JP7118828B2 - Method for producing carbon densified fine particles, and carbon densified fine particles - Google Patents

Method for producing carbon densified fine particles, and carbon densified fine particles Download PDF

Info

Publication number
JP7118828B2
JP7118828B2 JP2018171013A JP2018171013A JP7118828B2 JP 7118828 B2 JP7118828 B2 JP 7118828B2 JP 2018171013 A JP2018171013 A JP 2018171013A JP 2018171013 A JP2018171013 A JP 2018171013A JP 7118828 B2 JP7118828 B2 JP 7118828B2
Authority
JP
Japan
Prior art keywords
fine particles
carbon
less
pitch
densified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171013A
Other languages
Japanese (ja)
Other versions
JP2020040862A (en
Inventor
敏弘 深川
徹 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2018171013A priority Critical patent/JP7118828B2/en
Publication of JP2020040862A publication Critical patent/JP2020040862A/en
Application granted granted Critical
Publication of JP7118828B2 publication Critical patent/JP7118828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、炭素源にて緻密化することを必要とする微細な気孔を持つ金属酸化物などの微粒子に対して、容易に炭素緻密化して炭素緻密化微粒子を得る炭素緻密化微粒子の製造方法に関するものである。 The present invention provides a method for producing carbon densified microparticles by easily densifying carbon microparticles such as metal oxides having fine pores that need to be densified with a carbon source to obtain carbon densified microparticles. It is about.

リチウム電池などの電極として利用される金属酸化物粒子は、金属酸化物であることにより、表面の電子を授受するための導電性が低い。そこで、金属酸化物粒子の表面と気孔内に炭素を緻密化させることにより導電性の高い金属酸化物粒子を作る方法が知られている。 Metal oxide particles used as electrodes in lithium batteries and the like have low conductivity for transferring electrons on the surface because they are metal oxides. Therefore, there is known a method of making highly conductive metal oxide particles by densifying carbon on the surface and in the pores of the metal oxide particles.

この炭素を緻密化にすることにより、リチウムイオン電池の充放電時における電子の流れがスムーズとなり、充放電特性のよいリチウムイオン電池が製造可能となる。 By densifying the carbon, electrons flow smoothly during charge/discharge of the lithium ion battery, making it possible to manufacture a lithium ion battery with good charge/discharge characteristics.

これまで、微細な気孔を持つ微粒子の炭素による緻密な含浸方法として、メタン、エチレン、プロパン等の有機物ガスを原料としたCVD法、或いはフェノール樹脂、フラン樹脂などの熱硬化性樹脂や、タール、ピッチ類の熱可塑性樹脂を用いた含浸方法が知られている。 Until now, as a method for densely impregnating fine particles with fine pores with carbon, the CVD method using organic gases such as methane, ethylene, and propane as raw materials, thermosetting resins such as phenol resin and furan resin, tar, Impregnation methods using thermoplastic resins such as pitches are known.

このようなタール、ピッチ類などの熱可塑性樹脂の含浸において、気孔を有する成型体と混合した後に熱処理することにより炭素緻密化する方法が提案されている(例えば、特許文献1参照)。 In the impregnation of thermoplastic resins such as tar and pitches, a method has been proposed in which carbon densification is performed by mixing with a molded body having pores and then heat-treating (see, for example, Patent Document 1).

特許第3383992号公報Japanese Patent No. 3383992

メタン、エチレン、プロパンなどの有機性ガスを原料としたCVD法を実施した場合、微細な気孔に対する炭素源のガスの浸透は非常によいものの、大量に処理する際の均一性に問題が発生し、製造効率が悪いという問題があった。
また、上記CVD法による緻密化では、1,000℃近くの高温において長時間の処理が必要である。さらに閉気孔を作りやすいために、充分な緻密化が難しいという問題があった。
When the CVD method is carried out using organic gases such as methane, ethylene, and propane as raw materials, the penetration of the carbon source gas into the fine pores is very good, but there is a problem of uniformity when processing a large amount. , there was a problem of poor manufacturing efficiency.
Further, the densification by the CVD method requires a long time treatment at a high temperature of nearly 1,000.degree. Furthermore, since closed pores are easily formed, there is a problem that sufficient densification is difficult.

また、フェノール樹脂、フラン樹脂などの熱硬化性樹脂もしくはタールを含浸させた場合、含浸、焼成の工程において気孔が内部に残り、完全に炭素で緻密化することが難しいという問題があった。残存気孔が多い場合、焼成後の表面の導電性が上がらず、性能不良が発生するという問題があった。 In addition, when impregnated with a thermosetting resin such as phenolic resin or furan resin, or with tar, pores remain inside during the impregnation and baking processes, making it difficult to completely densify with carbon. If there are many residual pores, the conductivity of the surface after firing does not increase, resulting in poor performance.

また、フェノール樹脂、フラン樹脂などの熱硬化性樹脂を用いるのに接触角が大きいためアルコール等での希釈する方法も検討されてきたが、希釈することで炭化収率が低くなり、微細気孔への含浸が効率的ではないという問題があった。あわせて、熱硬化した際に閉気孔ができやすく充分な緻密化が困難であった。 In addition, since thermosetting resins such as phenolic resin and furan resin have a large contact angle, a method of diluting them with alcohol or the like has been investigated. There was a problem that the impregnation of was not efficient. In addition, closed pores tend to form during heat curing, making it difficult to achieve sufficient densification.

タールを用いた場合は、常温で液体のため接触角が小さく含浸は容易であるが、炭化歩留まりが低くハンドリングが困難であるという問題があった。 When tar is used, since it is a liquid at room temperature, the contact angle is small and impregnation is easy, but there is a problem that the carbonization yield is low and handling is difficult.

更に、一般のピッチ類を用いた場合、ピッチ中のキノリン不溶分が微細気孔への含浸を阻害するため、微粒子の微細な気孔にピッチが入り難いという問題があった。
あわせて、炭素収率を上げるためにトルエン不溶分を40%以上にした場合は、軟化点が高くなり高温での含浸処理が必要なために設備が過大となり取り扱いも煩雑となるという課題があった。
Furthermore, when ordinary pitches are used, the quinoline-insoluble matter in the pitch inhibits the impregnation of the fine pores, so there is a problem that the pitch is difficult to enter the fine pores of the fine particles.
In addition, if the toluene insoluble content is 40% or more in order to increase the carbon yield, the softening point becomes high and impregnation treatment at high temperature is required, so there is a problem that the equipment becomes excessive and the handling becomes complicated. rice field.

そこで、本発明者らは、かかる課題を解決するために、微細気孔を持つ微粒子への炭素緻密化方法について鋭意検討したところ、ある特定の性質を持つピッチを含浸ピッチとして緻密化処理を施すことにより、上記課題が解決できることを知得し、本発明を完成するに至った。 Therefore, in order to solve such a problem, the present inventors have extensively studied a method for densifying carbon into fine particles having fine pores, and found that pitch having a specific property is used as impregnated pitch and subjected to densification treatment. As a result, the inventors have learned that the above problems can be solved, and have completed the present invention.

<1> 微細な気孔を持つ微粒子と、
キノリン不溶分が1%未満、トルエン不溶分が5%~30%、固定炭素が40%以上、かつ軟化点が60℃~100℃である含浸ピッチと、を用いて、
炭素緻密化工程を行うことを特徴とする炭素緻密化微粒子の製造方法である。
<2> 前記含浸ピッチの密度に対する微粒子の密度の比率が、1超である前記<1>に記載の炭素緻密化微粒子の製造方法である。
<3> 前記炭素緻密化工程前に、減圧工程、及び含浸ピッチ溶融工程をこの順に含む前記<1>から前記<2>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<4> 前記ピッチの固定炭素が、50%以上であり、
前記含浸ピッチの軟化点が、70℃~90℃である前記<1>から前記<3>に記載の炭素緻密化微粒子の製造方法である。
<5> 前記ピッチのキノリン不溶分が、0.5%以下である前記<1>から前記<4>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<6> 前記ピッチのキノリン不溶分が、0.1%以下である前記<5>に記載の炭素緻密化微粒子の製造方法である。
<7> 前記微粒子の平均直径が、10mm以下であり、
前記微粒子の平均気孔径が、50μm以下である前記<1>から前記<6>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<8> 前記微粒子の平均直径が、1mm以下であり、
前記微粒子の平均気孔径が、10μm以下である前記<7>に記載の炭素緻密化微粒子の製造方法である。
<9> 平均直径が10mm以下、かつ平均気孔径が50μm以下である微細な気孔を持つ微粒子であり、
前記気孔に、炭素が50%以上充填されていることを特徴とする炭素緻密化微粒子である。
<1> Fine particles having fine pores,
Using an impregnated pitch with a quinoline insoluble content of less than 1%, a toluene insoluble content of 5% to 30%, a fixed carbon content of 40% or more, and a softening point of 60 ° C to 100 ° C,
A method for producing carbon densified fine particles, characterized by performing a carbon densification step.
<2> The method for producing densified carbon fine particles according to <1>, wherein the ratio of the density of the fine particles to the density of the impregnated pitch is greater than 1.
<3> The method for producing densified carbon fine particles according to any one of <1> to <2>, including, in this order, a decompression step and an impregnated pitch melting step before the carbon densification step.
<4> The fixed carbon of the pitch is 50% or more,
The method for producing densified carbon fine particles according to <1> to <3>, wherein the impregnated pitch has a softening point of 70°C to 90°C.
<5> The method for producing densified carbon fine particles according to any one of <1> to <4>, wherein the quinoline-insoluble matter in the pitch is 0.5% or less.
<6> The method for producing densified carbon fine particles according to <5>, wherein the quinoline-insoluble matter in the pitch is 0.1% or less.
<7> the fine particles have an average diameter of 10 mm or less,
The method for producing densified carbon microparticles according to any one of <1> to <6>, wherein the microparticles have an average pore diameter of 50 μm or less.
<8> the fine particles have an average diameter of 1 mm or less,
The method for producing densified carbon microparticles according to <7>, wherein the microparticles have an average pore diameter of 10 μm or less.
<9> Fine particles having fine pores with an average diameter of 10 mm or less and an average pore diameter of 50 μm or less,
The densified carbon fine particles are characterized in that the pores are filled with 50% or more of carbon.

本発明の方法によれば、微粒子の微細な気孔に炭素が高充填された炭素緻密化微粒子を得ることができる。 According to the method of the present invention, densified carbon microparticles in which fine pores of the microparticles are highly filled with carbon can be obtained.

図1は、微粒子の炭素緻密化工程の一例を示す図である。FIG. 1 is a diagram showing an example of a carbon densification process for fine particles.

(炭素緻密化微粒子の製造方法)
本発明の炭素緻密化微粒子の製造方法は、微粒子と、含浸ピッチと、を用いて、炭素緻密化工程を行い、さらに必要に応じて、減圧工程、含浸ピッチ溶融工程、炭化工程、その他の工程を含む。以下、本発明につき詳細に説明する。
(Method for producing dense carbon fine particles)
In the method for producing carbon densified fine particles of the present invention, fine particles and impregnated pitch are used to perform a carbon densification step, and if necessary, a decompression step, an impregnated pitch melting step, a carbonization step, and other steps. including. Hereinafter, the present invention will be described in detail.

<微粒子>
微粒子は、微細な気孔を持っていれば、材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<Fine particles>
The material, shape, size, and structure of the fine particles are not particularly limited as long as they have fine pores, and can be appropriately selected according to the purpose.

微粒子の気孔としては、特に制限はなく、目的に応じて適宜選択することができる。
微粒子の気孔の平均気孔径としては、50μm以下が好ましく、10μm以下がより好ましい。平均気孔径は、水銀ポロシメーター、BET法により測定することができる。
The pores of the fine particles are not particularly limited and can be appropriately selected depending on the purpose.
The average pore diameter of the fine particles is preferably 50 μm or less, more preferably 10 μm or less. The average pore diameter can be measured by a mercury porosimeter and BET method.

微粒子の材質としては、例えば、金属物(金属酸化物)、セラミックス等の無機物、C/C複合材等の炭素類などが挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
微粒子としては、例えば、マンガン酸リチウム(LiMn)、酸化ケイ素(SiOx)、アルミナ、活性炭などが挙げられる。
Examples of the material of the fine particles include metals (metal oxides), inorganics such as ceramics, and carbons such as C/C composites. These may be used individually by 1 type, or may use 2 or more types together.
Examples of fine particles include lithium manganate (LiMn 2 O 4 ), silicon oxide (SiOx), alumina, and activated carbon.

微粒子の平均直径としては、10mm以下が好ましく、1mm以下がより好ましい。
平均直径とは、水銀ポロシメーター、BET法により測定することができる。
微粒子の密度としては、特に制限はなく、目的に応じて適宜選択することができるが、1.5g/cm以上が好ましく、2g/cm以上がより好ましい。
The average diameter of the fine particles is preferably 10 mm or less, more preferably 1 mm or less.
The average diameter can be measured by a mercury porosimeter and BET method.
The density of the fine particles is not particularly limited and can be appropriately selected depending on the intended purpose.

<含浸ピッチ>
含浸ピッチは、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<Impregnation pitch>
The shape, size, and structure of the impregnated pitch are not particularly limited, and can be appropriately selected according to the purpose.

含浸ピッチのキノリン不溶分としては、1%未満であり、0.5%以下が好ましく、0.1%以下がより好ましい。
含浸ピッチのトルエン不溶分としては、5%~30%である。
含浸ピッチの固定炭素としては、40%以上であり、50%以上が好ましい。
含浸ピッチの軟化点としては、60℃~100℃であり、70℃~90℃が好ましい。軟化点が、60℃~100℃であると、微細な気孔を持つ炭素緻密化微粒子を得ることができる。
The quinoline-insoluble matter in the impregnated pitch is less than 1%, preferably 0.5% or less, more preferably 0.1% or less.
The toluene insoluble content of the impregnated pitch is 5% to 30%.
The fixed carbon content of the impregnated pitch is 40% or more, preferably 50% or more.
The softening point of the impregnated pitch is 60°C to 100°C, preferably 70°C to 90°C. When the softening point is 60° C. to 100° C., dense carbon fine particles having fine pores can be obtained.

含浸ピッチの20℃における密度としては、特に制限はなく、目的に応じて適宜選択することができるが、1.2g/cm~1.3g/cmが好ましい。
含浸ピッチとしては、例えば、人造黒鉛電極用バインダー(JFEケミカル株式会社製)などを好適に用いることができる。
The density of the impregnated pitch at 20° C. is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1.2 g/cm 3 to 1.3 g/cm 3 .
As the impregnation pitch, for example, an artificial graphite electrode binder (manufactured by JFE Chemical Co., Ltd.) can be preferably used.

<<含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)>>
含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)としては、1超であることが好ましく、1.5以上であることが好ましく、2以上であることがより好ましい。なお、含浸ピッチの密度とは、20℃における密度を意味する。
含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)が、1以下であると、含浸ピッチよりも微粒子が同等、又は軽くなるため、含浸ピッチ溶融工程、及び炭素緻密化工程において、溶融した含浸ピッチに微粒子が浮かんでしまい、微粒子を効率よく緻密化することができない傾向にある。
<<The ratio of the density of the fine particles to the density of the impregnated pitch (ratio (fine particles/impregnated pitch)>>
The ratio of the density of the fine particles to the density of the impregnated pitch (ratio (fine particles/impregnated pitch) is preferably greater than 1, preferably 1.5 or more, and more preferably 2 or more. The density of the impregnated pitch means the density at 20°C.
When the ratio of the density of fine particles to the density of impregnated pitch (ratio (fine particles/impregnated pitch)) is 1 or less, the fine particles are equal to or lighter than the impregnated pitch, so in the impregnated pitch melting process and the carbon densification process In this case, fine particles tend to float in the impregnated pitch that has been melted, making it impossible to densify the fine particles efficiently.

<減圧工程、含浸ピッチ溶融工程、炭素緻密化工程、及び炭化工程>
図1は、微粒子の炭素緻密化工程の一例を示す図である。図1を用いて、炭素緻密化工程について説明する。
まず、室温(20℃)の槽(例えば、オートクレーブ)3に、微細な気孔を持つ微粒子1と、キノリン不溶分が1%未満、トルエン不溶分が5%~30%、固定炭素が40%以上、かつ軟化点が60℃~100℃である含浸ピッチ2と、を載置する(図1(A))。この際、連結した別の槽において加熱溶融した含浸ピッチを用いてもよい。
<Decompression step, impregnation pitch melting step, carbon densification step, and carbonization step>
FIG. 1 is a diagram showing an example of a carbon densification process for fine particles. The carbon densification step will be described with reference to FIG.
First, in a tank (eg, autoclave) 3 at room temperature (20 ° C.), fine particles 1 having fine pores, a quinoline insoluble content of less than 1%, a toluene insoluble content of 5% to 30%, and a fixed carbon content of 40% or more. , and an impregnated pitch 2 having a softening point of 60° C. to 100° C. are placed (FIG. 1(A)). At this time, the impregnated pitch heated and melted in another connected tank may be used.

必要により減圧工程(20Torr以下が好ましく、0.1Torr~20Torrがより好ましく、0.1Torr~10Torrがさらに好ましく、1Torr~10Torrが特に好ましい)を含み、微細な気孔を持つ微粒子内のガス分を除去する(図1(B))。この減圧工程を含むことにより、減圧工程後に行う含浸ピッチ溶融工程、炭素緻密化工程において、ガス分が除去された微粒子の微細な気孔に含浸ピッチを充填することができる。
次に、微粒子1を載置した槽3を加熱冷却手段4を用いて所定の温度(180℃~300℃が好ましく、200℃~250℃がより好ましい)に加熱し、含浸ピッチを溶融させる、或いは連結した槽より所定温度(180℃~300℃が好ましく、200℃~250℃がより好ましい)で溶融した含浸ピッチを移送する(含浸ピッチ溶融工程、図1(C))。空気又は不活性雰囲気下(例えば、窒素雰囲気下)で加圧処理(1kg/cmG~10kg/cmG)して、微粒子の微細気孔の中に含浸ピッチを含浸させる(炭素緻密化工程、図1(D))。
If necessary, a pressure reduction step (preferably 20 Torr or less, more preferably 0.1 Torr to 20 Torr, more preferably 0.1 Torr to 10 Torr, and particularly preferably 1 Torr to 10 Torr) is included to remove the gas content in the fine particles having fine pores. (Fig. 1(B)). By including this decompression step, in the impregnated pitch melting step and the carbon densification step performed after the decompression step, the fine pores of the fine particles from which gas has been removed can be filled with the impregnated pitch.
Next, the tank 3 in which the fine particles 1 are placed is heated to a predetermined temperature (preferably 180° C. to 300° C., more preferably 200° C. to 250° C.) using a heating and cooling means 4 to melt the impregnated pitch. Alternatively, impregnated pitch melted at a predetermined temperature (preferably 180° C. to 300° C., more preferably 200° C. to 250° C.) is transferred from a connected tank (impregnated pitch melting step, FIG. 1(C)). Pressure treatment (1 kg/cm 2 G to 10 kg/cm 2 G) is performed in air or an inert atmosphere (for example, under a nitrogen atmosphere) to impregnate the impregnated pitch into the fine pores of the fine particles (carbon densification process , FIG. 1(D)).

この状態で該含浸ピッチを含浸させた後、このまま冷却(25℃~50℃が好ましい)する(図1(E))。その後、微粒子を取り出す、若しくは溶融した該含浸ピッチを抜き出した後に微粒子を取り出すことにより、炭素で緻密化した炭素緻密化微粒子5を得る(図1(F))。 After the impregnated pitch is impregnated in this state, it is cooled as it is (preferably 25° C. to 50° C.) (FIG. 1(E)). After that, the fine particles are taken out, or the fine particles are taken out after the molten impregnated pitch is taken out, thereby obtaining carbon densified fine particles 5 (FIG. 1(F)).

さらに必要に応じて、加圧下(0.1MPa~1MPa)若しくは常圧で含浸ピッチを含浸したまま、或いは炭素で緻密化した炭素緻密化微粒子のみを微粒子が分解しない温度(450℃~700℃が好ましく、500℃~700℃がより好ましい)に加熱して炭化処理することも可能であり、また、該炭素で緻密化した微粒子を空気などの酸化雰囲気で不融化処理して炭化することも可能である(炭化工程)。更に炭素緻密化工程及び炭化工程を繰り返し実施することも可能である。 Furthermore, if necessary, the impregnated pitch is impregnated under pressure (0.1 MPa to 1 MPa) or at normal pressure, or only the carbon densified fine particles are densified with carbon at a temperature at which the fine particles do not decompose (450 ° C. to 700 ° C. Preferably, 500 ° C. to 700 ° C. is more preferable) and carbonization can be performed, and the fine particles densified with carbon can be infusibilized in an oxidizing atmosphere such as air and carbonized. (carbonization process). Furthermore, it is also possible to repeat the carbon densification step and the carbonization step.

(炭素緻密化微粒子)
炭素緻密化微粒子は、平均直径が10mm以下であり、かつ平均気孔径が50μm以下である微細な気孔を持つ微粒子の気孔に、炭素が充填されている。
ここで、炭素とは、炭素、及び芳香族炭化水素を含む意味である。
(Carbon densified fine particles)
The dense carbon fine particles have fine pores with an average diameter of 10 mm or less and an average pore size of 50 μm or less, and the pores of the fine particles are filled with carbon.
Here, carbon is meant to include carbon and aromatic hydrocarbons.

微粒子の気孔への炭素の充填率としては、50%以上であり、60%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましい。
微粒子の気孔への炭素の充填率は、電子顕微鏡を用いて測定することができる。
The filling rate of carbon in pores of fine particles is 50% or more, preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
The filling rate of carbon in the pores of fine particles can be measured using an electron microscope.

微粒子としては、本発明の炭素緻密化微粒子の製造方法に記載の微粒子と同様のものを用いることができる。
炭素としては、本発明の炭素緻密化微粒子の製造方法に記載の含浸ピッチを炭素源として好適に用いることができる。
本発明の炭素緻密化微粒子は、本発明の炭素緻密化微粒子の製造方法により好適に製造することができる。
As the fine particles, the same fine particles as described in the method for producing dense carbon fine particles of the present invention can be used.
As carbon, the impregnated pitch described in the method for producing dense carbon fine particles of the present invention can be suitably used as a carbon source.
The densified carbon fine particles of the present invention can be suitably produced by the method for producing densified carbon fine particles of the present invention.

以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例によって限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited by the following examples as long as the gist of the present invention is not exceeded.

(実施例1)
オートクレーブに平均気孔径が10μmの微細な気孔を持つ平均直径が1mmの金属微粒子(LiMn、密度:3g/cm)及び実質的にキノリン不溶分を含まず、トルエン不溶分15%、固定炭素55%、軟化点85℃の含浸ピッチ(人造黒鉛電極用バインダー(JFEケミカル株式会社製、20℃における密度:1.26g/cm~1.27g/cm))を載置した。減圧下250℃に加熱後、窒素雰囲気で0.6GPaの加圧下で2時間保持した。
(Example 1)
Metal fine particles with an average diameter of 1 mm (LiMn 2 O 4 , density: 3 g/cm 3 ) having fine pores with an average pore diameter of 10 μm and substantially no quinoline insoluble matter and a toluene insoluble matter of 15% in an autoclave, An impregnated pitch (artificial graphite electrode binder (manufactured by JFE Chemical Co., Ltd., density at 20° C.: 1.26 g/cm 3 to 1.27 g/cm 3 )) having a fixed carbon content of 55% and a softening point of 85° C. was placed. After heating to 250° C. under reduced pressure, it was held for 2 hours under a pressure of 0.6 GPa in a nitrogen atmosphere.

冷却後、炭素緻密化微粒子を取り出し、微粒子を研磨して電子顕微鏡観察した結果、微細気孔内はほぼ含浸ピッチで緻密化(充填)されていた(充填率:95%)。この取り出した炭素緻密化微粒子を窒素雰囲気下500℃まで加熱処理し、含浸ピッチを炭素化した。冷却後、微粒子を研磨して顕微鏡観察した結果、微細気孔内は約30%の炭化したピッチで緻密化されていた。結果を下記表1及び2に示す。 After cooling, the densified carbon fine particles were taken out, and the fine particles were polished and observed with an electron microscope. The densified carbon fine particles thus taken out were heat-treated up to 500° C. in a nitrogen atmosphere to carbonize the impregnated pitch. After cooling, the fine particles were polished and observed under a microscope. The results are shown in Tables 1 and 2 below.

(実施例2)
実施例1と同様にして、炭素緻密化微粒子を得た。得られた炭素緻密化微粒子を実施例1と同様に電子顕微鏡観察した結果、実施例1と同様の結果が得られた。その後、微粒子が含浸ピッチで覆われた状態(含浸したまま)でそのまま500℃まで加熱して含浸ピッチを炭化した。
(Example 2)
Carbon densified fine particles were obtained in the same manner as in Example 1. As a result of electron microscope observation of the obtained densified carbon fine particles in the same manner as in Example 1, the same results as in Example 1 were obtained. Thereafter, the impregnated pitch was carbonized by heating to 500° C. while the fine particles were covered with the impregnated pitch (while impregnated).

冷却後、炭素緻密化微粒子を研磨して顕微鏡観察した結果、微細気孔内は約40%の炭化したピッチで緻密化されていた。結果を下記表1及び2に示す。 After cooling, the densified carbon fine particles were polished and observed under a microscope. The results are shown in Tables 1 and 2 below.

(実施例3)
減圧工程を行わなかった以外は、実施例1と同様にして、炭素緻密化微粒子を得た。得られた炭素緻密化微粒子を実施例1と同様に電子顕微鏡観察した結果、微細気孔内は含浸ピッチで緻密化(充填)されていたが、充填率は低かった(充填率:30%)。結果を下記表1及び2に示す。
(Example 3)
Densified carbon fine particles were obtained in the same manner as in Example 1, except that the decompression step was not performed. As a result of electron microscopic observation of the resulting densified carbon fine particles in the same manner as in Example 1, the fine pores were densified (filled) with the impregnated pitch, but the filling rate was low (filling rate: 30%). The results are shown in Tables 1 and 2 below.

(比較例1)
オートクレーブに平均気孔径が10μmの微細な気孔を持つ平均直径が1mm径の金属微粒子を載置及びキノリン不溶分3%、トルエン不溶分15%、固定炭素55%、軟化点85℃の含浸ピッチを載置した。
(Comparative example 1)
Metal fine particles with an average diameter of 1 mm and fine pores with an average pore diameter of 10 μm are placed in an autoclave, and impregnated pitch with a quinoline insoluble content of 3%, a toluene insoluble content of 15%, fixed carbon of 55%, and a softening point of 85° C. is placed. placed.

減圧下250℃に加熱後、窒素雰囲気で0.6GPaの加圧下で2時間保持した。冷却後、微粒子を取り出し、微粒子を研磨して顕微鏡観察した結果、キノリン不溶分で緻密化が阻害されたため、微細気孔内は、充分には含浸ピッチで緻密化されていなかった(充填率:10%)。結果を下記表1及び2に示す。 After heating to 250° C. under reduced pressure, it was held under a pressure of 0.6 GPa in a nitrogen atmosphere for 2 hours. After cooling, the fine particles were taken out, and the fine particles were polished and observed under a microscope. As a result, quinoline-insoluble matter inhibited densification, so that the inside of the micropores was not sufficiently densified with the impregnated pitch (filling rate: 10 %). The results are shown in Tables 1 and 2 below.

Figure 0007118828000001
Figure 0007118828000001

Figure 0007118828000002
Figure 0007118828000002

Claims (9)

孔を持つ微粒子と、
キノリン不溶分が1%未満、トルエン不溶分が5%~30%、固定炭素が40%以上、かつ軟化点が60℃~100℃である含浸ピッチと、を用いて、
炭素緻密化工程を行い、
前記微粒子が、金属酸化物、セラミックス、及び活性炭から選択される少なくとも1種であることを特徴とする炭素緻密化微粒子の製造方法。
microparticles having pores ;
Using an impregnated pitch with a quinoline insoluble content of less than 1%, a toluene insoluble content of 5% to 30%, a fixed carbon content of 40% or more, and a softening point of 60 ° C to 100 ° C,
Carry out a carbon densification process ,
A method for producing densified carbon fine particles , wherein the fine particles are at least one selected from metal oxides, ceramics, and activated carbon.
前記含浸ピッチの密度に対する微粒子の密度の比率が、1超である請求項1に記載の炭素緻密化微粒子の製造方法。 2. The method for producing carbon densified microparticles according to claim 1, wherein the ratio of the density of the microparticles to the density of the impregnated pitch is greater than 1. 前記炭素緻密化工程前に、減圧工程、及び含浸ピッチ溶融工程をこの順に含む請求項1から2のいずれかに記載の炭素緻密化微粒子の製造方法。 3. The method for producing densified carbon fine particles according to any one of claims 1 and 2, wherein a pressure reduction step and an impregnated pitch melting step are included in this order before the carbon densification step. 前記ピッチの固定炭素が、50%以上であり、
前記含浸ピッチの軟化点が、70℃~90℃である請求項1から3のいずれかに記載の炭素緻密化微粒子の製造方法。
Fixed carbon of the pitch is 50% or more,
The method for producing densified carbon fine particles according to any one of claims 1 to 3, wherein the impregnated pitch has a softening point of 70°C to 90°C.
前記ピッチのキノリン不溶分が、0.5%以下である請求項1から4のいずれかに記載の炭素緻密化微粒子の製造方法。 5. The method for producing densified carbon fine particles according to any one of claims 1 to 4, wherein the quinoline-insoluble matter in the pitch is 0.5% or less. 前記ピッチのキノリン不溶分が、0.1%以下である請求項5に記載の炭素緻密化微粒子の製造方法。 6. The method for producing densified carbon fine particles according to claim 5, wherein the quinoline-insoluble matter in the pitch is 0.1% or less. 前記微粒子の平均直径が、10mm以下であり、
前記微粒子の平均気孔径が、50μm以下である請求項1から6のいずれかに記載の炭素緻密化微粒子の製造方法。
The average diameter of the fine particles is 10 mm or less,
7. The method for producing densified carbon fine particles according to any one of claims 1 to 6, wherein the fine particles have an average pore diameter of 50 [mu]m or less.
前記微粒子の平均直径が、1mm以下であり、
前記微粒子の平均気孔径が、10μm以下である請求項7に記載の炭素緻密化微粒子の製造方法。
The average diameter of the fine particles is 1 mm or less,
8. The method for producing densified carbon fine particles according to claim 7, wherein the fine particles have an average pore diameter of 10 [mu]m or less.
平均直径が10mm以下であり、かつ平均気孔径が50μm以下である気孔を持つ微粒子であり
前記微粒子が、金属酸化物、セラミックス、及び活性炭から選択される少なくとも1種であり、
前記気孔に、炭素が50%以上充填されていることを特徴とする炭素緻密化微粒子。
Fine particles having pores with an average diameter of 10 mm or less and an average pore diameter of 50 μm or less ,
the fine particles are at least one selected from metal oxides, ceramics, and activated carbon;
Carbon densified fine particles, wherein the pores are filled with 50% or more of carbon.
JP2018171013A 2018-09-12 2018-09-12 Method for producing carbon densified fine particles, and carbon densified fine particles Active JP7118828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171013A JP7118828B2 (en) 2018-09-12 2018-09-12 Method for producing carbon densified fine particles, and carbon densified fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171013A JP7118828B2 (en) 2018-09-12 2018-09-12 Method for producing carbon densified fine particles, and carbon densified fine particles

Publications (2)

Publication Number Publication Date
JP2020040862A JP2020040862A (en) 2020-03-19
JP7118828B2 true JP7118828B2 (en) 2022-08-16

Family

ID=69797474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171013A Active JP7118828B2 (en) 2018-09-12 2018-09-12 Method for producing carbon densified fine particles, and carbon densified fine particles

Country Status (1)

Country Link
JP (1) JP7118828B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105167A1 (en) 2014-01-09 2015-07-16 昭和電工株式会社 Negative electrode active material for lithium-ion secondary cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251470A (en) * 1988-08-12 1990-02-21 Showa Denko Kk Production of carbon plate
EP0598923B1 (en) * 1992-06-16 1999-03-24 Mitsubishi Chemical Corporation Method of manufacturing carbon fiber-reinforced composite carbon material, carbon fiber-reinforced composite carbon material, and sliding material
JP3383992B2 (en) * 1992-06-17 2003-03-10 三菱化学株式会社 Carbon fiber reinforced carbon composite and sliding material using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105167A1 (en) 2014-01-09 2015-07-16 昭和電工株式会社 Negative electrode active material for lithium-ion secondary cell

Also Published As

Publication number Publication date
JP2020040862A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US7150840B2 (en) Graphite fine carbon fiber, and production method and use thereof
JP6876874B2 (en) Non-aqueous electrolyte secondary battery Negative electrode carbon material manufacturing method and manufacturing equipment
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
KR20090015110A (en) Method of preparing carbonaceous anode materials and using same
JP7489438B2 (en) Carbon fiber aggregate, its manufacturing method, and electrode mixture layer for non-aqueous electrolyte secondary battery
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
JP2018502811A (en) Manufacturing method of densified carbon products by three-dimensional printing
JPH04214072A (en) Carbonaceous composition, carbon material for fuel cell and its manufacture
KR102078974B1 (en) Manufacturing method of carbon papers having excellent thermal conductivity and carbon papers manufactured therefrom
JP7118828B2 (en) Method for producing carbon densified fine particles, and carbon densified fine particles
US8444893B2 (en) Forming carbon-carbon composite preforms using molten pitch and carbon fiber filaments
JP2018104250A (en) Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
WO2023008392A1 (en) Thermal insulation material and method for producing thermal insulation material
KR102073155B1 (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
CN109786722B (en) Method for producing electrochemically active material
JP6655352B2 (en) Method for producing carbon material for negative electrode of power storage device and carbon material for negative electrode of power storage device
KR101144817B1 (en) Manufacturing method of separator for fuel cell using surface treatment and separator for fuel cell manufactured by the same
JP2004014735A (en) Heat sink
KR20190030069A (en) A production method of binderless carbon block using reformation of mesocarbon microbeads
JP2023110501A (en) Method for producing carbon fiber assembled body
US20100314790A1 (en) Highly Oriented Graphite Product
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0551257A (en) Production of carbon fiber reinforced carbon material
CN114744175A (en) Composition, graphite powder, anode powder and production method thereof
KR20240130718A (en) Improved carbon coating material for battery electrode material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7118828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150