JPH08222241A - Manufacture of graphite member for solid high polymer fuel cell - Google Patents

Manufacture of graphite member for solid high polymer fuel cell

Info

Publication number
JPH08222241A
JPH08222241A JP7046329A JP4632995A JPH08222241A JP H08222241 A JPH08222241 A JP H08222241A JP 7046329 A JP7046329 A JP 7046329A JP 4632995 A JP4632995 A JP 4632995A JP H08222241 A JPH08222241 A JP H08222241A
Authority
JP
Japan
Prior art keywords
thermosetting resin
less
graphite material
fuel cell
resin liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7046329A
Other languages
Japanese (ja)
Other versions
JP3383953B2 (en
Inventor
Mitsuo Enomoto
三男 榎本
Junichi Ikeguchi
純一 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP04632995A priority Critical patent/JP3383953B2/en
Publication of JPH08222241A publication Critical patent/JPH08222241A/en
Application granted granted Critical
Publication of JP3383953B2 publication Critical patent/JP3383953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To manufacture a graphite member which is excellent in gas impermeability and has excellent heat and electric conductivity by performing hardening processing after thermosetting resin liquid is used to impregnate a specific porous isotropic graphite material obtained by performing CIP molding and baking on carbon fine powder. CONSTITUTION: A binding agent such as pitch is added to carbonaceous powder having a maximum particle diameter of 125μm or less, and after it is heated and kneaded, CIP molding is performed by a rubber press. This mold is baked at about 800 deg.C or higher in a nonxoidizing atmosphere, and is graphitized. Thermosetting resin liquid such as phenol resin is used to impregnate an isotropic graphite material which is obtained by this and on which an average pore diameter is not more than 10μm and porosity is not more than 20%, and hardening processing is performed. It is desirable that this impregnating and hardening processing is performed in such a way that the isotropic graphite material is soaked in the thermosetting resin solution in a vessel whose pressure is reduced to 10Torr or less, and after it is held for a prescribed time, the inside of the vessel is pressurized to 3kg/cm<2> or more by air or nitrogen or the like, and is heated to 70 deg.C or more, and after primary hardening is performed, the impregnated graphite material is taken out of the vessel, and secondary hardening is performed at about 180 deg.C or less in the atmosphere, and it is completely hardened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子型(SPE
型)燃料電池のセパレータや集電体に用いられる黒鉛部
材の製造方法に関する。
The present invention relates to a solid polymer type (SPE
Type) to a method for manufacturing a graphite member used for a separator or a current collector of a fuel cell.

【0002】[0002]

【従来の技術】固体高分子型燃料電池はパーフルオロカ
ーボンスルフォン酸などのイオン交換膜からなる固体高
分子の電解質膜と、その両側に設けた2つの電極とそれ
ぞれの電極に水素などの燃料ガスおよび酸素などの酸化
剤ガスを供給するガス供給溝を設けたセパレータ、およ
びその外側に設けた2つの集電体から構成されている。
2. Description of the Related Art A polymer electrolyte fuel cell is a solid polymer electrolyte membrane composed of an ion exchange membrane such as perfluorocarbon sulfonic acid, two electrodes provided on both sides thereof, and a fuel gas such as hydrogen and the like for each electrode. It is composed of a separator provided with a gas supply groove for supplying an oxidant gas such as oxygen, and two current collectors provided outside the separator.

【0003】このセパレータには、燃料ガスと酸化剤ガ
スとを完全に分離した状態で電極に供給するために高度
のガス不透過性が要求され、また電池反応に伴う発熱を
効率よく放散させるために高い熱伝導性を有することが
必要とされている。また集電体は電池反応により発生し
た電気エネルギーを効率よく取り出すために電気伝導性
に優れていることが必要である。
This separator is required to have a high gas impermeability in order to supply the fuel gas and the oxidant gas to the electrodes in a completely separated state, and to efficiently dissipate the heat generated by the cell reaction. It is required to have high thermal conductivity. Further, the current collector needs to have excellent electric conductivity in order to efficiently take out the electric energy generated by the battery reaction.

【0004】このような材質特性が要求されるセパレー
タや集電体として、例えば特開平4−267062号公
報にはセパレータの材質を純銅やステンレス鋼などで構
成する例が開示されている。しかしながら、これらの金
属系の材質では燃料ガスとして用いる水素ガスと長時間
に亘って接触するために、水素脆性が生じて材質劣化が
起こり電池性能が悪化する欠点がある。
As a separator or current collector required to have such material characteristics, for example, Japanese Patent Application Laid-Open No. 4-267062 discloses an example in which the material of the separator is made of pure copper or stainless steel. However, these metallic materials are in contact with hydrogen gas used as a fuel gas for a long time, so that there is a drawback that hydrogen embrittlement occurs and material deterioration is caused to deteriorate battery performance.

【0005】また、リン酸型燃料電池ではセパレータに
炭素質系の材料、特にガス不透過性に優れているガラス
状カーボン材が使用されている。ガラス状カーボン材は
フェノール系樹脂やフラン系樹脂などの熱硬化性樹脂液
を成形し加熱硬化後、非酸化性雰囲気中800℃以上の
温度で焼成炭化して得られるガラス質の性状を呈する特
異な炭素材である。
In the phosphoric acid fuel cell, a carbonaceous material, particularly a glassy carbon material excellent in gas impermeability is used for the separator. A glassy carbon material has a unique vitreous property obtained by molding a thermosetting resin liquid such as a phenolic resin or a furan resin, heat-curing it, and then firing and carbonizing it at a temperature of 800 ° C or higher in a non-oxidizing atmosphere. It is a carbon material.

【0006】しかしながら、ガラス状カーボン材は緻密
な組織構造を有し高いガス不透過性を示す反面、硬度が
高く脆性であるので加工性が悪いという欠点がある。更
に、黒鉛材に比べて熱伝導率が低く電気抵抗も大きいと
いう難点があり、リン酸型燃料電池に比較して高電流密
度で運転される固体高分子型燃料電池のセパレータや集
電体として使用するには適当でない。
[0006] However, while the glassy carbon material has a dense structure and exhibits high gas impermeability, it has the drawback of poor workability due to its high hardness and brittleness. Furthermore, it has the drawback of lower thermal conductivity and higher electrical resistance than graphite materials, and as a separator or current collector for polymer electrolyte fuel cells that operate at higher current densities than phosphoric acid fuel cells. Not suitable for use.

【0007】黒鉛材は、一般にコークス、カーボンブラ
ック、人造黒鉛粉、天然黒鉛粉などの炭素質粉末を骨材
としてピッチ、タールなどの結合材を加えて加熱混練し
たのち所定形状に成形し、焼成、黒鉛化することにより
製造され、ガラス状カーボン材に比べて高い熱伝導率を
有し、電気抵抗も低い特性を示すのでヒータや導電体と
して多方面で有用されている。しかしながら、黒鉛材は
組織中に微細な気孔空隙が無数に存在するため緻密性に
欠け、ガス不透過性が劣る欠点がある。このため、黒鉛
材をそのまま固体高分子型燃料電池のセパレータや集電
体として用いることはできない。
The graphite material is generally carbonaceous powder such as coke, carbon black, artificial graphite powder, natural graphite powder, etc. as an aggregate and a binder such as pitch, tar and the like is added thereto, and the mixture is heated and kneaded, then molded into a predetermined shape and fired. Since it is manufactured by graphitization and has a higher thermal conductivity and a lower electric resistance than a glassy carbon material, it is useful in various fields as a heater or a conductor. However, the graphite material has a drawback that it lacks denseness and is inferior in gas impermeability because numerous fine pore voids are present in the structure. Therefore, the graphite material cannot be used as it is as a separator or a collector of a polymer electrolyte fuel cell.

【0008】この黒鉛材の気孔空隙に熱硬化性樹脂液を
含浸し加熱硬化して、気孔空隙を閉塞することによりガ
ス不透過性にする試みは従来から種々の方法が提案され
ている。例えば、含浸する樹脂を特定するものとして特
開昭52−125488号公報には炭素材料にフリーデ
ルクラフツ樹脂を含浸硬化する不浸透性炭素製品の製造
方法が、特開昭59−57975号公報には炭素基材に
フェノール樹脂とピッチとの相溶物を含浸し、該含浸物
を炭化あるいは黒鉛化処理する不浸透性炭素材料の製造
法が、また特公平6−31184号公報にはカーボン材
にクレゾール樹脂を40〜95重量%の割合で含有する
クレゾール樹脂とフェノール樹脂の混合樹脂液を含浸硬
化する不透過性カーボン材の製造方法などが提案されて
いる。
Various methods have been proposed in the past for attempting gas impermeability by impregnating the pore voids of this graphite material with a thermosetting resin liquid and heating and curing it to close the pore voids. For example, as a method for specifying the resin to be impregnated, JP-A-52-125488 discloses a method for producing an impermeable carbon product in which a carbon material is impregnated with a Friedel-Crafts resin and cured, and JP-A-59-57975 discloses. Is a method for producing an impermeable carbon material in which a carbon base material is impregnated with a compatible material of a phenol resin and pitch, and the impregnated material is carbonized or graphitized, and Japanese Patent Publication No. 6-31184 discloses a carbon material. Has proposed a method for producing an impermeable carbon material by impregnating and curing a mixed resin solution of a cresol resin and a phenol resin containing a cresol resin in a proportion of 40 to 95% by weight.

【0009】また、含浸硬化条件を特定するものとして
特公平5−67595号公報には炭素質素材を含浸槽に
入れ、減圧下で液状の熱硬化性樹脂に浸漬し、ついで系
内を加圧状態に切り換えて液状樹脂が初期硬化するまで
30℃以上の温度で加熱処理する不浸透性炭素材の製造
方法が提案されている。
As a method for specifying the impregnation curing conditions, Japanese Patent Publication No. 5-67595 discloses that a carbonaceous material is placed in an impregnation tank, immersed in a liquid thermosetting resin under reduced pressure, and then the system is pressurized. A method for producing an impermeable carbon material has been proposed in which the liquid resin is switched to the state and heat-treated at a temperature of 30 ° C. or higher until the liquid resin is initially cured.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、これら
の方法で得られる不透過性炭素材を固体高分子型燃料電
池のセパレータや集電体として用いるにはガス不透過
性、熱伝導性および導電性をバランスよく付与する点で
充分でないという問題点があった。
However, when the impermeable carbon material obtained by these methods is used as a separator or a current collector of a polymer electrolyte fuel cell, gas impermeability, thermal conductivity and conductivity are required. However, there is a problem in that it is not sufficient to give the above in a well-balanced manner.

【0011】本発明者等は、黒鉛基材の気孔性状や熱硬
化性樹脂液の含浸、硬化処理条件について研究を進めた
結果、原料骨材である炭素質粉末の最大粒径および黒鉛
基材の気孔性状ならびに熱硬化性樹脂液の含浸硬化条件
を特定することにより、ガス不透過性、熱伝導性、導電
性をバランスよく付与できることを見出した。
The inventors of the present invention have conducted research on the porosity of the graphite base material, impregnation of the thermosetting resin liquid, and curing treatment conditions. As a result, the maximum particle size of the carbonaceous powder as the raw material aggregate and the graphite base material have been investigated. It was found that gas impermeability, thermal conductivity, and conductivity can be imparted in a well-balanced manner by specifying the porosity and the conditions for impregnation and curing of the thermosetting resin liquid.

【0012】本発明は上記知見に基づいて開発されたも
ので、その目的は固体高分子型燃料電池のセパレータや
集電体として有用な黒鉛部材の製造方法を提供すること
にある。
The present invention was developed based on the above findings, and an object thereof is to provide a method for producing a graphite member useful as a separator or a current collector of a polymer electrolyte fuel cell.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による固体高分子型燃料電池用黒鉛部材の製
造方法は、最大粒径125μm 以下の炭素質粉末に結合
材を加えて加熱混練後CIP成形し、次いで焼成、黒鉛
化して得られた平均気孔径10μm 以下、気孔率20%
以下の等方性黒鉛材に熱硬化性樹脂液を含浸、硬化処理
すること(請求項1)、および含浸、硬化処理を、10
Torr以下の減圧下に保持された容器内で等方性黒鉛材を
熱硬化性樹脂液中に浸漬し所定時間保持した後、容器内
を3kg/cm2以上に加圧して70℃以上の温度で加熱する
ことにより行うこと(請求項2)を構成上の特徴とす
る。
In order to achieve the above object, a method for producing a graphite member for a polymer electrolyte fuel cell according to the present invention comprises a carbonaceous powder having a maximum particle size of 125 μm or less and a binder added to the carbonaceous powder and heated. After kneading, CIP molding, firing, and graphitization, average pore diameter less than 10 μm, porosity 20%
The following isotropic graphite material is impregnated with a thermosetting resin liquid and cured (Claim 1), and impregnated and cured.
After the isotropic graphite material is immersed in a thermosetting resin liquid in a container kept under a reduced pressure of Torr or less and kept for a predetermined time, the inside of the container is pressurized to 3 kg / cm 2 or more and the temperature is 70 ° C or more. It is characterized in that it is performed by heating at (Claim 2).

【0014】セパレータや集電体の黒鉛部材は通常0.
5〜1mmに薄く加工して使用されるが、骨材となるコー
クスなどの炭素質粉末の粒径が大きいとこの加工時に粒
子の脱落が起こるため、炭素質粉末は最大粒径が125
μm 以下のものを用いることが必要である。最大粒径が
125μm を越えると樹脂液の含浸、硬化時に樹脂液の
流出が起こり易くなるとともに、硬化後の薄肉に加工す
る際に炭素質粉末の脱落によりガス不透過性を損ねる。
結合材としてはピッチ、タールなどが用いられ、骨材を
結合材とともに加熱混練した後ラバープレスによりCI
P成形して所定形状のブロック状の成形体にする。成形
体は非酸化性雰囲気に保持された高温炉内で800℃以
上の温度に加熱して焼成炭化し、さらに黒鉛化炉内で2
000℃以上の温度により黒鉛化される。
The graphite member of the separator or the current collector is usually less than 0.1%.
It is used after being thinly processed to 5 to 1 mm, but if the particle size of carbonaceous powder such as coke, which is an aggregate, is large, particles fall off during this processing, so the maximum particle size of carbonaceous powder is 125
It is necessary to use those with a size of μm or less. If the maximum particle size exceeds 125 μm, the resin liquid is likely to flow out during impregnation and curing of the resin liquid, and the gas impermeability is impaired by the loss of carbonaceous powder when the thin film after curing is processed.
Pitch, tar, etc. are used as the binder, and the aggregate is heated and kneaded together with the binder and then CI is applied by a rubber press.
P-molding is performed to obtain a block-shaped molded body having a predetermined shape. The molded body is heated to a temperature of 800 ° C. or higher in a high-temperature furnace maintained in a non-oxidizing atmosphere to be fired and carbonized, and further in a graphitization furnace to be 2
Graphitized at a temperature of 000 ° C or higher.

【0015】この場合、用いる炭素質粉末の粒度分布、
結合材の混合比率などを設定することにより得られる等
方性黒鉛材の気孔性状を調整することができる。等方性
黒鉛材の気孔性状としては平均気孔径10μm 以下およ
び気孔率20%以下のものを使用することが必要であ
り、平均気孔径が10μm を越えると熱硬化性樹脂液の
硬化時に樹脂の一部が流出して気孔の充填が不充分とな
るためである。なお、平均気孔径が小さい場合には気孔
内に熱硬化性樹脂液を含浸することが困難となるため、
平均気孔径は0.4μm 以上であることが好ましい。ま
た、気孔率が20%以下のものを用いるのは、気孔率が
20%を上回る場合には気孔内を熱硬化性樹脂で充分に
充填し、閉塞することが困難となるからである。
In this case, the particle size distribution of the carbonaceous powder used,
The porosity of the isotropic graphite material obtained by setting the mixing ratio of the binder and the like can be adjusted. As for the porosity of the isotropic graphite material, it is necessary to use one having an average pore diameter of 10 μm or less and a porosity of 20% or less. This is because some of them flow out and the filling of the pores becomes insufficient. When the average pore diameter is small, it becomes difficult to impregnate the thermosetting resin liquid into the pores,
The average pore diameter is preferably 0.4 μm or more. The reason why the porosity is 20% or less is that when the porosity is higher than 20%, it is difficult to sufficiently fill the inside of the pores with the thermosetting resin to close the pores.

【0016】含浸処理は上記気孔性状を備えた等方性黒
鉛材を10Torr以下の減圧下に保持された容器内に入れ
て脱気したのち、熱硬化性樹脂液を注入して浸漬し気孔
内に熱硬化性樹脂液を充分に充填する。浸漬時間は等方
性黒鉛材の大きさや樹脂粘度などにより適宜設定され
る。用いる熱硬化性樹脂液には特に制限はなくpH3程
度のスルフォン酸や硫酸酸性の水溶液に耐え得るフェノ
ール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂など
の樹脂が用いられるが、含浸性を考慮すると可及的に低
粘度のものを適用することが好ましい。
In the impregnation treatment, the isotropic graphite material having the above-mentioned porosity is placed in a container kept under a reduced pressure of 10 Torr or less to deaerate, and then a thermosetting resin liquid is injected to immerse it in the pores. Sufficiently fill with thermosetting resin liquid. The immersion time is appropriately set depending on the size of the isotropic graphite material and the resin viscosity. The thermosetting resin liquid to be used is not particularly limited, and a resin such as a phenol resin, an epoxy resin, or an unsaturated polyester resin which can withstand a sulfonic acid or sulfuric acid aqueous solution having a pH of about 3 is used. It is preferable to use a low viscosity one.

【0017】次いで容器内を加圧状態に切り換えて、空
気、窒素などの加圧ガスにより3kg/cm2以上に加圧する
とともに70℃以上の温度に加熱して、含浸した熱硬化
性樹脂液の硬化処理を行う。この加圧下における加熱処
理は熱硬化性樹脂液が一次硬化するまで行うが、一次硬
化の速度が早過ぎると含浸した熱硬化性樹脂液の一部が
流出して黒鉛基材の気孔空隙の深部までを閉塞すること
ができないので加熱温度は130℃を越えないことが好
ましい。この一次硬化処理を施した等方性黒鉛材は容器
から取り出して、大気中で180℃以下の温度に加熱し
て完全に硬化(二次硬化)する。
Next, the inside of the container is switched to a pressurized state, pressurized to 3 kg / cm 2 or more with a pressurized gas such as air or nitrogen, and heated to a temperature of 70 ° C. or more to obtain the impregnated thermosetting resin liquid. Curing process is performed. This heat treatment under pressure is carried out until the thermosetting resin liquid is primarily cured, but if the rate of primary curing is too fast, part of the impregnated thermosetting resin liquid will flow out and the deep part of the pore voids of the graphite base material will be discharged. It is preferable that the heating temperature does not exceed 130 ° C. because it cannot be closed. The isotropic graphite material that has been subjected to this primary curing treatment is taken out of the container and heated to a temperature of 180 ° C. or lower in the atmosphere to be completely cured (secondary curing).

【0018】[0018]

【作用】本発明の固体高分子型燃料電池用黒鉛部材の製
造方法は、コークス、黒鉛粉末などの骨材となる炭素質
粉末の最大粒径ならびに等方性黒鉛基材の気孔性状を特
定することにより、熱硬化性樹脂液を気孔空隙内に効率
よく充填することができる。さらに、熱硬化性樹脂液の
含浸、硬化処理は等方性黒鉛基材の気孔空隙中に存在す
るガスを減圧下に脱気したのち、加圧下に加熱すること
により硬化処理するものであるから含浸した熱硬化性樹
脂液の流出が抑制された状態で気孔空隙中で硬化する。
したがって、等方性黒鉛材の気孔空隙を効果的に閉塞す
ることが可能となる。
According to the method for producing a graphite member for a polymer electrolyte fuel cell of the present invention, the maximum particle size of carbonaceous powder as an aggregate such as coke and graphite powder and the porosity of the isotropic graphite base material are specified. As a result, the thermosetting resin liquid can be efficiently filled in the pore voids. Further, since the thermosetting resin liquid is impregnated and cured, the gas present in the pore voids of the isotropic graphite base material is degassed under reduced pressure, and then heated under pressure to perform the curing treatment. The impregnated thermosetting resin liquid is cured in the pore voids while the outflow is suppressed.
Therefore, it becomes possible to effectively close the pore voids of the isotropic graphite material.

【0019】このようにして製造された等方性黒鉛材
は、気孔空隙内が熱硬化性樹脂により充填閉塞されて高
いガス不透過性を示すとともに黒鉛材の有する優れた熱
伝導性および導電性を併有しており、固体高分子型燃料
電池のセパレータや集電体として使用することができ
る。
The isotropic graphite material produced in this manner exhibits high gas impermeability because the pore voids are filled and closed with a thermosetting resin, and the graphite material has excellent thermal conductivity and conductivity. Since it has both, it can be used as a separator or a collector of a polymer electrolyte fuel cell.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0021】実施例1〜7、比較例1〜3 炭素質粉末として最大粒径の異なるコークス粉末を用
い、混合比率を変えてピッチを加え加熱混練したのち混
練物をラバープレスによりCIP成形し、成形品を非酸
化性雰囲気中1000℃の温度で焼成炭化し、さらに黒
鉛化炉にて3000℃の温度で黒鉛化した。この等方性
黒鉛材を縦横200mm、厚さ50mmに加工して気孔性状
の異なる等方性黒鉛基材を得た。
Examples 1 to 7 and Comparative Examples 1 to 3 Coke powders having different maximum particle diameters were used as carbonaceous powders, pitches were added at different mixing ratios, and the mixture was heated and kneaded, and then the kneaded product was CIP molded by a rubber press, The molded product was calcined and carbonized at a temperature of 1000 ° C. in a non-oxidizing atmosphere, and further graphitized at a temperature of 3000 ° C. in a graphitizing furnace. This isotropic graphite material was processed to a length of 200 mm and a thickness of 50 mm to obtain an isotropic graphite base material having different porosity.

【0022】この黒鉛基材を容器に入れて8Torrの減圧
下に5時間保持して脱気したのち、フェノール樹脂液
(粘度50ポイズ/20℃)又はエポキシ樹脂液(粘度
1ポイズ/20℃)を注入し、0.5時間保持して黒鉛
基材の気孔空隙中に樹脂液を含浸した。次いで、容器内
を空気により所定圧力に加圧しながら所定温度に加熱し
て含浸した樹脂液を硬化処理したのち、厚さ0.7mmに
スライス加工して固体高分子型燃料電池用のセパレータ
とした。このようにして得られた等方性黒鉛材の気孔性
状および含浸、硬化処理条件をまとめて表1に示した。
This graphite substrate was placed in a container and kept under a reduced pressure of 8 Torr for 5 hours for deaeration, and then a phenol resin solution (viscosity 50 poise / 20 ° C.) or an epoxy resin solution (viscosity 1 poise / 20 ° C.) Was injected and held for 0.5 hour to impregnate the pores of the graphite base material with the resin liquid. Then, the inside of the container was heated to a predetermined temperature while being pressurized to a predetermined pressure with air to cure the impregnated resin liquid, and then sliced to a thickness of 0.7 mm to obtain a separator for a polymer electrolyte fuel cell. . The porosity, impregnation and curing treatment conditions of the isotropic graphite material thus obtained are summarized in Table 1.

【0023】次いで、これらの等方性黒鉛材の各種特性
を測定し、結果を表2に示した。なお、測定値は下記の
方法による値である。 固有抵抗(μΩ・cm):JIS R7202「人造黒
鉛電極の試験方法」の電圧降下法による。 ガス透過率(cm2/sec ・atm):厚さ0.7mmの試験片
(ガス透過断面積283cm2)に窒素ガスにより所定の圧
力をかけて透過する窒素ガスの流量を測定し、次式から
求めた。 ガス透過率=窒素ガス透過量(cm3) ×試験片厚(cm)/時
間(sec) ×透過断面積(cm2) ×差圧(atm) 熱伝導率(kcal/m ・h ・℃) :レーザーフラッシュ法
による。
Next, various characteristics of these isotropic graphite materials were measured, and the results are shown in Table 2. The measured value is a value obtained by the following method. Specific resistance (μΩ · cm): According to the voltage drop method of JIS R7202 “Test method for artificial graphite electrode”. Gas permeability (cm 2 / sec ・ atm): A test piece having a thickness of 0.7 mm (gas-permeable cross-sectional area 283 cm 2 ) is subjected to a predetermined pressure with nitrogen gas to measure the flow rate of the nitrogen gas that permeates. I asked from. Gas permeability = Nitrogen gas permeability (cm 3 ) × test piece thickness (cm) / time (sec) × cross-sectional area of permeation (cm 2 ) × differential pressure (atm) thermal conductivity (kcal / m ・ h ・ ° C) : By laser flash method.

【0024】[0024]

【表1】 〔表注〕* F;フェノール樹脂液、 E;エポキシ樹脂液[Table 1] [Table Note] * F: Phenolic resin liquid, E: Epoxy resin liquid

【0025】[0025]

【表2】 〔表注〕* 等方性黒鉛材 東海カーボン(株)製G347[Table 2] [Table Note] * Isotropic graphite material G347 manufactured by Tokai Carbon Co., Ltd.

【0026】表1、2の結果から実施例の黒鉛材は比較
例の黒鉛材に比べてガス透過率が小さく、高度のガス不
透過性を備えていることが判る。また、固有抵抗も小さ
い上に大きな熱伝導率を示し、これらの特性がバランス
よく付与されていることが認められる。
From the results shown in Tables 1 and 2, it can be seen that the graphite materials of the examples have a smaller gas permeability than the graphite materials of the comparative examples and have a high gas impermeability. Further, the specific resistance is small and the thermal conductivity is large, and it is recognized that these characteristics are imparted in a well-balanced manner.

【0027】[0027]

【発明の効果】以上のとおり、本発明の固体高分子型燃
料電池用黒鉛部材の製造方法にしたがえば、骨材である
炭素質粉末の最大粒径および等方性黒鉛基材の気孔性状
を特定し、更に熱硬化性樹脂液の含浸硬化処理を特定の
加圧、加熱条件下に行うことによりガス不透過性に優れ
るとともに導電性ならびに熱伝導率をバランスよく付与
することができる。したがって、固体高分子型燃料電池
のセパレータや集電体に用いられる黒鉛部材の製造方法
として有用である。
As described above, according to the method for producing the graphite member for a polymer electrolyte fuel cell of the present invention, the maximum particle size of the carbonaceous powder as the aggregate and the porosity of the isotropic graphite base material are obtained. Is specified and the impregnation and curing treatment of the thermosetting resin liquid is performed under specific pressurization and heating conditions, the gas impermeability is excellent, and the conductivity and the thermal conductivity can be imparted in a well-balanced manner. Therefore, it is useful as a method for producing a graphite member used for a separator or a collector of a polymer electrolyte fuel cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 最大粒径125μm 以下の炭素質粉末に
結合材を加えて加熱混練後CIP成形し、次いで焼成、
黒鉛化して得られた平均気孔径10μm 以下、気孔率2
0%以下の等方性黒鉛材に熱硬化性樹脂液を含浸、硬化
処理することを特徴とする固体高分子型燃料電池用黒鉛
部材の製造方法。
1. A binder is added to carbonaceous powder having a maximum particle size of 125 μm or less, and the mixture is heated and kneaded, followed by CIP molding, and then firing.
Average pore size obtained by graphitization is less than 10μm, porosity is 2
A method for producing a graphite member for a polymer electrolyte fuel cell, which comprises impregnating 0% or less of an isotropic graphite material with a thermosetting resin liquid and curing the same.
【請求項2】 含浸、硬化処理を、10Torr以下の減圧
下に保持された容器内で等方性黒鉛材を熱硬化性樹脂液
中に浸漬し所定時間保持した後、容器内を3kg/cm2以上
に加圧して70℃以上の温度で加熱する請求項1記載の
固体高分子型燃料電池用黒鉛部材の製造方法。
2. After impregnation and curing treatment, the isotropic graphite material is immersed in a thermosetting resin solution in a container kept under a reduced pressure of 10 Torr or less and kept for a predetermined time, and then the container is 3 kg / cm. The method for producing a graphite member for a polymer electrolyte fuel cell according to claim 1, wherein the pressure is applied to 2 or more and heating is performed at a temperature of 70 ° C. or more.
JP04632995A 1995-02-09 1995-02-09 Method for producing graphite member for polymer electrolyte fuel cell Expired - Fee Related JP3383953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04632995A JP3383953B2 (en) 1995-02-09 1995-02-09 Method for producing graphite member for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04632995A JP3383953B2 (en) 1995-02-09 1995-02-09 Method for producing graphite member for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH08222241A true JPH08222241A (en) 1996-08-30
JP3383953B2 JP3383953B2 (en) 2003-03-10

Family

ID=12744118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04632995A Expired - Fee Related JP3383953B2 (en) 1995-02-09 1995-02-09 Method for producing graphite member for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3383953B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208410A (en) * 2001-01-12 2002-07-26 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using fuel cell separator
KR20030030269A (en) * 2001-10-09 2003-04-18 (주)세티 Bipolar Plate for Fuel Cell Fabricated with Expanded Graphite Sheet through Resin-Impregnation
WO2003056648A1 (en) * 2001-12-27 2003-07-10 Hitachi Chemical Company, Ltd. Fuel cell-use separator
WO2004059766A1 (en) * 2002-12-24 2004-07-15 Showa Denko K. K. Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
WO2004073097A1 (en) * 2003-02-13 2004-08-26 Eiki Tsushima Method for producing separator of fuel cell
US6800328B2 (en) 2001-07-31 2004-10-05 Ballard Power Systems Inc. Process for impregnating porous parts
US6815112B2 (en) 2000-06-23 2004-11-09 Nisshinbo Industries, Inc. Fuel cell separator and polymer electrolyte fuel cell
JP2005026137A (en) * 2003-07-04 2005-01-27 Nisshinbo Ind Inc Method of manufacturing fuel cell separator, fuel cell separator, and solid polymer fuel cell
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
KR100476648B1 (en) * 2002-11-26 2005-03-21 조성화 Carbon plate for fuel cell
WO2005112161A1 (en) 2004-05-14 2005-11-24 Showa Denko K.K. Conductive structure, process for producing the same, and separator for fuel cell
JP2006073320A (en) * 2004-09-01 2006-03-16 Ibiden Co Ltd Graphite member for polymer electrolyte fuel cell
US7172830B2 (en) 1998-01-19 2007-02-06 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and manufacturing method for the same
KR100749031B1 (en) * 2006-03-31 2007-08-13 조성화 The coatting method of single cell
WO2008016041A1 (en) * 2006-07-31 2008-02-07 Seikoh Giken Co., Ltd. Process for producing separator for fuel cell and separator for fuel cell
US7329698B2 (en) 2001-08-06 2008-02-12 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
WO2008059903A1 (en) * 2006-11-16 2008-05-22 Tokai Carbon Co., Ltd. Method for producing separator material for solid polymer fuel cell
US7611643B2 (en) 2004-05-27 2009-11-03 Showa Denko K.K. Electrically conducting resin composition for fuel cell separator and fuel cell separator
DE112007002922T5 (en) 2006-12-01 2010-01-07 Yong Hun Lee Nickel-coated fuel cell separator and manufacturing method therefor
WO2010116620A1 (en) 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method of fabricating fuel cell separators
WO2010116674A1 (en) 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part
JP2015140413A (en) * 2014-01-30 2015-08-03 クラレノリタケデンタル株式会社 Method for producing composite material
CN111525147A (en) * 2019-02-04 2020-08-11 丰田自动车株式会社 Method for manufacturing separator for fuel cell
JP2021008376A (en) * 2019-07-01 2021-01-28 イビデン株式会社 Graphite material and its manufacturing method
CN115650727A (en) * 2022-10-18 2023-01-31 南通星球石墨股份有限公司 Glass carbon graphite block or bar
CN118271090A (en) * 2024-05-31 2024-07-02 湖南德智新材料有限公司 Method for improving isostatic graphite and isostatic graphite prepared by same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102287921B1 (en) * 2015-01-22 2021-08-09 에스케이씨 주식회사 Graphite sheet and method for preparing same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172830B2 (en) 1998-01-19 2007-02-06 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and manufacturing method for the same
US6815112B2 (en) 2000-06-23 2004-11-09 Nisshinbo Industries, Inc. Fuel cell separator and polymer electrolyte fuel cell
JP2002208410A (en) * 2001-01-12 2002-07-26 Hitachi Chem Co Ltd Fuel cell separator and fuel cell using fuel cell separator
US6800328B2 (en) 2001-07-31 2004-10-05 Ballard Power Systems Inc. Process for impregnating porous parts
US7329698B2 (en) 2001-08-06 2008-02-12 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
US7338730B2 (en) 2001-08-06 2008-03-04 Showa Denko K.K. Conductive curable resin composition and separator for fuel cell
KR20030030269A (en) * 2001-10-09 2003-04-18 (주)세티 Bipolar Plate for Fuel Cell Fabricated with Expanded Graphite Sheet through Resin-Impregnation
WO2003056648A1 (en) * 2001-12-27 2003-07-10 Hitachi Chemical Company, Ltd. Fuel cell-use separator
KR100649516B1 (en) * 2001-12-27 2006-11-27 히다치 가세고교 가부시끼가이샤 Fuel Cell-Use Separator
KR100476648B1 (en) * 2002-11-26 2005-03-21 조성화 Carbon plate for fuel cell
US8053501B2 (en) 2002-12-24 2011-11-08 Showa Denko K.K. Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
US7816432B2 (en) 2002-12-24 2010-10-19 Showa Denko K.K. Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
WO2004059766A1 (en) * 2002-12-24 2004-07-15 Showa Denko K. K. Curable composition, cured product thereof, molded product thereof and use as fuel cell separator
WO2004073097A1 (en) * 2003-02-13 2004-08-26 Eiki Tsushima Method for producing separator of fuel cell
JP2005026137A (en) * 2003-07-04 2005-01-27 Nisshinbo Ind Inc Method of manufacturing fuel cell separator, fuel cell separator, and solid polymer fuel cell
JP2005071635A (en) * 2003-08-26 2005-03-17 Ibiden Co Ltd Porous graphite plate, manufacturing method of porous graphite plate, and separator for polyelectrolyte fuel cell
WO2005112161A1 (en) 2004-05-14 2005-11-24 Showa Denko K.K. Conductive structure, process for producing the same, and separator for fuel cell
US7914720B2 (en) 2004-05-14 2011-03-29 Showa Denko K.K. Electroconductive structure, manufacturing method therefor, and separator for fuel cell
US7611643B2 (en) 2004-05-27 2009-11-03 Showa Denko K.K. Electrically conducting resin composition for fuel cell separator and fuel cell separator
JP2006073320A (en) * 2004-09-01 2006-03-16 Ibiden Co Ltd Graphite member for polymer electrolyte fuel cell
KR100749031B1 (en) * 2006-03-31 2007-08-13 조성화 The coatting method of single cell
WO2008016041A1 (en) * 2006-07-31 2008-02-07 Seikoh Giken Co., Ltd. Process for producing separator for fuel cell and separator for fuel cell
US8252484B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Separator for fuel cell having electrically conducting flow path part
US8252483B2 (en) 2006-09-29 2012-08-28 Showa Denko K.K. Fuel cell separator having a corrugated electrically conducting flow path
WO2008059903A1 (en) * 2006-11-16 2008-05-22 Tokai Carbon Co., Ltd. Method for producing separator material for solid polymer fuel cell
DE112007002922T5 (en) 2006-12-01 2010-01-07 Yong Hun Lee Nickel-coated fuel cell separator and manufacturing method therefor
WO2010116674A1 (en) 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method for manufacturing separator for fuel cell
WO2010116620A1 (en) 2009-03-30 2010-10-14 昭和電工株式会社 Sheet press molding method and method of fabricating fuel cell separators
US9789634B2 (en) 2009-03-30 2017-10-17 Showa Denko K.K. Sheet press molding method and method of manufacturing fuel cell separator
JP2015140413A (en) * 2014-01-30 2015-08-03 クラレノリタケデンタル株式会社 Method for producing composite material
CN111525147A (en) * 2019-02-04 2020-08-11 丰田自动车株式会社 Method for manufacturing separator for fuel cell
JP2021008376A (en) * 2019-07-01 2021-01-28 イビデン株式会社 Graphite material and its manufacturing method
CN115650727A (en) * 2022-10-18 2023-01-31 南通星球石墨股份有限公司 Glass carbon graphite block or bar
CN115650727B (en) * 2022-10-18 2023-12-22 南通星球石墨股份有限公司 Glass carbon graphite block or bar
CN118271090A (en) * 2024-05-31 2024-07-02 湖南德智新材料有限公司 Method for improving isostatic graphite and isostatic graphite prepared by same

Also Published As

Publication number Publication date
JP3383953B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
JP4916088B2 (en) Porous carbon body for fuel cell having electrically conductive hydrophilic agent
JP5189239B2 (en) Fluid diffusion layer for fuel cells
EP1968143B1 (en) Process for producing separator material for polymer electrolyte fuel cells
US20030148164A1 (en) Efficient fuel cell water transport plates
JPH11204120A (en) Manufacture of separator for fuel cell and the separator for fuel cell
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
JPH0449747B2 (en)
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
US20070108422A1 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
CN107946621B (en) Method for improving corrosion resistance of carbon fiber or carbon fiber composite material through functional graphene modification
CN114559579A (en) High-density flexible graphite bipolar plate and preparation method and application thereof
KR101803203B1 (en) The highly conductive anode using the surface treatment for the application of solid oxide fuel cell anode and method for manufacturing same.
JP2002075394A (en) Separator member for fuel cell
JPH0131445B2 (en)
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
CN114744230B (en) Flexible graphite bipolar plate and preparation method thereof
JPS6235832A (en) Thin carbonaceous sheet molded body and manufacture thereof
JPS6228546B2 (en)
JPS6259508A (en) Production of carbonaceous, thin plate
JPH0793141B2 (en) Fuel cell separator
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
TWI231804B (en) Processing of high-conductivity and high-impermeability graphite composite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees