JP2020040862A - Method for producing carbon dense fine particles and carbon dense fine particles - Google Patents
Method for producing carbon dense fine particles and carbon dense fine particles Download PDFInfo
- Publication number
- JP2020040862A JP2020040862A JP2018171013A JP2018171013A JP2020040862A JP 2020040862 A JP2020040862 A JP 2020040862A JP 2018171013 A JP2018171013 A JP 2018171013A JP 2018171013 A JP2018171013 A JP 2018171013A JP 2020040862 A JP2020040862 A JP 2020040862A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- carbon
- pitch
- less
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、炭素源にて緻密化することを必要とする微細な気孔を持つ金属酸化物などの微粒子に対して、容易に炭素緻密化して炭素緻密化微粒子を得る炭素緻密化微粒子の製造方法に関するものである。 The present invention is directed to a method for producing carbon-densified fine particles, in which fine particles of metal oxide or the like having fine pores that need to be densified with a carbon source are easily densified with carbon to obtain carbon-densified fine particles. It is about.
リチウム電池などの電極として利用される金属酸化物粒子は、金属酸化物であることにより、表面の電子を授受するための導電性が低い。そこで、金属酸化物粒子の表面と気孔内に炭素を緻密化させることにより導電性の高い金属酸化物粒子を作る方法が知られている。 Metal oxide particles used as an electrode of a lithium battery or the like have low conductivity for transferring electrons on the surface due to being a metal oxide. Therefore, a method of making metal oxide particles having high conductivity by densifying carbon on the surface and in pores of the metal oxide particles is known.
この炭素を緻密化にすることにより、リチウムイオン電池の充放電時における電子の流れがスムーズとなり、充放電特性のよいリチウムイオン電池が製造可能となる。 By making the carbon denser, the flow of electrons during charging and discharging of the lithium ion battery becomes smooth, and a lithium ion battery having good charge and discharge characteristics can be manufactured.
これまで、微細な気孔を持つ微粒子の炭素による緻密な含浸方法として、メタン、エチレン、プロパン等の有機物ガスを原料としたCVD法、或いはフェノール樹脂、フラン樹脂などの熱硬化性樹脂や、タール、ピッチ類の熱可塑性樹脂を用いた含浸方法が知られている。 Heretofore, as a method for densely impregnating fine particles having fine pores with carbon, a CVD method using an organic gas such as methane, ethylene, and propane as a raw material, a thermosetting resin such as a phenol resin and a furan resin, a tar, An impregnation method using a pitch type thermoplastic resin is known.
このようなタール、ピッチ類などの熱可塑性樹脂の含浸において、気孔を有する成型体と混合した後に熱処理することにより炭素緻密化する方法が提案されている(例えば、特許文献1参照)。 In the impregnation of thermoplastic resins such as tars and pitches, there has been proposed a method of densifying carbon by heat treatment after mixing with a molded article having pores (for example, see Patent Document 1).
メタン、エチレン、プロパンなどの有機性ガスを原料としたCVD法を実施した場合、微細な気孔に対する炭素源のガスの浸透は非常によいものの、大量に処理する際の均一性に問題が発生し、製造効率が悪いという問題があった。
また、上記CVD法による緻密化では、1,000℃近くの高温において長時間の処理が必要である。さらに閉気孔を作りやすいために、充分な緻密化が難しいという問題があった。
When a CVD method using an organic gas such as methane, ethylene, or propane as a raw material is carried out, although the penetration of the gas of the carbon source into the fine pores is very good, there is a problem in the uniformity when processing in a large amount. However, there is a problem that manufacturing efficiency is poor.
Further, in the densification by the CVD method, a long-time treatment is required at a high temperature near 1,000 ° C. In addition, there is a problem in that it is difficult to sufficiently densify since the closed pores are easily formed.
また、フェノール樹脂、フラン樹脂などの熱硬化性樹脂もしくはタールを含浸させた場合、含浸、焼成の工程において気孔が内部に残り、完全に炭素で緻密化することが難しいという問題があった。残存気孔が多い場合、焼成後の表面の導電性が上がらず、性能不良が発生するという問題があった。 Further, when a thermosetting resin such as a phenol resin or a furan resin or tar is impregnated, there is a problem that pores remain inside in the steps of impregnation and firing, and it is difficult to completely densify with carbon. When the number of remaining pores is large, there is a problem that the conductivity of the surface after firing does not increase, resulting in poor performance.
また、フェノール樹脂、フラン樹脂などの熱硬化性樹脂を用いるのに接触角が大きいためアルコール等での希釈する方法も検討されてきたが、希釈することで炭化収率が低くなり、微細気孔への含浸が効率的ではないという問題があった。あわせて、熱硬化した際に閉気孔ができやすく充分な緻密化が困難であった。 In addition, a method of diluting with alcohol or the like has been studied because a contact angle is large when using a thermosetting resin such as a phenol resin or a furan resin. There is a problem that the impregnation of is not efficient. In addition, closed pores were easily formed when cured by heat, and it was difficult to achieve sufficient densification.
タールを用いた場合は、常温で液体のため接触角が小さく含浸は容易であるが、炭化歩留まりが低くハンドリングが困難であるという問題があった。 When tar is used, the contact angle is small and the impregnation is easy because it is a liquid at room temperature, but there is a problem that the carbonization yield is low and handling is difficult.
更に、一般のピッチ類を用いた場合、ピッチ中のキノリン不溶分が微細気孔への含浸を阻害するため、微粒子の微細な気孔にピッチが入り難いという問題があった。
あわせて、炭素収率を上げるためにトルエン不溶分を40%以上にした場合は、軟化点が高くなり高温での含浸処理が必要なために設備が過大となり取り扱いも煩雑となるという課題があった。
Furthermore, when general pitches are used, the quinoline insolubles in the pitch hinder the impregnation of the fine pores, so that there is a problem that it is difficult for the pitch to enter the fine pores of the fine particles.
In addition, when the toluene-insoluble content is set to 40% or more in order to increase the carbon yield, the softening point increases, and impregnation at a high temperature is required. Was.
そこで、本発明者らは、かかる課題を解決するために、微細気孔を持つ微粒子への炭素緻密化方法について鋭意検討したところ、ある特定の性質を持つピッチを含浸ピッチとして緻密化処理を施すことにより、上記課題が解決できることを知得し、本発明を完成するに至った。 Therefore, the present inventors have conducted intensive studies on a method for densifying carbon to fine particles having fine pores in order to solve such a problem, and performed a densification treatment using a pitch having a specific property as an impregnated pitch. As a result, it has been found that the above-mentioned problems can be solved, and the present invention has been completed.
<1> 微細な気孔を持つ微粒子と、
キノリン不溶分が1%未満、トルエン不溶分が5%〜30%、固定炭素が40%以上、かつ軟化点が60℃〜100℃である含浸ピッチと、を用いて、
炭素緻密化工程を行うことを特徴とする炭素緻密化微粒子の製造方法である。
<2> 前記含浸ピッチの密度に対する微粒子の密度の比率が、1超である前記<1>に記載の炭素緻密化微粒子の製造方法である。
<3> 前記炭素緻密化工程前に、減圧工程、及び含浸ピッチ溶融工程をこの順に含む前記<1>から前記<2>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<4> 前記ピッチの固定炭素が、50%以上であり、
前記含浸ピッチの軟化点が、70℃〜90℃である前記<1>から前記<3>に記載の炭素緻密化微粒子の製造方法である。
<5> 前記ピッチのキノリン不溶分が、0.5%以下である前記<1>から前記<4>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<6> 前記ピッチのキノリン不溶分が、0.1%以下である前記<5>に記載の炭素緻密化微粒子の製造方法である。
<7> 前記微粒子の平均直径が、10mm以下であり、
前記微粒子の平均気孔径が、50μm以下である前記<1>から前記<6>のいずれかに記載の炭素緻密化微粒子の製造方法である。
<8> 前記微粒子の平均直径が、1mm以下であり、
前記微粒子の平均気孔径が、10μm以下である前記<7>に記載の炭素緻密化微粒子の製造方法である。
<9> 平均直径が10mm以下、かつ平均気孔径が50μm以下である微細な気孔を持つ微粒子であり、
前記気孔に、炭素が50%以上充填されていることを特徴とする炭素緻密化微粒子である。
<1> fine particles having fine pores,
A quinoline-insoluble content of less than 1%, a toluene-insoluble content of 5% to 30%, a fixed carbon of 40% or more, and a softening point of 60 ° C to 100 ° C,
This is a method for producing carbon densified fine particles, which comprises performing a carbon densification step.
<2> The method according to <1>, wherein the ratio of the density of the fine particles to the density of the impregnated pitch is more than 1.
<3> The method for producing fine carbon particles according to any one of <1> to <2>, including a pressure reducing step and an impregnating pitch melting step in this order before the carbon densifying step.
<4> the fixed carbon of the pitch is 50% or more;
The method for producing fine carbon particles according to any one of <1> to <3>, wherein the softening point of the impregnated pitch is 70C to 90C.
<5> The method according to any one of <1> to <4>, wherein the quinoline-insoluble content of the pitch is 0.5% or less.
<6> The method for producing densified carbon fine particles according to <5>, wherein the quinoline-insoluble content of the pitch is 0.1% or less.
<7> the fine particles have an average diameter of 10 mm or less;
The method according to any one of <1> to <6>, wherein the fine particles have an average pore diameter of 50 μm or less.
<8> the average diameter of the fine particles is 1 mm or less;
The method for producing finely-divided carbon particles according to <7>, wherein the fine particles have an average pore diameter of 10 µm or less.
<9> Fine particles having fine pores having an average diameter of 10 mm or less and an average pore diameter of 50 μm or less,
Carbon densified fine particles, wherein the pores are filled with 50% or more of carbon.
本発明の方法によれば、微粒子の微細な気孔に炭素が高充填された炭素緻密化微粒子を得ることができる。 According to the method of the present invention, carbon-densified fine particles in which fine pores of the fine particles are highly filled with carbon can be obtained.
(炭素緻密化微粒子の製造方法)
本発明の炭素緻密化微粒子の製造方法は、微粒子と、含浸ピッチと、を用いて、炭素緻密化工程を行い、さらに必要に応じて、減圧工程、含浸ピッチ溶融工程、炭化工程、その他の工程を含む。以下、本発明につき詳細に説明する。
(Production method of carbon fine particles)
The method for producing the carbon densified fine particles of the present invention includes the steps of performing a carbon densification step using the fine particles and the impregnated pitch, and further, if necessary, depressurizing step, impregnated pitch melting step, carbonizing step, and other steps. including. Hereinafter, the present invention will be described in detail.
<微粒子>
微粒子は、微細な気孔を持っていれば、材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<Fine particles>
The material, shape, size, and structure of the fine particles are not particularly limited as long as they have fine pores, and can be appropriately selected according to the purpose.
微粒子の気孔としては、特に制限はなく、目的に応じて適宜選択することができる。
微粒子の気孔の平均気孔径としては、50μm以下が好ましく、10μm以下がより好ましい。平均気孔径は、水銀ポロシメーター、BET法により測定することができる。
The pores of the fine particles are not particularly limited, and can be appropriately selected according to the purpose.
The average pore diameter of the pores of the fine particles is preferably 50 μm or less, more preferably 10 μm or less. The average pore diameter can be measured by a mercury porosimeter and the BET method.
微粒子の材質としては、例えば、金属物(金属酸化物)、セラミックス等の無機物、C/C複合材等の炭素類などが挙げられる。これらは、1種を単独で使用しても、2種以上を併用してもよい。
微粒子としては、例えば、マンガン酸リチウム(LiMn2O4)、酸化ケイ素(SiOx)、アルミナ、活性炭などが挙げられる。
Examples of the material of the fine particles include metal substances (metal oxides), inorganic substances such as ceramics, and carbons such as a C / C composite material. These may be used alone or in combination of two or more.
Examples of the fine particles include lithium manganate (LiMn 2 O 4 ), silicon oxide (SiOx), alumina, and activated carbon.
微粒子の平均直径としては、10mm以下が好ましく、1mm以下がより好ましい。
平均直径とは、水銀ポロシメーター、BET法により測定することができる。
微粒子の密度としては、特に制限はなく、目的に応じて適宜選択することができるが、1.5g/cm3以上が好ましく、2g/cm3以上がより好ましい。
The average diameter of the fine particles is preferably 10 mm or less, more preferably 1 mm or less.
The average diameter can be measured by a mercury porosimeter or a BET method.
The density of the fine particles is not particularly limited and may be appropriately selected depending on the purpose. However, the density is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more.
<含浸ピッチ>
含浸ピッチは、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
<Impregnation pitch>
The impregnation pitch is not particularly limited as to the shape, size, and structure, and can be appropriately selected according to the purpose.
含浸ピッチのキノリン不溶分としては、1%未満であり、0.5%以下が好ましく、0.1%以下がより好ましい。
含浸ピッチのトルエン不溶分としては、5%〜30%である。
含浸ピッチの固定炭素としては、40%以上であり、50%以上が好ましい。
含浸ピッチの軟化点としては、60℃〜100℃であり、70℃〜90℃が好ましい。軟化点が、60℃〜100℃であると、微細な気孔を持つ炭素緻密化微粒子を得ることができる。
The quinoline-insoluble content of the impregnated pitch is less than 1%, preferably 0.5% or less, more preferably 0.1% or less.
The toluene-insoluble content of the impregnated pitch is 5% to 30%.
The fixed carbon of the impregnated pitch is at least 40%, preferably at least 50%.
The softening point of the impregnated pitch is from 60C to 100C, preferably from 70C to 90C. When the softening point is 60 ° C to 100 ° C, fine carbon fine particles having fine pores can be obtained.
含浸ピッチの20℃における密度としては、特に制限はなく、目的に応じて適宜選択することができるが、1.2g/cm3〜1.3g/cm3が好ましい。
含浸ピッチとしては、例えば、人造黒鉛電極用バインダー(JFEケミカル株式会社製)などを好適に用いることができる。
The density at 20 ° C. for impregnation pitch is not particularly limited and may be appropriately selected depending on the purpose, 1.2g / cm 3 ~1.3g / cm 3 are preferred.
As the impregnation pitch, for example, an artificial graphite electrode binder (manufactured by JFE Chemical Corporation) or the like can be suitably used.
<<含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)>>
含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)としては、1超であることが好ましく、1.5以上であることが好ましく、2以上であることがより好ましい。なお、含浸ピッチの密度とは、20℃における密度を意味する。
含浸ピッチの密度に対する微粒子の密度の比率(比率(微粒子/含浸ピッチ)が、1以下であると、含浸ピッチよりも微粒子が同等、又は軽くなるため、含浸ピッチ溶融工程、及び炭素緻密化工程において、溶融した含浸ピッチに微粒子が浮かんでしまい、微粒子を効率よく緻密化することができない傾向にある。
<< Ratio of fine particle density to impregnated pitch density (ratio (fine particle / impregnated pitch) >>
The ratio of the density of the fine particles to the density of the impregnated pitch (ratio (fine particles / impregnated pitch)) is preferably more than 1, preferably 1.5 or more, and more preferably 2 or more. The density of the impregnated pitch means the density at 20 ° C.
When the ratio of the density of the fine particles to the density of the impregnated pitch (the ratio (fine particles / impregnated pitch) is 1 or less, the fine particles are equal to or lighter than the impregnated pitch. In addition, the fine particles float on the molten impregnated pitch, and the fine particles tend not to be efficiently densified.
<減圧工程、含浸ピッチ溶融工程、炭素緻密化工程、及び炭化工程>
図1は、微粒子の炭素緻密化工程の一例を示す図である。図1を用いて、炭素緻密化工程について説明する。
まず、室温(20℃)の槽(例えば、オートクレーブ)3に、微細な気孔を持つ微粒子1と、キノリン不溶分が1%未満、トルエン不溶分が5%〜30%、固定炭素が40%以上、かつ軟化点が60℃〜100℃である含浸ピッチ2と、を載置する(図1(A))。この際、連結した別の槽において加熱溶融した含浸ピッチを用いてもよい。
<Decompression step, impregnation pitch melting step, carbon densification step, and carbonization step>
FIG. 1 is a diagram illustrating an example of a carbon densification process of fine particles. The carbon densification step will be described with reference to FIG.
First, a fine particle 1 having fine pores, a quinoline-insoluble content of less than 1%, a toluene-insoluble content of 5% to 30%, and a fixed carbon content of 40% or more are placed in a bath (for example, an autoclave) 3 at room temperature (20 ° C.). And an impregnated pitch 2 having a softening point of 60 ° C. to 100 ° C. (FIG. 1A). At this time, an impregnated pitch heated and melted in another connected tank may be used.
必要により減圧工程(20Torr以下が好ましく、0.1Torr〜20Torrがより好ましく、0.1Torr〜10Torrがさらに好ましく、1Torr〜10Torrが特に好ましい)を含み、微細な気孔を持つ微粒子内のガス分を除去する(図1(B))。この減圧工程を含むことにより、減圧工程後に行う含浸ピッチ溶融工程、炭素緻密化工程において、ガス分が除去された微粒子の微細な気孔に含浸ピッチを充填することができる。
次に、微粒子1を載置した槽3を加熱冷却手段4を用いて所定の温度(180℃〜300℃が好ましく、200℃〜250℃がより好ましい)に加熱し、含浸ピッチを溶融させる、或いは連結した槽より所定温度(180℃〜300℃が好ましく、200℃〜250℃がより好ましい)で溶融した含浸ピッチを移送する(含浸ピッチ溶融工程、図1(C))。空気又は不活性雰囲気下(例えば、窒素雰囲気下)で加圧処理(1kg/cm2G〜10kg/cm2G)して、微粒子の微細気孔の中に含浸ピッチを含浸させる(炭素緻密化工程、図1(D))。
If necessary, a pressure reduction step (preferably 20 Torr or less, more preferably 0.1 Torr to 20 Torr, even more preferably 0.1 Torr to 10 Torr, and still more preferably 1 Torr to 10 Torr) is included to remove gas components in fine particles having fine pores. (FIG. 1B). By including the depressurizing step, in the impregnated pitch melting step and the carbon densification step performed after the depressurizing step, the impregnated pitch can be filled in the fine pores of the fine particles from which the gas component has been removed.
Next, the vessel 3 on which the fine particles 1 are placed is heated to a predetermined temperature (preferably 180 ° C. to 300 ° C., more preferably 200 ° C. to 250 ° C.) using the heating and cooling means 4 to melt the impregnated pitch. Alternatively, the impregnated pitch melted at a predetermined temperature (preferably 180 ° C. to 300 ° C., more preferably 200 ° C. to 250 ° C.) is transferred from the connected tanks (impregnated pitch melting step, FIG. 1 (C)). Under air or inert atmosphere (e.g., nitrogen atmosphere) at and pressure treatment (1kg / cm 2 G~10kg / cm 2 G), is impregnated with an impregnating pitch in the fine pores of the microparticles (carbon densification process 1 (D)).
この状態で該含浸ピッチを含浸させた後、このまま冷却(25℃〜50℃が好ましい)する(図1(E))。その後、微粒子を取り出す、若しくは溶融した該含浸ピッチを抜き出した後に微粒子を取り出すことにより、炭素で緻密化した炭素緻密化微粒子5を得る(図1(F))。 After impregnating the impregnated pitch in this state, it is cooled (preferably at 25 ° C. to 50 ° C.) as it is (FIG. 1E). Thereafter, the fine particles are taken out, or the molten impregnated pitch is taken out, and then the fine particles are taken out, whereby carbon densified fine particles 5 densified with carbon are obtained (FIG. 1 (F)).
さらに必要に応じて、加圧下(0.1MPa〜1MPa)若しくは常圧で含浸ピッチを含浸したまま、或いは炭素で緻密化した炭素緻密化微粒子のみを微粒子が分解しない温度(450℃〜700℃が好ましく、500℃〜700℃がより好ましい)に加熱して炭化処理することも可能であり、また、該炭素で緻密化した微粒子を空気などの酸化雰囲気で不融化処理して炭化することも可能である(炭化工程)。更に炭素緻密化工程及び炭化工程を繰り返し実施することも可能である。 Further, if necessary, while the impregnated pitch is impregnated under pressure (0.1 MPa to 1 MPa) or at normal pressure, or at a temperature at which the fine particles do not decompose only the carbon densified fine particles densified with carbon (450 ° C. to 700 ° C.) (Preferably, 500 ° C. to 700 ° C. is more preferable), and carbonization can be performed. Further, fine particles densified with the carbon can be carbonized by infusibilizing in an oxidizing atmosphere such as air. (Carbonization step). Further, the carbon densification step and the carbonization step can be repeatedly performed.
(炭素緻密化微粒子)
炭素緻密化微粒子は、平均直径が10mm以下であり、かつ平均気孔径が50μm以下である微細な気孔を持つ微粒子の気孔に、炭素が充填されている。
ここで、炭素とは、炭素、及び芳香族炭化水素を含む意味である。
(Carbon densified fine particles)
In the carbon densified fine particles, carbon is filled into fine pores having fine pores having an average diameter of 10 mm or less and an average pore diameter of 50 μm or less.
Here, carbon means including carbon and aromatic hydrocarbons.
微粒子の気孔への炭素の充填率としては、50%以上であり、60%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましい。
微粒子の気孔への炭素の充填率は、電子顕微鏡を用いて測定することができる。
The filling rate of carbon into the pores of the fine particles is 50% or more, preferably 60% or more, more preferably 80% or more, further preferably 90% or more, and particularly preferably 95% or more.
The filling rate of carbon into the pores of the fine particles can be measured using an electron microscope.
微粒子としては、本発明の炭素緻密化微粒子の製造方法に記載の微粒子と同様のものを用いることができる。
炭素としては、本発明の炭素緻密化微粒子の製造方法に記載の含浸ピッチを炭素源として好適に用いることができる。
本発明の炭素緻密化微粒子は、本発明の炭素緻密化微粒子の製造方法により好適に製造することができる。
As the fine particles, the same fine particles as those described in the method for producing the carbon densified fine particles of the present invention can be used.
As carbon, the impregnated pitch described in the method for producing dense carbon particles of the present invention can be suitably used as a carbon source.
The densified carbon fine particles of the present invention can be suitably produced by the method for producing densified carbon fine particles of the present invention.
以下、本発明を実施例により具体的に説明するが、本発明はその要旨を越えない限り、下記実施例によって限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
(実施例1)
オートクレーブに平均気孔径が10μmの微細な気孔を持つ平均直径が1mmの金属微粒子(LiMn2O4、密度:3g/cm3)及び実質的にキノリン不溶分を含まず、トルエン不溶分15%、固定炭素55%、軟化点85℃の含浸ピッチ(人造黒鉛電極用バインダー(JFEケミカル株式会社製、20℃における密度:1.26g/cm3〜1.27g/cm3))を載置した。減圧下250℃に加熱後、窒素雰囲気で0.6GPaの加圧下で2時間保持した。
(Example 1)
The metal particles (LiMn 2 O 4 , density: 3 g / cm 3 ) having an average diameter of 1 mm and having fine pores having an average pore diameter of 10 μm in the autoclave and substantially not including a quinoline-insoluble component and a toluene-insoluble component of 15%, An impregnated pitch having a fixed carbon of 55% and a softening point of 85 ° C. (a binder for artificial graphite electrodes (manufactured by JFE Chemical Corporation, density at 20 ° C .: 1.26 g / cm 3 to 1.27 g / cm 3 )) was placed. After heating to 250 ° C. under reduced pressure, it was kept under a pressure of 0.6 GPa in a nitrogen atmosphere for 2 hours.
冷却後、炭素緻密化微粒子を取り出し、微粒子を研磨して電子顕微鏡観察した結果、微細気孔内はほぼ含浸ピッチで緻密化(充填)されていた(充填率:95%)。この取り出した炭素緻密化微粒子を窒素雰囲気下500℃まで加熱処理し、含浸ピッチを炭素化した。冷却後、微粒子を研磨して顕微鏡観察した結果、微細気孔内は約30%の炭化したピッチで緻密化されていた。結果を下記表1及び2に示す。 After cooling, the carbon densified fine particles were taken out, and the fine particles were polished and observed with an electron microscope. As a result, the fine pores were densified (filled) almost at the impregnation pitch (filling rate: 95%). The removed carbon densified fine particles were heated to 500 ° C. in a nitrogen atmosphere to carbonize the impregnated pitch. After cooling, the fine particles were polished and observed with a microscope. As a result, the fine pores were densified with a carbonized pitch of about 30%. The results are shown in Tables 1 and 2 below.
(実施例2)
実施例1と同様にして、炭素緻密化微粒子を得た。得られた炭素緻密化微粒子を実施例1と同様に電子顕微鏡観察した結果、実施例1と同様の結果が得られた。その後、微粒子が含浸ピッチで覆われた状態(含浸したまま)でそのまま500℃まで加熱して含浸ピッチを炭化した。
(Example 2)
In the same manner as in Example 1, fine carbon fine particles were obtained. The obtained densified carbon particles were observed with an electron microscope in the same manner as in Example 1. As a result, the same results as in Example 1 were obtained. Thereafter, the fine particles were heated to 500 ° C. while being covered with the impregnated pitch (as impregnated) to carbonize the impregnated pitch.
冷却後、炭素緻密化微粒子を研磨して顕微鏡観察した結果、微細気孔内は約40%の炭化したピッチで緻密化されていた。結果を下記表1及び2に示す。 After cooling, the carbon densified fine particles were polished and observed with a microscope. As a result, the fine pores were densified with a carbonized pitch of about 40%. The results are shown in Tables 1 and 2 below.
(実施例3)
減圧工程を行わなかった以外は、実施例1と同様にして、炭素緻密化微粒子を得た。得られた炭素緻密化微粒子を実施例1と同様に電子顕微鏡観察した結果、微細気孔内は含浸ピッチで緻密化(充填)されていたが、充填率は低かった(充填率:30%)。結果を下記表1及び2に示す。
(Example 3)
Except that the decompression step was not performed, the same procedure as in Example 1 was carried out to obtain fine carbon particles. Observation of the obtained densified carbon fine particles with an electron microscope in the same manner as in Example 1 showed that the fine pores were densified (filled) with the impregnation pitch, but the filling rate was low (filling rate: 30%). The results are shown in Tables 1 and 2 below.
(比較例1)
オートクレーブに平均気孔径が10μmの微細な気孔を持つ平均直径が1mm径の金属微粒子を載置及びキノリン不溶分3%、トルエン不溶分15%、固定炭素55%、軟化点85℃の含浸ピッチを載置した。
(Comparative Example 1)
A fine metal particle having an average diameter of 1 mm having fine pores having an average pore diameter of 10 μm is placed in an autoclave, and an impregnated pitch having a quinoline-insoluble content of 3%, a toluene-insoluble content of 15%, a fixed carbon of 55%, and a softening point of 85 ° C. Placed.
減圧下250℃に加熱後、窒素雰囲気で0.6GPaの加圧下で2時間保持した。冷却後、微粒子を取り出し、微粒子を研磨して顕微鏡観察した結果、キノリン不溶分で緻密化が阻害されたため、微細気孔内は、充分には含浸ピッチで緻密化されていなかった(充填率:10%)。結果を下記表1及び2に示す。 After heating to 250 ° C. under reduced pressure, it was kept under a pressure of 0.6 GPa in a nitrogen atmosphere for 2 hours. After cooling, the fine particles were taken out, and the fine particles were polished and observed with a microscope. As a result, densification was inhibited by quinoline-insoluble matter, so that the fine pores were not sufficiently densified with the impregnated pitch (filling rate: 10%). %). The results are shown in Tables 1 and 2 below.
Claims (9)
キノリン不溶分が1%未満、トルエン不溶分が5%〜30%、固定炭素が40%以上、かつ軟化点が60℃〜100℃である含浸ピッチと、を用いて、
炭素緻密化工程を行うことを特徴とする炭素緻密化微粒子の製造方法。 Fine particles with fine pores,
A quinoline-insoluble content of less than 1%, a toluene-insoluble content of 5% to 30%, a fixed carbon of 40% or more, and a softening point of 60 ° C to 100 ° C,
A method for producing carbon-densified fine particles, comprising performing a carbon-densification step.
前記含浸ピッチの軟化点が、70℃〜90℃である請求項1から3のいずれかに記載の炭素緻密化微粒子の製造方法。 The fixed carbon of the pitch is 50% or more;
4. The method for producing finely-divided carbon fine particles according to claim 1, wherein a softening point of the impregnated pitch is 70 ° C. to 90 ° C. 5.
前記微粒子の平均気孔径が、50μm以下である請求項1から6のいずれかに記載の炭素緻密化微粒子の製造方法。 The average diameter of the fine particles is 10 mm or less,
The method for producing carbon-densified fine particles according to any one of claims 1 to 6, wherein the average pore diameter of the fine particles is 50 µm or less.
前記微粒子の平均気孔径が、10μm以下である請求項7に記載の炭素緻密化微粒子の製造方法。 The average diameter of the fine particles is 1 mm or less,
The method according to claim 7, wherein the fine particles have an average pore diameter of 10 µm or less.
前記気孔に、炭素が50%以上充填されていることを特徴とする炭素緻密化微粒子。
Fine particles having fine pores having an average diameter of 10 mm or less, and an average pore diameter of 50 μm or less,
Carbon densified fine particles, wherein the pores are filled with 50% or more of carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171013A JP7118828B2 (en) | 2018-09-12 | 2018-09-12 | Method for producing carbon densified fine particles, and carbon densified fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171013A JP7118828B2 (en) | 2018-09-12 | 2018-09-12 | Method for producing carbon densified fine particles, and carbon densified fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020040862A true JP2020040862A (en) | 2020-03-19 |
JP7118828B2 JP7118828B2 (en) | 2022-08-16 |
Family
ID=69797474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018171013A Active JP7118828B2 (en) | 2018-09-12 | 2018-09-12 | Method for producing carbon densified fine particles, and carbon densified fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7118828B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251470A (en) * | 1988-08-12 | 1990-02-21 | Showa Denko Kk | Production of carbon plate |
JPH05345670A (en) * | 1992-06-17 | 1993-12-27 | Mitsubishi Kasei Corp | Carbon fiber-reinforced carbon composite material and sliding material produced therewith |
US5525558A (en) * | 1992-06-16 | 1996-06-11 | Mitsubishi Chemical Corporation | Process for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced carbon composite material and sliding material |
WO2015105167A1 (en) * | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
-
2018
- 2018-09-12 JP JP2018171013A patent/JP7118828B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0251470A (en) * | 1988-08-12 | 1990-02-21 | Showa Denko Kk | Production of carbon plate |
US5525558A (en) * | 1992-06-16 | 1996-06-11 | Mitsubishi Chemical Corporation | Process for producing carbon fiber reinforced carbon composite material, carbon fiber reinforced carbon composite material and sliding material |
JPH05345670A (en) * | 1992-06-17 | 1993-12-27 | Mitsubishi Kasei Corp | Carbon fiber-reinforced carbon composite material and sliding material produced therewith |
WO2015105167A1 (en) * | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
EP3093910A1 (en) * | 2014-01-09 | 2016-11-16 | Showa Denko K.K. | Negative electrode active material for lithium-ion secondary cell |
Also Published As
Publication number | Publication date |
---|---|
JP7118828B2 (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5502850B2 (en) | Anode powder for batteries | |
US7150840B2 (en) | Graphite fine carbon fiber, and production method and use thereof | |
KR100956251B1 (en) | Coated Carbonaceous Particles Particularly Useful as Electrode Materials in Electrical Storage Cells, and Methods of Making the Same | |
JP6876874B2 (en) | Non-aqueous electrolyte secondary battery Negative electrode carbon material manufacturing method and manufacturing equipment | |
US20040247872A1 (en) | Carbon material, production method and use thereof | |
KR20090015110A (en) | Method of preparing carbonaceous anode materials and using same | |
JP7489438B2 (en) | Carbon fiber aggregate, its manufacturing method, and electrode mixture layer for non-aqueous electrolyte secondary battery | |
CN111018554A (en) | Method for preparing ultrahigh-power graphite electrode by using graphene | |
JPH08222241A (en) | Manufacture of graphite member for solid high polymer fuel cell | |
JP2013529169A (en) | Organic coated fine particle powder | |
JPH06172030A (en) | Production of carbon material | |
JPH04214072A (en) | Carbonaceous composition, carbon material for fuel cell and its manufacture | |
JP2005317549A (en) | Manufacturing method of negative electrode material of artificial graphite lithium ion battery | |
JP7118828B2 (en) | Method for producing carbon densified fine particles, and carbon densified fine particles | |
JPWO2005027242A1 (en) | Non-aqueous electrolyte secondary battery, carbon material used therefor, and precursor of the carbon material | |
CN113451575B (en) | Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery | |
US7998584B2 (en) | High-purity carbon fiber-reinforced carbon composite and method for producing the same | |
JP2012138350A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
CN109786722B (en) | Method for producing electrochemically active material | |
KR102073155B1 (en) | A production method of binderless carbon block using reformation of mesocarbon microbeads | |
JP2012174369A (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6655352B2 (en) | Method for producing carbon material for negative electrode of power storage device and carbon material for negative electrode of power storage device | |
KR20190030069A (en) | A production method of binderless carbon block using reformation of mesocarbon microbeads | |
US20100314790A1 (en) | Highly Oriented Graphite Product | |
KR20240130718A (en) | Improved carbon coating material for battery electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20180921 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181010 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20201106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210506 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220322 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7118828 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |