JP2003226576A - Method of manufacturing vitreous carbon cylinder - Google Patents

Method of manufacturing vitreous carbon cylinder

Info

Publication number
JP2003226576A
JP2003226576A JP2002026859A JP2002026859A JP2003226576A JP 2003226576 A JP2003226576 A JP 2003226576A JP 2002026859 A JP2002026859 A JP 2002026859A JP 2002026859 A JP2002026859 A JP 2002026859A JP 2003226576 A JP2003226576 A JP 2003226576A
Authority
JP
Japan
Prior art keywords
glassy carbon
cylinder
high temperature
heat treatment
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002026859A
Other languages
Japanese (ja)
Inventor
Maki Hamaguchi
眞基 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002026859A priority Critical patent/JP2003226576A/en
Priority to TW92121195A priority patent/TWI249513B/en
Publication of JP2003226576A publication Critical patent/JP2003226576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method to obtain a vitreous carbon cylinder high in circularity. <P>SOLUTION: The vitreous carbon cylinder is manufactured by heat-treating a thermosetting resin cylinder at 800-1,300°C under an inert gas atmosphere to obtain a vitreous carbon cylinder 2 before a high temperature heat treatment, applying circularity correcting die 4 on the outside of the vitreous carbon cylinder 2 before the high temperature treatment, heat-treating the vitreous carbon cylinder 2 before the high temperature treatment at a high temperature of ≥1,500°C with the circularity correcting die 4 under an inert atmosphere. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】ガラス状炭素製円筒体は、気
相反応炉の炉心管や、半導体製造用CVD装置のインナ
ーチューブなどとして好適に用いられるものである。本
発明は、真円度の高いガラス状炭素製円筒体を得るため
の製造方法に関するものである。
BACKGROUND OF THE INVENTION A glassy carbon cylindrical body is suitably used as a core tube of a vapor phase reaction furnace, an inner tube of a CVD apparatus for semiconductor production, and the like. The present invention relates to a manufacturing method for obtaining a glassy carbon cylinder having a high roundness.

【0002】[0002]

【従来の技術】ガラス状炭素は熱硬化性樹脂を熱処理し
て得られる炭素材料であり、ガラス状の非常に均質、緻
密な構造を有している。この材料は、一般の炭素材料の
特徴である熱伝導性、化学的安定性、耐熱性、高純度な
どの性質に加え、構成粒子の脱落がないという優れた特
徴を備えていることから、半導体製造装置部材などの用
途に用いられている。
2. Description of the Related Art Glassy carbon is a carbon material obtained by heat-treating a thermosetting resin, and has a glassy very homogeneous and dense structure. This material has the characteristics of general carbon materials such as thermal conductivity, chemical stability, heat resistance, and high purity, as well as the excellent characteristics that constituent particles do not fall off. It is used for applications such as manufacturing equipment members.

【0003】ガラス状炭素からなるガラス状炭素製円筒
体は、熱硬化性樹脂製円筒体を作製し、これを不活性雰
囲気中にて熱処理することにより得られる。すなわち、
不活性雰囲気中において、通常、800℃以上の温度、
好ましくは1000〜1200℃、さらに好ましくは1
300〜2500℃で熱処理することにより、ガラス状
炭素製円筒体を得るようにしている。
The glassy carbon cylinder made of glassy carbon can be obtained by preparing a thermosetting resin cylinder and heat-treating it in an inert atmosphere. That is,
In an inert atmosphere, a temperature of generally 800 ° C or higher,
Preferably 1000 to 1200 ° C., more preferably 1
By heat-treating at 300 to 2500 ° C., a glassy carbon cylinder is obtained.

【0004】ところが、ガラス状炭素は熱硬化性樹脂製
円筒体を炭化焼成する過程で大きく収縮し、20%程度
の体積収縮があることから、真円度の高い(真円性の良
好な)ガラス状炭素製円筒体を得ることは難しかった。
However, the glassy carbon has a large degree of roundness (good roundness) because it shrinks greatly in the process of carbonizing and firing the thermosetting resin cylindrical body and has a volume shrinkage of about 20%. It was difficult to obtain a glassy carbon cylinder.

【0005】そこで、真円度を確保する目的で、例えば
特開平11−189470号公報及び特開平11−18
9471号公報には、黒鉛製の中子を炭化焼成前の熱硬
化性樹脂製円筒体の内部に配置し、また、黒鉛製の中子
を高温熱処理前のガラス状炭素製円筒体の内部に配置す
るようにした方法が提案されている。具体的には、炭化
焼成時における熱硬化性樹脂製円筒体の収縮を見込ん
で、目的とするガラス状炭素製円筒体の内径と同じ外径
を有する中子を使用している。
Therefore, for the purpose of ensuring the roundness, for example, Japanese Patent Laid-Open Nos. 11-189470 and 11-18.
No. 9471 discloses that a graphite core is placed inside a thermosetting resin cylinder before carbonization and firing, and a graphite core is placed inside a glassy carbon cylinder before high temperature heat treatment. A method of arranging them is proposed. Specifically, in consideration of shrinkage of the thermosetting resin cylindrical body during carbonization and firing, a core having the same outer diameter as the inner diameter of the target glassy carbon cylindrical body is used.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者が検討したところ、中子を用いる前記従来の方法で
は、真円度の高い(真円性の良好な)ガラス状炭素製円
筒体が必ず得られるとは限らないことがわかった。そし
て、本発明者は、真円度が向上しない原因として、炭化
焼成後に行う高温熱処理においてガラス状炭素製円筒体
が1200℃以上の温度で膨張するという点にあること
を見出した。
However, as a result of studies by the present inventor, in the above-mentioned conventional method using the core, a glassy carbon cylindrical body having a high roundness (good roundness) is surely obtained. It turns out that it is not always possible. Then, the present inventor has found that the reason why the roundness is not improved is that the glassy carbon cylindrical body expands at a temperature of 1200 ° C. or higher in the high temperature heat treatment performed after the carbonization and firing.

【0007】本発明は前記知見に基づいて創案されたも
のであり、その目的は高い真円度を有するガラス状炭素
製円筒体の製造方法を提供することにある。
The present invention was created based on the above findings, and an object thereof is to provide a method for manufacturing a glassy carbon cylindrical body having a high roundness.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、熱硬化樹脂製円筒体を不活性雰
囲気中にて800〜1300℃の温度で熱処理して高温
熱処理前のガラス状炭素製円筒体を得、次いで前記高温
熱処理前のガラス状炭素製円筒体の外側に真円度矯正型
をはめて配置し、しかる後、不活性雰囲気中にて前記高
温熱処理前のガラス状炭素製円筒体を前記真円度矯正型
とともに1500℃以上の温度で高温熱処理することを
特徴とするガラス状炭素製円筒体の製造方法である。
In order to achieve the above object, the invention of claim 1 is characterized in that the thermosetting resin cylindrical body is heat-treated at a temperature of 800 to 1300 ° C. in an inert atmosphere before the high temperature heat treatment. To obtain a glassy carbon cylinder, and then place the roundness correction mold on the outside of the glassy carbon cylinder before the high temperature heat treatment, and thereafter, before the high temperature heat treatment in an inert atmosphere. A method for manufacturing a glassy carbon cylinder, which comprises subjecting a glassy carbon cylinder to a high temperature heat treatment at a temperature of 1500 ° C. or higher together with the roundness correcting mold.

【0009】請求項2の発明は、前記請求項1のガラス
状炭素製円筒体の製造方法において、前記真円度矯正型
が黒鉛からなるものであることを特徴とする。
According to a second aspect of the present invention, in the method for manufacturing a glassy carbon cylinder according to the first aspect, the roundness correcting die is made of graphite.

【0010】[0010]

【発明の実施の形態】以下、本発明について説明する。
本発明によるガラス状炭素製円筒体の製造方法では、ま
ず、熱硬化樹脂製円筒体を不活性雰囲気中にて800〜
1300℃の温度で熱処理(炭化焼成)することによ
り、熱硬化樹脂製円筒体は、体積収縮し、ガラス状炭素
化されて高温熱処理前のガラス状炭素製円筒体となる。
この場合、前記熱処理(炭化焼成)にあたり、真円度を
確保する点から、熱硬化樹脂製円筒体の内側に円筒状中
子を配置して熱処理を行うことがよい。次いで、この高
温熱処理前のガラス状炭素製円筒体の外側に、これを囲
繞するように真円度矯正型を配置する。しかる後、不活
性雰囲気中にて前記高温熱処理前のガラス状炭素製円筒
体を前記真円度矯正型とともに1500℃以上の温度、
例えば1500℃で高温熱処理する。この高温での熱処
理が施されることで、1200〜1500℃の温度域を
通過することにより、真円度矯正型は単に熱膨張する一
方、ガラス状炭素製円筒体は、熱膨張することに加え、
炭素の構造変化による膨張を起こす。その結果、高温熱
処理後のガラス状炭素製円筒体は、真円度矯正型の円形
内周壁面の形状に固定されて(円形内周壁面の形状に倣
って)、真円度の高いものとなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below.
In the method for manufacturing a glass-like carbon cylinder according to the present invention, first, a thermosetting resin cylinder is heated in an inert atmosphere at 800 to
By heat-treating (carbonizing and firing) at a temperature of 1300 ° C., the thermosetting resin cylindrical body undergoes volumetric shrinkage to be glassy carbonized to become a glassy carbon cylindrical body before high-temperature heat treatment.
In this case, in the heat treatment (carbonization firing), from the viewpoint of ensuring roundness, it is preferable to arrange the cylindrical core inside the thermosetting resin cylindrical body and perform the heat treatment. Next, a roundness correction mold is arranged outside the glassy carbon cylinder before the high temperature heat treatment so as to surround the cylinder. Thereafter, the glass-like carbon cylindrical body before the high temperature heat treatment in an inert atmosphere together with the roundness correcting mold at a temperature of 1500 ° C. or higher,
For example, high temperature heat treatment is performed at 1500 ° C. By being subjected to the heat treatment at this high temperature, the circularity straightening mold simply thermally expands by passing through the temperature range of 1200 to 1500 ° C., while the glassy carbon cylindrical body thermally expands. In addition,
Expands due to the structural change of carbon. As a result, the glassy carbon cylindrical body after the high temperature heat treatment is fixed to the shape of the circular inner peripheral wall surface of the roundness correcting type (following the shape of the circular inner peripheral wall surface) and has a high circularity. Become.

【0011】図1は、高温熱処理前のガラス状炭素製成
形体を加熱した場合の温度と長さ変化との関係の一例を
示すグラフである。昇温速度は200℃/hである。な
お、厚み2mm×幅2mm×長さ20mmの直方体をな
すガラス状炭素製成形体(試験片)は、温度900℃で
熱処理(炭化焼成)されたものである。
FIG. 1 is a graph showing an example of the relationship between the temperature and the change in length when the glassy carbon molded product before the high temperature heat treatment is heated. The heating rate is 200 ° C./h. The glass-like carbon molded body (test piece), which is a rectangular parallelepiped having a thickness of 2 mm, a width of 2 mm, and a length of 20 mm, was heat-treated (carbonized and fired) at a temperature of 900 ° C.

【0012】図1からわかるように、ガラス状炭素製成
形体は、約950℃までは膨張した後、950〜120
0℃の間では収縮し、さらに、1200℃以上では0〜
900℃における増加勾配よりも大なる増加勾配にて再
び膨張するという挙動を示している。0〜900℃にお
けるガラス状炭素製成形体の線膨張係数は、3×10 -6
(K-1)である。一方、1200〜1500℃の間では
ガラス状炭素製成形体は、約10×10-6(K-1)の線
膨張係数を示しており、該線膨張係数値と前記線膨張係
数3×10-6(K-1)との差が、この温度領域1200
〜1500℃に特有の構造変化によるものである。つま
り、ガラス状炭素製成形体(この例では900℃で炭化
焼成されたもの)は、1200〜1500℃の温度域を
初めて通過するとき、膨張を起こす。この膨張という変
化が起こる機構については明らかでないが、炭素の構造
変化によるものと考えられる。
As can be seen from FIG. 1, glassy carbon production
The feature expands to about 950 ° C. and then expands to 950-120
Shrinks between 0 ° C and 0 to above 1200 ° C
Re-increasing at an increasing slope greater than that at 900 ° C
And the behavior of expanding. 0 to 900 ℃
The linear expansion coefficient of the glassy carbon molded product is 3 × 10. -6
(K-1). On the other hand, between 1200 and 1500 ° C
The glassy carbon molding is approximately 10 x 10-6(K-1) Line
The coefficient of linear expansion is indicated by the coefficient of linear expansion and the coefficient of linear expansion.
Number 3 x 10-6(K-1) Is the temperature range 1200
This is due to the structural change peculiar to -1500 ° C. Tsuma
Molded glassy carbon (in this example, carbonized at 900 ° C
(Baked) has a temperature range of 1200 to 1500 ° C.
When passing for the first time, it expands. This expansion is strange
The mechanism of carbonization is not clear, but the structure of carbon
It is thought to be due to changes.

【0013】このようなことから、高温熱処理に供する
ガラス状炭素製円筒体を得るときの熱処理(炭化焼成)
温度は、次の高温熱処理で1200〜1500℃を初め
て、しかもできるだけ長く経験させることができるよう
な温度、図1からは1200℃以下がよく、原料樹脂に
より多少のバラツキがあることを考慮して、その上限値
を1300℃とした。また、前記熱処理(炭化焼成)温
度の下限値は、熱硬化樹脂製円筒体がガラス状炭素化さ
れる800℃とした。この場合、この下限値は、材料収
縮がほぼ終了していることが望ましいので(900℃で
熱処理されたガラス状炭素製成形体では、図1に示すよ
うに、950〜1200℃の間で材料収縮が起きてい
る)、1200℃にできるだけ近い値であることが好ま
しい。なぜなら、高温熱処理においてこの950〜12
00℃の温度域を通過するときのガラス状炭素製円筒体
の収縮が大きいと、該ガラス状炭素製円筒体がこれを囲
繞する真円度矯正型の円形内周面から離れ過ぎてしま
い、その後の膨張現象による矯正効果が得られなくなる
からである。なお、高温熱処理で温度1500℃以上と
する理由は、この温度を下回ると前記構造変化に起因す
る膨張現象による真円度矯正効果が十分に得られないか
らである。高温熱処理の温度範囲の上限値は、目的とす
るガラス状炭素製円筒体の品質や使用温度などによる
が、通常は2500℃である。
From the above, heat treatment (carbonization firing) for obtaining a glassy carbon cylindrical body to be subjected to high temperature heat treatment
The temperature should be 1200 ° C to 1500 ° C in the next high temperature heat treatment for the first time, and 1200 ° C or less is preferable from Fig. 1, considering that there is some variation depending on the raw material resin. The upper limit value was set to 1300 ° C. The lower limit of the heat treatment (carbonization and firing) temperature was set to 800 ° C. at which the thermosetting resin cylindrical body was vitrified into carbon. In this case, it is desirable that the lower limit of the material shrinkage is almost completed (in the case of the glassy carbon molded product heat-treated at 900 ° C., the material temperature is between 950 and 1200 ° C. as shown in FIG. (Shrinkage has occurred) It is preferable that the value is as close as possible to 1200 ° C. Because in high temperature heat treatment, this 950-12
When the glassy carbon cylinder has a large shrinkage when passing through the temperature range of 00 ° C., the glassy carbon cylinder is too far from the circular inner peripheral surface of the roundness correcting type surrounding the glassy carbon cylinder, This is because the correction effect due to the subsequent expansion phenomenon cannot be obtained. The reason why the temperature is set to 1500 ° C. or higher in the high temperature heat treatment is that if the temperature is lower than this temperature, the effect of correcting the roundness due to the expansion phenomenon due to the structural change cannot be sufficiently obtained. The upper limit of the temperature range of the high temperature heat treatment depends on the quality of the intended glass-like carbon cylinder, the operating temperature, etc., but is usually 2500 ° C.

【0014】本発明で用いる真円度矯正型の材料として
は、耐熱性を有し、高温熱処理されるガラス状炭素製円
筒体と線膨張係数ができるだけ近いものが望ましく、黒
鉛がよい。その他に、ガラス状炭素、カーボンファイバ
ー成形体を挙げることができる。
The roundness correction type material used in the present invention is preferably one having heat resistance and a linear expansion coefficient as close as possible to that of a glassy carbon cylinder which is heat-treated at a high temperature, and graphite is preferable. Other examples include glassy carbon and carbon fiber molded bodies.

【0015】[0015]

【実施例】次に、実施例について説明する。まず、厚み
2.5mm、外径330mm、長さ1200mmのフェ
ノール樹脂製円筒体1を作製した。樹脂原料としては、
市販のフェノール樹脂(群栄化学製PL−4804)を
脱水処理して使用し、遠心成形用金型を備えた遠心成形
機を用いて、遠心成形法によりフェノール樹脂製円筒体
1を作製した。遠心成形法は、遠心力により溶融状態の
熱硬化性樹脂を遠心成形用金型の内面側に流動させ硬化
させる方法である。遠心成形法によれば、外径300m
m、長さ1000mmを超えるような大口径・長尺の熱
硬化性樹脂製円筒体の成形が容易であるとともに、寸法
精度の良い円筒体が得られ、さらには成形時には内面側
が解放されているのでガス抜けが良好で内部に気孔欠陥
のない熱硬化性樹脂製円筒体を得ることができる。
EXAMPLES Next, examples will be described. First, a phenol resin cylindrical body 1 having a thickness of 2.5 mm, an outer diameter of 330 mm and a length of 1200 mm was produced. As a resin raw material,
A commercially available phenol resin (PL-4804 manufactured by Gunei Chemical Industry Co., Ltd.) was dehydrated and used, and a phenol resin cylindrical body 1 was produced by a centrifugal molding method using a centrifugal molding machine equipped with a centrifugal molding die. The centrifugal molding method is a method in which a thermosetting resin in a molten state is caused to flow to the inner surface side of a centrifugal molding die by a centrifugal force to be cured. According to centrifugal molding method, outer diameter is 300m
It is easy to mold a large-diameter and long thermosetting resin cylindrical body having a diameter of more than 1000 mm and a length of more than 1000 mm, and a cylindrical body with good dimensional accuracy can be obtained. Further, the inner surface side is released at the time of molding. Therefore, it is possible to obtain a thermosetting resin cylindrical body with good gas release and no pore defects inside.

【0016】次いで、図2に示すように、内側にカーボ
ンファイバー製フェルト付き中子(以下、単にフェルト
付き中子という)3が配されたフェノール樹脂製円筒体
1を1200℃の温度で炭化焼成して、ガラス状炭素製
円筒体2を得た。すなわち、内側にフェルト付き中子3
が配されたフェノール樹脂製円筒体1を電気炉に入れ、
窒素雰囲気中において2℃/hの昇温速度で1200℃
まで昇温し、この1200℃に1時間保持することによ
りフェノール樹脂製円筒体1を炭化焼成し、しかる後に
フェルト付き中子3を取り外し、厚み1.9mm、真円
換算で外径249mm、長さ900mmの高温熱処理前
のガラス状炭素製円筒体2を得た。ここで、前記フェル
ト付き中子3は、図2に示すように、厚み15mm、外
径240mm、長さ約1200mmの黒鉛製円筒体3a
の外周面に、厚み3mmのカーボンファイバー製フェル
ト3bを1層巻き付けてなるものである。
Next, as shown in FIG. 2, a phenol resin cylindrical body 1 having a carbon fiber felt core (hereinafter simply referred to as felt core) 3 disposed inside thereof is carbonized and fired at a temperature of 1200.degree. Then, a glassy carbon cylinder 2 was obtained. That is, core 3 with felt inside
Put the phenolic resin cylinder 1 where is placed in an electric furnace,
1200 ° C at a heating rate of 2 ° C / h in a nitrogen atmosphere
The phenol resin cylindrical body 1 is carbonized and baked by raising the temperature to 1,200 ° C. for 1 hour, and then the felted core 3 is removed to obtain a thickness of 1.9 mm, an outer diameter of 249 mm in terms of a perfect circle, and a long length. A glassy carbon cylindrical body 2 having a length of 900 mm before high temperature heat treatment was obtained. Here, as shown in FIG. 2, the felted core 3 has a graphite cylindrical body 3a having a thickness of 15 mm, an outer diameter of 240 mm and a length of about 1200 mm.
One layer of carbon fiber felt 3b having a thickness of 3 mm is wound around the outer peripheral surface of.

【0017】図3は本発明の実施に使用される真円度矯
正型の一例を示す図であって、その(a)は平面図、そ
の(b)は(a)のA−A断面図である。黒鉛製の真円
度矯正型4は、図3に示すように、外形が一辺300m
mの正方形で厚みが30mmの平板状をなし、その中心
部分に直径250mmの円形貫通孔4aを有している。
この円形貫通孔4a内に前記ガラス状炭素製円筒体2を
さし入れることが可能となっている。
3A and 3B are views showing an example of a roundness correction mold used for carrying out the present invention, in which FIG. 3A is a plan view and FIG. 3B is a sectional view taken along line AA of FIG. Is. As shown in FIG. 3, the roundness correction mold 4 made of graphite has an outer shape of 300 m on each side.
It has a square shape of m and a thickness of 30 mm, and has a circular through hole 4a having a diameter of 250 mm at the center thereof.
It is possible to insert the glassy carbon cylinder 2 into the circular through hole 4a.

【0018】そして、図4に示すように、前記ガラス状
炭素製円筒体2の一端部分の外側に真円度矯正型4をは
めて配置し、このものを電気炉に入れて高温熱処理を行
った。すなわち、窒素雰囲気中において、20℃/hの
昇温速度で1200℃まで昇温し、さらに1200℃か
ら2℃/hの昇温速度で1500℃まで昇温し、この1
500℃に1時間保持して、高温熱処理がなされた大口
径・長尺のガラス状炭素製円筒体を得た。高温熱処理
後、真円度矯正型4を取り外した。
Then, as shown in FIG. 4, a roundness correcting die 4 is placed outside the one end portion of the glassy carbon cylinder 2 and placed in an electric furnace for high temperature heat treatment. It was That is, in a nitrogen atmosphere, the temperature is raised to 1200 ° C. at a temperature rising rate of 20 ° C./h, and further raised from 1200 ° C. to 1500 ° C. at a temperature rising rate of 2 ° C./h.
It was kept at 500 ° C. for 1 hour to obtain a large-diameter and long glass-like carbon cylindrical body that had been subjected to high-temperature heat treatment. After the high temperature heat treatment, the roundness correcting mold 4 was removed.

【0019】前記得られたガラス状炭素製円筒体の前記
真円度矯正型4が配されていた側の端部における外径の
偏差(外径最大寸法と外径最小寸法との差)は、0.3
mmであった。このように、高い真円度を有し、大口径
・長尺のガラス状炭素製円筒体が得られた。このガラス
状炭素製円筒体は、円筒体の一端側に特に高い真円度が
要求される半導体製造用プラズマCVD装置のインナー
チューブとして好適なものである。
The deviation of the outer diameter (difference between the maximum outer diameter and the minimum outer diameter) at the end portion of the obtained glassy carbon cylindrical body on the side where the roundness correcting mold 4 was disposed is , 0.3
It was mm. In this way, a large-diameter and long glass-like carbon cylinder having a high roundness was obtained. This glassy carbon cylinder is suitable as an inner tube of a plasma CVD apparatus for semiconductor production, which requires a particularly high roundness on one end side of the cylinder.

【0020】次に、比較例について説明する。まず、実
施例と同様にして、厚み2.5mm、外径330mm、
長さ1200mmのフェノール樹脂製円筒体を作製し
た。次いで、このフェノール樹脂製円筒体の内側にフェ
ルト付き中子3を配置して、熱処理を行った。
Next, a comparative example will be described. First, similarly to the example, the thickness is 2.5 mm, the outer diameter is 330 mm,
A 1200 mm long phenolic resin cylinder was produced. Next, the felted core 3 was placed inside the phenol resin cylinder, and heat treatment was performed.

【0021】すなわち、内側にフェルト付き中子3が配
された前記フェノール樹脂製円筒体を電気炉に入れて、
窒素雰囲気中において、2℃/hの昇温速度で1500
℃まで昇温し、1500℃に1時間保持して熱処理を行
った。得られた比較例のガラス状炭素製円筒体は、その
外径の偏差(外径最大寸法と外径最小寸法との差)が
1.2mmであり、実施例に比べて真円度が低いもので
あった。
That is, the phenol resin cylinder having the felt core 3 inside is placed in an electric furnace,
1500 at a heating rate of 2 ° C./h in a nitrogen atmosphere
The temperature was raised to ℃ and held at 1500 ℃ for 1 hour to perform heat treatment. The glass-like carbon cylindrical body of the obtained comparative example has a deviation of its outer diameter (difference between the maximum outer diameter and the minimum outer diameter) of 1.2 mm, and has a lower roundness than that of the example. It was a thing.

【0022】[0022]

【発明の効果】以上述べたように、本発明によるガラス
状炭素製円筒体の製造方法によれば、半導体製造用プラ
ズマCVD装置のインナーチューブなどとして好適な、
高い真円度を有するガラス状炭素製円筒体を得ることが
できる。
As described above, according to the method for producing a glassy carbon cylinder according to the present invention, it is suitable as an inner tube of a plasma CVD apparatus for semiconductor production.
A glassy carbon cylinder having a high roundness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温熱処理前のガラス状炭素製成形体を加熱し
た場合の温度と長さ変化との関係の一例を示すグラフで
ある。
FIG. 1 is a graph showing an example of a relationship between a temperature and a change in length when a glassy carbon molded product before high temperature heat treatment is heated.

【図2】実施例において、フェノール樹脂製円筒体の内
部にカーボンファイバー製フェルト付き中子を配置した
様子を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which carbon fiber felt cores are arranged inside a phenol resin cylindrical body in an example.

【図3】本発明の実施に使用される真円度矯正型の一例
を示す図であって、その(a)は平面図、その(b)は
A−A断面図である。
3A and 3B are views showing an example of a roundness correction mold used for implementing the present invention, in which FIG. 3A is a plan view and FIG. 3B is a sectional view taken along line AA.

【図4】実施例において、高温熱処理前のガラス状炭素
製円筒体の外側に真円度矯正型をはめて配置した様子を
示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a roundness correcting mold is fitted and arranged on the outside of a glassy carbon cylinder before high temperature heat treatment in an example.

【符号の説明】[Explanation of symbols]

1…フェノール樹脂製円筒体 2…高温熱処理前のガラ
ス状炭素製円筒体 3…カーボンファイバー製フェルト
付き中子 3a…黒鉛製円筒体 3b…カーボンファイ
バー製フェルト 4…真円度矯正型 4a…円形貫通孔
1 ... Cylinder made of phenolic resin 2 ... Cylinder made of glassy carbon before high temperature heat treatment 3 ... Core made of carbon fiber felt 3a ... Cylindrical body made of graphite 3b ... Carbon fiber felt 4 ... Roundness correction type 4a ... Circular shape Through hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化樹脂製円筒体を不活性雰囲気中に
て800〜1300℃の温度で熱処理して高温熱処理前
のガラス状炭素製円筒体を得、次いで前記高温熱処理前
のガラス状炭素製円筒体の外側に真円度矯正型をはめて
配置し、しかる後、不活性雰囲気中にて前記高温熱処理
前のガラス状炭素製円筒体を前記真円度矯正型とともに
1500℃以上の温度で高温熱処理することを特徴とす
るガラス状炭素製円筒体の製造方法。
1. A thermosetting resin cylinder is heat-treated in an inert atmosphere at a temperature of 800 to 1300 ° C. to obtain a glassy carbon cylinder before high temperature heat treatment, and then the glassy carbon before high temperature heat treatment. A circularity correction mold is placed on the outside of the cylindrical body, and then the glassy carbon cylinder before the high temperature heat treatment is performed in an inert atmosphere together with the circularity correction mold at a temperature of 1500 ° C. or higher. A method for manufacturing a glass-like carbon cylindrical body, characterized in that the glass-like carbon cylinder is heat-treated at high temperature.
【請求項2】 前記真円度矯正型が黒鉛からなるもので
あることを特徴とする請求項1記載のガラス状炭素製円
筒体の製造方法。
2. The method for manufacturing a glassy carbon cylindrical body according to claim 1, wherein the roundness correcting mold is made of graphite.
JP2002026859A 2002-02-04 2002-02-04 Method of manufacturing vitreous carbon cylinder Pending JP2003226576A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002026859A JP2003226576A (en) 2002-02-04 2002-02-04 Method of manufacturing vitreous carbon cylinder
TW92121195A TWI249513B (en) 2002-02-04 2003-08-01 Component of glass-like carbon for CVD apparatus and process for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026859A JP2003226576A (en) 2002-02-04 2002-02-04 Method of manufacturing vitreous carbon cylinder

Publications (1)

Publication Number Publication Date
JP2003226576A true JP2003226576A (en) 2003-08-12

Family

ID=27748561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026859A Pending JP2003226576A (en) 2002-02-04 2002-02-04 Method of manufacturing vitreous carbon cylinder

Country Status (1)

Country Link
JP (1) JP2003226576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755575B1 (en) 2004-03-24 2007-09-06 가부시키가이샤 고베 세이코쇼 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755575B1 (en) 2004-03-24 2007-09-06 가부시키가이샤 고베 세이코쇼 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article

Similar Documents

Publication Publication Date Title
JP5673034B2 (en) Method for carburizing tantalum containers
CA1081313A (en) Glassy carbon grid-like electrodes and method of manufacturing same
KR101759280B1 (en) Method for preparing porous carbon materials using polymer
JP2003226576A (en) Method of manufacturing vitreous carbon cylinder
JP2010064929A (en) Method for producing carbonaceous film
CN113277715B (en) Method for manufacturing quartz glass device with complex structure
JP2014510384A (en) Method for manufacturing resistance heating element and resistance heating element
CN104654794A (en) Furnace for sintering silica soot bodies
JP4050891B2 (en) Method for producing glassy carbon pipe and core for producing glassy carbon pipe
JP2004224580A (en) Mold for molding quartz glass, and its manufacturing method
JP2002179463A (en) Method for manufacturing vitreous carbon pipe and core for manufacture of vitreous carbon pipe
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JP2009221074A (en) Mold for molding glass lens and method for manufacturing the same
JP2015205780A (en) Method for producing porous silicon carbide sintered compact, and porous silicon carbide sintered compact having protective layer
JP4527705B2 (en) Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method
JP4171220B2 (en) Method for producing glassy carbon molded product
JP5483154B2 (en) Method for carburizing tantalum container and tantalum container
US4808354A (en) Method of making electrical discharge machining electrodes
JPH01197376A (en) Porous carbon material and production thereof
JP7118828B2 (en) Method for producing carbon densified fine particles, and carbon densified fine particles
JPH0517174A (en) Mold for silica glass
JP3863308B2 (en) Method for producing glassy carbon pipe
JP2005272204A (en) Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe
JPH10101432A (en) Part for dry etching device
KR101656817B1 (en) Method for preparing graphite sheet and film roll structure used therein