JPS6228546B2 - - Google Patents

Info

Publication number
JPS6228546B2
JPS6228546B2 JP57022890A JP2289082A JPS6228546B2 JP S6228546 B2 JPS6228546 B2 JP S6228546B2 JP 57022890 A JP57022890 A JP 57022890A JP 2289082 A JP2289082 A JP 2289082A JP S6228546 B2 JPS6228546 B2 JP S6228546B2
Authority
JP
Japan
Prior art keywords
resin
separator
fuel cell
cell separator
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57022890A
Other languages
Japanese (ja)
Other versions
JPS58150275A (en
Inventor
Jiutaro Yamada
Masaya Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP57022890A priority Critical patent/JPS58150275A/en
Publication of JPS58150275A publication Critical patent/JPS58150275A/en
Publication of JPS6228546B2 publication Critical patent/JPS6228546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リン酸型燃料電池に適用して卓越し
た性能を与える材質のセルセパレーターに関す
る。 リン酸型燃料電池は、リン酸を保持した電解質
層の両側に白金触媒を担持した多孔質電極板を配
置して単位セルを構成し、各単位セルをセパレー
ターを介して電気的に接続することにより所定の
スタツク構造に形成している。セパレーターは、
燃料ガスおよび酸化剤ガスの供給通路を多孔質電
極板に付けるか否かによつて平板もしくはリブ付
の形状タイプに分れるが、これが電池作動温度
(約190℃)において十分な安定性を備え、かつガ
ス透過の防止、電流通過の媒体、生成熱の除去お
よび電池構造の維持などの機能を満足する必要が
あるため、材質的に耐熱性、耐薬品性、ガス不透
過性、電気伝導性、熱伝導性、機械的強度等の諸
特性が要求されている。 従来、上記要求特性に合うものとして黒鉛材が
有用視されているが、特性項目を全面的に満足し
ていない。すなわち、現在、燃料電池セルセパレ
ーター用黒鉛材の製法としては、黒鉛基材にフエ
ノール樹脂などの熱硬化性樹脂液を含浸硬化する
方法(樹脂含浸法)、およびカーボン粉末をフエ
ノール樹脂、弗化ビニリデン樹脂などをバインダ
ーとして加熱成型する方法(樹脂結合法)が知ら
れている。しかしながら、これら方法においては
使用される樹脂頼が目的に対して十分な耐熱耐薬
品性を有していないという根本的な欠点があるう
えに、樹脂含浸法は複数回含浸処理を繰返しても
高度のガス不透過性を付与することに困難性を伴
い、他方、樹脂結合法にあつてはガス不透過性を
与えるためにカーボン粉末の約20〜30%に相当す
る樹脂量を必要とする関係から、電気伝導性の低
下を招く問題があつた。 本発明は、セルセパレーターとしての最適材質
につき多角的に検討を加えた結果、ガラス状カー
ボンが要求特性を悉く満足する事実を確認し開発
に至つたものである。 ガラス状カーボンとは、フラン系樹脂、フエノ
ール系樹脂もしくはこれらの混合樹脂を炭化して
得られる組織的に極めて緻密かつ均質な巨視構造
を有する炭素質物をいい、セルセパレーターとし
て次のように製造される。 液状のフラン系またはフエノール系樹脂もしく
はこれらの混合樹脂を、該樹脂液と化学反応を起
さずかつ比重の大きな流動性の変形防止離型剤と
共に円筒状の遠心成形器に流入する。遠心成形器
は、平板セルセパレーターを得る場合には平滑内
面形状とし、リブ付セパレーターを得る際には軸
方向に予め炭化収縮を考慮して設定した凹凸条を
形成した内面形状とする。次いで、加温しながら
回転力を与え、遠心成形器の内面に均一な肉厚を
もつ半硬化状態の管状樹脂体を賦形する。遠心成
形器の直径、長さを適宜設計変更し、さらに樹脂
液の量を加減することにより、得られる管状樹脂
体の寸法形状、肉厚等を任意に変えることができ
る。成形された半硬化管状樹脂体は離型したのち
縦方向に切開して展開し、鏡面金属板などで上下
から挾みつけた状態で加温して硬化を完結させ
る。硬化した樹脂板は常法により炭化し、更に必
要に応じて黒鉛化処理する。 このようにして得られた燃料電池セルセパレー
ターは、極めて均一な寸法精度をもつガラス状無
孔組織構造の板状体で、1mm程度の薄肉厚におい
ても完全なガス不透過性を有するとともに優れた
電気伝導性、熱伝導性および機械的強度を備え、
また、樹脂質部分が介在しない一体炭素質構造で
あるため、従来製造法による黒鉛セパレーターで
付与することができなかつた耐熱性および耐薬品
性を具備する。 以上のとおり、本発明により提供される新規材
質の燃料電池セルセパレーターは、この目的に要
求される材質的特性をすべて満足するから、長期
間の電池作動においても材質劣化を伴うことなく
常に安定した発電性能が保障される。 実施例 内径200mm、長さ680mmの鋼鉄製円筒容器を備え
た遠心成形器を用い、円筒容器内に変形防止離型
剤として弗素樹脂油〔ダイキン工業(株)製、“ダイ
フロイル”〕2000gを注入し、ついで液状フラン
樹脂〔日立化成工業(株)製、“ヒタフラン”〕1300g
に硫酸アニリン13gを混合した成形原料を流し込
んだ。 円筒容器を50℃温度雰囲気に保持しながら
3200rpmの回転速度で1.5時間回転して原料樹脂
を半硬化状態に遠心成形した。成形された管状樹
脂半硬化物を円筒容器から離型したのち縦方向に
切開してこれを展開し、ステンレス鋼平板で挾み
約0.1Kg/cm2の圧力を付加した状態で50℃、70
℃、90℃の温度に各48時間保持して硬化を完結し
た。 硬化樹脂体を不活性気流中で1000℃の温度で焼
成炭化して長さ500mm、巾450mm、肉厚2.0mmの平
板ガラス状カーボンを得た。 得られた平板ガラス状カーボンは、下表のよう
な特性を示す肉厚均一の鏡面状表面を有し、全体
としての肉厚変動は0.02mmであつた。
The present invention relates to a cell separator made of a material that provides excellent performance when applied to phosphoric acid fuel cells. In a phosphoric acid fuel cell, a unit cell is constructed by arranging porous electrode plates carrying a platinum catalyst on both sides of an electrolyte layer holding phosphoric acid, and each unit cell is electrically connected via a separator. It is formed into a predetermined stack structure. The separator is
Depending on whether or not the fuel gas and oxidizing gas supply passages are attached to the porous electrode plate, the shape can be divided into flat plate or ribbed type, but this type has sufficient stability at the battery operating temperature (approximately 190°C). In addition, it is necessary to satisfy the functions of preventing gas permeation, being a medium for current passage, removing generated heat, and maintaining the battery structure, so materials must be heat resistant, chemical resistant, gas impermeable, and electrically conductive. Various properties such as thermal conductivity, mechanical strength, etc. are required. Conventionally, graphite materials have been considered useful as meeting the above-mentioned required characteristics, but they do not fully satisfy the characteristics. In other words, currently, the methods for manufacturing graphite materials for fuel cell cell separators include a method in which a graphite base material is impregnated with a thermosetting resin liquid such as phenol resin and cured (resin impregnation method), and a method in which carbon powder is injected into a phenol resin or vinylidene fluoride. A method of heat molding using a resin or the like as a binder (resin bonding method) is known. However, these methods have a fundamental drawback in that the resin used does not have sufficient heat and chemical resistance for the purpose, and the resin impregnation method has a high level of resistance even after repeated impregnation treatments. It is difficult to impart gas impermeability to carbon powder, and on the other hand, in the case of resin bonding, an amount of resin equivalent to approximately 20 to 30% of the carbon powder is required to impart gas impermeability. This caused a problem that led to a decrease in electrical conductivity. The present invention was developed after conducting a multifaceted study on the optimal material for a cell separator, and after confirming that glassy carbon satisfies all required properties. Glassy carbon refers to a carbonaceous material with an extremely dense and homogeneous macroscopic structure obtained by carbonizing furan resin, phenolic resin, or a mixed resin thereof, and is manufactured as a cell separator as follows. Ru. A liquid furan-based or phenol-based resin or a mixed resin thereof flows into a cylindrical centrifugal molding machine together with a fluid deformation-preventing mold release agent that does not cause a chemical reaction with the resin liquid and has a large specific gravity. The centrifugal molding machine has a smooth inner surface when obtaining a flat cell separator, and an inner surface having uneven stripes in the axial direction that are preset in consideration of carbonization shrinkage when obtaining a ribbed separator. Next, a rotational force is applied while heating to form a semi-hardened tubular resin body with a uniform wall thickness on the inner surface of the centrifugal molding machine. By appropriately changing the design of the diameter and length of the centrifugal molding machine and further adjusting the amount of resin liquid, the size, shape, wall thickness, etc. of the resulting tubular resin body can be changed arbitrarily. After the molded semi-hardened tubular resin body is released from the mold, it is opened by cutting it in the vertical direction, and is heated while being sandwiched between mirror-finished metal plates from above and below to complete curing. The cured resin plate is carbonized by a conventional method and further graphitized if necessary. The fuel cell separator obtained in this way is a plate-like body with a glass-like nonporous structure with extremely uniform dimensional accuracy, and has complete gas impermeability and excellent gas impermeability even at a wall thickness of about 1 mm. With electrical conductivity, thermal conductivity and mechanical strength,
Furthermore, since it has an integral carbonaceous structure with no intervening resinous parts, it has heat resistance and chemical resistance that could not be provided with graphite separators manufactured using conventional methods. As described above, the fuel cell separator made of the new material provided by the present invention satisfies all the material properties required for this purpose, so it is always stable without material deterioration even during long-term battery operation. Power generation performance is guaranteed. Example Using a centrifugal molding machine equipped with a steel cylindrical container with an inner diameter of 200 mm and a length of 680 mm, 2000 g of fluororesin oil [DaiFloil, manufactured by Daikin Industries, Ltd.] was injected into the cylindrical container as a mold release agent to prevent deformation. Next, 1300g of liquid furan resin [Hitafuran, manufactured by Hitachi Chemical Co., Ltd.]
A molding raw material mixed with 13 g of aniline sulfate was poured into the mold. While maintaining the cylindrical container at a temperature of 50℃
The raw resin was centrifugally molded into a semi-hardened state by rotating at a rotational speed of 3200 rpm for 1.5 hours. After the molded tubular semi-cured resin product was released from the cylindrical container, it was cut open in the longitudinal direction, expanded, and held between stainless steel flat plates and heated at 50°C and 70°C under a pressure of approximately 0.1 kg/ cm2.
C. and 90.degree. C. for 48 hours each to complete curing. The cured resin body was fired and carbonized at a temperature of 1000°C in an inert air stream to obtain a flat glass-like carbon having a length of 500 mm, a width of 450 mm, and a wall thickness of 2.0 mm. The obtained flat glass-like carbon had a mirror-like surface with a uniform wall thickness exhibiting the characteristics shown in the table below, and the overall thickness variation was 0.02 mm.

【表】 上表の各特性値は、燃料電池セルセパレーター
に要求される材質特性を全面的に満足しており、
特に薄肉厚におけるガス不透過性、卓越した耐
熱、耐薬品性などの特性は従来の樹脂含浸法およ
び樹脂結合法によつては付与しえないものであつ
た。 本セルセパレーターを用いてリン酸型燃料電池
セルを構成し、作動温度190℃、単位面積当り
200mAで1000時間に互り放電をおこなつたとこ
ろセパレーターの材質劣化は全く認められず、ま
た電圧降下もほとんどなく安定に作動した。
[Table] Each property value in the table above fully satisfies the material properties required for fuel cell separators.
In particular, properties such as gas impermeability in thin walls, excellent heat resistance, and chemical resistance cannot be imparted by conventional resin impregnation and resin bonding methods. This cell separator is used to construct a phosphoric acid fuel cell, and the operating temperature is 190℃, per unit area.
When discharged at 200mA for 1000 hours, no deterioration of the separator material was observed, and the device operated stably with almost no voltage drop.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス状カーボンで構成することを特徴とす
る燃料電池セルセパレーター。
1. A fuel cell separator characterized by being composed of glassy carbon.
JP57022890A 1982-02-17 1982-02-17 Cell separator for fuel cell Granted JPS58150275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022890A JPS58150275A (en) 1982-02-17 1982-02-17 Cell separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022890A JPS58150275A (en) 1982-02-17 1982-02-17 Cell separator for fuel cell

Publications (2)

Publication Number Publication Date
JPS58150275A JPS58150275A (en) 1983-09-06
JPS6228546B2 true JPS6228546B2 (en) 1987-06-20

Family

ID=12095254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022890A Granted JPS58150275A (en) 1982-02-17 1982-02-17 Cell separator for fuel cell

Country Status (1)

Country Link
JP (1) JPS58150275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231261A (en) * 2001-01-26 2002-08-16 Unitika Ltd Separator for fuel cell and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58166659A (en) * 1982-03-27 1983-10-01 Hitachi Ltd Fuel cell
JPH0725525B2 (en) * 1984-02-14 1995-03-22 花王株式会社 Molded product made of glassy carbon material
JP2001068128A (en) * 1999-06-24 2001-03-16 Unitika Ltd Separator for fuel cell and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301222A (en) * 1980-08-25 1981-11-17 United Technologies Corporation Separator plate for electrochemical cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301222A (en) * 1980-08-25 1981-11-17 United Technologies Corporation Separator plate for electrochemical cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231261A (en) * 2001-01-26 2002-08-16 Unitika Ltd Separator for fuel cell and its manufacturing method

Also Published As

Publication number Publication date
JPS58150275A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
US4579789A (en) Carbonaceous fuel cell electrode substrate incorporating three-layer separator, and process for preparation thereof
CA1259100A (en) Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof
JPH0159703B2 (en)
US20030148164A1 (en) Efficient fuel cell water transport plates
JPH11204120A (en) Manufacture of separator for fuel cell and the separator for fuel cell
GB2185247A (en) Electrode substrate for fuel cell
JP2002198066A (en) Separator for fuel cell and manufacturing method
JPH0449747B2 (en)
JPS627618A (en) Carbon-graphite constitutional element, manufacture thereof and precursor sheet structure therefor
US4938942A (en) Carbon graphite component for an electrochemical cell and method for making the component
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
JP2000173630A (en) Manufacture of separator member for solid polymer fuel cell
JPS6228546B2 (en)
US4580337A (en) Process for producing electrode substrate for fuel cells
JPH0158623B2 (en)
KR100654242B1 (en) Method for manufacturing the bypolar plate of fuel cell
JP2001143719A (en) Separator in fuel cell and method of manufacturing the same
JPH0131445B2 (en)
KR100627812B1 (en) Auxiliary mold for producing fuel cell separator, process for production fuel cell separator
CN110854402A (en) Gas diffusion layer precursor, preparation method thereof, gas diffusion layer and fuel cell
JPS62252308A (en) Production of carbon plate
JPS60189168A (en) Porous plate for fuel cell electrode
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JPH07220732A (en) Manufacture of porous carbon plate for phosphoric acid fuel cell