異形管)前駆体である熱硬化性樹脂製異形管と実質的に同一の炭化収縮率を有する中子を使用するのが好ましい。この場合、中子の寸法は、製品前駆体の内径(内側形状)の少なくとも一部と実質的に同一の寸法とすることができる。なぜなら、中子も製品前駆体と同様に炭化収縮を生じるためである。この中子は、炭化処理の開始時から終了時まで製品形状をその内部から保持する効果を有する。   By the way, in order to obtain the glassy carbon deformed tube with higher dimensional accuracy, it has substantially the same carbonization shrinkage rate as the thermosetting resin deformed tube that is the precursor of the product (glassy carbon deformed tube). It is preferable to use a core. In this case, the dimensions of the core can be substantially the same as at least a part of the inner diameter (inner shape) of the product precursor. This is because the core also undergoes carbonization shrinkage similarly to the product precursor. This core has the effect of maintaining the product shape from the inside until the end of carbonization.

ここで実質的に「同一の炭化収縮率」とは、炭化処理前後の寸法収縮率(%)が、およそ±2ポイント以内、好ましくは1ポイント以内であることを意味する。たとえば100mmの熱硬化性樹脂製成形体を炭化すると概ね80%まで炭化収縮する(樹脂によって多少異なる)。この場合、2ポイントの収縮率差は2mmの寸法差となる。この差より小さければ中子としての効能を発揮する。大きい場合には、その形状を支える効能が十分でなかったり、あるいは製品(ガラス状炭素製異形管)を破損させることがある。   Here, “substantially the same carbonization shrinkage” means that the dimensional shrinkage (%) before and after carbonization is within about ± 2 points, preferably within 1 point. For example, if a 100 mm thermosetting resin molded body is carbonized, it is carbonized and shrunk to approximately 80% (varies slightly depending on the resin). In this case, the two-point shrinkage rate difference is a dimensional difference of 2 mm. If it is smaller than this difference, the effect as a core is exhibited. If it is large, the effect of supporting the shape may not be sufficient, or the product (glass-like carbon deformed tube) may be damaged.

更に、中子を同じ材質としてその炭化収縮率を製品とほぼ同じくするだけでなく、黒鉛と熱硬化性樹脂など、2種以上の材質を組合せて中子を作り、中子全体としての収縮率を製品に合わせることでも同じ効能を得ることができる。   Furthermore, not only does the core have the same material and the carbonization shrinkage rate is almost the same as the product, but the core is made from a combination of two or more materials such as graphite and thermosetting resin. The same effect can be obtained by adjusting to the product.

また、「実質的に同じ材質」とは、同じ樹脂系の材質を意味する。例えば、ガラス状炭素製異形管がフェノール樹脂であり、中子は安価でほぼ同じ炭化収縮率の発泡フェノール樹脂を使用することができる。   Further, “substantially the same material” means the same resin material. For example, a glass-like carbon-made deformed tube is a phenol resin, and the core can be made of a foamed phenol resin that is inexpensive and has substantially the same carbonization shrinkage.

前記中子は、熱硬化性樹脂製異形管の中空部分と同じ形状、即ち、断面がトラック形状や四隅の角にRのついた長方形であって、熱硬化性樹脂製異形管の長手方向に延びた略直方体であっても良いが、高さが熱硬化性樹脂製異形管の平行平面間距離を有し、任意の幅を有する熱硬化性樹脂製異形管の長手方向に延びた直方体形状であって、前記熱硬化性樹脂製異形管の平行平面間に任意の間隔で断面長手方向に複数個配されるものであると、中子用の樹脂が少量で済むと共に、炭素化後に取り出すのが容易になるために、好ましい。   The core has the same shape as the hollow portion of the thermosetting resin deformed tube, that is, the cross section is a track shape or a rectangle with R at the corners of the four corners, and in the longitudinal direction of the thermosetting resin deformed tube. Although it may be a substantially rectangular parallelepiped shape, the height is a parallelepiped shape having a distance between parallel planes of the thermosetting resin deformed tube and extending in the longitudinal direction of the thermosetting resin deformed tube having an arbitrary width. In this case, when a plurality of the thermosetting resin-made deformed pipes are arranged in the longitudinal direction of the cross section at an arbitrary interval between the parallel planes, a small amount of resin for the core is required and is taken out after carbonization. This is preferable because it becomes easy.

また、中子と製品の間に、黒鉛製フェルトや軟質のセラミックシートなど、可撓性を有する材料を挟みこむことは、中子と製品の過剰な接触、更には中子の破損を防ぐために有効である。   In addition, sandwiching a flexible material such as graphite felt or a soft ceramic sheet between the core and the product is to prevent excessive contact between the core and the product, and damage to the core. It is valid.

また、上記ガラス状炭素製異形管には、管端の片方又は両方にフランジが形成されてあってもよく、そのフランジを形成する工程について説明する。フランジの成形は、公知の方法、例えば下記3法が使える。   In addition, the glass-like carbon deformed tube may have a flange formed on one or both ends of the tube, and the process of forming the flange will be described. A known method, for example, the following three methods can be used for forming the flange.

(1)プレス成形ないし射出成形
フランジ形状の金型を用いて、フェノール樹脂などの熱硬化性樹脂を高圧成形し、フランジ部を成形する。それを、既に塑性変形された熱硬化性樹脂製異形管の管端に接着する。
(1) Press molding or injection molding Using a flange-shaped mold, a thermosetting resin such as a phenol resin is molded under high pressure to mold the flange portion. It is adhered to the tube end of a thermosetting resin deformed tube that has already been plastically deformed.

(2)遠心成形
熱硬化性樹脂(固体または液体)を遠心成形し、フランジ部と同じ厚さの樹脂パイプを成形し、当該パイプを平面に開き、その後、加熱しながら上記塑性変形と同様の条件で荷重をかけて、平板状に塑性変形させる。その平板からフランジ形状の部品を切り出す。それを、既に塑性変形された熱硬化性樹脂製異形管の管端に接着する。
(2) Centrifugal molding Thermosetting resin (solid or liquid) is centrifugally molded, a resin pipe having the same thickness as the flange is molded, the pipe is opened on a flat surface, and then the same as the plastic deformation while heating. A load is applied under conditions to plastically deform into a flat plate shape. A flange-shaped part is cut out from the flat plate. It is adhered to the tube end of a thermosetting resin deformed tube that has already been plastically deformed.

(3)注型成形
フランジ部のキャビティを有する金型に液状熱硬化性樹脂を注入し、熱硬化させてフランジ部を形成する。そのフランジ部品を、既に塑性変形された熱硬化性樹脂製異形管の管端に接着する。あるいは、熱硬化性樹脂製異形管を前記金型に挿入してから液状熱硬化性樹脂を注入して、熱硬化させることにより、フランジ部を熱硬化性樹脂製異形管の管端に一体化させることもできる。
(3) Cast molding A liquid thermosetting resin is injected into a mold having a cavity in the flange portion, and is thermally cured to form the flange portion. The flange part is bonded to the pipe end of a thermosetting resin deformed pipe that has already been plastically deformed. Alternatively, by inserting a thermosetting resin deformed pipe into the mold and then injecting a liquid thermosetting resin and thermosetting it, the flange is integrated with the pipe end of the thermosetting resin deformed pipe It can also be made.

上記のフランジ部と熱硬化性樹脂製異形管との接着は、液状熱硬化性樹脂を接着剤として使用する方法や、粉体樹脂を接合部に充填して、荷重をかけながら加熱して溶融させる方法、など、公知の技術を用いて行なうことができる。また、上記3法いずれも、フランジ部、熱硬化性樹脂製異形管、接着材の材質は、それぞれ異なる熱硬化性樹脂を用いてもよいが、炭化時の収縮率ができるだけ近くなるように、同じ樹脂を使うことが望ましい。そうすることによって、炭素化処理時の寸法の不均一な変化(精度の低下)を防ぐことができる。   Adhesion between the flange part and the thermosetting resin deformed pipe can be achieved by using a liquid thermosetting resin as an adhesive or by filling the joint part with powder resin and heating it while applying a load to melt it. The method can be performed using a known technique. In addition, in any of the above three methods, the flange portion, the thermosetting resin modified tube, and the material of the adhesive material may use different thermosetting resins, respectively, but the shrinkage rate during carbonization is as close as possible. It is desirable to use the same resin. By doing so, the nonuniform change (decrease in precision) of the dimension at the time of carbonization processing can be prevented.

ガラス状炭素管が半導体製造装置のチャンバーとして使用される場合、該ガラス状炭素管が腐食環境下に晒されるため、これまで接合部が存在する場合はその部分の耐食や強度が問題となる。特にガラス状炭素製異形管の場合は、断面円形の場合と異なり接合部が存在しないように製造することは難しい。しかし、上述した本発明の製造方法によって製造されたガラス状炭素製異形管は、管の長手方向と平行な方向に接合線の無いものとできるため、耐食性や強度に優れたものとなる。また、本発明で製造されたガラス状炭素製異形管は、断面がトラック状のものだけでなく、直線部と部分円で構成される形、例えば四隅に曲率を有する長方形状(図5参照)のような形状を任意に製造できることができる。更には、異形管の片方の端面、あるいは両端に、フランジが形成されているものも容易に製造することができる。   When a glassy carbon tube is used as a chamber of a semiconductor manufacturing apparatus, the glassy carbon tube is exposed to a corrosive environment. Therefore, when a joint portion exists so far, the corrosion resistance and strength of the portion become a problem. In particular, in the case of a glass-like carbon deformed tube, it is difficult to manufacture so that there is no joint, unlike the case of a circular cross section. However, the glass-like carbon deformed tube manufactured by the above-described manufacturing method of the present invention can have no joining line in a direction parallel to the longitudinal direction of the tube, and therefore has excellent corrosion resistance and strength. In addition, the glass-like carbon-made deformed tube manufactured in the present invention is not limited to a track-shaped cross section, but a shape composed of straight portions and partial circles, for example, a rectangular shape having curvature at four corners (see FIG. 5). Such a shape can be arbitrarily manufactured. Further, it is possible to easily manufacture a deformed pipe having flanges formed on one end face or both ends thereof.

(実施例1)
市販の液状フェノール樹脂(群栄化学製レジトップPL−4804)を、減圧下100℃で1時間熱処理して、水分率を調整し、ガラス状炭素の原料とした。この原料を、内径325mm×長さ1600mmの遠心成形金型を用いて遠心成形法により成形し、直径320mm、厚さ3.5mmのフェノール樹脂製円筒を得た。ガラス転移点は65℃であった。
(Example 1)
A commercially available liquid phenol resin (Regitop PL-4804 manufactured by Gunei Chemical Co., Ltd.) was heat-treated at 100 ° C. under reduced pressure for 1 hour to adjust the moisture content, and used as a raw material for glassy carbon. This raw material was molded by centrifugal molding using a centrifugal mold having an inner diameter of 325 mm and a length of 1600 mm to obtain a phenol resin cylinder having a diameter of 320 mm and a thickness of 3.5 mm. The glass transition point was 65 ° C.

上記で得た円筒を長さ600mmに切断した。この切断した円筒の内部に、 図1に示すように、外径60mm×長さ600mmのステンレス管(棒状治具)2本を入れた。1本は、円筒を支えるごとく、他の1本は、円筒の底部に荷重として置いた(図1a参照)。この状態で90℃で5時間加熱したところ、断面がトラック状のフェノール樹脂製異形円筒が得られた(図1b参照)。そして、この後、前記フェノール樹脂製異形円筒を常法により炭素化処理したところ、断面の半円部の直径が48mm、平行部の長さが340mm、全長が480mmの、長さ方向に接合線のない、ガラス状炭素製異形管を得ることができた。   The cylinder obtained above was cut into a length of 600 mm. As shown in FIG. 1, two stainless tubes (rod-shaped jigs) having an outer diameter of 60 mm and a length of 600 mm were placed inside the cut cylinder. One was placed as a load on the bottom of the cylinder as it supported the cylinder (see FIG. 1a). When heated in this state at 90 ° C. for 5 hours, a deformed cylinder made of phenol resin having a track-like cross section was obtained (see FIG. 1b). Then, after carbonizing the deformed cylinder made of phenol resin by a conventional method, the diameter of the semicircular portion of the cross section is 48 mm, the length of the parallel portion is 340 mm, and the total length is 480 mm. A glass-like carbon-shaped deformed tube having no surface was obtained.

(実施例2)管端部にフランジを接合した場合の例
上記実施例1と同様の製造方法で、断面がトラック状のフェノール樹脂製異形円筒を得た。一方、上記実施例1と同じ原料を用いて、遠心成形法により厚さ3mmのフェノール樹脂管を成形し、成形体を切り開いて、厚さ3mmのフェノール樹脂板を得た。この板から、幅86mm×平行部の長さ425mm×円形部の半径33mmで、その中心部に上記トラック状のフェノール樹脂製異形円筒の外形と等しい穴を有する、トラック型ドーナツ状の樹脂板を切り出した。これら二つの部品をフェノール樹脂で接合し、上記実施例1と同様に常法により炭素化処理したところ、断面の円筒部の直径が48mm、平行部の長さが340mm、全長が480mmで、片端に、幅8mmのフランジを有する、ガラス状炭素製異形管を得ることができた。
(Example 2) Example in which a flange is joined to a pipe end portion By the same manufacturing method as in Example 1 above, a deformed cylinder made of phenol resin having a track-like cross section was obtained. On the other hand, a phenol resin tube having a thickness of 3 mm was formed by centrifugal molding using the same raw material as in Example 1, and the molded body was cut open to obtain a phenol resin plate having a thickness of 3 mm. From this plate, a track-type donut-shaped resin plate having a width of 86 mm × a length of a parallel portion of 425 mm × a radius of a circular portion of 33 mm and having a hole equal to the outer shape of the track-shaped phenol resin deformed cylinder at the center thereof. Cut out. These two parts were joined with a phenolic resin and carbonized by a conventional method in the same manner as in Example 1 above. The diameter of the cylindrical part of the cross section was 48 mm, the length of the parallel part was 340 mm, the total length was 480 mm, and one end In addition, a glass-like carbon deformed tube having a flange with a width of 8 mm could be obtained.

(実施例3)中子を用いた場合の例
市販の液状フェノール樹脂(群栄化学製レジトップPL−4804)を、減圧下100℃で1時間熱処理して、水分率を調整し、ガラス状炭素の原料とした。この原料を、内径325mm×長さ1600mmの遠心成形金型を用いて遠心成形法により成形し、直径320mm、厚さ3.5mmのフェノール樹脂製円筒を得た。
(Example 3) Example of using a core A commercially available liquid phenol resin (Regitop PL-4804 manufactured by Gunei Chemical Co., Ltd.) is heat-treated at 100 ° C. under reduced pressure for 1 hour to adjust the moisture content, and is glassy. Carbon raw material was used. This raw material was molded by centrifugal molding using a centrifugal mold having an inner diameter of 325 mm and a length of 1600 mm to obtain a phenol resin cylinder having a diameter of 320 mm and a thickness of 3.5 mm.

上記で得た円筒を長さ500mmに切断した。この切断した円筒の内部に、 図1に示すように、外径60mm×長さ600mmのステンレス管(棒状治具)2本を入れた。1本は、円筒を支えるごとく、他の1本は、円筒の底部に荷重として置いた(図1a参照)。この状態で90℃で5時間加熱して、断面がトラック状のフェノール樹脂製異形円筒を得た(図1b参照)。   The cylinder obtained above was cut into a length of 500 mm. As shown in FIG. 1, two stainless tubes (rod-shaped jigs) having an outer diameter of 60 mm and a length of 600 mm were placed inside the cut cylinder. One was placed as a load on the bottom of the cylinder as it supported the cylinder (see FIG. 1a). In this state, heating was performed at 90 ° C. for 5 hours to obtain a deformed cylinder made of phenol resin having a track-like cross section (see FIG. 1b).

上記フェノール樹脂製異形円筒の内部に、厚さ3mm×幅60mm×長さ500mmのフェノール樹脂板8枚を図3に示すように所定間隔で挿入した。この後、そのフェノール樹脂製異形円筒を不活性雰囲気中1000℃に加熱処理して炭化させ、ガラス状炭素製異形管を得た。得られたガラス状炭素製異形管は、平行部の間隔が48mmの平均値に対して±0.6mm以内に収まっており、半導体製造装置チャンバーとして好適であった。なお、図3aは炭素化処理前、図3bは炭素化処理後を示す。また、図において、4はフェノール樹脂製異形円筒、5はフェノール樹脂板、6はガラス状炭素製異形管を示す。   Eight phenol resin plates having a thickness of 3 mm, a width of 60 mm and a length of 500 mm were inserted into the deformed cylinder made of phenol resin at a predetermined interval as shown in FIG. Thereafter, the deformed cylinder made of phenol resin was heat-treated at 1000 ° C. in an inert atmosphere and carbonized to obtain a deformed tube made of glassy carbon. The obtained glass-like carbon deformed tube was suitable as a semiconductor manufacturing apparatus chamber because the interval between the parallel portions was within ± 0.6 mm with respect to the average value of 48 mm. 3a shows the state before carbonization treatment, and FIG. 3b shows the state after carbonization treatment. In the figure, 4 is a deformed cylinder made of phenol resin, 5 is a phenol resin plate, and 6 is a deformed tube made of glassy carbon.

また、比較のため、厚さ48mm×幅320mm×長さ400mmの直方体に形成した黒鉛製中子7を、上記フェノール樹脂製異形円筒4の内部に図4に示すように挿入し、上記実施例と同様に、そのフェノール樹脂製異形円筒4を不活性雰囲気中1000℃に加熱処理して炭化させ、ガラス状炭素製異形管8を得た。得られたガラス状炭素製異形管8は、平行部の幅が45mmの平均値に対して±1.6mmもの変動があり、半導体製造装置チャンバーとして使用するには満足のいくものではなかった。   For comparison, a graphite core 7 formed in a rectangular parallelepiped having a thickness of 48 mm, a width of 320 mm, and a length of 400 mm is inserted into the deformed cylinder 4 made of phenol resin as shown in FIG. In the same manner as above, the deformed cylinder 4 made of phenol resin was heat-treated at 1000 ° C. in an inert atmosphere and carbonized to obtain a deformed tube 8 made of glassy carbon. The obtained glassy carbon deformed tube 8 had a variation of ± 1.6 mm with respect to the average value of the parallel part width of 45 mm, and was not satisfactory for use as a semiconductor manufacturing apparatus chamber.

本発明に係る熱硬化性樹脂製円筒状成形体から熱硬化性樹脂製異形管を得る塑性変形工程の一態様を示す説明図であって、aは塑性変形前の状態、bは組成変形後の状態である。It is explanatory drawing which shows the one aspect | mode of the plastic deformation process which obtains the thermosetting resin-made deformed pipe | tube from the thermosetting resin cylindrical molded object which concerns on this invention, Comprising: a is the state before plastic deformation, b is after composition deformation | transformation It is a state. 本発明に係る熱硬化性樹脂製異形管の斜視図である。1 is a perspective view of a thermosetting resin deformed pipe according to the present invention. 本発明に係る熱硬化性樹脂製異形管からガラス状炭素製異形管を得る炭素化工程の一態様を示す説明図であって、aは炭素化処理前の状態、bは炭素化処理後の状態である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the one aspect | mode of the carbonization process which obtains the glassy carbon modified tube from the thermosetting resin modified tube based on this invention, Comprising: a is the state before carbonization processing, b is after carbonization processing. State. 比較例の熱硬化性樹脂製異形管からガラス状炭素製異形管を得る炭素化工程の一態様を示す説明図であって、aは炭素化処理前の状態、bは炭素化処理後の状態である。It is explanatory drawing which shows the one aspect | mode of the carbonization process which obtains the glassy carbon modified tube from the thermosetting resin modified tube of a comparative example, Comprising: a is the state before carbonization treatment, b is the state after carbonization treatment It is. 本発明に係る熱硬化性樹脂製異形管の断面形状例を示す断面図であって、aは四隅に曲率を有する長方形状の場合、bは二辺が平行な長孔形状(トラック形状)の場合である。It is sectional drawing which shows the example of a cross-sectional shape of the thermosetting resin irregular pipe which concerns on this invention, Comprising: When a is a rectangular shape which has a curvature in four corners, b is a long hole shape (track shape) with which two sides are parallel. Is the case.

符号の説明Explanation of symbols

1:熱硬化性樹脂製円筒状成形体 2:丸棒治具
3:熱硬化性樹脂製異形管 4:フェノール樹脂製異形円筒
5:フェノール樹脂板 6:ガラス状炭素製異形管
7:黒鉛製中子 8:ガラス状炭素製異形管
9:管
1: Thermosetting resin cylindrical molded body 2: Round bar jig 3: Thermosetting resin deformed tube 4: Phenolic resin deformed cylinder 5: Phenolic resin plate 6: Glassy carbon deformed tube 7: Graphite Core 8: Glass-like carbon irregular tube 9: Tube

Claims (8)

熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して熱硬化性樹脂製異形管を得る工程と、得られた熱硬化性樹脂製異形管を炭素化する工程と、を含むことを特徴とするガラス状炭素製異形管の製造方法。   A step of forming a thermosetting resin cylindrical molded body by molding a thermosetting resin, and a step of obtaining a thermosetting resin deformed tube by plastic deformation while heating the thermosetting resin cylindrical molded body; And a step of carbonizing the obtained thermosetting resin-made deformed tube, and a method for producing a glassy carbon-shaped deformed tube. 前記熱硬化性樹脂製円筒状成形体がそのガラス転移点をTg℃としたとき、前記塑性変形工程を、下記式(1)を満たす温度T℃で行うものである請求項1に記載のガラス状炭素製異形管の製造方法。
(Tg+5)≦T≦(Tg+100) ……(1)
2. The glass according to claim 1, wherein when the cylindrical molded body made of the thermosetting resin has a glass transition point of Tg ° C., the plastic deformation step is performed at a temperature T ° C. that satisfies the following formula (1). Of carbon-shaped deformed tube.
(Tg + 5) ≦ T ≦ (Tg + 100) (1)
前記熱硬化性樹脂製円筒状成形体のTgが25℃以上100℃以下である請求項1又は2に記載のガラス状炭素製異形管の製造方法。   3. The method for producing a glassy carbon deformed pipe according to claim 1, wherein Tg of the thermosetting resin cylindrical molded body is 25 ° C. or more and 100 ° C. or less. 更に、塑性変形された熱硬化性樹脂製異形管の片方又は両方の端面に、フランジを形成する工程を含む請求項1〜3の何れかに記載のガラス状炭素製異形管の製造方法。   The method for producing a glassy carbon deformed pipe according to any one of claims 1 to 3, further comprising a step of forming a flange on one or both end faces of the deformed thermosetting resin deformed pipe. 前記炭素化工程で、熱硬化性樹脂製異形管の中空部に、該熱硬化性樹脂製異形管と実質的に同一の炭化収縮率を有する中子を配して炭素化するものである請求項1〜4の何れかに記載のガラス状炭素製異形管の製造方法。   In the carbonization step, the hollow portion of the thermosetting resin deformed tube is carbonized by disposing a core having substantially the same carbonization shrinkage rate as the thermosetting resin deformed tube. Item 5. A method for producing a glassy carbon deformed tube according to any one of Items 1 to 4. 前記中子が、前記熱硬化性樹脂製異形管と実質的に同じ材質の熱硬化性樹脂からなる請求項5に記載のガラス状炭素製異形管の製造方法。   6. The method for producing a glassy carbon deformed tube according to claim 5, wherein the core is made of a thermosetting resin made of substantially the same material as the thermosetting resin deformed tube. 前記熱硬化性樹脂製異形管が、平行平面とそれを繋ぐ曲部とを有し、前記中子が、前記平行平面間の距離に等しい辺を有し異形管長手方向に延びた直方体であって、前記熱硬化性樹脂製異形管の平行平面間に任意の間隔で複数個配されるものである請求項5又は6に記載のガラス状炭素製異形管の製造方法。   The deformable pipe made of thermosetting resin has a parallel plane and a curved portion connecting the parallel planes, and the core is a rectangular parallelepiped having sides equal to the distance between the parallel planes and extending in the longitudinal direction of the deformed pipe. The method for producing a glassy carbon deformed tube according to claim 5 or 6, wherein a plurality of the deformable tubes made of the thermosetting resin are arranged at an arbitrary interval between parallel planes. ガラス状炭素からなる断面異形管であって、管の長手方向と平行な方向に接合部が存在しないことを特徴とするガラス状炭素製異形管。

A glass-like carbon deformed tube, which is a deformed tube having a cross-section made of glassy carbon, and has no joint in a direction parallel to the longitudinal direction of the tube.

JP2004087196A 2004-03-24 2004-03-24 Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe Withdrawn JP2005272204A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004087196A JP2005272204A (en) 2004-03-24 2004-03-24 Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe
TW094107317A TW200604096A (en) 2004-03-24 2005-03-10 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
US11/077,254 US20050230859A1 (en) 2004-03-24 2005-03-11 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR1020050024211A KR100755575B1 (en) 2004-03-24 2005-03-23 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR1020060071956A KR100659446B1 (en) 2004-03-24 2006-07-31 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
US11/738,907 US20070190274A1 (en) 2004-03-24 2007-04-23 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
US12/119,965 US20090315323A1 (en) 2004-03-24 2008-05-13 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087196A JP2005272204A (en) 2004-03-24 2004-03-24 Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006304251A Division JP4527705B2 (en) 2006-11-09 2006-11-09 Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method

Publications (1)

Publication Number Publication Date
JP2005272204A true JP2005272204A (en) 2005-10-06

Family

ID=35172259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087196A Withdrawn JP2005272204A (en) 2004-03-24 2004-03-24 Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe

Country Status (1)

Country Link
JP (1) JP2005272204A (en)

Similar Documents

Publication Publication Date Title
KR100755575B1 (en) Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
US20130269601A1 (en) Graphite heater
JP4527705B2 (en) Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method
JP2005272204A (en) Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe
JP2004352545A (en) Method for manufacturing vitreous carbon made pipe and vitreous carbon made pipe manufactured by the method
US20070138676A1 (en) Methods for producing glasslike carbon
WO2002065501A1 (en) Method of producing light emitting tube and core used therefor
JP2008037674A (en) Method of manufacturing vitreous carbon-made core tube
JP2006045011A (en) Glassy carbon-made component, and its production method
JP2006069819A (en) Bent pipe made from glassy carbon and its forming method
JP3863308B2 (en) Method for producing glassy carbon pipe
JPS59189690A (en) Method and device for producing inner tube wit lateral wave or groove of double wall gas discharge tube with high angle selectivity
JP2001335366A (en) Glassy carbon tube precursor and manufacturing method for the same
JP2003226576A (en) Method of manufacturing vitreous carbon cylinder
JP7095385B2 (en) Manufacturing method of carburized parts
JP3864158B2 (en) Manufacturing method of fuel cell separator
JPH0671654A (en) Resin mandrel
JP2001151574A (en) Method of producing glassy carbon pipe and glassy carbon pipe produced by the method
JP4050891B2 (en) Method for producing glassy carbon pipe and core for producing glassy carbon pipe
JPS58126401A (en) Manufacturing method for ceramic turbine rotor
JP2968274B2 (en) Quartz glass tube decompression shaping method
JPH04260667A (en) Production of carbon-fiber reinforced tubular carbon composite material
JP4171220B2 (en) Method for producing glassy carbon molded product
JPS5952291B2 (en) Manufacturing method of polyamide resin roll
JPH04149067A (en) Double hollow cylinder made of carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090520