JPS60189168A - Porous plate for fuel cell electrode - Google Patents

Porous plate for fuel cell electrode

Info

Publication number
JPS60189168A
JPS60189168A JP59041232A JP4123284A JPS60189168A JP S60189168 A JPS60189168 A JP S60189168A JP 59041232 A JP59041232 A JP 59041232A JP 4123284 A JP4123284 A JP 4123284A JP S60189168 A JPS60189168 A JP S60189168A
Authority
JP
Japan
Prior art keywords
fuel cell
porous plate
mesh
electrode
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59041232A
Other languages
Japanese (ja)
Inventor
Toshiaki Seki
関 敏昭
Takeshi Kuwabara
武 桑原
Hiroto Kozu
寛人 神津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59041232A priority Critical patent/JPS60189168A/en
Publication of JPS60189168A publication Critical patent/JPS60189168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a porous plate having high porosity, high mechanical strength, good heat conductivity and electric conductivity by mixing, kneading, crushing, molding then baking phenol formaldehyde resin, carbon fiber, natural organic fiber. CONSTITUTION:5-50wt% phenol formaldehyde resin, 50-94wt% carbon fiber having a diameter of 5-20mum and a length of 0.1-3.0mm., and 1.0-10.0wt% natural organic fiber having a size of 10-150 mesh are mixed and unifirmly dispersed, then volatile liquid dispersing medium is added to form slurry. The slurry is kneaded and heated with a kneader. After the liquid dispersing medium is vaporized, the mixture is cooled to solidify, then crushed with a high speed crusher. The crushed material is uniformly filled in a mold and cured under appropriate temperature and pressure. A molding obtained is subjected to carbonizing treatment and graphitizing treatment to obtain a porous plate for fuel cell electrode.

Description

【発明の詳細な説明】 1発明の技術分野1 本発明は燃料電池の電極どして使用する多孔質板に係り
、特にカス拡散性、耐病蝕性、及び電気伝脣性に侵れた
リブイ1電極を得ることを可能とした多孔質板に関する
Detailed Description of the Invention 1 Technical Field of the Invention 1 The present invention relates to a porous plate used as an electrode of a fuel cell, and particularly to a porous plate used as an electrode of a fuel cell, and particularly to a porous plate used as an electrode of a fuel cell. The present invention relates to a porous plate that makes it possible to obtain one electrode.

[発明の技術的背景] 燃料電池は燃料の有している科学的エネルギーを直接電
気エネルギーに変換づる装置である。この燃料電池は、
通常電解質を挟んで一対の多孔質電極を配置し、一方の
電極の背面に水素などの気体燃料を接触させると共に、
他方の電極の背面に酸素等の酸化剤を接触させ、このと
きに起こる電気化学的反応により発生する電気エネルギ
ーを、上記一対の電極から取出づようにしたものである
[Technical Background of the Invention] A fuel cell is a device that directly converts the chemical energy contained in fuel into electrical energy. This fuel cell is
Usually, a pair of porous electrodes is placed with an electrolyte in between, and a gaseous fuel such as hydrogen is brought into contact with the back of one electrode.
An oxidizing agent such as oxygen is brought into contact with the back surface of the other electrode, and the electrical energy generated by the electrochemical reaction that occurs is extracted from the pair of electrodes.

この場合、電解質としては溶融塩、アルカリ溶液、酸性
溶液等があるが、ここでは燃料電池として代表的なリン
酸を電解質とする燃料電池を例としく“その原理につい
て説明する。 ゛− 第1図は、この種の燃料電池の原理構成を示すものであ
る。図において、電解質層1は繊維質シートや鉱物質粉
末にリン酸を含浸したものである。
In this case, the electrolyte may be a molten salt, an alkaline solution, an acidic solution, etc., but here we will explain its principle using a typical fuel cell that uses phosphoric acid as an electrolyte. The figure shows the basic structure of this type of fuel cell. In the figure, the electrolyte layer 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid.

また、2及び3はこの電解質層1を挟んで配置されたア
ノード及びカソードの一対の多孔質(炭素質)電極で、
電解質層1と接づる而には白金触媒を塗布している。さ
らに、4は水素を含むガスの流れる部屋であり、5は酸
素(通常は空気)等の酸化剤気体の流れる部屋である。
Further, 2 and 3 are a pair of porous (carbonaceous) electrodes, an anode and a cathode, arranged with the electrolyte layer 1 in between.
A platinum catalyst is applied to the area in contact with the electrolyte layer 1. Further, 4 is a chamber through which a gas containing hydrogen flows, and 5 is a chamber through which an oxidizer gas such as oxygen (usually air) flows.

かかる燃料電池において、部屋4に流入した水素は7ノ
ード電極2の空所を拡散して触媒に達づる。ここで、水
素ガスは触媒の作用ににり水素イオンど電子とに解離す
る。その反応式は(−12→21−1+ →2e・・・
・・・・・・(1)となる。そして、水素イオンは電解
質層1に入り、起電圧にJ、る作用と温度拡散により、
ノコソード電極3に向かって泳動づる。一方、水素ガス
の解離により分散した電子はアノード電極2に流れ込み
、電極2は負に課電したことになる。またカソード電極
3では、7ノード電極2側から泳動してぎた水素イオン
と、酸化剤として部屋5に供給されさらにカソード電1
へ3の空所を11八散じてきIC酸素と、アノード電極
2から外部の電力負荷を通って仕事をし電池のカソード
3に戻ってきた電子の3者が、触媒表面で次の反応を起
こづ。
In such a fuel cell, hydrogen flowing into the chamber 4 diffuses through the voids of the seven-node electrode 2 and reaches the catalyst. Here, the hydrogen gas is dissociated into hydrogen ions and electrons due to the action of the catalyst. The reaction formula is (-12→21-1+ →2e...
...(1). Then, the hydrogen ions enter the electrolyte layer 1, and due to the effect of J on the electromotive force and temperature diffusion,
It migrates towards the nokosode electrode 3. On the other hand, the electrons dispersed due to the dissociation of hydrogen gas flow into the anode electrode 2, and the electrode 2 is negatively charged. In addition, at the cathode electrode 3, the hydrogen ions that have migrated from the 7-node electrode 2 side are supplied to the chamber 5 as an oxidizing agent, and are further fed to the cathode electrode 1.
The following reaction occurs on the surface of the catalyst: the IC oxygen that has dispersed through the empty space of the cell 3, and the electrons that have passed through the external power load from the anode electrode 2, performed work, and returned to the cathode 3 of the battery. zu.

4 Li” 14 e 十02−+ 2 l→20−・
(2>かクシ(、水素が酸化されて水になる反応と、こ
のときの化学エネルギーが電気エネルギーとなって外部
の電気負荷の中で電気エネルギーをJjえる電池として
の全反応が完成する。
4 Li" 14 e 102-+ 2 l→20-・
(2) The reaction in which hydrogen is oxidized to water, and the chemical energy at this time becomes electrical energy, completing the entire reaction as a battery that can generate electrical energy in an external electrical load.

上記の様な燃料電池は、通常11位ヒルを積層して構成
する。単位セルにはインタコネクター形が従来知られて
いるが、最近、リブイ4電!4!杉が考案され実用化の
研究が進められている。
A fuel cell as described above is usually constructed by stacking 11 hills. Interconnector type unit cells have traditionally been known, but recently, the Rivi 4-electron! 4! Cedar was invented and research is underway to put it into practical use.

第2図はりブ付電極形の単位ヒルの構成を示り斜視図で
ある。6は燃料電池積層体を示し“Cいる。
FIG. 2 is a perspective view showing the configuration of a unit hill of an electrode type with a beam. 6 indicates a fuel cell stack.

7.8はそれぞれ電極であり、これは反応が拡散しやす
く且つ耐酸性を必要とづる炭素質の多孔質、材料で高温
にて焼結して作られる。電極7,8には、反応ガスを流
通させる流路を形成するリブ溝9.10を複数個、図示
するように相互が直交又は交差り′るように設りる。反
応ガスとしてはアノード側は燃料ガス(水素)、カソー
ド側は酸化剤ガス(空気)を流1゜電極のリブ溝側の面
と反対側の面には白金系触媒11及び12が塗布され、
tの間には電解質層を形成する71−リックス13び配
設されている。14は廿パレータ−で、水素と酸素の混
合を防止し、且つ単位セルw4層+4に集電板の役目を
するもので気密性、導電性を持つ材料、例えば炭素シー
トで形成される。矢印15゜16は、ぞれぞれ水素ガス
、空気の流れを示す。
Reference numerals 7 and 8 each represent an electrode, which is made by sintering at high temperature a carbonaceous porous material that facilitates reaction diffusion and requires acid resistance. The electrodes 7 and 8 are provided with a plurality of rib grooves 9 and 10, which form channels through which the reaction gas flows, so that they are perpendicular or intersect with each other as shown. As reaction gases, fuel gas (hydrogen) is flowed on the anode side, and oxidizing gas (air) is flowed on the cathode side.Platinum-based catalysts 11 and 12 are coated on the surface opposite to the rib groove side of the 1° electrode.
A 71-lix 13 forming an electrolyte layer is disposed between the electrodes t. Reference numeral 14 denotes a parator which prevents the mixing of hydrogen and oxygen and also serves as a current collecting plate for the unit cell W4 layer +4, and is made of an airtight and conductive material such as a carbon sheet. Arrows 15 and 16 indicate the flow of hydrogen gas and air, respectively.

単位ヒルは上記の様に構成され、これをセパレータ14
を介して複数個積層し、この積層体の両端にはぞれぞれ
集電板17、絶縁板18、マニホールド固定板1つが配
設され、積層方向に締付番ノられる。この様にして燃料
電池積層体を構成する。
The unit hill is constructed as described above, and is connected to the separator 14.
A plurality of them are stacked together with a current collector plate 17, an insulating plate 18, and one manifold fixing plate provided at each end of the stacked body, and are tightened in the stacking direction. In this way, a fuel cell stack is constructed.

第3図は燃料電池の概略を示す斜視図である。FIG. 3 is a perspective view schematically showing the fuel cell.

図において20,20aは、例えばそれぞれ水素ガス供
給用マニホールド、及び供給用パイプであり、21.2
1aは水素ガス排出用マニホールド、排出用パイプであ
る。22,22aは上記と直角に配回された空気供給用
マニホールドと供給用パイプ、23.238は空気排出
用マニホールドと排出用パイプである。これらのマニホ
ールドの上下端部はガスケット24を介し、燃料電池積
層体の側面側の上下端に位置りるマニホールド固定板1
9へ、例えばボルト25により固着される。
In the figure, 20 and 20a are, for example, a hydrogen gas supply manifold and a supply pipe, respectively, and 21.2
1a is a hydrogen gas discharge manifold and a discharge pipe. Reference numerals 22 and 22a indicate an air supply manifold and a supply pipe arranged at right angles to the above, and 23 and 238 indicate an air discharge manifold and a discharge pipe. The upper and lower ends of these manifolds are connected via gaskets 24 to manifold fixing plates 1 located at the upper and lower ends of the side surfaces of the fuel cell stack.
9, for example, by bolts 25.

全体は図中鎖線で示す密閉容器2bに収納され、容器内
にはN2等の不活性ガス27が反応ガスの □水素、空
気よりやや高い圧力で封入充填されている。これは水素
や空気が容1lJ2b内に漏れ“(混合しないためであ
る。この様に組立てられた燃料電池には、パイプ208
.22aからイれぞれ水素ガス及び空気を連続的に供給
することにより、端子28.29から電気出力が得られ
る。
The whole is housed in a closed container 2b shown by a chain line in the figure, and an inert gas 27 such as N2 is sealed and filled in the container at a pressure slightly higher than that of the reactant gases □hydrogen and air. This is because hydrogen and air leak into the tank and do not mix.A fuel cell assembled in this way has pipes 208
.. By continuously supplying hydrogen gas and air from 22a, respectively, electrical output is obtained from terminals 28 and 29.

このリブ付電極の燃れ電池にお(プる電極材料は反応ガ
スがそれぞれの触媒層に達ターるために充分な反応ガス
透過性を持たなければならず、高い電子伝導性を有し、
耐食性に優れ、電解質保拍のための所定細孔空間が存在
し、且つ厚みは少なく、また積層取付けにより加重に耐
える多孔質材料であることが要求される。
In this ribbed electrode combustion cell, the electrode material must have sufficient reactive gas permeability for the reactive gases to reach the respective catalyst layers, and must have high electronic conductivity.
It is required to be a porous material that has excellent corrosion resistance, has a predetermined pore space for electrolyte retention, is small in thickness, and can withstand the load due to laminated mounting.

[背娯技術の問題点] ところで、従来のりブ付電極用の多孔質板は、カーボン
繊維に炭素を蒸着させて作製していた。
[Problems with back entertainment technology] By the way, conventional porous plates for electrodes with ribs have been produced by vapor-depositing carbon onto carbon fibers.

しかし、この多孔質板は蒸着工程をとっている為に、製
造工数が複雑で、必要とり゛る設備も嵩む等の技術的な
問題点があった。しかも、この多孔質は、電気伝導性・
熱伝導性は良好であるが、カーボンMli雑で互いに結
合されて強度を保持している為に、必要とする気孔率を
期待づると望ましくない稈、低い強度になってしまう。
However, since this porous plate uses a vapor deposition process, there are technical problems such as the manufacturing process is complicated and the required equipment is bulky. Moreover, this porous material has electrical conductivity and
Although the thermal conductivity is good, since the carbon Mli is mixed and bonded to each other to maintain strength, if the required porosity is expected, it will result in undesirable culm and low strength.

この様な問題点のある蒸着工程によらない多孔質板とし
て、下部に均一な金網を設置し1c槽内で、多量の有機
溶媒に熱硬化性樹脂を溶解させ、カーボン繊維を分散さ
−u′で作製するものがある。)J −ボン繊維はやが
て下部の金網」ニにマット状に滞積するので、次に金網
ごどマツ1〜状の堆積物を槽内より引上げ、乾燥、成形
、焼成することより、多孔質板が形成される。
To create a porous plate that does not involve such a problematic vapor deposition process, a uniform wire mesh is installed at the bottom, and a thermosetting resin is dissolved in a large amount of organic solvent in a 1C tank to disperse carbon fibers. There are some that are made using '. ) The J-bon fibers eventually accumulate in the form of a mat on the wire mesh at the bottom, so next, the wire mesh-like deposits are pulled up from the tank, dried, shaped, and fired to form a porous structure. A plate is formed.

しかし、この種の燃料電池電極用多孔質板の電気伝導性
・熱伝導性を測定しCみると、厚み方向と横方向とに差
が生じ、厚み方向の特性の低下が見られる。この現象は
、カーボン繊維が横方向に揃った為に、燃料電池電極用
多孔質板が最も必要ど°りる厚み方向の電気伝導性・熱
伝導性が低下づる結果になってしまう。まIこ、機械加
工時においても、一方にカーボン繊維が揃っているため
剥離現象が生じ、歩留りの低下が茗しい。
However, when measuring the electrical conductivity and thermal conductivity of this type of porous plate for fuel cell electrodes, there is a difference in the thickness direction and the lateral direction, and a decrease in the properties in the thickness direction is observed. This phenomenon results in a decrease in electrical conductivity and thermal conductivity in the thickness direction, which is most necessary for a porous plate for a fuel cell electrode, because the carbon fibers are aligned in the lateral direction. Also, even during machining, since the carbon fibers are aligned on one side, a peeling phenomenon occurs, which seriously reduces the yield.

[発明の目的] 本発明は、上記の様な従来技術の問題点を解消するため
に提案されたもので、その目的は、気孔率が高く、機械
強度、熱伝導性、電気伝導f1、耐リン酸性、寸法安定
性、機械加工性に優れた燃料電池電極用多孔質板を提供
りることにある。
[Object of the Invention] The present invention was proposed in order to solve the problems of the prior art as described above. An object of the present invention is to provide a porous plate for a fuel cell electrode that has excellent phosphoric acidity, dimensional stability, and machinability.

[発明の概要] 本発明の燃料電池電極用多孔質板は、ノー[ノールホル
ムアルデヒド樹脂を5〜50fNffi%、直径が5〜
20μm1繊帷長が0 、1−3 、0 tn mのカ
ーボンlJi雑を50〜94重足%、10メツシユPA
SS〜150メツシloNの天然fi II u&紺ヲ
混合、混練、粉砕、成形、焼成して形成し!、:もので
ある。
[Summary of the Invention] The porous plate for fuel cell electrodes of the present invention contains 5 to 50 fNffi% of non-[norformaldehyde resin] and has a diameter of 5 to 50 fNffi%.
20 μm 1 fiber length 0, 1-3, 0 tnm carbon lJi miscellaneous 50-94 weight%, 10 mesh PA
SS ~ 150 mesh loN natural fi II u & navy blue mixed, kneaded, crushed, molded, baked and formed! ,: something.

[発明の実施例] 本発明に用いるフェノールホルムアルデヒド樹脂として
は、酸又はアルカリ触媒とから得られるノボラック型樹
脂、或いはレゾール型樹脂のいずれでもよく、また、こ
れらの混合物でも良い。
[Embodiments of the Invention] The phenol formaldehyde resin used in the present invention may be a novolac type resin obtained with an acid or alkali catalyst, or a resol type resin, or a mixture thereof.

同じく直径が5〜20μm1繊維長が0.1〜3.0m
mのカーボン繊維としては、ビッグ−系の炭素質カーボ
ン繊維、ピッチ系の黒鉛質カーボン繊維、及びPAN系
のカーボン繊維があげらる。
Similarly, the diameter is 5 to 20 μm, the fiber length is 0.1 to 3.0 m
Examples of carbon fibers include big-type carbonaceous carbon fibers, pitch-type graphitic carbon fibers, and PAN-type carbon fibers.

同じく10メツシユPA S S〜150メツシュON
の天然有機繊維としては、綿゛ノロツク、植物性レルロ
ース、亜麻、大麻、黄麻、綿毛粉等があげられる。
Also 10 mesh PA S S ~ 150 mesh ON
Examples of natural organic fibers include cotton wool, vegetable lerulose, flax, hemp, jute, and fluff powder.

次に、燃料電池電極用多孔質板の配合割合いについて述
べると、フェノールホルムアルデヒド樹脂が5〜50重
間%、直径が5〜20μm1繊維長が0.1〜3.0m
mのカーボンtat4が50〜94重間%、10メツシ
コPASS〜150メツシユONの天然有機繊維が1.
0〜10.0!Ii量%が好ましい。
Next, regarding the blending ratio of the porous plate for fuel cell electrodes, the phenol formaldehyde resin is 5 to 50% by weight, the diameter is 5 to 20 μm, the fiber length is 0.1 to 3.0 m.
Natural organic fiber with carbon tat4 of 50 to 94 wt% and 10 mesh PASS to 150 mesh ON is 1.
0~10.0! The amount of Ii is preferably %.

2ノノ一ルホル11アルデヒド樹脂5重珀%未満では、
カーボンm帷と天然有機繊維のバインダーとしての効果
がなく、機械的特性が低下して実用に適さなく、50重
量%以上では、焼成工程中での収縮が大きく、クラック
が入り実用に適づるもノテハない。直径が5〜20 t
t m、II 1[a 0 、1〜3.Qmmのカーボ
ン繊M 50重量%未満で番よ、熱伝導性、電気伝導性
に効果がなく、94重量%を越えると、機械的特性が低
下し実用に適さない。
If the content of 2-nonol-11 aldehyde resin is less than 5%,
It is not effective as a binder between the carbon strip and natural organic fibers, and its mechanical properties deteriorate, making it unsuitable for practical use.If it exceeds 50% by weight, it shrinks significantly during the firing process and cracks occur, making it unsuitable for practical use. There is no note. Diameter 5-20t
t m, II 1 [a 0 , 1-3. Qmm carbon fiber M If it is less than 50% by weight, it has no effect on thermal conductivity or electrical conductivity, and if it exceeds 94% by weight, the mechanical properties deteriorate and it is not suitable for practical use.

10メツシユI) A S 8〜150メツシ」ONの
天然有機繊維1.0重量%未満では、粉砕1程r出来上
る材料の見掛tブ密度が0.5Q/C’、C:以上にな
り実用に適さなく、10重量%以上では焼成工程中での
収縮が大きくクラックが入り実用に適1Jるものではな
い。
10 mesh I) A S 8-150 mesh If the natural organic fiber is less than 1.0% by weight, the apparent density of the finished material will be 0.5Q/C',C: It is not suitable for practical use, and if it exceeds 10% by weight, it will shrink significantly during the firing process and cracks will occur, making it unsuitable for practical use.

なお1、最も好ましい範囲は、ノコ。ノールホルムアル
デヒド樹脂が10〜35重量%、直径が8〜15μrV
1、繊維長0.4〜1.5mmのカーボンfmNが55
〜87FMm%、50rtyシ:1PAsS〜120メ
ツシユONの天然41機繊維が3〜8重壷%である。
1. The most preferable range is saw. 10-35% by weight of norformaldehyde resin, diameter 8-15μrV
1. Carbon fmN with fiber length 0.4 to 1.5 mm is 55
~87FMm%, 50rty: 1PAS~120mesh ON natural 41-machine fibers are 3-8%.

次に、粉砕工程での材料の見掛は密度は0.5g/cc
以下が好ましく、0.5g/QC以上では燃料電池電極
用多孔質板の気孔率が低くなってしまい、実用に適する
ものではない。また、成形工程においC1材料を均一に
金型内に仕込む際に使用リ−る篩は、J I s標Fl
u篩の10〜42メツシ」のものがりfましく、10メ
ツシユ以下の篩でI;LjrA利の通りが良りぎ、場所
による材お1の仕込みバラツキが生じる。42メツシユ
以上の篩では材料の通りが悪く篩上に材料が半分以上残
ってしまし1、規定重用を仕込むことができない為、実
用に適するものではない。
Next, the apparent density of the material in the crushing process is 0.5 g/cc.
The following is preferable, and if it is more than 0.5 g/QC, the porosity of the porous plate for fuel cell electrode will become low, and it will not be suitable for practical use. In addition, the sieve used to uniformly charge the C1 material into the mold in the molding process is JIS standard Fl.
The ratio of U sieves of 10 to 42 mesh is very high, and the I; LjrA ratio is not good for sieves of 10 mesh or less, and there are variations in the amount of lumber depending on the location. When using a sieve with a mesh size of 42 or more, the material does not pass through easily and more than half of the material remains on the sieve (1).It is not suitable for practical use because the specified weight cannot be charged.

本発明の燃料電池電極用多孔質板を得るには、適当な粒
度に粉砕されたフェノールホルムアルデヒドMA脂と、
直径が5 ・〜20 /7 m 、 lli I((長
が0゜’1〜3.0mmのカーボンSli litと、
10メツシコー1〕ΔSS〜150メツシユONの天然
石i繊維とを必要に応じて離型剤、滑剤を加えて常温で
混合して均一に分散させたのち、蒸発性の液体分散媒を
加え(スラリー状にし、混練機で加熱混練J−る。
In order to obtain the porous plate for fuel cell electrodes of the present invention, phenol formaldehyde MA fat pulverized to an appropriate particle size,
Carbon Sli lit with a diameter of 5.~20/7 m and a length of 0°'1~3.0 mm,
10 mesh 1] ΔSS ~ 150 mesh ON natural stone i fibers are mixed at room temperature with a release agent and a lubricant as needed to disperse them uniformly, and then an evaporative liquid dispersion medium is added (in the form of a slurry). Then heat and knead with a kneader.

イの後、蒸発性の液体分散媒を揮散させたのち、冷JJ
I囚化させ、高速回転の粉砕機で粉砕し、児(l)Iプ
密度0.5 に]、/ CG以下の成形材料とする。そ
の後、適当な金型上に10〜42メツシユのJIS標準
篩を置き、標準篩を介して金型内に均一に材料を仕込む
。次に、金型上より標準篩を取去り、適当な帽り圧力を
加え硬化させて、カーボン繊維、天然有機繊維入りのフ
ェノール樹脂成形品を得る。この成形品を焼成すること
で炭化・黒鉛化処理を施し、燃料電池電極用多孔質板を
作る。
After volatilizing the evaporative liquid dispersion medium, the cold JJ
The material is crushed in a high-speed rotating crusher to obtain a molding material with a density of 0.5 / CG or less. Thereafter, a 10-42 mesh JIS standard sieve is placed on a suitable mold, and the material is uniformly charged into the mold through the standard sieve. Next, the standard sieve is removed from the mold, and an appropriate capping pressure is applied to cure the mold to obtain a phenolic resin molded product containing carbon fibers and natural organic fibers. By firing this molded product, it undergoes carbonization and graphitization treatment to create a porous plate for fuel cell electrodes.

この様な本発明の燃料電池電極用多孔質板は、気孔率が
高く、機械強度、熱伝導性、電気伝17 t!l、耐リ
ン酸性、寸法安定性、機械加工性が優れていることに特
徴がある。
The porous plate for fuel cell electrodes of the present invention has high porosity, mechanical strength, thermal conductivity, and electrical conductivity of 17 t! It is characterized by excellent phosphoric acid resistance, dimensional stability, and machinability.

以下に1本発明を実施例により具体的に説明づるが、本
発明はこれら実施例によって限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited by these Examples.

比較例−ル ゾール型フェノールホルムアルデヒド樹脂をメチルアル
コールで溶解し、20重獣%の濃疫と1゛る。次に、下
部に20メツシユの金網が均一に敷いである槽内に、メ
チルアルコールで20mm%に希釈したレゾール型フェ
ノールホルムアルデヒド樹1111を投入りる。この溶
液内に直径18μm1繊維長1.Qmmのピッチ系炭素
質カーボン繊維を投入□し゛C分散させ、マット状の厚
さが約5 rTl fi1前後になるよう下部の金網上
に堆積させる。次に金網ごとマット状の堆積物を槽内よ
り引上げ、80℃の乾燥機で1時間乾燥後、170℃に
加熱した金型内で50kg/cm2の圧力を加え5分間
硬化させ、カーボンIjli維入りフェノール樹脂成形
品を得る。この成形品を炭化・黒鉛化処理を施し、燃料
電池電極用多孔質板を骨/j0特性値は表−1に示り通
りであり、気孔率が高く、耐リン酸性、機械強1哀は優
れているが、厚み方向と長さ方向の比抵抗に差が生じ、
最−b重要である厚み方向の比抵抗が大きく、また機械
加1工時に剥離現象が生じ実用に適するものではなかっ
た。
Comparative Example - Luzol type phenol formaldehyde resin was dissolved in methyl alcohol and concentrated to 20% concentration. Next, resol-type phenol formaldehyde tree 1111 diluted to 20 mm% with methyl alcohol was put into a tank whose bottom part was evenly spread with 20 meshes of wire mesh. In this solution, 18 μm in diameter and 1 fiber in length were added. Pitch-based carbonaceous carbon fibers of Qmm are introduced and dispersed, and deposited on the lower wire mesh so that the thickness of the mat is about 5 rTl fi1. Next, the matte deposit together with the wire mesh was pulled out of the tank, dried in a dryer at 80°C for 1 hour, and then cured for 5 minutes by applying a pressure of 50 kg/cm2 in a mold heated to 170°C. A phenolic resin molded product is obtained. This molded product was subjected to carbonization and graphitization treatment, and a porous plate for fuel cell electrodes was made with bone/j0 characteristic values as shown in Table 1, with high porosity, phosphoric acid resistance, and mechanical strength. Although it is excellent, there is a difference in specific resistance in the thickness direction and length direction,
The resistivity in the thickness direction, which is most important, was large, and a peeling phenomenon occurred during the first machining process, making it unsuitable for practical use.

比較例−2 ノボラック型ノ■ノールボルムアルデヒド樹脂(硬化剤
としてヘキザメチレンテトラミン含)55 ’ ff1
.4R%に、直径14.!:Bzm1繊維長0.7m1
ηのビッヂ系黒鉛質カーボン繊[44,5重量%、50
メツシユPASS〜100メツシユ、ONの植物性セル
ロース0.5重M%とを常温で混合し、メチルアルコー
ルを加えてスリラー状にして、100℃の混線機で加熱
混練し、メチルアルコールを揮散させたのち、高速回転
の粉砕機で材料の最大径が1.0φ以下になるよう粉砕
り“る、、この簡の材料の見掛は密度は0.600/c
cであった。
Comparative Example-2 Novolac-type norformaldehyde resin (contains hexamethylenetetramine as a curing agent) 55' ff1
.. 4R%, diameter 14. ! :Bzm1 fiber length 0.7m1
Vidge-based graphite carbon fiber of η [44.5% by weight, 50
Mesh PASS ~ 100 mesh and ON vegetable cellulose 0.5% by weight were mixed at room temperature, methyl alcohol was added to form a thriller, and the mixture was heated and kneaded in a mixer at 100°C to volatilize the methyl alcohol. Afterwards, the material is crushed in a high-speed rotating crusher so that the maximum diameter is 1.0φ or less.The apparent density of this material is 0.600/c.
It was c.

この材料を適当な金型上に16メツシユのJIS標準篩
を置き、標準篩を介して金型内に均一に材料を仕込む。
A 16-mesh JIS standard sieve is placed on a suitable mold for this material, and the material is uniformly charged into the mold through the standard sieve.

次に金型上より標準篩を取去り、材料に50kQ/cm
2の圧着力を加えIC後、金型を170℃に加熱し5分
間硬化さi!をカーボン繊維、植物性セルロース入り7
1ノ一ル樹脂成形品を得る。この成形品を炭化・黒鉛化
処理を行い燃料電池電極用多孔質板を得た。この特性値
は表−1に示す通りであり、耐リン酸性・電気伝導1?
1・熱伝導性等は優れているが、充分な気孔率が得られ
ず、また焼成工程での収縮が大きい為クラックがいたる
ところに発生しており、実用に適ジるものではなかった
Next, remove the standard sieve from above the mold and apply 50kQ/cm to the material.
After IC, the mold was heated to 170°C and cured for 5 minutes. Contains carbon fiber and vegetable cellulose 7
A 1-hole resin molded product is obtained. This molded product was carbonized and graphitized to obtain a porous plate for fuel cell electrodes. These characteristic values are shown in Table 1, and are phosphoric acid resistance and electrical conductivity of 1?
1.Although it has excellent thermal conductivity, it does not have sufficient porosity, and cracks occur everywhere due to large shrinkage during the firing process, making it unsuitable for practical use.

比較例−3 レゾール型フェノールホルムアルデヒド樹脂4重量%、
直径18.Ottm、mttll長0.4mmのピッチ
系炭素質カーボン繊維95X(i州%、50メツシユl
) A S S〜100メツシュONの植物性セルロー
ス1重量%とを常温で混合し、メチルアル」−ルを加え
てスラリー状にして、100℃の混線機で加熱混練し、
メチルアルコールを揮敗させIC後、高速回転の粉砕機
で材料の最大径が0.7φ以下に成るよう粉砕づ°る。
Comparative Example-3 4% by weight of resol type phenol formaldehyde resin,
Diameter 18. Ottm, mttll length 0.4 mm pitch-based carbonaceous carbon fiber 95X (i state%, 50 mesh l
) ASS ~ 100 mesh ON vegetable cellulose 1% by weight is mixed at room temperature, methyl alcohol is added to form a slurry, and the mixture is heated and kneaded in a mixer at 100°C.
After evaporating the methyl alcohol and performing IC, the material is pulverized using a high-speed rotating pulverizer so that the maximum diameter of the material is 0.7φ or less.

この時の材料の見11)け密度は0.420/ccであ
った。
11) The density of the material at this time was 0.420/cc.

この月利を適当な金型内にゴムベラで均一に材料を仕込
の、材料に50kg/cm2の圧力を加えIC後、金型
を170℃に加熱し5分間硬化させて、カーボン繊維、
植物性セルロース入りフェノール樹脂成形品を(ηて、
この成形品を炭化・黒鉛化処理を行い、燃料電池電極用
多孔質板を得た。
Using a rubber spatula, the material was uniformly placed into a suitable mold. After applying a pressure of 50 kg/cm2 to the material and performing IC, the mold was heated to 170°C and cured for 5 minutes to form carbon fibers.
Phenolic resin molded product containing vegetable cellulose (η,
This molded product was carbonized and graphitized to obtain a porous plate for fuel cell electrodes.

この特性値は表−1に示す通りであり、耐リン酸性・熱
伝導性・電気伝導性等は優れているが、測定場所ににり
気孔率にバラツキが見られ、また圧縮強度が低い等の欠
点があり、実用に適するものではなかった。
The characteristic values are shown in Table 1, and the phosphoric acid resistance, thermal conductivity, electrical conductivity, etc. are excellent, but there are variations in porosity depending on the measurement location, and the compressive strength is low. It had several drawbacks and was not suitable for practical use.

実施例−1 ノボラック型フェノールホルムノ?ルfヒト樹脂(硬化
剤としてヘキサメチレンチ]−ラミン含)13重間%に
、直径12.5μm、lJ&H長0.2−・1、Qmm
のPAN系カーボン繊維84重量%、80メツシユRA
SS〜100メツシコONの植物性セルロース3重量%
とを常温で混合し、メチルアルコールを加えてスラリー
状にして100℃の混線機で加熱混練し、メチルアルコ
ールを揮敗さヒた後、高速回転の粉砕機で材料の最大径
が0゜7φ以下になるよう粉砕するゎこの時の材料の見
掛は密度は0.40g/ccであった。
Example-1 Novolac-type phenolformino? Le f human resin (contains hexamethylene lenticin-lamin as curing agent) 13% by weight, diameter 12.5 μm, l J & H length 0.2-・1, Q mm
PAN-based carbon fiber 84% by weight, 80 mesh RA
3% by weight of vegetable cellulose from SS to 100 Metsushiko ON
are mixed at room temperature, methyl alcohol is added to make a slurry, heated and kneaded in a mixer at 100℃, and after the methyl alcohol has been evaporated, the maximum diameter of the material is reduced to 0゜7φ using a high-speed rotating crusher. The apparent density of the material at this time was 0.40 g/cc.

この材料を適当な金型上に20メツシ1のJIS標準篩
を胃き、標準篩を介して金型内に均一に材料を仕込む。
This material is passed through a 20 mesh/1 JIS standard sieve onto a suitable mold, and the material is uniformly charged into the mold through the standard sieve.

次に金型上より標準篩を取去り、材料に50kq/cm
2の圧力を加えた後、金型を170℃に加熱し5分間硬
化させて、カーボン繊維・植物性セルロース入りフェノ
ール樹脂成形品を1qる。この成形品を炭化、黒鉛化処
理を行なって、燃料電池電極用多孔質板を得た。この特
性値は表−1に承り通りで、気孔率が高く機械像1哀・
電気伝導性等にいずれも優れた数値を示した。
Next, remove the standard sieve from above the mold and apply 50kq/cm to the material.
After applying pressure 2, the mold was heated to 170°C and cured for 5 minutes, and 1 q of phenol resin molded product containing carbon fiber and vegetable cellulose was produced. This molded article was carbonized and graphitized to obtain a porous plate for a fuel cell electrode. These characteristic values are as shown in Table 1, with high porosity and mechanical image 1.
All showed excellent values for electrical conductivity, etc.

実施例−2 レゾール型フ]ノールホルムアルデヒド樹脂32重量%
に、直径14.5μm、繊維長0.7mrnのビッヂ系
3′FA鉛質カーボン繊維60重楊%、50メッシ:I
PASS〜80メツシュONの植物性セルロース8重量
5とを常温で混合し、メチルアルコールを加えてスラリ
ー状にして、100℃のHi練機で加熱混練し、メチル
アルコールを揮敗さVた後、高速回転の粉砕機で材料の
最大径が0゜7φ以下になるよう粉砕リ−る。この時の
材料の見掛I′J密1哀は0.36Q/CCであった。
Example-2 Resol type fluoroformaldehyde resin 32% by weight
14.5μm in diameter, 0.7mrn in fiber length, 3'FA lead carbon fiber 60%, 50mesh: I
PASS~80 mesh ON vegetable cellulose 8 weight 5 is mixed at room temperature, methyl alcohol is added to make a slurry, heated and kneaded in a Hi kneader at 100 ° C. After evaporating the methyl alcohol, Grind the material using a high-speed rotating grinder so that the maximum diameter of the material is 0°7φ or less. The apparent I'J density of the material at this time was 0.36Q/CC.

この月利を適当な金型上に32メツシユのJIS標準篩
を額き、標準篩を介して金型内に均一に月利を仕込む。
A 32-mesh JIS standard sieve is placed on a suitable mold for the monthly profit, and the monthly profit is evenly charged into the mold through the standard sieve.

次に金型上より標準篩を取去り、材料に50kQ/C;
m2の圧力を加えた後、金型を170℃に加熱し5分間
硬化させて、カーボン繊維・植物性ヒルロース入り71
ノ一ル樹脂成形品を得る。この成形品を炭化、黒鉛化処
理を行l/)、燃料電池電極用多孔質板を得た。この特
性値は表−1に示す通りで、気孔率が高く機械強度・電
気伝導性等にいずれも優れ1=数値を示した。
Next, remove the standard sieve from above the mold and apply 50kQ/C to the material.
After applying a pressure of m2, the mold was heated to 170°C and cured for 5 minutes to form a carbon fiber/vegetable hillulose-filled 71
Obtain a resin molded product. This molded product was carbonized and graphitized to obtain a porous plate for a fuel cell electrode. The characteristic values are as shown in Table 1, and the porosity was high and the mechanical strength, electrical conductivity, etc. were all excellent, with a value of 1.

[発明の効果] 以上述べた様に、本発明の多孔質板tよ、二1.数のか
かる蒸着工程を採用することなく、製作の容易な焼成に
よる炭化、黒鉛化方式を採用しながら、しかも従来では
マット状堆積物の製作時にカーボン繊維が横方向に揃っ
てしまい厚み方向の特f!1が低下する問題点があった
焼成による多孔質板の問題点を完全に解消したものであ
る。
[Effects of the Invention] As described above, the porous plate t of the present invention has the following advantages: 21. The carbonization and graphitization method by firing is used, which is easy to manufacture, without the need for a lengthy vapor deposition process. f! This completely eliminates the problem of porous plates caused by firing, which had the problem of a decrease in the value of 1.

従って、本発明の多孔質板をリブ付ぎ電極板として燃料
電池に組込むことにより、ガス拡散性、電子伝導性、耐
蝕性、電PR質保持機能、積層締結加重に耐16強度に
優れた特性の高い燃料電池を得ることが可能となる。
Therefore, by incorporating the porous plate of the present invention into a fuel cell as a ribbed electrode plate, it has excellent properties such as gas diffusivity, electron conductivity, corrosion resistance, electric PR quality retention function, and 16 strength withstand laminated fastening load. It becomes possible to obtain a fuel cell with high fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の原理図、第2図IJリブ付き電極を
有する燃料電池の分解斜視図、第3図は燃料電池の構造
を概略的に示す斜視図である。 1・・・電解質層、2・・・アノード電極、3・・・カ
ソード電極、7.8・・・電極、9.10・・・リブ溝
、11゜12・・・白金系触媒、13・・・71−リッ
クス、14・・・セパレーター、17・・・集電板、1
8・・・絶縁板、19・・・マニホールド固定板。 第1図 H2o= 第2図 第3図
FIG. 1 is a principle diagram of a fuel cell, FIG. 2 is an exploded perspective view of a fuel cell having IJ ribbed electrodes, and FIG. 3 is a perspective view schematically showing the structure of the fuel cell. DESCRIPTION OF SYMBOLS 1... Electrolyte layer, 2... Anode electrode, 3... Cathode electrode, 7.8... Electrode, 9.10... Rib groove, 11° 12... Platinum-based catalyst, 13. ...71-Rix, 14... Separator, 17... Current collector plate, 1
8... Insulating plate, 19... Manifold fixing plate. Figure 1 H2o = Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)フェノールホルムアルデヒド樹脂を5〜50重量
%、直径が5〜20μm1繊維長が0.1〜3.0rT
1rT1のカーボン繊維を50〜94重量%、10メツ
シユRASS〜150メツシユONの天然有機I!維を
材料とし、この材料を混合、混線、粉砕、成形、焼成し
て形成したことを特徴とする燃料電池電極用多孔質板。
(1) 5 to 50% by weight of phenol formaldehyde resin, diameter 5 to 20 μm, fiber length 0.1 to 3.0 rT
50-94% by weight of 1rT1 carbon fiber, 10 mesh RASS - 150 mesh ON natural organic I! 1. A porous plate for a fuel cell electrode, which is made of fibers and is formed by mixing, cross-wiring, crushing, molding, and firing the materials.
(2)粉砕された材料の見掛り密度が、0.5Q/CC
以下Cある特許請求の範囲第1項記載の燃料電池電極用
多孔質板。
(2) The apparent density of the crushed material is 0.5Q/CC
A porous plate for a fuel cell electrode according to claim 1, which has the following C.
JP59041232A 1984-03-06 1984-03-06 Porous plate for fuel cell electrode Pending JPS60189168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041232A JPS60189168A (en) 1984-03-06 1984-03-06 Porous plate for fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041232A JPS60189168A (en) 1984-03-06 1984-03-06 Porous plate for fuel cell electrode

Publications (1)

Publication Number Publication Date
JPS60189168A true JPS60189168A (en) 1985-09-26

Family

ID=12602661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041232A Pending JPS60189168A (en) 1984-03-06 1984-03-06 Porous plate for fuel cell electrode

Country Status (1)

Country Link
JP (1) JPS60189168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584535A1 (en) * 1985-07-02 1987-01-09 Int Fuel Cells Corp CARBON-GRAPHITE COMPONENT FOR ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF
JPH01124959A (en) * 1987-11-10 1989-05-17 Toshiba Corp Fuel cell electrode
WO2006003831A1 (en) * 2004-07-05 2006-01-12 National University Corporation Gunma University Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584535A1 (en) * 1985-07-02 1987-01-09 Int Fuel Cells Corp CARBON-GRAPHITE COMPONENT FOR ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF
JPH01124959A (en) * 1987-11-10 1989-05-17 Toshiba Corp Fuel cell electrode
WO2006003831A1 (en) * 2004-07-05 2006-01-12 National University Corporation Gunma University Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst

Similar Documents

Publication Publication Date Title
US7172830B2 (en) Separator for fuel cell and manufacturing method for the same
JP4859334B2 (en) Carbon fiber electrode substrate for electrochemical cells
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
US5726105A (en) Composite article
JP5189239B2 (en) Fluid diffusion layer for fuel cells
EP2210299B1 (en) High thermal conductivity electrode substrate
JPH0449747B2 (en)
JPS627618A (en) Carbon-graphite constitutional element, manufacture thereof and precursor sheet structure therefor
JP3896664B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
JP2011192653A (en) Gas diffusion media, and fuel cell
US4938942A (en) Carbon graphite component for an electrochemical cell and method for making the component
JPS60189168A (en) Porous plate for fuel cell electrode
US4738872A (en) Carbon-graphite component for an electrochemical cell and method for making the component
JPS6210866A (en) Electrode substrate for fuel cell
JPH0131445B2 (en)
JPS5927466A (en) Fuel cell
JPH06218827A (en) Fiber reinforced substrate and manufacture thereof
KR102468001B1 (en) A carbon paper used in gas diffusion layer of fuel cell and a method of manufacturing thereof
CN110854402A (en) Gas diffusion layer precursor, preparation method thereof, gas diffusion layer and fuel cell
JP4702118B2 (en) Manufacturing method of fuel cell separator
JPS627617A (en) Precursor sheet structure for carbon-graphite constitutionalelement, manufacture of carbon-graphite element and manufacture of electrode
JPS5848036B2 (en) gas diffusion electrode
JP4587632B2 (en) Fuel cell separator and method for producing the same
JPS59154770A (en) Fuel cell
JPS62140370A (en) Electrode substrate for fuel cell