WO2006003831A1 - Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst - Google Patents

Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst Download PDF

Info

Publication number
WO2006003831A1
WO2006003831A1 PCT/JP2005/011512 JP2005011512W WO2006003831A1 WO 2006003831 A1 WO2006003831 A1 WO 2006003831A1 JP 2005011512 W JP2005011512 W JP 2005011512W WO 2006003831 A1 WO2006003831 A1 WO 2006003831A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
nitrogen
boron
fuel cell
platinum
Prior art date
Application number
PCT/JP2005/011512
Other languages
French (fr)
Japanese (ja)
Inventor
Jun-Ichi Ozaki
Asao Oya
Tomonori Anahara
Original Assignee
National University Corporation Gunma University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Gunma University filed Critical National University Corporation Gunma University
Publication of WO2006003831A1 publication Critical patent/WO2006003831A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst for a fuel cell having a small amount of platinum or a platinum alloy supported thereon, a production method thereof, and a fuel cell using the catalyst. More specifically, the present invention relates to an electrode catalyst for a polymer electrolyte fuel cell suitable for a force sword having a highly active oxygen reduction catalytic ability, a method for producing the same, and a fuel cell using the catalyst.
  • the reaction occurs in the porous gas diffusion electrode.
  • I AZ projected electrode area
  • an electrode having a large specific surface area and conductive carbon black as a porous structure / catalyst support is generally used as the electrode.
  • platinum (Pt) or platinum alloy-based catalysts are used as the catalyst, and these noble metal catalysts are supported in a highly dispersed state (particle size 2 to several tens of nm). It has been.
  • the standard carrier materials for gold include (1) carbon black, such as Carbon Black, Bl Degussa-Huels (Frankfurt), and (2) furnace black, such as Vulcan XC-72 Cabot. (Massachusetts), (3) acetylene black, such as Shawinigan Black and Chevron Chemicals (Houston, Texas).
  • Carbon black B1 as a standard support material for platinum
  • Patent Document 1 describes Vulcan XC-72 and Shawi-Gan Black, for example, Patent Document 2.
  • a group power consisting of B, N and P is used for a fuel cell in which a particle-like or fiber-like carbon support containing at least one selected element contains platinum particles or the like.
  • a catalyst is disclosed.
  • a compound containing at least one element selected from the group consisting of B, N, and P is converted into a gas state and introduced into a furnace containing a carbon support, where 600 to 900 ° C.
  • At least one kind selected from the group consisting of B, N and P together with a carrier gas is generated by discharging in a vacuum chamber where a carbon carrier is installed and generating a plasma. It is produced by introducing a compound containing an element in a gas state and reacting for a certain time (for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-85020 (Claim 1, [0041])
  • Patent Document 2 US Pat. No. 5,759,944 (Example 1, Example 2)
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-79244 ([0010], [0025] to [0027])
  • An object of the present invention is to control the crystal growth of a carbon substrate by a dopant and to perform an electronic state.
  • the activity of platinum supported thereon can be further improved, and a fuel cell electrode catalyst capable of obtaining a high current density, a method for producing the same, and a fuel cell using the catalyst are provided. It is in.
  • the invention according to claim 1 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, and the carbon base material is a carbon alloy fine particle doped with nitrogen atoms.
  • This carbon substrate heat-reacts the nitrogen-containing compound and the thermosetting resin precursor, and superimposes, and the resulting nitrogen compound-containing thermosetting resin is heat treated and carbonized to carbonize.
  • An electrode catalyst for a fuel cell which is a carbon alloy fine particle obtained by finely pulverizing a nitrogen compound-containing thermosetting resin.
  • the invention according to claim 2 includes a polymerization step of obtaining a nitrogen compound-containing thermosetting resin by heating and polymerizing a nitrogen-containing compound and a thermosetting resin precursor.
  • a carbonization step in which the nitrogen compound-containing thermosetting resin is carbonized by heat treatment, and the carbonized nitrogen compound-containing thermosetting resin is pulverized to obtain carbon-aromatic particles doped with nitrogen atoms.
  • a method for producing an electrode catalyst for a fuel cell comprising a pulverization step and a step of obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
  • the invention according to claim 4 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, and the carbon base material is a carbon alloy fine particle doped with boron atoms.
  • This carbon substrate was polymerized by heating and reacting a boron-containing compound and a precursor of thermosetting resin, and the resulting boron compound-containing thermosetting resin was heat treated and carbonized to be carbonized.
  • An electrode catalyst for a fuel cell which is a carbon alloy fine particle obtained by finely pulverizing a boron compound-containing thermosetting resin.
  • the invention according to claim 5 includes a polymerization step of obtaining a boron compound-containing thermosetting resin by heating and polymerizing a boron-containing compound and a thermosetting resin precursor.
  • the A carbonization step in which the boron compound-containing thermosetting resin is carbonized by heat treatment, and the carbonized boron compound-containing thermosetting resin is pulverized to obtain carbon alloy particles doped with boron atoms. It is a method for producing an electrode catalyst for a fuel cell, comprising a powder frame step and a step of obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
  • the invention according to claim 7 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, wherein the carbon base material is doped with nitrogen atoms and boron atoms.
  • the carbon substrate is polymerized by dissolving a nitrogen-containing compound and a boron-containing compound in a methanol solution of furfuryl alcohol or resol-type phenol resin, and performing a polymerization reaction under methanol subcritical or supercritical conditions.
  • An electrode catalyst for a fuel cell characterized in that it is a carbon alloy fine particle obtained by carbonizing a polymer fine particle obtained by heat treatment after obtaining the product fine particle.
  • the invention according to claim 8 is a solution in which a nitrogen-containing compound and a boron-containing compound are dissolved in a methanol solution of furfuryl alcohol or resol type phenol resin, and polymerized under methanol subcritical or supercritical conditions.
  • a polymerization step for obtaining polymer fine particles by carrying out a reaction a carbonization step for obtaining carbon alloy fine particles doped with nitrogen atoms and boron atoms by heat-treating the obtained polymer fine particles, and platinum on the carbon alloy fine particles
  • a method for producing an electrode catalyst for a fuel cell comprising a step of obtaining a carbon base material by supporting a catalyst.
  • the carbon base material contains an aqueous solution containing phenol, formaldehyde, and a base catalyst.
  • An electrode catalyst for a fuel cell characterized in that it is carbon ultrafine particles obtained by carbonizing by heating high molecular ultrafine particles recovered from a solution that has been kept at a predetermined time and reacted and dried.
  • the invention according to claim 11 includes a step of obtaining a reaction solution by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time, and freeze-drying the reaction solution to obtain a polymer superpolymer.
  • a method for producing an electrode catalyst for a fuel cell The invention's effect
  • the carbon base material doped with nitrogen atoms or boron atoms is added with a function of oxygen reduction in addition to the function as a conductive material.
  • the activation of is higher.
  • the activity of the supported platinum is caused by the interaction between the electrically negative nitrogen atom and the electrically positive boron atom. Is further increased. As a result, a high current density can be obtained with a small amount of platinum.
  • Patent Document 3 the surface of a carbon substrate that has already been prepared is modified with one or both of nitrogen and boron to achieve activation, whereas in the invention according to claim 1, 4 or 7, Since either or both of nitrogen and boron are added at the time of carbon preparation, the edge surface can be formed on the carbon surface by controlling the development of the carbon structure, and is expected in Patent Document 3. It also has an effect. For this reason, the present invention is more excellent in the activation of platinum than the invention of Patent Document 3.
  • a carbon alloy doped with nitrogen atoms or boron atoms by carbonizing and pulverizing the nitrogen compound-containing thermosetting resin or boron compound-containing thermosetting resin. Fine particles are obtained.
  • fine particles can be obtained by conducting a polymerization reaction of a furfuryl alcohol or a resol type phenol resin dissolved in nitrogen-containing compound and boron-containing compound under a subcritical or supercritical condition.
  • a polymer can be obtained in the form of carbon alloy, and by carbonizing this polymer, carbon alloy fine particles doped with nitrogen and boron atoms can be obtained. Particles are obtained.
  • the doping amount of nitrogen atoms or boron atoms can be easily adjusted.
  • the carbon base material is ultrafine carbon particles, the ratio of the edge surface exposed by introducing defects on the carbon surface increases. This adds the function of oxygen reduction and further increases the activation of platinum carried by electronic and chemical interactions with such active surfaces.
  • ultrafine polymer particles are obtained in the reaction solution by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time.
  • FIG. 1 is a graph showing the relationship between the X-ray incident angle and diffraction X-ray intensity of N, B-carbon alloy fine particles F to J of Examples 9 to 13 and carbon fine particles 1 of Comparative Example 1.
  • FIG. 2 is a graph showing the relationship between the potential and current density of N-carbon alloy fine particles 1 and 2 of Examples 1 and 2 and carbon fine particles 1 of Comparative Example 1.
  • FIG. 3 is a graph showing the relationship between the potential and current density of B-carbon alloy fine particles of Example 3 and carbon fine particles 1 of Comparative Example 1.
  • FIG. 4 is a graph showing the relationship between the N and B-carbon alloy fine particles A, B and E of Examples 4, 5, and 8 and the carbon fine particle 1 of Comparative Example 1 and the current density.
  • FIG. 5 (a) to (c) are the oxygen reduction initiation potentials of the N, B-carbon alloy fine particles A to E of Examples 4 to 8 and the carbon fine particles of Comparative Example 2, and the boron atoms and nitrogen atoms, respectively. It is a graph which shows the relationship with content.
  • FIG. 6 is a graph showing NlsX-ray photoelectron spectra of N, B-carbon alloy fine particles A to E of Examples 4 to 8.
  • FIG. 7 is a graph showing Bls X-ray photoelectron spectra of N, B-carbon alloy fine particles A to E in Examples 4 to 8.
  • FIG. 8 is a photographic diagram of a field emission high resolution scanning electron microscope showing carbon ultrafine particles of Example 14.
  • FIG. 9 Carbon base oxygen-reduced voltammo of Example 15 and Comparative Example 3 each carrying platinum. It is a figure which shows a gram.
  • FIG. 10 is a diagram showing cyclic voltammograms of carbon substrates of Example 15 and Comparative Example 3 each carrying platinum.
  • FIG. 11 is a schematic diagram of a three-pole rotating electrode cell.
  • the first form of the carbon base material in the fuel cell electrode catalyst according to the present invention is carbon alloy fine particles.
  • This carbon alloy fine particle is a carbon alloy fine particle in which one or both of a boron atom and a nitrogen atom located on both sides of a group 14 carbon atom and a carbon atom.
  • the average particle size of the carbon alloy fine particles is 0.05 ⁇ m force or less than 45 ⁇ m. Preferably 0.05.0 .: m.
  • the carbon material itself that has been used as a catalyst carrier for supporting platinum in a highly dispersed state has an oxygen reduction catalytic ability, and can be suitably used as an electrode catalyst for a fuel cell.
  • the doping amount of nitrogen atom or boron atom when the doping amount of nitrogen atom or boron atom is 0.1 to 40 atom%, preferably 4 to 20 atom%, good electrode activity with respect to oxygen reduction. Indicates.
  • nitrogen and boron atoms are doped at the same time, higher electrode activity is exhibited due to the interaction between the two.
  • the atomic ratio (BZN) when both nitrogen (N) and boron (B) atoms are doped, the atomic ratio (BZN) is from 0.06 to L5, preferably from 0.2 to 0.4.
  • the atomic ratio ((B + N) ZC) is preferably 0.03-0.4. Within the range of these atomic ratios, both atoms interact well, and highly active force-bonded particles can be obtained.
  • (a) Method for producing carbon alloy fine particles doped with nitrogen atoms In order to produce carbon alloy fine particles doped with nitrogen atoms, first, nitrogen sources such as phthalocyanine, acrylonitrile, EDTA (ethylene diamine tetraacetic acid), melamine and the like, as well as furan coconut resin and phenol resin. A precursor of thermosetting resin is mixed and reacted by heating to obtain a nitrogen compound-containing thermosetting resin. For example, when phthalocyanine is used as the nitrogen-containing compound and furfuryl alcohol is used as the precursor of the thermosetting resin, an acid such as hydrochloric acid is added to the mixture, preferably 80 to 200 ° C.
  • nitrogen sources such as phthalocyanine, acrylonitrile, EDTA (ethylene diamine tetraacetic acid), melamine and the like
  • furan coconut resin and phenol resin A precursor of thermosetting resin is mixed and reacted by heating to obtain a nitrogen compound-containing thermosetting resin.
  • an acid such as hydrochloric
  • a phthalocyanine-containing furan resin can be obtained by heating at a temperature within the range of 1 to cause a polymerization reaction.
  • the compounding ratio of furfuryl alcohol and melamine or phthalocyanine is 1: (0.07-3), preferably C: N.
  • ⁇ MA 1 Set to (0. 1 to 0.5).
  • the obtained phthalocyanine-containing furan resin is carbonized by heat treatment at a predetermined temperature in an inert atmosphere such as nitrogen or helium.
  • the heat treatment temperature is not particularly limited as long as it is a carbonizable temperature, but a preferable temperature is 400 to 1500 ° C, and a more preferable temperature is 500 to 1200 ° C.
  • the average particle diameter doped with nitrogen atoms is preferably 0.05 ⁇ m or less, preferably 45 ⁇ m or less, preferably from 0.05 ⁇ m to 0.1 by finely pulverizing with a ball mill such as a planetary ball mill. Carbon alloy fine particles of ⁇ m or less can be obtained.
  • the fine particles obtained as described above are loaded with 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 50% by weight of platinum or a platinum alloy, whereby the fuel cell of the present invention is supported.
  • An electrode catalyst is obtained.
  • the platinum alloy include Pt—Fe, Pt—Cr, Pt—Ru, Pt—Ni, and Pt—Cu.
  • the method for supporting platinum is not particularly limited, and a known method can be employed. For example, there is a method in which carbon alloy fine particles are dispersed in a platinum colloid solution, platinum is reduced, and then solid-liquid separation and drying are performed. According to this method, the amount of platinum supported can be easily adjusted by changing the amount of carbon alloy fine particles dispersed in the colloidal gold solution.
  • boron-containing compounds such as BF methanol complex or BF tetrahydrofuran (THF) complex as a boron source.
  • a thermosetting resin precursor such as furan resin and phenol resin are mixed and reacted by heating to obtain a boron compound-containing thermosetting resin.
  • boron-containing compounds such as BF methanol complex or BF tetrahydrofuran (THF) complex
  • THF BF tetrahydrofuran
  • thermosetting resin When using a methanol complex and using furfuryl alcohol as a precursor of thermosetting resin, it is preferably heated at a temperature in the range of 80 to 200 ° C. to cause a polymerization reaction, thereby producing a BF-containing furan. A rosin can be obtained.
  • the boron atom doping amount described above is 0.1 to
  • the compounding ratio of furfuryl alcohol and BF should be C: B.
  • the average particle diameter doped with boron atoms is preferably 0.05 ⁇ m or less, preferably not more than 45 ⁇ m, preferably 0.05 ⁇ m to 0.1 ⁇ m, by pulverizing with a ball mill such as a planetary ball mill.
  • the following carbon alloy fine particles can be obtained.
  • the fine particles thus obtained are loaded with 0.5 to 60% by weight of platinum or a platinum alloy, preferably 10 to 50% by weight, more preferably 20 to 50% by weight.
  • a battery electrode catalyst is obtained.
  • examples of the platinum alloy include Pt—Fe, Pt—Cr, Pt—Ru, Pt—Ni, and Pt Cu.
  • the method for supporting platinum is not limited to the force generally used in the method described in (a) above.
  • thermosetting resin such as furan resin and phenol resin.
  • the body is mixed and reacted by heating to obtain a boron nitrogen compound-containing thermosetting resin.
  • a boron nitrogen compound-containing thermosetting resin for example, BF methanol complex as boron-containing compound, nitrogen-containing
  • thermosetting resin When melamine is used as a compound and furfuryl alcohol is used as a precursor of thermosetting resin, it is preferably heated at a temperature in the range of 80 to 200 ° C. to cause a polymerization reaction. A BF-containing furan resin can be obtained. Nitrogen atoms and boron mentioned above
  • the atomic ratio of C: N: B is 1: (0. 04-2): (0.02-: 0, preferably 1: (0.3-0.7): (0. 4 ⁇ 1.5).
  • the obtained polymer fine particles are carbonized at a predetermined temperature described in the above (a) under an inert atmosphere such as nitrogen or helium, thereby obtaining carbon alloy fine particles doped with nitrogen atoms and boron atoms. be able to.
  • the fine particles thus obtained are supported by 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or platinum alloy.
  • a battery electrode catalyst is obtained.
  • the kind of platinum alloy and the method for supporting platinum are the same as the supporting method in the method for producing carbon alloy fine particles doped with nitrogen atoms described in (a) above.
  • Another method for producing carbon alloy fine particles doped with nitrogen and boron atoms is the following subcritical method.
  • this method first, in a methanol solution of furfuryl alcohol or resole phenol resin, a nitrogen-containing compound similar to the above and a boron-containing compound such as BF methanol complex or BF tetrahydrofuran (THF) complex as a boron source.
  • a nitrogen-containing compound similar to the above and a boron-containing compound such as BF methanol complex or BF tetrahydrofuran (THF) complex
  • the compound is dissolved and a polymerization reaction is performed.
  • a polymerization reaction for example, furfuryl alcohol in methanol
  • the polymerization reaction of furfuryl alcohol is carried out under methanol subcritical or supercritical conditions at 200 to 350 ° C.
  • the compounding ratio of the nor complex is 1: (0.2 to 0.8): (0.1 to 0.4), preferably 1: (0.3 to 0.7) in terms of the C: N: B atomic ratio. ): Set to (0.15 to 0.4).
  • the obtained polymer fine particles are carbonized at a predetermined temperature described in the above (a) under an inert atmosphere such as nitrogen or helium to obtain carbon alloy fine particles doped with nitrogen atoms and boron atoms. be able to. Carbon alloy fine particles doped with nitrogen atoms and boron atoms can be obtained.
  • the fine particles thus obtained are supported by 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or platinum alloy.
  • a battery electrode catalyst is obtained.
  • the type of platinum alloy and the method for supporting platinum are described in the above (a). This is the same as the loading method in the child manufacturing method.
  • the second form of the carbon substrate in the fuel cell electrode catalyst according to the present invention is ultrafine carbon particles produced by a sol-gel method.
  • the average particle size of ultrafine carbon particles produced by this method is 10 to 1 OOnm.
  • the carbon ultrafine particles are produced as follows. First, an aqueous solution containing a base catalyst such as phenol, formaldehyde, and sodium carbonate is prepared. By holding this aqueous solution at a predetermined temperature for a predetermined time, phenol and formaldehyde are reacted. Polymer ultrafine particles are generated in the reaction solution.
  • the predetermined temperature is preferably 60 to 90 ° C, more preferably 80 to 90 ° C.
  • the predetermined time is preferably 1-20 hours, more preferably 8-18 hours.
  • the reaction solution is cooled to liquid nitrogen temperature, frozen and dried to collect ultrafine polymer particles. Further, the collected ultrafine polymer particles are then heat-cured at 100 to 250 ° C.
  • the mixing weight ratio of phenol, formaldehyde and sodium carbonate is 1: (1-2): (0. 05-0.2), preferably 1: (1. 4 to 1.6): Set to (0. 05 to 0.1).
  • the ultrafine particles thus obtained are loaded with 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or a platinum alloy.
  • a fuel cell electrode catalyst is obtained.
  • the kind of platinum alloy and the method for supporting platinum are the same as the method for supporting the carbon alloy fine particles doped with nitrogen atoms described in (a) above.
  • the solid fuel cell according to the present invention is manufactured using the fuel cell electrode catalyst described in [1] and [2] above.
  • a solid polymer fuel cell is composed of an anode (fuel electrode) and a force sword (acid additive electrode), which are arranged so that cells built in a battery module are sandwiched between sheet-like solid polymer electrolyte membranes. They are organized.
  • a fluorine-based ion exchange typified by a perfluorosulfonic acid rosin membrane (for example, a naphthoion membrane manufactured by DuPont).
  • a replaceable oil membrane is used.
  • an electrode reaction layer containing the fuel cell electrode catalyst described in [1] and [2] above is formed in layers.
  • the anode and the force sword are configured to include the electrode reaction layer including the electrode catalyst for fuel cells described in [1] and [2] above and the electrode substrate. Both electrodes are bonded together as a MEA (Membrane Electrode Assembly) by hot-pressing them to the main surfaces of the polymer electrolyte membrane on the electrode reaction layer side.
  • MEA Membrane Electrode Assembly
  • the electrode base material supports a catalyst layer and supplies and discharges reaction gases (fuel gas and oxidant gas), and also has a porous sheet (for example, carbon base) that also functions as a current collector. 1 par) is used.
  • a reactive gas is supplied to each of the electrodes, a gas phase (reactive gas), a liquid phase is formed at the boundary between the catalyst layer supporting the platinum-based noble metal provided on both electrodes and the solid polymer electrolyte membrane.
  • a three-phase interface (solid polymer electrolyte membrane) and solid phase (catalyst possessed by both electrodes) is formed, and direct current power is generated by causing an electrochemical reaction.
  • H + ions generated on the anode side move toward the cathode side in the polymer electrolyte membrane, and e "(electrons) move to the force sword side through an external load.
  • oxygen contained in the oxidant gas reacts with H + ions and e- that have moved from the anode side to produce water. Will generate direct current power from hydrogen and oxygen to produce water.
  • phthalocyanine 13 lg
  • furfuryl alcohol furfuryl alcohol
  • hydrochloric acid an appropriate amount of hydrochloric acid
  • N-carbon alloy fine particles 1 This carbonized product was pulverized with a planetary ball mill to obtain carbon alloy fine particles (hereinafter referred to as “N-carbon alloy fine particles 1” t) having an average particle diameter of 0.1 doped with 13.4 atomic% of nitrogen atoms. .
  • This platinum colloid solution was dropped into 0.2 g of the above N-force single Bonalloy fine particles, and the N-carbon alloy fine particles were uniformly dispersed in the platinum colloidal solution by ultrasonic irradiation for 20 minutes.
  • the reducing agent was added dropwise to the dispersion over 20 minutes, followed by stirring for 12 hours. Thereafter, the obtained liquid was filtered through a membrane filter made of hydrophilic polytetrafluoroethylene (PTFE) having an opening diameter of 1.0 ⁇ m and separated into solid and liquid.
  • PTFE hydrophilic polytetrafluoroethylene
  • the carbonized product is pulverized with a planetary ball mill to obtain carbon alloy fine particles (hereinafter referred to as “carbon alloy fine particles 2”) having an average particle diameter of 0.1 ⁇ m doped with 13.4 atomic% of nitrogen atoms. It was.
  • carbon alloy fine particles 2 carbon alloy fine particles having an average particle diameter of 0.1 ⁇ m doped with 13.4 atomic% of nitrogen atoms. It was.
  • 10% by weight of platinum was supported on the soot-carbon alloy fine particles 2.
  • B-carbon alloy fine particles carbon alloy fine particles having an average particle diameter of 0.1 doped with 14.4 atomic% of boron atoms.
  • 10% by weight of platinum was supported on the B-carbon alloy fine particles.
  • Comparative carbon fine particles 1 made of furan rosin were obtained in the same manner as in Example 1 except that phthalocyanine as a nitrogen source was not added.
  • the comparative carbon fine particles 1 were loaded with 10% by weight of platinum in the same manner as in Example 1.
  • the obtained contents were filtered on a hydrophilic PTFE membrane filter having an opening diameter of 1.0 m, and the solvent was distilled off from the passing material to obtain a membrane filter having an opening diameter of 0.45 m.
  • Fine particles were obtained by washing on top.
  • the obtained polymer fine particles were heated from a room temperature at a rate of 10 ° C. Z under a nitrogen atmosphere and kept at a temperature of 1000 ° C. for 1 hour for heat treatment.
  • polymer fine particles are carbonized, and carbon alloy fine particles (hereinafter referred to as “N, B-carbon alloy fine particles A”) having a submicron particle diameter doped with 4 atomic% nitrogen atoms and 1.2 atomic% boron atoms, respectively. )
  • N, B-carbon alloy fine particles A carbon alloy fine particles having a submicron particle diameter doped with 4 atomic% nitrogen atoms and 1.2 atomic% boron atoms, respectively.
  • 10% by weight of platinum was supported on the N, B-carbon alloy fine particles A
  • Example 5 Example 4 except that 2.3 g of melamine as a nitrogen source and 36 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
  • N, B-carbon alloy fine particles B having a particle size of submicron doped with 4 atom% nitrogen atoms and 1.7 atom% boron atoms were obtained.
  • This N, B-carbon alloy fine particle B was loaded with 10% by weight of platinum in the same manner as in Example 1.
  • Example 4 The same as Example 4 except that 3 g of melamine as a nitrogen source and 48 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution containing 6 g of furfuryl alcohol.
  • N, B-carbon alloy fine particles C having a particle size of submicron doped with 5 atom% nitrogen atoms and 1.4 atom% boron atoms were obtained.
  • the N, B-carbon alloy fine particles C were loaded with 10% by weight of platinum in the same manner as in Example 1.
  • Example 4 is the same as Example 4 except that 4.5 g of melamine as a nitrogen source and 72 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
  • N, B-carbon alloy fine particles D having a particle size of submicron doped with 5.4 atomic% nitrogen atoms and 1.4 atomic% boron atoms were obtained.
  • 10% by weight of platinum was supported on the N, B-carbon alloy fine particles D.
  • Example 4 except that 7.5 g of melamine as a nitrogen source and 121 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
  • N, B-carbon alloy fine particles E having a particle size of submicron doped with 12.8 atomic% nitrogen atoms and 2.6 atomic% boron atoms were obtained.
  • 10% by weight of platinum was supported on this N, B-force single Bonalloy fine particle E.
  • comparative carbon fine particles 2 made of furan rosin were obtained in the same manner as in Example 4 except that an appropriate amount of hydrochloric acid was added.
  • the comparative carbon fine particles 2 were loaded with 10% by weight of platinum in the same manner as in Example 1.
  • This carbonized product is pulverized with a planetary ball mill, and carbon alloy fine particles with an average particle size of 0 (hereinafter referred to as “B, N-carbon alloy” doped with 2.7 atomic% of nitrogen atoms and 0.2 atomic% of boron atoms). Fine particles F ”).
  • This N, B-carbon alloy fine particle F was loaded with 10% by weight of platinum in the same manner as in Example 1.
  • Example 9 except that melamine 2.lg as a nitrogen source and 34g of BF methanol complex as a boron source were dissolved in 100ml of a methanol solution in which 10g of furfuryl alcohol was dissolved.
  • B-carbon alloy fine particles G having an average particle size of 0.1111 doped with 3 atom% nitrogen atoms and 0.6 atom% boron atoms were obtained.
  • 10% by weight of platinum was supported on the N, B-carbon alloy fine particles G.
  • Example 9 except that 4.7 g of melamine as a nitrogen source and 76 g of BF methanol complex as a boron source were dissolved in 100 ml of a methanol solution in which 10 g of furfuryl alcohol was dissolved.
  • the average particle diameter of 0.1 111 is doped with 3.2 atomic% of nitrogen atoms and 0.5 atomic% of boron atoms, respectively.
  • ⁇ B—carbon alloy fine particles H were obtained.
  • 10% by weight of platinum was supported on the N, B-carbon alloy fine particles H.
  • Example 9 9.4 atomic percent nitrogen and 7.4 atomic percent boron Average particle size of 0.1 1 111? ⁇ B—carbon alloy fine particles I were obtained.
  • the N, B-carbon alloy fine particles I were loaded with 10% by weight of platinum in the same manner as in Example 1.
  • Example 9 except that 29 g of melamine as a nitrogen source and 460 g of BF methanol complex as a boron source were dissolved in 100 ml of a methanol solution in which 10 g of furfuryl alcohol was dissolved.
  • the average particle size of 0.1 111 is doped with 7.7 atomic% of nitrogen atoms and 10.6 atomic% of boron atoms, respectively.
  • ⁇ B—carbon alloy fine particles J were obtained.
  • 10% by weight of platinum was supported on the N, B-force single Bonalloy fine particles J.
  • N-carbon alloy particles 1 of Example 1 before carrying platinum N-carbon alloy particles 2 of Example 2, B-carbon alloy particles of Example 3, N, B-carbon alloy particles A to 4 of Examples 4 to 13, respectively.
  • Elemental ratio and carbonization yield of J, Comparative Carbon Fine Particle 1 of Comparative Example 1 and Comparative Carbon Fine Particle 2 of Comparative Example 2 were determined by X-ray photoelectron spectroscopy (XPS) method. The results are shown in Table 1. The charged atomic ratio indicates the amount of N and B dopants at the time of preparation.
  • Example 1 N-force-horn Py 3 ⁇ 4 ⁇ 1) 13: 2: 0- ⁇ 0.16
  • Example 2 ⁇ -force-hona 2) 16: 2: 0 ⁇ 0 0.16
  • Example 3 ⁇ -force-honah ⁇ i difficulty) 2.7: 0: 1 ⁇ ⁇ ⁇
  • Example 4 ( ⁇ , ⁇ -kar-honalloy 3 ⁇ 4 particle ⁇ ) 5.2: 2 : 1 48 0.32 0.060
  • Example 5 ( ⁇ , ⁇ -Carton Honalloy Fine Particles ⁇ ) 9.3: 2: 1 41 0.42 0.066
  • Example 6 ( ⁇ , ⁇ -Force-Hon Nyung Lung C) 6.5: 2: 1 39 0.28 0.076
  • Example ⁇ ⁇ , ⁇ -Car-Ho-Han Nya D fine particle) 3.8: 2: 1 39 0.26 0.081
  • Example 8 ( ⁇ , ⁇ -Car-Ha-Hon han ⁇ ⁇ ) 2.7: 2: 1 8 0.20 0.220
  • the N, B-carbon alloy fine particles obtained in Examples 4 to 13 were fixed at V: 2 and the atomic ratio of nitrogen and boron in the raw material was fixed at 2: 1.
  • the total dope amount of these N, B carbon alloy fine particles (B + N) ZC varied depending on the charged atomic ratio.
  • the BZN ratio at this time varied depending on the charging ratio. This Thus, it was found that the doping level in the prepared carbon alloy fine particles can be changed by changing the charged atomic ratio.
  • an electrode activity test was conducted on these electrode catalysts in order to investigate the redox function.
  • the electrode activity related to this oxygen reduction was measured using a tripolar rotating electrode cell 1 schematically shown in FIG.
  • the working electrode (rotating electrode) 2 in the central part has a polymer insulator around it and an electrode part made of glassy carbon at the central part.
  • a catalyst ink prepared as follows was applied to each of the electrode parts to obtain a working electrode.
  • Reference numeral 3 is a reference electrode (AgZAgCl), and reference numeral 4 is a counter electrode (Pt).
  • the obtained catalyst ink was sucked with a small amount of pipette, applied to the glassy carbon part (diameter 5 mm) of the rotating electrode device, and dried to prepare a working electrode.
  • Fig. 5 shows the element ratio and oxygen reduction obtained from XPS for N, B-carbon alloy fine particles A to E of Examples 4 to 8 and Comparative carbon fine particle 2 of Comparative Example 2 after carrying platinum, respectively. The relationship with the starting potential is shown.
  • the N, B-carbon alloy fine particles of Examples 4 to 8 have higher oxygen reduction activity than the comparative carbon fine particles of Comparative Example 2 in which nitrogen atoms and boron atoms are not doped.
  • the oxygen reduction activity tends to increase as the doping amount of nitrogen atoms and boron atoms (B + N) ZC increases.
  • NZC and BZC it was examined which of nitrogen atom and boron atom is involved in oxygen reduction. As shown in Fig. 5 (b) and (c), both elements were compared. The same tendency was observed, and it was found that nitrogen and boron interacted to bring about activity.
  • N 1 sX-ray photoelectron spectra and B 1 sX-ray photoelectron spectra of N, B-carbon alloy fine particles A to G of Examples 4 to 10 after carrying platinum are shown in Figs. 6 and 7, respectively. Show. From Fig. 6, each N and B carbon alloy fine particle has two states. When the doping amount of boron and nitrogen atoms is small, the peak on the high bond energy side is dominant, but as the doping amount increases, Nls It was found that the low energy peak of became dominant. In contrast, Fig. 7 shows that all N and B carbon alloy fine particles show a single spectrum, and the binding energy tends to shift to higher side as the doping amount of boron atom and nitrogen atom increases.
  • an active carbon material is given by generating an electrically negative nitrogen atom and an electrically positive boron atom by interaction of a nitrogen atom and a boron atom in an elementary atom.
  • the polymer ultrafine particles recovered were cured by heating at 200 ° C for 5 hours.
  • the cured ultrafine polymer particles were heated from room temperature at a rate of 10 ° CZ in a nitrogen atmosphere, and carbonized by holding at 1000 ° C for 1 hour to obtain ultrafine carbon particles having an average particle size of 30 nm.
  • Figure 8 shows a field emission high-resolution scanning electron microscope (FE—SEM) image of these ultrafine carbon particles.
  • FE—SEM field emission high-resolution scanning electron microscope
  • Comparative Example 3 was a commercially available platinum-supported catalyst (trade name ETC-10) purchased from ElectroChem, USA. This catalyst is a furnace black made of Vulcan XC-72 Cabot with a carbon substrate carrying 10% by weight of platinum.
  • FIG. 9 shows the oxygen reduction voltammogram and Fig. 10 shows the cyclic voltammogram.
  • the voltammogram of FIG. 9 was obtained by measuring the carbon substrate carrying platinum of Example 15 and Comparative Example 3 in the same manner as in Comparative Evaluation No. 2. From FIG. 9, the tendency is more pronounced as the oxygen reduction current density increases as a whole, especially as the potential decreases, compared to that in Comparative Example 3 where the carbon substrate carrying the white metal of Example 15 is a commercially available catalyst. There was something to do
  • the cyclic voltammogram of Fig. 10 is obtained by applying the carbon substrate carrying platinum of Example 15 and Comparative Example 3 onto a glassy carbon electrode in the same manner as in Comparative Evaluation No. 2, and acting this.
  • the electrode was obtained by measurement under the following conditions.
  • the electrode was immersed in 1M sulfuric acid from which dissolved oxygen had been removed by publishing nitrogen in advance, and a potential scan of 0.2 to 1.3V vs AgZAgCl was performed at a sweep rate of 50mVZs without rotation.
  • the current-potential relationship is plotted. From FIG. 10, it was found that the carbon base material carrying platinum of Example 15 did not show a clear H2 desorption wave than that of Comparative Example 3. That is, it was presumed that Example 15 had a different platinum loading state than that of Comparative Example 3, which caused a difference in the activity of the white metal.
  • Example 1 of carbon alloy particles doped with nitrogen atoms and 10% by weight of platinum loaded Example 1 of carbon alloy particles doped with nitrogen atoms and boron atoms and loaded with 10% by weight of platinum
  • Example 12 of platinum alloy particles with platinum loaded Force by 10% by weight supported sol-gel method Comparative Example 1 of carbon substrate supporting 10% by weight of platinum not doped with nitrogen atoms of Example 14 and Example 1 of ultra-one-bonn fine particles, and 10% of platinum A commercial force loaded on a weight percent, and the current density at a potential of 0.6 V vs. AgZAgCl were measured for Comparative Example 3 of one bon black. The results are shown in Table 2.
  • Example 12 the current density per unit surface area of Example 1, Example 12 and Example 14 was higher than that of Comparative Examples 1 and 3.
  • the current density of Example 12 doped with both nitrogen and boron atoms was about twice as high as that of Example 1 doped with only nitrogen atoms.
  • platinum was supported on the ultrafine carbon particles by the sol-gel method of Example 14, a higher current density was obtained.
  • the polymer electrolyte fuel cell electrode catalyst of the present invention has a highly active oxygen reduction catalytic ability and is used on the power sword side of a fuel cell.

Abstract

[PROBLEMS] To enhance the activation of platinum supported on a carbon base material by causing a dopant to control the crystal growth of the carbon base material and to modify the electronic state thereof, thereby obtaining a high current density. [MEANS FOR SOLVING PROBLEMS] There is provided an electrode catalyst for fuel cell, comprising a carbon base material composed of carbon alloy microparticles doped with either nitrogen atoms or boron atoms or both and, supported on the carbon base material, platinum or a platinum alloy. Carbon alloy microparticles doped with nitrogen atoms are obtained by subjecting a nitrogenous compound and a precursor of thermosetting resin to thermal reaction and polymerization, heating the thus obtained nitrogen compound-containing thermosetting resin at 400˚ to 1500˚C so as to carbonize the same, and micropulverizing the carbonized nitrogen compound-containing thermosetting resin. The electrode catalyst for fuel cell can be produced by causing the carbon alloy microparticles to support platinum.

Description

明 細 書  Specification
燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電 池  ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
技術分野  Technical field
[0001] 本発明は、白金又は白金合金の担持量の少ない燃料電池用電極触媒及びその製 造方法並びに該触媒を用いた燃料電池に関する。更に詳しくは、高活性な酸素還 元触媒能を備えた力ソード側に適する固体高分子形燃料電池用電極触媒及びその 製造方法並びに該触媒を用いた燃料電池に関するものである。  [0001] The present invention relates to an electrode catalyst for a fuel cell having a small amount of platinum or a platinum alloy supported thereon, a production method thereof, and a fuel cell using the catalyst. More specifically, the present invention relates to an electrode catalyst for a polymer electrolyte fuel cell suitable for a force sword having a highly active oxygen reduction catalytic ability, a method for producing the same, and a fuel cell using the catalyst.
背景技術  Background art
[0002] 高効率、無公害の燃料電池の実用化は、地球温暖化、環境汚染問題に対する重 要な対処手段である。とくに昨今、燃料電池自動車 (FCV : Fuel Cell Vehicle)や家 庭用のコージェネレーション電源等に用いられる固体高分子型燃料電池は、低コスト 化の可能性が大きぐ広く研究、開発競争が展開されている。  [0002] Practical use of high-efficiency, pollution-free fuel cells is an important countermeasure against global warming and environmental pollution problems. In particular, solid polymer fuel cells used in fuel cell vehicles (FCVs) and household cogeneration power sources have recently been widely researched and developed for competition because of their high potential for cost reduction. ing.
こうした固体高分子型燃料電池において、その反応は多孔質ガス拡散電極内で起 こる。十分な電流密度 I (AZ投影電極面積)を得るために、その電極としては、比表 面積が大きくかつ導電性のあるカーボンブラックを多孔質構造体兼触媒担体としたも のが一般に使用されている。また、その触媒としては白金 (Pt)あるいは白金合金系 触媒 (Pt— Fe, Pt-Cr, Pt— Ru)が使用され、これら貴金属触媒が担体に高分散 担持 (粒径 2〜数十 nm)されて 、る。  In such a polymer electrolyte fuel cell, the reaction occurs in the porous gas diffusion electrode. In order to obtain a sufficient current density I (AZ projected electrode area), an electrode having a large specific surface area and conductive carbon black as a porous structure / catalyst support is generally used as the electrode. Yes. In addition, platinum (Pt) or platinum alloy-based catalysts (Pt—Fe, Pt—Cr, Pt—Ru) are used as the catalyst, and these noble metal catalysts are supported in a highly dispersed state (particle size 2 to several tens of nm). It has been.
[0003] 固体高分子型燃料電池では、これまで特に、力ソード極で起こる酸素の還元反応 が非常に起こりにくいため、標準的担体材料としてのある決まった銘柄の炭素担体に 、触媒である白金が、例えば、 lmgZcm2の割合で多量に投入されてきた。即ち、白 金の標準的担体材料としては、(1)カーボンブラック、例えばカーボンブラック (Carbon Black)Bl Degussa— Huels社 (フランクフルト)、(2)ファーネスブラック、例えばバル カン (Vulcan)XC— 72 Cabot社 (マサチューセッツ)、(3)アセチレンブラック、例えばシ ャウイ-ガンブラック (Shawinigan Black)Chevron Chemicals社 (ヒューストン、テキサ ス)などが挙げられる。白金の標準的担体材料としてのカーボンブラック B1は、例え ば、特許文献 1に記載され、バルカン XC— 72及びシャウイ-ガンブラックは、例えば 、特許文献 2に記載される。 [0003] In the polymer electrolyte fuel cell, since the oxygen reduction reaction that occurs at the force sword electrode is very unlikely to occur, platinum, which is a catalyst, is used on a certain brand of carbon support as a standard support material. However, for example, a large amount of lmgZcm 2 has been introduced. That is, the standard carrier materials for gold include (1) carbon black, such as Carbon Black, Bl Degussa-Huels (Frankfurt), and (2) furnace black, such as Vulcan XC-72 Cabot. (Massachusetts), (3) acetylene black, such as Shawinigan Black and Chevron Chemicals (Houston, Texas). Carbon black B1 as a standard support material for platinum For example, Patent Document 1 describes Vulcan XC-72 and Shawi-Gan Black, for example, Patent Document 2.
[0004] し力しながら、従来の標準的担体材料であるカーボンブラック、ファーネスブラック、 アセチレンブラックへの白金の担持の仕方は、白金をできるだけ微分散させることに 多くの努力が傾注されてきた。そこでは、カーボンブラック等の標準的担体材料は、 単に白金を分散させ易くするとともに、担体自体が導電性を与える媒体に過ぎず、担 持された白金の活性ィ匕を十分に図ることができな力 た。  [0004] However, as to how platinum is supported on carbon black, furnace black, and acetylene black, which are conventional standard support materials, much effort has been put into fine dispersion of platinum as much as possible. In this case, a standard support material such as carbon black merely facilitates the dispersion of platinum, and the support itself is merely a medium that imparts conductivity, so that the activity of the supported platinum can be sufficiently achieved. It was a powerful force.
[0005] この点を改良するために、 B、 N及び Pよりなる群力 選ばれた少なくとも 1種類の元 素を含有する粒子状又はファイバー状のカーボン担体に白金粒子等を含む燃料電 池用触媒が開示されている。この燃料電池用触媒は、 B、 N及び Pよりなる群から選 ばれた少なくとも 1種類の元素を含有する化合物をガス状態にしてカーボン担体の入 つている炉に導入し、そこで 600〜900°Cで加熱処理するか、或いはカーボン担体 が設置されて ヽる真空チャンバ一で放電してプラズマを発生させ、そこにキャリアー ガスとともに B、 N及び Pよりなる群カゝら選ばれた少なくとも 1種類の元素を含有する化 合物をガス状態で導入して一定時間反応させることにより、製造される (例えば、特許 文献 3)。  [0005] In order to improve this point, a group power consisting of B, N and P is used for a fuel cell in which a particle-like or fiber-like carbon support containing at least one selected element contains platinum particles or the like. A catalyst is disclosed. In this fuel cell catalyst, a compound containing at least one element selected from the group consisting of B, N, and P is converted into a gas state and introduced into a furnace containing a carbon support, where 600 to 900 ° C. At least one kind selected from the group consisting of B, N and P together with a carrier gas is generated by discharging in a vacuum chamber where a carbon carrier is installed and generating a plasma. It is produced by introducing a compound containing an element in a gas state and reacting for a certain time (for example, Patent Document 3).
特許文献 1:特開 2001— 85020号公報 (請求項 1、 [0041])  Patent Document 1: Japanese Patent Laid-Open No. 2001-85020 (Claim 1, [0041])
特許文献 2 :米国特許第 5759944号(Example 1, Example 2)  Patent Document 2: US Pat. No. 5,759,944 (Example 1, Example 2)
特許文献 3:特開 2004— 79244号公報([0010]、 [0025]〜[0027])  Patent Document 3: Japanese Patent Laid-Open No. 2004-79244 ([0010], [0025] to [0027])
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 3に記載された B、 N等を含有する前のカーボン担体は、従来の標準的担 体材料を用いているため、 B又は Nを含有する化合物をガス状態にしてこのカーボン 担体を熱処理又はプラズマ処理しても、炭素基質の活性点であるエッジ面を導入す ることはできず、もっぱら窒素及びホウ素の電子的な相互作用により白金触媒が活性 化された触媒を調製するのみで、炭素材料の特質を最大に生力しているとはいえな い問題点があった。 [0006] Since the carbon support before containing B, N, etc. described in Patent Document 3 uses a conventional standard carrier material, a compound containing B or N is made into a gas state and this carbon support is used. Even if the support is heat-treated or plasma-treated, the edge surface, which is the active site of the carbon substrate, cannot be introduced, and a catalyst in which the platinum catalyst is activated exclusively by the electronic interaction of nitrogen and boron is prepared. However, there was a problem that cannot be said to be maximizing the characteristics of carbon materials.
[0007] 本発明の目的は、ドーパントによる炭素基材の結晶成長を制御しかつ電子的状態 を修飾することにより、その上に担持された白金の活性ィ匕をより一層図り、高い電流 密度が得られる燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃 料電池を提供することにある。 [0007] An object of the present invention is to control the crystal growth of a carbon substrate by a dopant and to perform an electronic state. By modifying the catalyst, the activity of platinum supported thereon can be further improved, and a fuel cell electrode catalyst capable of obtaining a high current density, a method for producing the same, and a fuel cell using the catalyst are provided. It is in.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上記課題を解決すべく鋭意検討した結果、従来白金を高分散に担 持させる触媒担体として用いられてきた炭素材料自身に所定の条件下で酸素還元 触媒能を持たせることにより、上記目的を達成し得ることを見出し、本発明を完成する に至った。  [0008] As a result of diligent studies to solve the above-mentioned problems, the present inventors have demonstrated that the carbon material itself that has been used as a catalyst carrier for supporting platinum in a highly dispersed state has an oxygen reduction catalytic ability under predetermined conditions. As a result, the inventors have found that the above object can be achieved, and have completed the present invention.
[0009] 請求項 1に係る発明は、炭素基材に白金又は白金合金を担持した燃料電池用電 極触媒にお 1、て、炭素基材が窒素原子がドープされたカーボンァロイ微粒子であつ て、この炭素基材が含窒素化合物と熱硬化性榭脂の前駆体とを加熱反応させて重 合し、これにより得られた窒素化合物含有熱硬化性榭脂を熱処理して炭素化し、炭 素化された窒素化合物含有熱硬化性榭脂を微粉砕してなるカーボンァロイ微粒子で あることを特徴とする燃料電池用電極触媒である。  [0009] The invention according to claim 1 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, and the carbon base material is a carbon alloy fine particle doped with nitrogen atoms. This carbon substrate heat-reacts the nitrogen-containing compound and the thermosetting resin precursor, and superimposes, and the resulting nitrogen compound-containing thermosetting resin is heat treated and carbonized to carbonize. An electrode catalyst for a fuel cell, which is a carbon alloy fine particle obtained by finely pulverizing a nitrogen compound-containing thermosetting resin.
[0010] 請求項 2に係る発明は、含窒素化合物と熱硬化性榭脂の前駆体とを加熱反応させ て重合することにより窒素化合物含有熱硬化性榭脂を得る重合工程と、得られた窒 素化合物含有熱硬化性榭脂を熱処理して炭素化する炭素化工程と、炭素化された 窒素化合物含有熱硬化性榭脂を微粉砕して、窒素原子がドープされたカーボンァロ ィ微粒子を得る粉砕工程と、このカーボンァロイ微粒子に白金を担持させることにより 炭素基材を得る工程とを含む燃料電池用電極触媒の製造方法である。  [0010] The invention according to claim 2 includes a polymerization step of obtaining a nitrogen compound-containing thermosetting resin by heating and polymerizing a nitrogen-containing compound and a thermosetting resin precursor. A carbonization step in which the nitrogen compound-containing thermosetting resin is carbonized by heat treatment, and the carbonized nitrogen compound-containing thermosetting resin is pulverized to obtain carbon-aromatic particles doped with nitrogen atoms. A method for producing an electrode catalyst for a fuel cell, comprising a pulverization step and a step of obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
[0011] 請求項 4に係る発明は、炭素基材に白金又は白金合金を担持した燃料電池用電 極触媒にお 1、て、炭素基材がホウ素原子がドープされたカーボンァロイ微粒子であ つて、この炭素基材が含ホウ素化合物と熱硬化性榭脂の前駆体とを加熱反応させて 重合し、これにより得られたホウ素化合物含有熱硬化性榭脂を熱処理して炭素化し、 炭素化されたホウ素化合物含有熱硬化性榭脂を微粉砕してなるカーボンァロイ微粒 子であることを特徴とする燃料電池用電極触媒である。  [0011] The invention according to claim 4 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, and the carbon base material is a carbon alloy fine particle doped with boron atoms. This carbon substrate was polymerized by heating and reacting a boron-containing compound and a precursor of thermosetting resin, and the resulting boron compound-containing thermosetting resin was heat treated and carbonized to be carbonized. An electrode catalyst for a fuel cell, which is a carbon alloy fine particle obtained by finely pulverizing a boron compound-containing thermosetting resin.
[0012] 請求項 5に係る発明は、含ホウ素化合物と熱硬化性榭脂の前駆体とを加熱反応さ せて重合することによりホウ素化合物含有熱硬化性榭脂を得る重合工程と、得られた ホウ素化合物含有熱硬化性榭脂を熱処理して炭素化する炭素化工程と、炭素化さ れたホウ素化合物含有熱硬化性榭脂を微粉砕して、ホウ素原子がドープされたカー ボンァロイ微粒子を得る粉枠工程と、このカーボンァロイ微粒子に白金を担持させる ことにより炭素基材を得る工程とを含む燃料電池用電極触媒の製造方法である。 The invention according to claim 5 includes a polymerization step of obtaining a boron compound-containing thermosetting resin by heating and polymerizing a boron-containing compound and a thermosetting resin precursor. The A carbonization step in which the boron compound-containing thermosetting resin is carbonized by heat treatment, and the carbonized boron compound-containing thermosetting resin is pulverized to obtain carbon alloy particles doped with boron atoms. It is a method for producing an electrode catalyst for a fuel cell, comprising a powder frame step and a step of obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
[0013] 請求項 7に係る発明は、炭素基材に白金又は白金合金を担持した燃料電池用電 極触媒にお 1、て、炭素基材が窒素原子及びホウ素原子がドープされたカーボンァロ ィ微粒子であって、この炭素基材がフルフリルアルコール又はレゾール型フエノール 榭脂のメタノール溶液に含窒素化合物と含ホウ素化合物とを溶解させ、メタノール亜 臨界又は超臨界条件下で重合反応を行うことにより重合物微粒子を得た後、得られ た重合物微粒子を熱処理して炭素化してなるカーボンァロイ微粒子であることを特徴 とする燃料電池用電極触媒である。  [0013] The invention according to claim 7 is an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon base material, wherein the carbon base material is doped with nitrogen atoms and boron atoms. The carbon substrate is polymerized by dissolving a nitrogen-containing compound and a boron-containing compound in a methanol solution of furfuryl alcohol or resol-type phenol resin, and performing a polymerization reaction under methanol subcritical or supercritical conditions. An electrode catalyst for a fuel cell, characterized in that it is a carbon alloy fine particle obtained by carbonizing a polymer fine particle obtained by heat treatment after obtaining the product fine particle.
[0014] 請求項 8に係る発明は、フルフリルアルコール又はレゾール型フエノール榭脂のメタ ノール溶液に、含窒素化合物と、含ホウ素化合物とを溶解させ、メタノール亜臨界又 は超臨界条件下で重合反応を行うことにより重合物微粒子を得る重合工程と、得ら れた重合物微粒子を熱処理して、窒素原子及びホウ素原子がドープされたカーボン ァロイ微粒子を得る炭素化工程と、このカーボンァロイ微粒子に白金を担持させるこ とにより炭素基材を得る工程とを含む燃料電池用電極触媒の製造方法である。  [0014] The invention according to claim 8 is a solution in which a nitrogen-containing compound and a boron-containing compound are dissolved in a methanol solution of furfuryl alcohol or resol type phenol resin, and polymerized under methanol subcritical or supercritical conditions. A polymerization step for obtaining polymer fine particles by carrying out a reaction, a carbonization step for obtaining carbon alloy fine particles doped with nitrogen atoms and boron atoms by heat-treating the obtained polymer fine particles, and platinum on the carbon alloy fine particles A method for producing an electrode catalyst for a fuel cell, comprising a step of obtaining a carbon base material by supporting a catalyst.
[0015] 請求項 10に係る発明は、炭素基材に白金又は白金合金を担持した燃料電池用電 極触媒にお ヽて、前記炭素基材がフエノールとホルムアルデヒドと塩基触媒を含む 水溶液を所定の温度で所定の時間保持して反応した溶液から回収し乾燥した高分 子超微粒子を加熱することにより炭素化してなるカーボン超微粒子であることを特徴 とする燃料電池用電極触媒である。 [0015] In the invention according to claim 10, in the fuel cell electrode catalyst in which platinum or a platinum alloy is supported on a carbon base material, the carbon base material contains an aqueous solution containing phenol, formaldehyde, and a base catalyst. An electrode catalyst for a fuel cell, characterized in that it is carbon ultrafine particles obtained by carbonizing by heating high molecular ultrafine particles recovered from a solution that has been kept at a predetermined time and reacted and dried.
[0016] 請求項 11に係る発明は、フエノールとホルムアルデヒドと塩基触媒を含む水溶液を 所定の温度で所定の時間保持して反応溶液を得る工程と、この反応溶液を凍結乾 燥して高分子超微粒子を回収する工程と、この高分子超微粒子を加熱することにより 炭素化してカーボン超微粒子を得る炭素化工程と、このカーボン超微粒子に白金を 担持させることにより炭素基材を得る工程とを含む燃料電池用電極触媒の製造方法 である。 発明の効果 [0016] The invention according to claim 11 includes a step of obtaining a reaction solution by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time, and freeze-drying the reaction solution to obtain a polymer superpolymer. A step of collecting the fine particles, a carbonization step of carbonizing the polymer ultrafine particles by heating to obtain carbon ultrafine particles, and a step of obtaining a carbon base material by supporting platinum on the carbon ultrafine particles. A method for producing an electrode catalyst for a fuel cell. The invention's effect
[0017] 請求項 1、 4又は 7に係る発明において、炭素中に窒素又はホウ素のいずれか一方 又は双方が導入された場合、導入した元素は炭素構造の発達を妨げる。 X線回折で 調べると、炭素構造の基底面方向の X線回折線の発達が抑えられ、これに伴い、基 底面とは垂直方向のエッジ面の割合が増加する。エッジ面は基底面に比べて電子的 、化学的に活性であり、このため、これと接触した白金は活性化される。また、同時に 電極触媒では電子が増加し、炭素基材中にホウ素原子がドープされた場合、電極触 媒では電子が減少する。これにより窒素原子又はホウ素原子がドープされない場合 と比較して、窒素原子又はホウ素原子がドープされた炭素基材は導電性材料として の機能だけでなぐ酸素還元の機能が付加され、担持された白金の活性化がより高 まる。更に炭素基材中に窒素原子とホウ素原子の双方がドープされた場合には、電 気的に陰性な窒素原子と電気的に陽性なホウ素原子の相互作用により、担持された 白金の活性ィ匕が更に一層高まる。これにより少ない白金の担持量で高い電流密度が 得られる。特に、特許文献 3では既に調製された炭素基材の表面を窒素又はホウ素 のいずれか一方又は双方により修飾し、活性化を図っているのに対し、請求項 1、 4 又は 7に係る発明では炭素調製時に窒素又はホウ素のいずれか一方又は双方を添 カロしているため、炭素構造の発達を制御することによりエッジ面を炭素表面上に作る ことができ、かつ特許文献 3で期待されている効果も併せ持つている。このため、本発 明の方が特許文献 3の発明よりも白金の活性化がより優れる。  [0017] In the invention according to claim 1, 4 or 7, when one or both of nitrogen and boron is introduced into carbon, the introduced element hinders the development of the carbon structure. When examined by X-ray diffraction, the development of X-ray diffraction lines in the basal plane direction of the carbon structure is suppressed, and along with this, the ratio of the edge surface in the direction perpendicular to the basal plane increases. The edge surface is more electronically and chemically active than the basal surface, so that platinum in contact with it is activated. At the same time, electrons increase in the electrode catalyst, and when boron atoms are doped in the carbon substrate, electrons decrease in the electrode catalyst. As a result, compared with the case where nitrogen atoms or boron atoms are not doped, the carbon base material doped with nitrogen atoms or boron atoms is added with a function of oxygen reduction in addition to the function as a conductive material. The activation of is higher. Furthermore, when both a nitrogen atom and a boron atom are doped in the carbon substrate, the activity of the supported platinum is caused by the interaction between the electrically negative nitrogen atom and the electrically positive boron atom. Is further increased. As a result, a high current density can be obtained with a small amount of platinum. In particular, in Patent Document 3, the surface of a carbon substrate that has already been prepared is modified with one or both of nitrogen and boron to achieve activation, whereas in the invention according to claim 1, 4 or 7, Since either or both of nitrogen and boron are added at the time of carbon preparation, the edge surface can be formed on the carbon surface by controlling the development of the carbon structure, and is expected in Patent Document 3. It also has an effect. For this reason, the present invention is more excellent in the activation of platinum than the invention of Patent Document 3.
[0018] 請求項 2又は 5に係る発明では、窒素化合物含有熱硬化性榭脂又はホウ素化合物 含有熱硬化性榭脂を炭素化して微粉砕することにより、窒素原子又はホウ素原子が ドープされたカーボンァロイ微粒子が得られる。含窒素化合物又は含ホウ素化合物と 熱硬化性榭脂の前駆体の配合比を変えることにより、窒素原子又はホウ素原子のド 一プ量を容易に調整することができる。  [0018] In the invention according to claim 2 or 5, a carbon alloy doped with nitrogen atoms or boron atoms by carbonizing and pulverizing the nitrogen compound-containing thermosetting resin or boron compound-containing thermosetting resin. Fine particles are obtained. By changing the compounding ratio of the nitrogen-containing compound or boron-containing compound and the precursor of the thermosetting resin, the amount of nitrogen atom or boron atom can be easily adjusted.
[0019] 請求項 8に係る発明では、含窒素化合物と含ホウ素化合物が溶解したフルフリルァ ルコール又はレゾール型フエノール榭脂のメタノール溶液をその亜臨界又は超臨界 条件下で重合反応を行うことにより微粒子の形態で重合物を得ることができ、この重 合物を炭素化することにより、窒素原子とホウ素原子がドープされたカーボンァロイ微 粒子が得られる。含窒素化合物と含ホウ素化合物の溶解量を変えることにより、窒素 原子又はホウ素原子のドープ量を容易に調整することができる。 [0019] In the invention according to claim 8, fine particles can be obtained by conducting a polymerization reaction of a furfuryl alcohol or a resol type phenol resin dissolved in nitrogen-containing compound and boron-containing compound under a subcritical or supercritical condition. A polymer can be obtained in the form of carbon alloy, and by carbonizing this polymer, carbon alloy fine particles doped with nitrogen and boron atoms can be obtained. Particles are obtained. By changing the amount of the nitrogen-containing compound and boron-containing compound dissolved, the doping amount of nitrogen atoms or boron atoms can be easily adjusted.
[0020] 請求項 10に係る発明では、炭素基材がカーボン超微粒子であるため、炭素表面に 欠陥が導入されることにより露出したエッジ面の割合が増える。これにより酸素還元の 機能が付加され、このような活性な表面との電子的かつ化学的な相互作用により担 持された白金の活性化がより高まる。  [0020] In the invention according to claim 10, since the carbon base material is ultrafine carbon particles, the ratio of the edge surface exposed by introducing defects on the carbon surface increases. This adds the function of oxygen reduction and further increases the activation of platinum carried by electronic and chemical interactions with such active surfaces.
[0021] 請求項 11に係る発明では、フエノールとホルムアルデヒドと塩基触媒を含む水溶液 を所定の温度で所定の時間保持することにより、反応溶液中に高分子超微粒子が得 られる。  In the invention according to claim 11, ultrafine polymer particles are obtained in the reaction solution by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]実施例 9〜13の N, B—カーボンァロイ微粒子 F〜Jと比較例 1のカーボン微粒 子 1の X線入射角と回折 X線強度との関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the X-ray incident angle and diffraction X-ray intensity of N, B-carbon alloy fine particles F to J of Examples 9 to 13 and carbon fine particles 1 of Comparative Example 1.
[図 2]実施例 1、 2の N—カーボンァロイ微粒子 1、 2と比較例 1のカーボン微粒子 1の 電位と電流密度との関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the potential and current density of N-carbon alloy fine particles 1 and 2 of Examples 1 and 2 and carbon fine particles 1 of Comparative Example 1.
[図 3]実施例 3の B—カーボンァロイ微粒子と比較例 1のカーボン微粒子 1の電位と電 流密度との関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the potential and current density of B-carbon alloy fine particles of Example 3 and carbon fine particles 1 of Comparative Example 1.
[図 4]実施例 4、 5、 8の N, B—カーボンァロイ微粒子 A、 B、 Eと比較例 1のカーボン 微粒子 1の電位と電流密度との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the N and B-carbon alloy fine particles A, B and E of Examples 4, 5, and 8 and the carbon fine particle 1 of Comparative Example 1 and the current density.
[図 5] (a)〜(c)は、それぞれ実施例 4〜8の N, B—カーボンァロイ微粒子 A〜Eと比 較例 2のカーボン微粒子の酸素還元開始電位と、ホウ素原子及び窒素原子の含有 量との関係を示すグラフである。  [FIG. 5] (a) to (c) are the oxygen reduction initiation potentials of the N, B-carbon alloy fine particles A to E of Examples 4 to 8 and the carbon fine particles of Comparative Example 2, and the boron atoms and nitrogen atoms, respectively. It is a graph which shows the relationship with content.
[図 6]実施例 4〜8の N, B—カーボンァロイ微粒子 A〜Eの NlsX線光電子スペクトル を示すグラフである。  FIG. 6 is a graph showing NlsX-ray photoelectron spectra of N, B-carbon alloy fine particles A to E of Examples 4 to 8.
[図 7]実施例 4〜8の N, B—カーボンァロイ微粒子 A〜Eの BlsX線光電子スペクトル を示すグラフである。  FIG. 7 is a graph showing Bls X-ray photoelectron spectra of N, B-carbon alloy fine particles A to E in Examples 4 to 8.
[図 8]実施例 14のカーボン超微粒子を示す電界放射高分解能走査型電子顕微鏡の 写真図である。  FIG. 8 is a photographic diagram of a field emission high resolution scanning electron microscope showing carbon ultrafine particles of Example 14.
[図 9]それぞれ白金を担持した実施例 15、比較例 3の炭素基材の酸素還元ボルタモ グラムを示す図である。 [Fig. 9] Carbon base oxygen-reduced voltammo of Example 15 and Comparative Example 3 each carrying platinum. It is a figure which shows a gram.
[図 10]それぞれ白金を担持した実施例 15、比較例 3の炭素基材のサイクリックボルタ モグラムを示す図である。  FIG. 10 is a diagram showing cyclic voltammograms of carbon substrates of Example 15 and Comparative Example 3 each carrying platinum.
[図 11] 3極回転電極セルの模式図である。  FIG. 11 is a schematic diagram of a three-pole rotating electrode cell.
符号の説明  Explanation of symbols
[0023] 1 3極回転電極セル [0023] 1 3-pole rotating electrode cell
2 作用電極 (炭素試料)  2 Working electrode (carbon sample)
3 参照電極 (AgZAgCl)  3 Reference electrode (AgZAgCl)
4 対極(Pt)  4 Counter electrode (Pt)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明を実施するための最良の形態について具体的に説明する。 Hereinafter, the best mode for carrying out the present invention will be specifically described.
[1]本発明に係る燃料電池用電極触媒における炭素基材の第一の形態は、カーボ ンァロイ微粒子である。このカーボンァロイ微粒子は、 14族の炭素原子の両隣に位 置するホウ素原子及び窒素原子の 、ずれか一方、又は双方と炭素原子とのカーボン ァロイ微粒子である。このカーボンァロイ微粒子の平均粒径は 0. 05 μ m力 45 μ m 以下である。好ましくは 0. 05-0.: mである。  [1] The first form of the carbon base material in the fuel cell electrode catalyst according to the present invention is carbon alloy fine particles. This carbon alloy fine particle is a carbon alloy fine particle in which one or both of a boron atom and a nitrogen atom located on both sides of a group 14 carbon atom and a carbon atom. The average particle size of the carbon alloy fine particles is 0.05 μm force or less than 45 μm. Preferably 0.05.0 .: m.
こうしたカーボンァロイ微粒子により、これまで白金を高分散に担持させる触媒担体 として用いられてきた炭素材料自身が酸素還元触媒能を有し、燃料電池用電極触媒 として好適に使用することが可能となる。  With such carbon alloy fine particles, the carbon material itself that has been used as a catalyst carrier for supporting platinum in a highly dispersed state has an oxygen reduction catalytic ability, and can be suitably used as an electrode catalyst for a fuel cell.
[0025] 本発明に係るカーボンァロイ微粒子においては、窒素原子又はホウ素原子のドー プ量がそれぞれ 0. 1〜40原子%、好ましくは 4〜20原子%であるときに、酸素還元 に関して良好な電極活性を示す。また、窒素原子とホウ素原子とを同時にドープした ときには、両者の相互作用により、より一層高い電極活性を示す。また、窒素原子 (N )とホウ素(B)原子の双方をドープする場合には、原子比(BZN)は、 0. 06〜: L 5、 好ましくは 0. 2〜0. 4であり、また原子比((B+N) ZC)は、好ましくは 0. 03-0. 4 である。これら原子比の範囲内において両原子は良好に相互作用し、活性の高い力 一ボンァロイ粒子を得ることができる。 [0025] In the carbon alloy fine particles according to the present invention, when the doping amount of nitrogen atom or boron atom is 0.1 to 40 atom%, preferably 4 to 20 atom%, good electrode activity with respect to oxygen reduction. Indicates. In addition, when nitrogen and boron atoms are doped at the same time, higher electrode activity is exhibited due to the interaction between the two. In addition, when both nitrogen (N) and boron (B) atoms are doped, the atomic ratio (BZN) is from 0.06 to L5, preferably from 0.2 to 0.4. The atomic ratio ((B + N) ZC) is preferably 0.03-0.4. Within the range of these atomic ratios, both atoms interact well, and highly active force-bonded particles can be obtained.
[0026] (a)窒素原子がドープされたカーボンァロイ微粒子の製造方法 窒素原子がドープされたカーボンァロイ微粒子を製造するには、まず、窒素源とし ての、フタロシアニン、アクリロニトリル、 EDTA (エチレンジァミン四酢酸)、メラミンなど の含窒素化合物と、フラン榭脂ゃフエノール榭脂などの熱硬化性榭脂の前駆体とを 混合し、加熱反応させて、窒素化合物含有熱硬化性榭脂を得る。例えば、含窒素化 合物としてフタロシアニンを用い、熱硬化性榭脂の前駆体としてフルフリルアルコー ルを用いる場合には、これらの混合物に塩酸等の酸を添加し、好ましくは 80〜200 °Cの範囲内の温度で加熱して、重合反応させることで、フタロシアニン含有フラン榭 脂を得ることができる。上述した窒素原子のドープ量を 0. 1〜40原子%にするため には、フルフリルアルコールとメラミン又はフタロシアニンの配合比を C :Nの原子比で 1: (0. 07〜3)、好ましく ίま 1: (0. 1〜0. 5)にする。 [0026] (a) Method for producing carbon alloy fine particles doped with nitrogen atoms In order to produce carbon alloy fine particles doped with nitrogen atoms, first, nitrogen sources such as phthalocyanine, acrylonitrile, EDTA (ethylene diamine tetraacetic acid), melamine and the like, as well as furan coconut resin and phenol resin. A precursor of thermosetting resin is mixed and reacted by heating to obtain a nitrogen compound-containing thermosetting resin. For example, when phthalocyanine is used as the nitrogen-containing compound and furfuryl alcohol is used as the precursor of the thermosetting resin, an acid such as hydrochloric acid is added to the mixture, preferably 80 to 200 ° C. A phthalocyanine-containing furan resin can be obtained by heating at a temperature within the range of 1 to cause a polymerization reaction. In order to make the nitrogen atom doping amount 0.1 to 40 atomic%, the compounding ratio of furfuryl alcohol and melamine or phthalocyanine is 1: (0.07-3), preferably C: N. ίMA 1: Set to (0. 1 to 0.5).
[0027] 得られたフタロシアニン含有フラン榭脂を、窒素やヘリウム等の不活性雰囲気下、 所定の温度で熱処理して炭素化する。この熱処理温度は炭素化可能な温度であれ ば、特に制限はないが、好ましい温度は 400〜1500°C、より好ましい温度は 500〜 1200°Cである。次いで、好ましくは遊星型ボールミル等のボールミルで、微粉砕する ことにより、窒素原子がドープされた平均粒径 0. 05 μ m力ら 45 μ m以下、好ましくは 0. 05 μ mから 0. 1 μ m以下のカーボンァロイ微粒子を得ることができる。このように して得られた微粒子に白金又は白金合金を 0. 5〜60重量%、、好ましくは 10〜50 重量%、更に好ましくは 20〜50重量%担持させることにより、本発明の燃料電池用 電極触媒が得られる。ここで白金合金としては、 Pt— Fe, Pt-Cr, Pt-Ru, Pt— Ni , Pt—Cu等が挙げられる。  [0027] The obtained phthalocyanine-containing furan resin is carbonized by heat treatment at a predetermined temperature in an inert atmosphere such as nitrogen or helium. The heat treatment temperature is not particularly limited as long as it is a carbonizable temperature, but a preferable temperature is 400 to 1500 ° C, and a more preferable temperature is 500 to 1200 ° C. Next, the average particle diameter doped with nitrogen atoms is preferably 0.05 μm or less, preferably 45 μm or less, preferably from 0.05 μm to 0.1 by finely pulverizing with a ball mill such as a planetary ball mill. Carbon alloy fine particles of μm or less can be obtained. The fine particles obtained as described above are loaded with 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 50% by weight of platinum or a platinum alloy, whereby the fuel cell of the present invention is supported. An electrode catalyst is obtained. Here, examples of the platinum alloy include Pt—Fe, Pt—Cr, Pt—Ru, Pt—Ni, and Pt—Cu.
[0028] この白金を担持させる方法は、特に限定されず、公知の方法を採用することができ る。例えば、カーボンァロイ微粒子を白金コロイド溶液に分散させ、白金を還元させた 後、固液分離し乾燥する方法がある。この方法によれば、カーボンァロイ微粒子の白 金コロイド溶液への分散量を変えることにより、白金の担持量を容易に調整すること ができる。  [0028] The method for supporting platinum is not particularly limited, and a known method can be employed. For example, there is a method in which carbon alloy fine particles are dispersed in a platinum colloid solution, platinum is reduced, and then solid-liquid separation and drying are performed. According to this method, the amount of platinum supported can be easily adjusted by changing the amount of carbon alloy fine particles dispersed in the colloidal gold solution.
[0029] (b)ホウ素原子がドープされたカーボンァロイ微粒子の製造方法  [0029] (b) Method for producing carbon alloy fine particles doped with boron atoms
ホウ素原子がドープされたカーボンァロイ微粒子を製造するには、まず、ホウ素源とし ての、 BFメタノール錯体又は BFテトラヒドロフラン (THF)錯体等の含ホウ素化合物 と、フラン榭脂ゃフ ノール榭脂などの熱硬化性榭脂の前駆体とを混合し、加熱反応 させて、ホウ素化合物含有熱硬化性榭脂を得る。例えば、含ホウ素化合物として BF To produce carbon alloy fine particles doped with boron atoms, first, boron-containing compounds such as BF methanol complex or BF tetrahydrofuran (THF) complex as a boron source. And a thermosetting resin precursor such as furan resin and phenol resin are mixed and reacted by heating to obtain a boron compound-containing thermosetting resin. For example, BF
3 メタノール錯体を用い、熱硬化性榭脂の前駆体としてフルフリルアルコールを用いる 場合には、好ましくは 80〜200°Cの範囲内の温度で加熱して、重合反応させること で、 BF含有フラン榭脂を得ることができる。上述したホウ素原子のドープ量を 0. 1〜 3 When using a methanol complex and using furfuryl alcohol as a precursor of thermosetting resin, it is preferably heated at a temperature in the range of 80 to 200 ° C. to cause a polymerization reaction, thereby producing a BF-containing furan. A rosin can be obtained. The boron atom doping amount described above is 0.1 to
3 Three
40原子%にするためには、フルフリルアルコールと BFの配合比を C : Bの原子比で  In order to achieve 40 atomic%, the compounding ratio of furfuryl alcohol and BF should be C: B.
3  Three
1 : (0. 1〜1)、好ましくは 1 : (0. 15〜0. 6)にする。  1: (0.1-1), preferably 1: (0.15-0.6).
[0030] 得られた BF含有フラン榭脂を、窒素やヘリウム等の不活性雰囲気下、上記 (a)で述 [0030] The obtained BF-containing furan resin is described in (a) above under an inert atmosphere such as nitrogen or helium.
3  Three
ベた所定温度で熱処理して炭素化する。次いで、好ましくは遊星型ボールミル等の ボールミルで、微粉砕することにより、ホウ素原子がドープされた平均粒径 0. 05 力ら 45 μ m以下、好ましくは 0. 05 μ mから 0. 1 μ m以下のカーボンァロイ微粒子を 得ることができる。このようにして得られた微粒子に白金又は白金合金を 0. 5〜60重 量%、、好ましくは 10〜50重量%、更に好ましくは 20〜50重量%担持させることに より、本発明の燃料電池用電極触媒が得られる。ここで白金合金としては、 Pt-Fe, Pt-Cr, Pt-Ru, Pt-Ni, Pt Cu等が挙げられる。この白金を担持させる方法は 、上記 (a)で記載した方法が一般的である力 これに限定されない。  It is carbonized by heat treatment at a predetermined temperature. Next, the average particle diameter doped with boron atoms is preferably 0.05 μm or less, preferably not more than 45 μm, preferably 0.05 μm to 0.1 μm, by pulverizing with a ball mill such as a planetary ball mill. The following carbon alloy fine particles can be obtained. The fine particles thus obtained are loaded with 0.5 to 60% by weight of platinum or a platinum alloy, preferably 10 to 50% by weight, more preferably 20 to 50% by weight. A battery electrode catalyst is obtained. Here, examples of the platinum alloy include Pt—Fe, Pt—Cr, Pt—Ru, Pt—Ni, and Pt Cu. The method for supporting platinum is not limited to the force generally used in the method described in (a) above.
[0031] (c)窒素原子及びホウ素原子がドープされたカーボンァロイ微粒子の製造方法 (熱 重合法) [0031] (c) Method for producing carbon alloy fine particles doped with nitrogen atom and boron atom (thermal polymerization method)
窒素原子及びホウ素原子がドープされたカーボンァロイ微粒子を製造するには、ま ず、上記と同様の含ホウ素化合物と含窒素化合物と、フラン榭脂ゃフ ノール榭脂な どの熱硬化性榭脂の前駆体とを混合し、加熱反応させて、ホウ素 窒素化合物含有 熱硬化性榭脂を得る。例えば、含ホウ素化合物として BFメタノール錯体を、含窒素  In order to produce carbon alloy fine particles doped with nitrogen atoms and boron atoms, first, a boron-containing compound and a nitrogen-containing compound similar to the above, and a precursor of a thermosetting resin such as furan resin and phenol resin. The body is mixed and reacted by heating to obtain a boron nitrogen compound-containing thermosetting resin. For example, BF methanol complex as boron-containing compound, nitrogen-containing
3  Three
化合物としてメラミンをそれぞれ用い、熱硬化性榭脂の前駆体としてフルフリルアルコ ールを用いる場合には、好ましくは 80〜200°Cの範囲内の温度で加熱して、重合反 応させることで、 BF含有フラン榭脂を得ることができる。上述した窒素原子及びホウ  When melamine is used as a compound and furfuryl alcohol is used as a precursor of thermosetting resin, it is preferably heated at a temperature in the range of 80 to 200 ° C. to cause a polymerization reaction. A BF-containing furan resin can be obtained. Nitrogen atoms and boron mentioned above
3  Three
素原子のドープ量をそれぞれ 0. 1〜40原子%にし、かつ BZNの原子比を 0. 2〜0 . 4にするためには、フルフリルアルコールとメラミンと BFメタノール錯体の配合比を  In order to make the doping amount of elementary atoms 0.1 to 40 atom% and BZN atomic ratio 0.2 to 0.4, respectively, the mixing ratio of furfuryl alcohol, melamine and BF methanol complex should be changed.
3  Three
C :N: Bの原子比で 1 : (0. 04〜2): (0. 02〜: 0、好ましくは 1 : (0. 3〜0. 7): (0. 4 〜1. 5)にする。 The atomic ratio of C: N: B is 1: (0. 04-2): (0.02-: 0, preferably 1: (0.3-0.7): (0. 4 ~ 1.5).
[0032] 得られた重合物微粒子を窒素やヘリウム等の不活性雰囲気下、上記 (a)で述べた 所定温度で炭素化することにより、窒素原子及びホウ素原子がドープされたカーボン ァロイ微粒子を得ることができる。このようにして得られた微粒子に白金又は白金合 金を 0. 5〜60重量%、好ましくは 10〜50重量%、更に好ましくは 20〜40重量%担 持させること〖こより、本発明の燃料電池用電極触媒が得られる。白金合金の種類及 び白金の担持の方法は、上記 (a)で述べた窒素原子をドープしたカーボンァロイ微粒 子の製造方法における担持の方法と同じである。  The obtained polymer fine particles are carbonized at a predetermined temperature described in the above (a) under an inert atmosphere such as nitrogen or helium, thereby obtaining carbon alloy fine particles doped with nitrogen atoms and boron atoms. be able to. The fine particles thus obtained are supported by 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or platinum alloy. A battery electrode catalyst is obtained. The kind of platinum alloy and the method for supporting platinum are the same as the supporting method in the method for producing carbon alloy fine particles doped with nitrogen atoms described in (a) above.
[0033] (d)窒素原子及びホウ素原子がドープされたカーボンァロイ微粒子の製造方法 (亜 臨界法) [0033] (d) Method for producing carbon alloy fine particles doped with nitrogen atom and boron atom (subcritical method)
窒素原子及びホウ素原子がドープされたカーボンァロイ微粒子を製造する別の方 法としては次の亜臨界法がある。この方法では、まず、フルフリルアルコール又はレゾ ール型フエノール榭脂のメタノール溶液に、上記と同様の含窒素化合物と、ホウ素源 としての、 BFメタノール錯体又は BFテトラヒドロフラン (THF)錯体等の含ホウ素化  Another method for producing carbon alloy fine particles doped with nitrogen and boron atoms is the following subcritical method. In this method, first, in a methanol solution of furfuryl alcohol or resole phenol resin, a nitrogen-containing compound similar to the above and a boron-containing compound such as BF methanol complex or BF tetrahydrofuran (THF) complex as a boron source. Conversion
3 3  3 3
合物とを溶解して、重合反応を行う。例えば、フルフリルアルコールのメタノール溶液 The compound is dissolved and a polymerization reaction is performed. For example, furfuryl alcohol in methanol
、含窒素化合物としてのメラミン、及び含ホウ素化合物としての BFメタノール錯体を Melamine as a nitrogen-containing compound and BF methanol complex as a boron-containing compound
3  Three
用いた場合には、 200〜350°Cのメタノール亜臨界又は超臨界条件下で、フルフリ ルアルコールの重合反応を行う。上述した窒素原子及びホウ素原子のそれぞれのド 一プ量を 0. 1〜40原子%にするためには、フルフリルアルコールとメラミンと BFメタ  When used, the polymerization reaction of furfuryl alcohol is carried out under methanol subcritical or supercritical conditions at 200 to 350 ° C. In order to make the doping amount of each of the nitrogen atom and boron atom 0.1 to 40% by atom, furfuryl alcohol, melamine and BF
3 ノール錯体の配合比を C :N : Bの原子比で 1 : (0. 2〜0. 8): (0. 1〜0. 4)、好ましく は 1: (0. 3〜0. 7): (0. 15〜0. 4)にする。  3 The compounding ratio of the nor complex is 1: (0.2 to 0.8): (0.1 to 0.4), preferably 1: (0.3 to 0.7) in terms of the C: N: B atomic ratio. ): Set to (0.15 to 0.4).
[0034] 得られた重合物微粒子を窒素やヘリウム等の不活性雰囲気下、上記 (a)で述べた 所定温度で炭素化することにより、窒素原子及びホウ素原子がドープされたカーボン ァロイ微粒子を得ることができる。窒素原子及びホウ素原子がドープされたカーボン ァロイ微粒子を得ることができる。このようにして得られた微粒子に白金又は白金合 金を 0. 5〜60重量%、好ましくは 10〜50重量%、更に好ましくは 20〜40重量%担 持させること〖こより、本発明の燃料電池用電極触媒が得られる。白金合金の種類及 び白金の担持の方法は、上記 (a)で述べた窒素原子をドープしたカーボンァロイ微粒 子の製造方法における担持の方法と同じである。 [0034] The obtained polymer fine particles are carbonized at a predetermined temperature described in the above (a) under an inert atmosphere such as nitrogen or helium to obtain carbon alloy fine particles doped with nitrogen atoms and boron atoms. be able to. Carbon alloy fine particles doped with nitrogen atoms and boron atoms can be obtained. The fine particles thus obtained are supported by 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or platinum alloy. A battery electrode catalyst is obtained. The type of platinum alloy and the method for supporting platinum are described in the above (a). This is the same as the loading method in the child manufacturing method.
[0035] [2]本発明に係る燃料電池用電極触媒における炭素基材の第二の形態は、ゾルゲ ル法で作られたカーボン超微粒子である。この方法で作られたカーボン超微粒子の 平均粒径は 10〜 1 OOnmである。  [0035] [2] The second form of the carbon substrate in the fuel cell electrode catalyst according to the present invention is ultrafine carbon particles produced by a sol-gel method. The average particle size of ultrafine carbon particles produced by this method is 10 to 1 OOnm.
このカーボン超微粒子は、以下のようにして製造される。まず、フエノールとホルム アルデヒドと炭酸ナトリウムのような塩基触媒を含む水溶液を調製する。この水溶液を 所定の温度で所定の時間保持することにより、フエノールとホルムアルデヒドを反応さ せる。反応溶液中に高分子超微粒子が生成される。所定の温度は 60〜90°Cが好ま しぐ 80〜90°Cが更に好ましい。また所定の時間は 1〜20時間が好ましぐ 8〜18時 間が更に好ま U、。次にこの反応溶液を液体窒素温度に冷却して凍結し乾燥するこ とにより高分子超微粒子を回収する。更に続いて回収した高分子超微粒子を 100〜 250°Cで 0. 5〜10時間、好ましくは 200〜230°Cで 3〜6時間加熱硬化させる。この 硬化した高分子超微粒子を上記 (a)で述べた炭素化熱処理条件で加熱することによ り炭素化して平均粒径 10〜100nm、好ましくは 10〜30nmのカーボン超微粒子を 得ることができる。このような超微粒子を得るためには、フエノールとホルムアルデヒド と炭酸ナトリウムの配合重量比(フエノール:ホルムアルデヒド:炭酸ナトリウム)を 1: ( 1 〜2): (0. 05〜0. 2)、好ましくは 1 : (1. 4〜1. 6): (0. 05〜0. 1)にする。  The carbon ultrafine particles are produced as follows. First, an aqueous solution containing a base catalyst such as phenol, formaldehyde, and sodium carbonate is prepared. By holding this aqueous solution at a predetermined temperature for a predetermined time, phenol and formaldehyde are reacted. Polymer ultrafine particles are generated in the reaction solution. The predetermined temperature is preferably 60 to 90 ° C, more preferably 80 to 90 ° C. Also, the predetermined time is preferably 1-20 hours, more preferably 8-18 hours. Next, the reaction solution is cooled to liquid nitrogen temperature, frozen and dried to collect ultrafine polymer particles. Further, the collected ultrafine polymer particles are then heat-cured at 100 to 250 ° C. for 0.5 to 10 hours, preferably at 200 to 230 ° C. for 3 to 6 hours. By heating the cured ultrafine polymer particles under the carbonization heat treatment conditions described in (a) above, carbon ultrafine particles having an average particle size of 10 to 100 nm, preferably 10 to 30 nm can be obtained. . In order to obtain such ultrafine particles, the mixing weight ratio of phenol, formaldehyde and sodium carbonate (phenol: formaldehyde: sodium carbonate) is 1: (1-2): (0. 05-0.2), preferably 1: (1. 4 to 1.6): Set to (0. 05 to 0.1).
[0036] このようにして得られた超微粒子に白金又は白金合金を 0. 5〜60重量%、好ましく は 10〜50重量%、更に好ましくは 20〜40重量%担持させることにより、本発明の燃 料電池用電極触媒が得られる。白金合金の種類及び白金の担持の方法は、上記 (a) で述べた窒素原子をドープしたカーボンァロイ微粒子の製造方法における担持の方 法と同じである。  [0036] The ultrafine particles thus obtained are loaded with 0.5 to 60% by weight, preferably 10 to 50% by weight, more preferably 20 to 40% by weight of platinum or a platinum alloy. A fuel cell electrode catalyst is obtained. The kind of platinum alloy and the method for supporting platinum are the same as the method for supporting the carbon alloy fine particles doped with nitrogen atoms described in (a) above.
[0037] [3]本発明に係る固体燃料電池は、上記 [1]及び [2]で述べた燃料電池用電極触媒 を用いて作られる。  [0037] [3] The solid fuel cell according to the present invention is manufactured using the fuel cell electrode catalyst described in [1] and [2] above.
[0038] 固体高分子形燃料電池は電池モジュール内に組込まれたセルがシート状の固体 高分子電解質膜を挟むようにして対向配置されるアノード (燃料極)及び力ソード (酸 ィ匕剤極)とカゝら構成されている。この固体高分子電解質膜としては、パーフルォロス ルホン酸榭脂膜 (例えば、デュポン社製ナフイオン膜)を代表とするフッ素系イオン交 換榭脂膜が用いられている。この固体高分子電解質膜の一方又は双方の面には上 記 [1]及び [2]で述べた燃料電池用電極触媒を含む電極反応層が層状に形成される 。即ち、アノード及び力ソード(以下、電極と略称)は、上記 [1]及び [2]で述べた燃料 電池用電極触媒を含む電極反応層と電極基材を備えて構成される。両電極を電極 反応層側で固体高分子電解質膜の両主面にホットプレスにより密着することにより、 MEA(Membrane Electrode Assembly)として一体ィ匕される。 [0038] A solid polymer fuel cell is composed of an anode (fuel electrode) and a force sword (acid additive electrode), which are arranged so that cells built in a battery module are sandwiched between sheet-like solid polymer electrolyte membranes. They are organized. As this solid polymer electrolyte membrane, a fluorine-based ion exchange typified by a perfluorosulfonic acid rosin membrane (for example, a naphthoion membrane manufactured by DuPont). A replaceable oil membrane is used. On one or both surfaces of the solid polymer electrolyte membrane, an electrode reaction layer containing the fuel cell electrode catalyst described in [1] and [2] above is formed in layers. That is, the anode and the force sword (hereinafter abbreviated as “electrode”) are configured to include the electrode reaction layer including the electrode catalyst for fuel cells described in [1] and [2] above and the electrode substrate. Both electrodes are bonded together as a MEA (Membrane Electrode Assembly) by hot-pressing them to the main surfaces of the polymer electrolyte membrane on the electrode reaction layer side.
[0039] 上記電極基材は、触媒層を支持するとともに反応ガス (燃料ガスと酸化剤ガス)の供 給'排出を行い、集電体としての機能も有する多孔質のシート (例えば、カーボンべ 一パー)が用いられる。そして、上記電極のそれぞれに反応ガスが供給されると、両 電極に備えられた白金系の貴金属を担持した触媒層と固体高分子電解質膜との境 界に気相 (反応ガス)、液相(固体高分子電解質膜)、固相(両電極が持つ触媒)の三 相界面が形成され、電気化学反応を生じさせることで直流電力を発生する。  [0039] The electrode base material supports a catalyst layer and supplies and discharges reaction gases (fuel gas and oxidant gas), and also has a porous sheet (for example, carbon base) that also functions as a current collector. 1 par) is used. When a reactive gas is supplied to each of the electrodes, a gas phase (reactive gas), a liquid phase is formed at the boundary between the catalyst layer supporting the platinum-based noble metal provided on both electrodes and the solid polymer electrolyte membrane. A three-phase interface (solid polymer electrolyte membrane) and solid phase (catalyst possessed by both electrodes) is formed, and direct current power is generated by causing an electrochemical reaction.
[0040] 上記電気化学反応において、  [0040] In the electrochemical reaction,
アノード側: H→2H+ + 2e" The anode side: H → 2H + + 2e "
2  2
力ソード側: (1/2) 0 + 2H+ + 2e"→H O Force sword side: (1/2) 0 + 2H + + 2e "→ HO
2 2  twenty two
の反応が起こり、アノード側で生成された H+イオンは固体高分子電解質膜中をカソ ード側に向かって移動し、 e" (電子)は外部の負荷を通って力ソード側に移動する。 一方、力ソード側では酸化剤ガス中に含まれる酸素と、アノード側カゝら移動してきた H +イオン及び e—とが反応して水が生成される。この結果、固体高分子形燃料電池は、 水素と酸素とから直流電力を発生し、水を生成することになる。  H + ions generated on the anode side move toward the cathode side in the polymer electrolyte membrane, and e "(electrons) move to the force sword side through an external load. On the other hand, on the power sword side, oxygen contained in the oxidant gas reacts with H + ions and e- that have moved from the anode side to produce water. Will generate direct current power from hydrogen and oxygen to produce water.
実施例  Example
[0041] 以下、本発明の実施例を比較例とともに説明する。  Hereinafter, examples of the present invention will be described together with comparative examples.
<実施例 1 >  <Example 1>
ま 早 ド、ープしたカーボンァロイ微粒早の観告 ί列 (その ί)  Mahaku, the carbon alloy fine particles that have been collected.
含窒素化合物であるフタロシアニン 13. lgをフラン榭脂の前駆体であるフルフリル アルコール 10gに混合し、塩酸を適当量添カ卩し、この混合物をオーブン中 80°Cでカロ 熱することによりフタロシアニン含有フラン榭脂を得た。これを、窒素雰囲気下、室温 から 10°CZ分の速度で昇温し、 1000°Cで 1時間保持することにより熱処理した。こ れによりフタロシアニン含有フラン榭脂が炭素化した。この炭素化物を遊星型ボール ミルで粉砕して、窒素原子が 13. 4原子%ドープされた平均粒径 0. のカーボ ンァロイ微粒子(以下「N—カーボンァロイ微粒子 1」 t 、う。)を得た。 Add phthalocyanine (13 lg), a nitrogen-containing compound, to 10 g of furfuryl alcohol (furan rosin precursor), add an appropriate amount of hydrochloric acid, and heat the mixture in an oven at 80 ° C to contain phthalocyanine. Obtained furan rosin. This was heated in a nitrogen atmosphere at a rate of 10 ° CZ from room temperature and kept at 1000 ° C for 1 hour. This As a result, the phthalocyanine-containing furan resin was carbonized. This carbonized product was pulverized with a planetary ball mill to obtain carbon alloy fine particles (hereinafter referred to as “N-carbon alloy fine particles 1” t) having an average particle diameter of 0.1 doped with 13.4 atomic% of nitrogen atoms. .
[0042] 得られた N—カーボンァロイ微粒子に次の方法により白金を担持した。予め、担持 した白金を還元するために、 2—プロパノール 3. 5mlと水素化ホウ素ナトリウム 40mg の混合溶液カゝらなる還元剤を調製した。その後で、塩化白金酸六水和物 53mgに蒸 留水 20mlを加え、続いてこの溶液に過酸ィ匕水素水 0. 21mlを加え、 10分間超音波 照射すること〖こより白金コロイド溶液を調製した。この白金コロイド溶液を上記 N—力 一ボンァロイ微粒子 0. 2gに滴下し、 20分間超音波照射することにより N—カーボン ァロイ微粒子を白金コロイド溶液中に均一に分散させた。次に、この分散液に上記還 元剤を 20分かけて滴下した後、 12時間攪拌した。その後、得られた液を開口径が 1 . 0 μ mであって親水性ポリテトラフルォロエチレン (PTFE)製メンブレンフィルターで ろ過し、固液分離した。メンブレンフィルター上の固形分を回収し、 80°Cで乾燥する ことにより、白金が 10重量%担持された N—カーボンァロイ微粒子を得た。  [0042] Platinum was supported on the obtained N-carbon alloy fine particles by the following method. In order to reduce the supported platinum in advance, a reducing agent consisting of a mixed solution of 3.5 ml of 2-propanol and 40 mg of sodium borohydride was prepared. Then, add 20 ml of distilled water to 53 mg of chloroplatinic acid hexahydrate, then add 0.21 ml of hydrogen peroxide solution to this solution, and irradiate with ultrasonic waves for 10 minutes to prepare a platinum colloid solution. did. This platinum colloid solution was dropped into 0.2 g of the above N-force single Bonalloy fine particles, and the N-carbon alloy fine particles were uniformly dispersed in the platinum colloidal solution by ultrasonic irradiation for 20 minutes. Next, the reducing agent was added dropwise to the dispersion over 20 minutes, followed by stirring for 12 hours. Thereafter, the obtained liquid was filtered through a membrane filter made of hydrophilic polytetrafluoroethylene (PTFE) having an opening diameter of 1.0 μm and separated into solid and liquid. The solid content on the membrane filter was collected and dried at 80 ° C to obtain N-carbon alloy fine particles carrying 10% by weight of platinum.
[0043] <実施例 2>  <Example 2>
窜泰原早 ドープしたカーボンァロィ微粒早の e^列 (その 2)  Saya Yasuhara's e ^ line of doped carbon alloy fine particles (Part 2)
含窒素化合物であるメラミン 1. 4gをフラン榭脂の前駆体であるフルフリルアルコー ル 10gに混合し、この混合物をオーブン中 80°Cで加熱することによりフタロシアニン 含有フラン榭脂を得た。これを、窒素雰囲気下、室温から 10°CZ分の速度で昇温し 、 1000°Cで 1時間保持することにより熱処理した。これによりメラミン含有フラン榭脂 を炭素化した。この炭素化物を遊星型ボールミルで粉砕して、窒素原子が 13. 4原 子%ドープされた平均粒径 0. 1 μ mのカーボンァロイ微粒子(以下「Ν—カーボンァ ロイ微粒子 2」という。)を得た。この Ν—カーボンァロイ微粒子 2に実施例 1と同様にし て白金を 10重量%担持した。  A nitrogen-containing compound, melamine (1.4 g), was mixed with furanyl alcohol (furanyl alcohol precursor, 10 g), and this mixture was heated in an oven at 80 ° C. to obtain a phthalocyanine-containing furan resin. This was heated at a rate of 10 ° CZ from room temperature in a nitrogen atmosphere and kept at 1000 ° C for 1 hour. This carbonized the melamine-containing furan resin. The carbonized product is pulverized with a planetary ball mill to obtain carbon alloy fine particles (hereinafter referred to as “carbon alloy fine particles 2”) having an average particle diameter of 0.1 μm doped with 13.4 atomic% of nitrogen atoms. It was. In the same manner as in Example 1, 10% by weight of platinum was supported on the soot-carbon alloy fine particles 2.
[0044] <実施例 3 > <Example 3>
ホウ素原子をドープしたカーボンァロイ微粒子の製造例  Production example of carbon alloy fine particles doped with boron atoms
含ホウ素化合物である三フッ化ホウ素—メタノール錯体 204gをフラン榭脂の前駆 体であるフルフリルアルコール 10gに混合し、この混合物をオーブン中 80°Cで加熱 することによりフタロシアニン含有フラン榭脂を得た。これを、窒素雰囲気下、室温か ら 10°CZ分の速度で昇温し、 1000°Cで 1時間保持することにより熱処理した。これ によりフタロシアニン含有フラン榭脂が炭素化した。この炭素化物を遊星型ボールミ ルで粉砕して、ホウ素原子が 14. 4原子%ドープされた平均粒径 0. のカーボ ンァロイ微粒子(以下「B—カーボンァロイ微粒子」という。)を得た。この B—カーボン ァロイ微粒子に実施例 1と同様にして白金を 10重量%担持した。 Boron trifluoride-methanol complex (204 g), a boron-containing compound, is mixed with furfuryl alcohol (10 g), a furan resin precursor, and the mixture is heated in an oven at 80 ° C. By doing so, a phthalocyanine-containing furan rosin was obtained. This was heated at a rate of 10 ° CZ from room temperature in a nitrogen atmosphere and kept at 1000 ° C for 1 hour. This carbonized the phthalocyanine-containing furan resin. The carbonized product was pulverized with a planetary ball mill to obtain carbon alloy fine particles (hereinafter referred to as “B-carbon alloy fine particles”) having an average particle diameter of 0.1 doped with 14.4 atomic% of boron atoms. In the same manner as in Example 1, 10% by weight of platinum was supported on the B-carbon alloy fine particles.
[0045] <比較例 1 >  [0045] <Comparative Example 1>
窒素源であるフタロシアニンを添加しな力つた以外は実施例 1と同様にして、フラン 榭脂からなる比較カーボン微粒子 1を得た。この比較カーボン微粒子 1に実施例 1と 同様にして白金を 10重量%担持した。  Comparative carbon fine particles 1 made of furan rosin were obtained in the same manner as in Example 1 except that phthalocyanine as a nitrogen source was not added. The comparative carbon fine particles 1 were loaded with 10% by weight of platinum in the same manner as in Example 1.
[0046] <実施例 4>  <Example 4>
ffi 界¾ 法により ま原早及びホウま原早 ープしたカーボンァロイ微粒早 の觀告  ffi Notification of carbon alloy fine particles that have been maharahaya and houmaharahaku by the boundary method
Ά  Ά
フルフリルアルコール 6gが溶解したメタノール溶液 150mlに、窒素源としてのメラミ ン 1. 5gと、ホウ素源としての BFメタノール錯体 24gとを溶解させ、 10分間程度撹拌  In 150 ml of methanol solution in which 6 g of furfuryl alcohol is dissolved, 1.5 g of melamine as a nitrogen source and 24 g of BF methanol complex as a boron source are dissolved and stirred for about 10 minutes.
3  Three
した。次いで、これを PTFE製ライナーつきのステンレス製耐圧容器に入れ、 200°C に保持したオーブンに容器を 1時間静置することにより、亜臨界メタノール中でフルフ リルアルコールの重合を行った。  did. Next, this was placed in a stainless steel pressure-resistant container with a PTFE liner, and the container was allowed to stand in an oven maintained at 200 ° C. for 1 hour to polymerize furfuryl alcohol in subcritical methanol.
[0047] 得られた内容物を開口径が 1. 0 mであって親水性 PTFE製メンブレンフィルター 上でろ過し、その通過物より溶媒を留去して、開口径 0. 45 mのメンブレンフィルタ 一上で洗浄することにより、微粒子を得た。得られた重合体微粒子を、窒素雰囲気下 、室温から 10°CZ分の速度で昇温し、 1000°Cの温度で 1時間保持することにより熱 処理した。これにより重合体微粒子が炭素化し、窒素原子が 4原子%及びホウ素原 子が 1. 2原子%それぞれドープされた粒径がサブミクロンのカーボンァロイ微粒子( 以下「N, B—カーボンァロイ微粒子 A」という。)を得た。この N, B—カーボンァロイ 微粒子 Aに実施例 1と同様にして白金を 10重量%担持した。  [0047] The obtained contents were filtered on a hydrophilic PTFE membrane filter having an opening diameter of 1.0 m, and the solvent was distilled off from the passing material to obtain a membrane filter having an opening diameter of 0.45 m. Fine particles were obtained by washing on top. The obtained polymer fine particles were heated from a room temperature at a rate of 10 ° C. Z under a nitrogen atmosphere and kept at a temperature of 1000 ° C. for 1 hour for heat treatment. As a result, polymer fine particles are carbonized, and carbon alloy fine particles (hereinafter referred to as “N, B-carbon alloy fine particles A”) having a submicron particle diameter doped with 4 atomic% nitrogen atoms and 1.2 atomic% boron atoms, respectively. ) In the same manner as in Example 1, 10% by weight of platinum was supported on the N, B-carbon alloy fine particles A.
[0048] <実施例 5 > フルフリルアルコール 6gが溶解したメタノール溶液 150mlに、窒素源としてのメラミ ン 2. 3gと、ホウ素源としての BFメタノール錯体 36gとを溶解させた以外は実施例 4と <Example 5> Example 4 except that 2.3 g of melamine as a nitrogen source and 36 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
3  Three
同様にして、窒素原子が 4原子%及びホウ素原子が 1. 7原子%それぞれドープされ た粒径がサブミクロンの N, B—カーボンァロイ微粒子 Bを得た。この N, B—カーボン ァロイ微粒子 Bに実施例 1と同様にして白金を 10重量%担持した。  Similarly, N, B-carbon alloy fine particles B having a particle size of submicron doped with 4 atom% nitrogen atoms and 1.7 atom% boron atoms were obtained. This N, B-carbon alloy fine particle B was loaded with 10% by weight of platinum in the same manner as in Example 1.
[0049] <実施例 6 > <Example 6>
フルフリルアルコール 6gが溶解したメタノール溶液 150mlに、窒素源としてのメラミ ン 3gと、ホウ素源としての BFメタノール錯体 48gとを溶解させた以外は実施例 4と同  The same as Example 4 except that 3 g of melamine as a nitrogen source and 48 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution containing 6 g of furfuryl alcohol.
3  Three
様にして、窒素原子が 5原子%及びホウ素原子が 1. 4原子%それぞれドープされた 粒径がサブミクロンの N, B—カーボンァロイ微粒子 Cを得た。この N, B—カーボ ンァロイ微粒子 Cに実施例 1と同様にして白金を 10重量%担持した。  In this way, N, B-carbon alloy fine particles C having a particle size of submicron doped with 5 atom% nitrogen atoms and 1.4 atom% boron atoms were obtained. The N, B-carbon alloy fine particles C were loaded with 10% by weight of platinum in the same manner as in Example 1.
[0050] <実施例 7> [0050] <Example 7>
フルフリルアルコール 6gが溶解したメタノール溶液 150mlに、窒素源としてのメラミ ン 4. 5gと、ホウ素源としての BFメタノール錯体 72gとを溶解させた以外は実施例 4と  Example 4 is the same as Example 4 except that 4.5 g of melamine as a nitrogen source and 72 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
3  Three
同様にして、窒素原子が 5. 4原子%及びホウ素原子が 1. 4原子%それぞれドープさ れた粒径がサブミクロンの N, B—カーボンァロイ微粒子 Dを得た。この N, B—カー ボンァロイ微粒子 Dに実施例 1と同様にして白金を 10重量%担持した。  Similarly, N, B-carbon alloy fine particles D having a particle size of submicron doped with 5.4 atomic% nitrogen atoms and 1.4 atomic% boron atoms were obtained. In the same manner as in Example 1, 10% by weight of platinum was supported on the N, B-carbon alloy fine particles D.
[0051] <実施例 8 > <Example 8>
フルフリルアルコール 6gが溶解したメタノール溶液 150mlに、窒素源としてのメラミ ン 7. 5gと、ホウ素源としての BFメタノール錯体 121gとを溶解させた以外は実施例 4  Example 4 except that 7.5 g of melamine as a nitrogen source and 121 g of BF methanol complex as a boron source were dissolved in 150 ml of a methanol solution in which 6 g of furfuryl alcohol was dissolved.
3  Three
と同様にして、窒素原子が 12. 8原子%及びホウ素原子が 2. 6原子%それぞれドー プされた粒径がサブミクロンの N, B—カーボンァロイ微粒子 Eを得た。この N, B—力 一ボンァロイ微粒子 Eに実施例 1と同様にして白金を 10重量%担持した。  In the same manner as above, N, B-carbon alloy fine particles E having a particle size of submicron doped with 12.8 atomic% nitrogen atoms and 2.6 atomic% boron atoms were obtained. In the same manner as in Example 1, 10% by weight of platinum was supported on this N, B-force single Bonalloy fine particle E.
[0052] <比較例 2> [0052] <Comparative Example 2>
窒素源としてのメラミンとホウ素源としての BFメタノール錯体とをともに添加せず、  Without adding melamine as a nitrogen source and BF methanol complex as a boron source,
3  Three
代わりに塩酸を適量添加した以外は実施例 4と同様にして、フラン榭脂からなる比較 カーボン微粒子 2を得た。この比較カーボン微粒子 2に実施例 1と同様にして白金を 10重量%担持した。 [0053] <実施例 9 > Instead, comparative carbon fine particles 2 made of furan rosin were obtained in the same manner as in Example 4 except that an appropriate amount of hydrochloric acid was added. The comparative carbon fine particles 2 were loaded with 10% by weight of platinum in the same manner as in Example 1. <Example 9>
熱 ¾合法により 原子及びホウ素原子をド 'ープしたカーボンァロイ微粒子の製 造例  Example of production of carbon alloy fine particles doped with atoms and boron atoms by thermal synthesis method
含窒素化合物であるメラミン 0. 8g、含ホウ素化合物である三フッ化ホウ素ーメタノ 一ル錯体 13gとフラン榭脂の前駆体であるフルフリルアルコール 10gを lOOgのメタノ ールに溶解し、この混合物をオーブン中 80°Cで加熱することによりフタロシアニン含 有フラン榭脂を得た。これを、窒素雰囲気下、室温から 10°CZ分の速度で昇温し、 1 000°Cで 1時間保持することにより熱処理した。これによりメラミン一三フッ化ホウ素含 有フラン榭脂を炭素化した。この炭素化物を遊星型ボールミルで粉砕して、窒素原 子が 2. 7原子%、ホウ素原子が 0. 2原子%ドープされた平均粒径 0. のカーボ ンァロイ微粒子(以下「B, N—カーボンァロイ微粒子 F」という。)を得た。この N, B- カーボンァロイ微粒子 Fに実施例 1と同様にして白金を 10重量%担持した。  Melt 0.8 g of melamine, a nitrogen-containing compound, 13 g of boron trifluoride-methanol complex, a boron-containing compound, and 10 g of furfuryl alcohol, a precursor of furan resin, in lOOg of methanol. By heating in an oven at 80 ° C., phthalocyanine-containing furan sesame was obtained. This was heat-treated by raising the temperature from room temperature at a rate of 10 ° CZ in a nitrogen atmosphere and holding at 1 000 ° C for 1 hour. This carbonized the melamine boron trifluoride-containing furan resin. This carbonized product is pulverized with a planetary ball mill, and carbon alloy fine particles with an average particle size of 0 (hereinafter referred to as “B, N-carbon alloy” doped with 2.7 atomic% of nitrogen atoms and 0.2 atomic% of boron atoms). Fine particles F ”). This N, B-carbon alloy fine particle F was loaded with 10% by weight of platinum in the same manner as in Example 1.
[0054] <実施例 10> <Example 10>
フルフリルアルコール 10gが溶解したメタノール溶液 100mlに、窒素源としてのメラ ミン 2. lgと、ホウ素源としての BFメタノール錯体 34gとを溶解させた以外は実施例 9  Example 9 except that melamine 2.lg as a nitrogen source and 34g of BF methanol complex as a boron source were dissolved in 100ml of a methanol solution in which 10g of furfuryl alcohol was dissolved.
3  Three
と同様にして、窒素原子が 3原子%及びホウ素原子が 0. 6原子%それぞれドープさ れた平均粒径 0. 1 111の B—カーボンァロイ微粒子 Gを得た。この N, B—カーボ ンァロイ微粒子 Gに実施例 1と同様にして白金を 10重量%担持した。  In the same manner as above, B-carbon alloy fine particles G having an average particle size of 0.1111 doped with 3 atom% nitrogen atoms and 0.6 atom% boron atoms were obtained. In the same manner as in Example 1, 10% by weight of platinum was supported on the N, B-carbon alloy fine particles G.
[0055] <実施例 11 > [Example 11]
フルフリルアルコール 10gが溶解したメタノール溶液 100mlに、窒素源としてのメラ ミン 4. 7gと、ホウ素源としての BFメタノール錯体 76gとを溶解させた以外は実施例 9  Example 9 except that 4.7 g of melamine as a nitrogen source and 76 g of BF methanol complex as a boron source were dissolved in 100 ml of a methanol solution in which 10 g of furfuryl alcohol was dissolved.
3  Three
と同様にして、窒素原子が 3. 2原子%及びホウ素原子が 0. 5原子%それぞれドープ された平均粒径 0. 1 111の?^ B—カーボンァロイ微粒子 Hを得た。この N, B—カー ボンァロイ微粒子 Hに実施例 1と同様にして白金を 10重量%担持した。  In the same way, the average particle diameter of 0.1 111 is doped with 3.2 atomic% of nitrogen atoms and 0.5 atomic% of boron atoms, respectively. ^ B—carbon alloy fine particles H were obtained. In the same manner as in Example 1, 10% by weight of platinum was supported on the N, B-carbon alloy fine particles H.
[0056] <実施例 12> <Example 12>
フルフリルアルコール 10gが溶解したメタノール溶液 100mlに、窒素源としてのメラ ミン 12. 7gと、ホウ素源としての BFメタノール錯体 204gとを溶解させた以外は実施  Except for dissolving 12.7 g of melamine as a nitrogen source and 204 g of BF methanol complex as a boron source in 100 ml of a methanol solution containing 10 g of furfuryl alcohol.
3  Three
例 9と同様にして、窒素原子が 9. 4原子%及びホウ素原子が 7. 4原子%それぞれド ープされた平均粒径 0. 1 111の?^ B—カーボンァロイ微粒子 Iを得た。この N, B- カーボンァロイ微粒子 Iに実施例 1と同様にして白金を 10重量%担持した。 As in Example 9, 9.4 atomic percent nitrogen and 7.4 atomic percent boron Average particle size of 0.1 1 111? ^ B—carbon alloy fine particles I were obtained. The N, B-carbon alloy fine particles I were loaded with 10% by weight of platinum in the same manner as in Example 1.
[0057] <実施例 13 > <Example 13>
フルフリルアルコール 10gが溶解したメタノール溶液 100mlに、窒素源としてのメラ ミン 29gと、ホウ素源としての BFメタノール錯体 460gとを溶解させた以外は実施例 9  Example 9 except that 29 g of melamine as a nitrogen source and 460 g of BF methanol complex as a boron source were dissolved in 100 ml of a methanol solution in which 10 g of furfuryl alcohol was dissolved.
3  Three
と同様にして、窒素原子が 7. 7原子%及びホウ素原子が 10. 6原子%それぞれドー プされた平均粒径 0. 1 111の?^ B—カーボンァロイ微粒子 Jを得た。この N, B—力 一ボンァロイ微粒子 Jに実施例 1と同様にして白金を 10重量%担持した。  In the same way, the average particle size of 0.1 111 is doped with 7.7 atomic% of nitrogen atoms and 10.6 atomic% of boron atoms, respectively. ^ B—carbon alloy fine particles J were obtained. In the same manner as in Example 1, 10% by weight of platinum was supported on the N, B-force single Bonalloy fine particles J.
[0058] <比較評価その 1 >  [0058] <Comparison evaluation 1>
それぞれ白金を担持する前の実施例 1の N—カーボンァロイ微粒子 1、実施例 2の N—カーボンァロイ微粒子 2、実施例 3の B—カーボンァロイ微粒子、実施例 4〜13 の N, B—カーボンァロイ微粒子 A〜J、比較例 1の比較カーボン微粒子 1、及び比較 例 2の比較カーボン微粒子 2について、 X線光電子分光測定 (XPS)法により元素比 及び炭素化収率を求めた。その結果を表 1に示す。仕込み原子比は調製時の N及 び Bのドーパント量を示す。  N-carbon alloy particles 1 of Example 1 before carrying platinum, N-carbon alloy particles 2 of Example 2, B-carbon alloy particles of Example 3, N, B-carbon alloy particles A to 4 of Examples 4 to 13, respectively. Elemental ratio and carbonization yield of J, Comparative Carbon Fine Particle 1 of Comparative Example 1 and Comparative Carbon Fine Particle 2 of Comparative Example 2 were determined by X-ray photoelectron spectroscopy (XPS) method. The results are shown in Table 1. The charged atomic ratio indicates the amount of N and B dopants at the time of preparation.
また実施例 9〜 13の N, B—カーボンァロイ微粒子 F〜J及び比較例 1のカーボン 微粒子 1について、 X線回折を行った。その結果を図 1に示す。  Further, X-ray diffraction was performed on the N, B-carbon alloy fine particles F to J of Examples 9 to 13 and the carbon fine particles 1 of Comparative Example 1. The results are shown in Fig. 1.
[0059] [表 1] [0059] [Table 1]
仕込み原子比 Charged atomic ratio
炭素化収率 B/N (B+N)/C Carbonization yield B / N (B + N) / C
C : N: B (%) 実施例 1 (N-力-ホ"ンァ Pィ ¾ίΐ子 1) 13: 2 : 0 ― ― 0.16 実施例 2 (Ν-力 ホ"ンァ Ρィ 子 2) 16: 2 : 0 ― 0 0.16 実施例 3 (Β-力-ホ"ンァ πィ難 ί) 2.7: 0 : 1 ― ― ― 実施例 4 (Ν,Β-カ-ホ"ンァロイ ¾粒子 Α) 5.2 : 2 : 1 48 0.32 0.060 実施例 5 (Ν,Β-カ-ホ"ンァロイ微粒子 Β) 9.3: 2 : 1 41 0.42 0.066 実施例 6 (Ν,Β-力-ホ"ンァ Ρィ肺子 C) 6.5: 2 : 1 39 0.28 0.076 実施例 Ί (Ν,Β-カ-ホ"ンァ Ρィ微粒子 D) 3.8: 2 : 1 39 0.26 0.081 実施例 8 (Ν,Β-カ-ホ"ンァロイ難了' Ε) 2.7: 2 : 1 8 0.20 0.220 実施例 9 (Ν,Β-カ-ホ'、ンァロイ難子 F) 28 : 2 : 1 ― 0.07 0.033 実施例 10 (Ν,Β-カ-ホ、'ンァ。ィ微粒 i- G) 11 : 2 : 1 ― 0.21 0.041 実施例 11 (Ν,Β-カ ホ"ンァロイ微粒子 Η) 5.4: 2 : 1 ― 0.16 0.044 実施例 12(^_8-カ-ホ、'ンァ ィ¾粒子1) 2.7: 2 : 1 ― 0.79 0.25 実施例 13(Ν,Β-カ ホ"ンァロ確 J) 1.7: 2 : 1 1.38 0.38 比較例 1(比較カ-; Τン微粒子 1) 1 : 0 : 0 ― ― 比較例 2 (比較カ ホ"ン ¾粒了- 2) 1 : 0 : 0 43 表 1から明らかなように、 X線光電子分光測定 (XPS)の結果、実施例 1及び 2で得 られた N—カーボンァロイ微粒子はともに酸素の存在も考慮して約 14%の窒素を含 んでいることが分かった。実施例 4〜 13で得られた N, B—カーボンァロイ微粒子は、 V、ずれも仕込み原料中の窒素とホウ素の原子比を 2: 1に固定して、それを種々の割 合でフルフリルアルコール若しくはフラン榭脂に混合して調製した力 これらの N, B カーボンァロイ微粒子の全ドープ量である(B + N)ZCは、仕込み原子比に依存 して変化していた。また、このときの BZN比はその仕込み比により変化していた。こ のことから、仕込み原子比を変えることにより、調製したカーボンァロイ微粒子中のド ープレベルを変化させることができることが分かった。 C: N: B (%) Example 1 (N-force-horn Py ¾ίΐ1) 13: 2: 0-― 0.16 Example 2 (Ν-force-hona 2) 16: 2: 0 ― 0 0.16 Example 3 (Β-force-honah πi difficulty) 2.7: 0: 1 ― ― ― Example 4 (Ν, Β-kar-honalloy ¾ particle Α) 5.2: 2 : 1 48 0.32 0.060 Example 5 (Ν, Β-Carton Honalloy Fine Particles Β) 9.3: 2: 1 41 0.42 0.066 Example 6 (Ν, Β-Force-Hon Nyung Lung C) 6.5: 2: 1 39 0.28 0.076 Example Ί (Ν, Β-Car-Ho-Han Nya D fine particle) 3.8: 2: 1 39 0.26 0.081 Example 8 (Ν, Β-Car-Ha-Hon han 了 難) 2.7: 2: 1 8 0.20 0.220 Example 9 (Ν, Β-Carho ', Nalloy F) 28: 2: 1 ― 0.07 0.033 Example 10 (Ν, Β-Carho, Nya. Fine i-G) 11: 2: 1 ― 0.21 0.041 Example 11 (Ν, Β-Caho'n alloy fine particle Η) 5.4: 2: 1 ― 0.16 0.044 Example 12 (^ _ 8-Car ¾ Particle 1) 2.7: 2: 1 ― 0.79 0.25 Example 13 (Ν, Β-Kaho Naro) J) 1.7: 2: 1 1.38 0.38 Comparative Example 1 (Comparative Car; Fine Particle 1) 1: 0: 0 ― ― Comparative Example 2 (Comparative Coffee ¾ Grain Finish-2) 1: 0: 0 43 As is apparent from Table 1, as a result of X-ray photoelectron spectroscopy (XPS), the N-carbon alloy fine particles obtained in Examples 1 and 2 both contain about 14% nitrogen in consideration of the presence of oxygen. The N, B-carbon alloy fine particles obtained in Examples 4 to 13 were fixed at V: 2 and the atomic ratio of nitrogen and boron in the raw material was fixed at 2: 1. The total dope amount of these N, B carbon alloy fine particles (B + N) ZC varied depending on the charged atomic ratio. The BZN ratio at this time varied depending on the charging ratio. This Thus, it was found that the doping level in the prepared carbon alloy fine particles can be changed by changing the charged atomic ratio.
また図 1から窒素原子及びホウ素原子の含有量が増えるに従って、炭素構造の基 底面方向の X線回折線の発達が抑えられ、これより導入した元素が炭素構造の発達 を妨げて 、ることが分力つた。  Also, as shown in Fig. 1, as the content of nitrogen and boron atoms increases, the development of X-ray diffraction lines in the direction of the basal plane of the carbon structure is suppressed, and the introduced elements can interfere with the development of the carbon structure. I was divided.
[0061] <比較評価その 2 > [0061] <Comparison evaluation 2>
酸素還 に閣する雷極活件試,験  Thunder pole activity test, experiment to oxygen return
それぞれ白金を担持した後の実施例 1の N—カーボンァロイ微粒子 1、実施例 2の N—カーボンァロイ微粒子 2、実施例 3の B—カーボンァロイ微粒子、実施例 4〜13 の N, B—カーボンァロイ微粒子 A〜J、比較例 1の比較カーボン微粒子 1、及び比較 例 2の比較カーボン微粒子 2を用いて、これらの電極触媒について、酸化還元機能 を調べるために電極活性試験を行った。  N-carbon alloy fine particles 1 of Example 1, N-carbon alloy fine particles 2 of Example 2, B-carbon alloy fine particles of Example 3, and N, B-carbon alloy fine particles A to 4 of Examples 4 to 13 after carrying platinum, respectively. Using J, Comparative Carbon Fine Particle 1 of Comparative Example 1 and Comparative Carbon Fine Particle 2 of Comparative Example 2, an electrode activity test was conducted on these electrode catalysts in order to investigate the redox function.
この酸素還元に関する電極活性を、図 11に模式的に示す 3極回転電極セル 1を用 いて測定した。具体的には中央部の作用電極(回転電極) 2は周囲が高分子絶縁体 、中央部にガラス状炭素力 なる電極部を持つ。この電極部にそれぞれ以下のように して調製した触媒インクを塗布し、作用電極とした。符号 3は参照電極 (AgZAgCl) であり、符号 4は対極 (Pt)である。  The electrode activity related to this oxygen reduction was measured using a tripolar rotating electrode cell 1 schematically shown in FIG. Specifically, the working electrode (rotating electrode) 2 in the central part has a polymer insulator around it and an electrode part made of glassy carbon at the central part. A catalyst ink prepared as follows was applied to each of the electrode parts to obtain a working electrode. Reference numeral 3 is a reference electrode (AgZAgCl), and reference numeral 4 is a counter electrode (Pt).
[0062] 先ず、それぞれ白金を担持した後の実施例 1の N—カーボンァロイ微粒子 1、実施 例 2の N—カーボンァロイ微粒子 2、実施例 3の B—カーボンァロイ微粒子、実施例 4 〜13の N, B—カーボンァロイ微粒子 A〜J、比較例 1の比較カーボン微粒子 1、及び 比較例 2の比較カーボン微粒子 2を、それぞれ 5mg量り取り、これにバインダー(商品 名:ナフイオン、デュポン社)溶液、水、エタノールを適量加え、各触媒インクを調製し た。次いで、得られた触媒インクを微量ピペットにより吸い取り、回転電極装置のガラ ス状炭素部分 (直径 5mm)に塗布し、乾燥させること〖こより、作用電極を作製した。  [0062] First, the N-carbon alloy fine particles 1 of Example 1, the N-carbon alloy fine particles 2 of Example 2, the B-carbon alloy fine particles of Example 3, and the N, B of Examples 4 to 13 after carrying platinum, respectively. —Weigh 5 mg each of carbon alloy fine particles A to J, comparative carbon fine particle 1 of comparative example 1 and comparative carbon fine particle 2 of comparative example 2, and add binder (trade name: Nafion, DuPont) solution, water and ethanol to this. Appropriate amounts were added to prepare each catalyst ink. Next, the obtained catalyst ink was sucked with a small amount of pipette, applied to the glassy carbon part (diameter 5 mm) of the rotating electrode device, and dried to prepare a working electrode.
[0063] 電解質溶液としては、 1M硫酸水溶液に酸素を常温で溶解したものを用いた。回転 速度 1500rpmで電極を回転し、電位を掃引速度 0. 5mVs_1で掃引して、そのとき の電流を電位の関数として記録した。その結果を図 2〜4に示す。図 2に実施例 1の N—カーボンァロイ微粒子 1及び実施例 2の N—カーボンァロイ微粒子 2による電流 電位曲線をそれぞれ示す。図 3に実施例 3の B—カーボンァロイ微粒子による電流 —電位曲線をそれぞれ示す。また図 4に実施例 4、 5、 8の N, B—カーボンァロイ微 粒子 A、 B、 Eによる電流 電位曲線をそれぞれ示す。なお、図 2及び図 3に比較例 1 の比較カーボン微粒子 1による電流 電位曲線を、また図 4に比較例 2の比較カーボ ン微粒子 2による電流 電位曲線を、それぞれ比較のために示す。 [0063] As the electrolyte solution, a 1M sulfuric acid aqueous solution in which oxygen was dissolved at room temperature was used. The electrode was rotated at a rotational speed 1500 rpm, by sweeping the potential at a sweep rate 0. 5mVs _1, Currents were recorded at that time as a function of potential. The results are shown in Figs. Figure 2 shows the current from the N-carbon alloy fine particle 1 of Example 1 and the N-carbon alloy fine particle 2 of Example 2. Each potential curve is shown. Fig. 3 shows the current-potential curves of the B-carbon alloy fine particles of Example 3. FIG. 4 shows the current-potential curves of Examples 4, 5, and 8 with N, B-carbon alloy fine particles A, B, and E, respectively. 2 and FIG. 3 show the current-potential curve of Comparative Carbon Fine Particle 1 of Comparative Example 1 and FIG. 4 shows the current-potential curve of Comparative Carbon Fine Particle 2 of Comparative Example 2 for comparison.
図 2〜4に示す結果より、いずれのカーボンァロイ微粒子の場合も比較カーボンァ ロイ微粒子 1, 2に比べてより高い電位より酸素還元電流が流れ始め、同じ電位で比 較すると大きな電流密度を示すことが分力つた。  From the results shown in Figs. 2 to 4, it can be seen that in any of the carbon alloy fine particles, the oxygen reduction current starts to flow from a higher potential than that of the comparative carbon alloy fine particles 1 and 2, and when compared at the same potential, a large current density is exhibited. I was divided.
[0064] 図 5に、それぞれ白金を担持した後の実施例 4〜8の N, B—カーボンァロイ微粒子 A〜Eと比較例 2の比較カーボン微粒子 2について XPSより求めた元素比と酸素還 元の開始電位との関係を示す。  [0064] Fig. 5 shows the element ratio and oxygen reduction obtained from XPS for N, B-carbon alloy fine particles A to E of Examples 4 to 8 and Comparative carbon fine particle 2 of Comparative Example 2 after carrying platinum, respectively. The relationship with the starting potential is shown.
図 5に示す結果より、窒素原子及びホウ素原子をドープしていない比較例 2の比較 カーボン微粒子と比べて実施例 4〜8の N, B—カーボンァロイ微粒子は酸素還元活 性が高力つた。また実施例 4〜8の N, B—カーボンァロイ微粒子の中でも、窒素原子 及びホウ素原子のドープ量 (B+N) ZCの増加に従い、酸素還元活性が高くなる傾 向のあることが分力つた。また、 NZC及び BZCとの比較により、窒素原子とホウ素原 子のいずれが酸素還元に関わっているのかを検討したところ、図 5 (b)及び (c)に示 すように両元素に対して同じ傾向が見られ、窒素及びホウ素が相互作用して活性を もたらすことが分力つた。  From the results shown in FIG. 5, the N, B-carbon alloy fine particles of Examples 4 to 8 have higher oxygen reduction activity than the comparative carbon fine particles of Comparative Example 2 in which nitrogen atoms and boron atoms are not doped. In addition, among the N, B-carbon alloy fine particles of Examples 4 to 8, it was found that the oxygen reduction activity tends to increase as the doping amount of nitrogen atoms and boron atoms (B + N) ZC increases. In addition, by comparing with NZC and BZC, it was examined which of nitrogen atom and boron atom is involved in oxygen reduction. As shown in Fig. 5 (b) and (c), both elements were compared. The same tendency was observed, and it was found that nitrogen and boron interacted to bring about activity.
[0065] それぞれ白金を担持した後の実施例 4〜10の N, B—カーボンァロイ微粒子 A〜G の N 1 sX線光電子スペクトル及び B 1 sX線光電子スぺクトルを図 6及び図 7にそれぞ れ示す。図 6より、各 N, B カーボンァロイ微粒子は二つの存在状態を持っており、 ホウ素原子及び窒素原子のドープ量が少ないときには高結合エネルギー側のピーク が優勢であるが、ドープ量が増加するとともに Nlsの低エネルギー側のピークが優勢 になってくることが分かった。これに対し、図 7では、いずれの N, B カーボンァロイ 微粒子も単一のスペクトルを示す力 ホウ素原子及び窒素原子のドープ量が増える に従い結合エネルギーが高い側にシフトする傾向を示している。即ち、窒素原子で は電子が増え、ホウ素原子では電子が減少していることが分力つた。このことから、炭 素原子中で窒素原子とホウ素原子は相互作用することにより電気的に陰性な窒素原 子と電気的に陽性なホウ素原子を生成することにより、活性な炭素材料を与えている といえる。 [0065] N 1 sX-ray photoelectron spectra and B 1 sX-ray photoelectron spectra of N, B-carbon alloy fine particles A to G of Examples 4 to 10 after carrying platinum are shown in Figs. 6 and 7, respectively. Show. From Fig. 6, each N and B carbon alloy fine particle has two states. When the doping amount of boron and nitrogen atoms is small, the peak on the high bond energy side is dominant, but as the doping amount increases, Nls It was found that the low energy peak of became dominant. In contrast, Fig. 7 shows that all N and B carbon alloy fine particles show a single spectrum, and the binding energy tends to shift to higher side as the doping amount of boron atom and nitrogen atom increases. In other words, it was found that electrons increased in nitrogen atoms and decreased in boron atoms. From this, charcoal It can be said that an active carbon material is given by generating an electrically negative nitrogen atom and an electrically positive boron atom by interaction of a nitrogen atom and a boron atom in an elementary atom.
[0066] <実施例 14>  <Example 14>
ゾルゲル法によるカーボン超微粒子の製造例  Production example of ultrafine carbon particles by sol-gel method
まず、フエノール 2. 96g(29mmol)にホルムアルデヒド 4. 75g(57mmol)と塩基触 媒の炭酸ナトリウム 0. 212g (2mmol)をカ卩えるとともに、これらの物質量が 5重量% になるように蒸留水を加え、 100mlの水溶液を調製した。この水溶液を攪拌した後、 スクリューバイアルに移し、 85°Cで 18時間保持した。これによりフエノールとホルムァ ルデヒドが反応し、反応溶液中に高分子超微粒子が生成された。次にこの反応溶液 を液体窒素温度に冷却して凍結し乾燥することにより高分子超微粒子を回収した。 更に続!、て回収した高分子超微粒子を 200°Cで 5時間加熱硬化させた。この硬化し た高分子超微粒子を窒素雰囲気下、室温から 10°CZ分の速度で昇温し、 1000°C で 1時間保持することにより炭素化して平均粒径 30nmのカーボン超微粒子を得た。 このカーボン超微粒子の電界放射高分解能走査型電子顕微鏡 (FE— SEM)の画像 を図 8に示す。このカーボン超微粒子に実施例 1と同様にして白金を 10重量%担持 した。  First, 2.96 g (29 mmol) of phenol was charged with 4.75 g (57 mmol) of formaldehyde and 0.212 g (2 mmol) of sodium carbonate as a base catalyst, and distilled water was added so that the amount of these substances was 5% by weight. Was added to prepare a 100 ml aqueous solution. The aqueous solution was stirred and then transferred to a screw vial and held at 85 ° C. for 18 hours. As a result, phenol and formaldehyde reacted to form ultrafine polymer particles in the reaction solution. Next, the reaction solution was cooled to liquid nitrogen temperature, frozen and dried to recover ultrafine polymer particles. Further, the polymer ultrafine particles recovered were cured by heating at 200 ° C for 5 hours. The cured ultrafine polymer particles were heated from room temperature at a rate of 10 ° CZ in a nitrogen atmosphere, and carbonized by holding at 1000 ° C for 1 hour to obtain ultrafine carbon particles having an average particle size of 30 nm. . Figure 8 shows a field emission high-resolution scanning electron microscope (FE—SEM) image of these ultrafine carbon particles. In the same manner as in Example 1, 10% by weight of platinum was supported on the ultrafine carbon particles.
[0067] <実施例 15 >  <Example 15>
実施例 14で得られたカーボン超微粒子にはナトリウムが残留している。これをを除 去するために、 6M硫酸中でー晚撹拌を行った。このカーボン超微粒子の電界放射 高分解能走査型電子顕微鏡 (FE— SEM)の画像を図 6に示す。このカーボン超微粒 子に実施例 1と同様にして白金を 10重量%担持した。  Sodium remains in the ultrafine carbon particles obtained in Example 14. In order to remove this, stirring was performed in 6M sulfuric acid. Figure 6 shows a field emission high-resolution scanning electron microscope (FE—SEM) image of this ultrafine carbon particle. The ultrafine carbon particles were loaded with 10% by weight of platinum in the same manner as in Example 1.
[0068] <比較例 3 > [0068] <Comparative Example 3>
米国 ElectroChem社より購入した市販の白金担持触媒 (商品名 ETC-10)を比較例 3とした。この触媒は炭素基材がバルカン (Vulcan)XC— 72 Cabot社製のファーネス ブラックであって、白金を 10重量%担持したものである。  Comparative Example 3 was a commercially available platinum-supported catalyst (trade name ETC-10) purchased from ElectroChem, USA. This catalyst is a furnace black made of Vulcan XC-72 Cabot with a carbon substrate carrying 10% by weight of platinum.
[0069] <比較評価その 3 > [0069] <Comparison evaluation 3>
実施例 15の白金を担持したカーボン超微粒子、比較例 3の市販の白金担持触媒 の酸素還元ボルタモグラムを図 9に、またサイクリックボルタモグラムを図 10にそれぞ れ示す。図 9のボルタモグラムは、上記実施例 15及び比較例 3の白金を担持した炭 素基材を比較評価その 2と同様の方法で測定して求めた。図 9から、実施例 15の白 金を担持した炭素基材が市販触媒である比較例 3のものより、全体的に酸素還元電 流密度が高ぐ特に電位が小さくなるにつれてその傾向が顕著であることが分力つた Carbon ultrafine particles carrying platinum of Example 15, commercially available platinum-supported catalyst of Comparative Example 3 Figure 9 shows the oxygen reduction voltammogram and Fig. 10 shows the cyclic voltammogram. The voltammogram of FIG. 9 was obtained by measuring the carbon substrate carrying platinum of Example 15 and Comparative Example 3 in the same manner as in Comparative Evaluation No. 2. From FIG. 9, the tendency is more pronounced as the oxygen reduction current density increases as a whole, especially as the potential decreases, compared to that in Comparative Example 3 where the carbon substrate carrying the white metal of Example 15 is a commercially available catalyst. There was something to do
[0070] 図 10のサイクリックボルタモグラムは、上記実施例 15及び比較例 3の白金を担持し た炭素基材を比較評価その 2と同様の方法でガラス状炭素電極上へ塗布し、これを 作用極として以下の条件で測定して得られたものである。予め窒素をパブリングする ことにより溶存酸素を除去した 1M硫酸に電極を浸漬し、回転を行わずに 0. 2〜1 . 3V vs AgZAgClを掃引速度 50mVZsで電位走査を行い、そのとき得られた電 流—電位の関係をプロットしたものである。図 10から、実施例 15の白金を担持した炭 素基材は、比較例 3のものより、明確な H2脱着波を示さないことが分力つた。即ち、 実施例 15のものは比較例 3のものと比較して、白金の担持状態が相違し、これが白 金の活性ィ匕に差異を生じているものと推察された。 [0070] The cyclic voltammogram of Fig. 10 is obtained by applying the carbon substrate carrying platinum of Example 15 and Comparative Example 3 onto a glassy carbon electrode in the same manner as in Comparative Evaluation No. 2, and acting this. The electrode was obtained by measurement under the following conditions. The electrode was immersed in 1M sulfuric acid from which dissolved oxygen had been removed by publishing nitrogen in advance, and a potential scan of 0.2 to 1.3V vs AgZAgCl was performed at a sweep rate of 50mVZs without rotation. The current-potential relationship is plotted. From FIG. 10, it was found that the carbon base material carrying platinum of Example 15 did not show a clear H2 desorption wave than that of Comparative Example 3. That is, it was presumed that Example 15 had a different platinum loading state than that of Comparative Example 3, which caused a difference in the activity of the white metal.
[0071] <比較評価その 4 >  [0071] <Comparison Evaluation 4>
窒素原子がドープされかつ白金が 10重量%担持されたカーボンァロイ微粒子の実 施例 1、窒素原子及びホウ素原子がドープされかつ白金が 10重量%担持された力 一ボンァロイ微粒子の実施例 12、白金が 10重量%担持されたゾルゲル法による力 一ボン超微粒子の実施例 14、実施例 1の窒素原子がドープされていない白金が 10 重量%担持された炭素基材の比較例 1、及び白金が 10重量%担持された市販の力 一ボンブラックの比較例 3について、電位 0. 6V vs AgZAgClにおける電流密度 をそれぞれ測定した。その結果を表 2に示す。  Example 1 of carbon alloy particles doped with nitrogen atoms and 10% by weight of platinum loaded, Example 1 of carbon alloy particles doped with nitrogen atoms and boron atoms and loaded with 10% by weight of platinum Example 12 of platinum alloy particles with platinum loaded Force by 10% by weight supported sol-gel method Comparative Example 1 of carbon substrate supporting 10% by weight of platinum not doped with nitrogen atoms of Example 14 and Example 1 of ultra-one-bonn fine particles, and 10% of platinum A commercial force loaded on a weight percent, and the current density at a potential of 0.6 V vs. AgZAgCl were measured for Comparative Example 3 of one bon black. The results are shown in Table 2.
[0072] [表 2] 電流密度(μ A/cm 2-Pt) 実施例 1 5 7 [0072] [Table 2] Current density (μ A / cm 2 -Pt) Example 1 5 7
実施例 1 2 1 0 7  Example 1 2 1 0 7
実施例 1 4 1 9 1 比較例 1 2 0  Example 1 4 1 9 1 Comparative Example 1 2 0
比較例 3 1 7  Comparative Example 3 1 7
[0073] 表 2から明らかなように、比較例 1、 3と比べて、実施例 1、実施例 12及び実施例 14 の白金単位表面積あたりの電流密度は高力つた。特に窒素原子のみドープした実施 例 1よりも窒素原子とホウ素原子の双方をドープした実施例 12の方が約 2倍電流密 度が高力 た。また実施例 14のゾルゲル法によるカーボン超微粒子に白金を担持さ せた場合には、更に高い電流密度が得られた。 As is clear from Table 2, the current density per unit surface area of Example 1, Example 12 and Example 14 was higher than that of Comparative Examples 1 and 3. In particular, the current density of Example 12 doped with both nitrogen and boron atoms was about twice as high as that of Example 1 doped with only nitrogen atoms. Further, when platinum was supported on the ultrafine carbon particles by the sol-gel method of Example 14, a higher current density was obtained.
産業上の利用可能性  Industrial applicability
[0074] 本発明の固体高分子形燃料電池用電極触媒は、高活性な酸素還元触媒能を備え 、燃料電池の力ソード側に利用される。 [0074] The polymer electrolyte fuel cell electrode catalyst of the present invention has a highly active oxygen reduction catalytic ability and is used on the power sword side of a fuel cell.

Claims

請求の範囲 The scope of the claims
[1] 炭素基材に白金又は白金合金を担持した燃料電池用電極触媒において、  [1] In an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon substrate,
前記炭素基材が窒素原子がドープされたカーボンァロイ微粒子であって、 前記炭素基材が含窒素化合物と熱硬化性榭脂の前駆体とを加熱反応させて重合 し、これにより得られた窒素化合物含有熱硬化性榭脂を熱処理して炭素化し、炭素 化された前記窒素化合物含有熱硬化性榭脂を微粉砕してなるカーボンァロイ微粒 子であることを特徴とする燃料電池用電極触媒。  The carbon substrate is a carbon alloy fine particle doped with nitrogen atoms, and the carbon substrate is polymerized by heating and reacting a nitrogen-containing compound and a thermosetting resin precursor, and the nitrogen compound obtained thereby An electrode catalyst for a fuel cell, comprising carbon alloy fine particles obtained by heat-treating and carbonizing a containing thermosetting resin, and finely pulverizing the carbonized thermosetting resin containing a nitrogen compound.
[2] 含窒素化合物と熱硬化性榭脂の前駆体とを加熱反応させて重合することにより窒 素化合物含有熱硬化性榭脂を得る重合工程と、  [2] A polymerization step for obtaining a nitrogen compound-containing thermosetting resin by heating and polymerizing a nitrogen-containing compound and a thermosetting resin precursor,
得られた窒素化合物含有熱硬化性榭脂を熱処理して炭素化する炭素化工程と、 炭素化された窒素化合物含有熱硬化性榭脂を微粉砕して、窒素原子がドープされ たカーボンァロイ微粒子を得る粉砕工程と、  A carbonization step in which the obtained nitrogen compound-containing thermosetting resin is heat treated and carbonized, and the carbonized nitrogen compound-containing thermosetting resin is pulverized to obtain carbon alloy fine particles doped with nitrogen atoms. Obtaining a grinding step;
前記カーボンァロイ微粒子に白金を担持させることにより炭素基材を得る工程と を含む燃料電池用電極触媒の製造方法。  A method for producing a fuel cell electrode catalyst, comprising: obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
[3] 含窒素化合物カ^ラミン又はフタロシアニンであり、熱硬化性榭脂の前駆体がフル フリルアルコールであり、かつ前記熱硬化性榭脂の前駆体と前記含窒素化合物の配 合比を C :Nの原子比で (熱硬化性榭脂の前駆体 (C) :含窒素化合物 (N))が 1 : (0. 0 7〜3)である請求項 2記載の燃料電池用電極触媒の製造方法。 [3] It is a nitrogen-containing compound curamine or phthalocyanine, the thermosetting rosin precursor is furfuryl alcohol, and the ratio of the thermosetting rosin precursor to the nitrogen-containing compound is C 3. The fuel cell electrode catalyst according to claim 2, wherein (thermosetting resin precursor (C): nitrogen-containing compound (N)) is 1: (0.0 7-3) at an atomic ratio of: N. Production method.
[4] 炭素基材に白金又は白金合金を担持した燃料電池用電極触媒において、 [4] In a fuel cell electrode catalyst having platinum or a platinum alloy supported on a carbon substrate,
前記炭素基材がホウ素原子がドープされたカーボンァロイ微粒子であって、 前記炭素基材が含ホウ素化合物と熱硬化性榭脂の前駆体とを加熱反応させて重 合し、これにより得られたホウ素化合物含有熱硬化性榭脂を熱処理して炭素化し、炭 素化された前記ホウ素化合物含有熱硬化性榭脂を微粉砕してなるカーボンァロイ微 粒子であることを特徴とする燃料電池用電極触媒。  The carbon base material is a carbon alloy fine particle doped with boron atoms, and the carbon base material heat-reacts a boron-containing compound and a thermosetting resin precursor, and boron obtained thereby An electrode catalyst for a fuel cell, comprising carbon alloy fine particles obtained by heat-treating and carbonizing a compound-containing thermosetting resin and finely pulverizing the carbonized boron compound-containing thermosetting resin.
[5] 含ホウ素化合物と熱硬化性榭脂の前駆体とを加熱反応させて重合することによりホ ゥ素化合物含有熱硬化性榭脂を得る重合工程と、 [5] A polymerization step of obtaining a fluorine compound-containing thermosetting resin by heating and polymerizing a boron-containing compound and a thermosetting resin precursor;
得られたホウ素化合物含有熱硬化性榭脂を熱処理して炭素化する炭素化工程と、 炭素化されたホウ素化合物含有熱硬化性榭脂を微粉砕して、ホウ素原子がドープ されたカーボンァロイ微粒子を得る粉砕工程と、 A carbonization step of heat-treating and carbonizing the obtained boron compound-containing thermosetting resin, and pulverizing the carbonized boron compound-containing thermosetting resin to dope boron atoms Pulverizing step for obtaining carbon alloy fine particles,
前記カーボンァロイ微粒子に白金を担持させることにより炭素基材を得る工程と を含む燃料電池用電極触媒の製造方法。  A method for producing a fuel cell electrode catalyst, comprising: obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
[6] 含ホウ素化合物が BFメタノール錯体又は BFテトラヒドロフラン錯体であり、熱硬化 [6] The boron-containing compound is a BF methanol complex or a BF tetrahydrofuran complex, and thermosetting
3 3  3 3
性榭脂の前駆体がフラン榭脂又はフエノール榭脂であり、かつ前記熱硬化性榭脂の 前駆体と前記含ホウ素化合物の配合比を C: Bの原子比で (熱硬化性榭脂の前駆体 ( C) :含ホウ素化合物 (B))が 1 : (0. 1〜1)である請求項 5記載の燃料電池用電極触媒 の製造方法。  The precursor of the curable resin is furan resin or phenol resin, and the compounding ratio of the precursor of the thermosetting resin and the boron-containing compound is C: B (ratio of thermosetting resin) 6. The method for producing an electrode catalyst for a fuel cell according to claim 5, wherein the precursor (C): the boron-containing compound (B) is 1: (0.1-1).
[7] 炭素基材に白金又は白金合金を担持した燃料電池用電極触媒において、  [7] In an electrode catalyst for a fuel cell in which platinum or a platinum alloy is supported on a carbon substrate,
前記炭素基材が窒素原子及びホウ素原子がドープされたカーボンァロイ微粒子で あって、  The carbon substrate is a carbon alloy fine particle doped with nitrogen atoms and boron atoms,
前記炭素基材がフルフリルアルコール又はレゾール型フエノール榭脂のメタノール 溶液に含窒素化合物と含ホウ素化合物とを溶解させ、メタノール亜臨界又は超臨界 条件下で重合反応を行うことにより重合物微粒子を得た後、得られた重合物微粒子 を熱処理して炭素化してなるカーボンァロイ微粒子であることを特徴とする燃料電池 用電極触媒。  Polymer fine particles are obtained by dissolving a nitrogen-containing compound and a boron-containing compound in a methanol solution of furfuryl alcohol or resol-type phenol resin, and performing a polymerization reaction under methanol subcritical or supercritical conditions. After that, an electrode catalyst for a fuel cell, which is a carbon alloy fine particle obtained by heat-treating the obtained polymer fine particle and carbonizing it.
[8] フルフリルアルコール又はレゾール型フエノール榭脂のメタノール溶液に、含窒素 化合物と、含ホウ素化合物とを溶解させ、メタノール亜臨界又は超臨界条件下で重 合反応を行うことにより重合物微粒子を得る重合工程と、  [8] Polymer fine particles are obtained by dissolving a nitrogen-containing compound and a boron-containing compound in a methanol solution of furfuryl alcohol or resol-type phenol resin, and performing a polymerization reaction under methanol subcritical or supercritical conditions. A polymerization step to obtain;
得られた重合物微粒子を熱処理して、窒素原子及びホウ素原子がドープされた力 一ボンァロイ微粒子を得る炭素化工程と、  Carbonization step of heat-treating the resulting polymer fine particles to obtain force-bonded alloy fine particles doped with nitrogen atoms and boron atoms;
前記カーボンァロイ微粒子に白金を担持させることにより炭素基材を得る工程と を含む燃料電池用電極触媒の製造方法。  A method for producing a fuel cell electrode catalyst, comprising: obtaining a carbon substrate by supporting platinum on the carbon alloy fine particles.
[9] 含窒素化合物力 Sメラミンであり、含ホウ素化合物が BFメタノール錯体であり、かつ [9] Nitrogen-containing compound power S-melamine, boron-containing compound is BF methanol complex, and
3  Three
フルフリルアルコール又はレゾール型フエノール榭脂とメラミンと BFメタノール錯体  Furfuryl alcohol or resol-type phenol rosin, melamine and BF methanol complex
3  Three
の配合比を C: N: Bの原子比で(フルフリルアルコール又はレゾール型フエノール榭 脂 (C) :メラミン (N) : BFメタノール錯体 (B))が 1 : (0. 04  The mixing ratio of C: N: B (furfuryl alcohol or resol type phenol resin (C): melamine (N): BF methanol complex (B)) is 1: (0. 04
3 〜2): (0. 02〜1)である請求 項 8記載の燃料電池用電極触媒の製造方法。 The method for producing an electrode catalyst for a fuel cell according to claim 8, wherein 3 to 2): (0.02 to 1).
[10] 炭素基材に白金又は白金合金を担持した燃料電池用電極触媒において、前記炭 素基材がフエノールとホルムアルデヒドと塩基触媒を含む水溶液を所定の温度で所 定の時間保持して反応した溶液力 回収し乾燥した高分子超微粒子を加熱すること により炭素化してなるカーボン超微粒子であることを特徴とする燃料電池用電極触媒 [10] In a fuel cell electrode catalyst in which platinum or a platinum alloy is supported on a carbon base material, the carbon base material reacts by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time. Solution power Electrocatalyst for fuel cell, characterized in that it is carbon ultrafine particles obtained by carbonizing by heating the recovered and dried polymer ultrafine particles
[11] フ ノールとホルムアルデヒドと塩基触媒を含む水溶液を所定の温度で所定の時間 保持して反応溶液を得る工程と、 [11] obtaining a reaction solution by holding an aqueous solution containing phenol, formaldehyde, and a base catalyst at a predetermined temperature for a predetermined time;
前記反応溶液を凍結乾燥して高分子超微粒子を回収する工程と、  Lyophilizing the reaction solution to recover the ultrafine polymer particles;
前記高分子超微粒子を加熱することにより炭素化してカーボン超微粒子を得る炭 素化工程と、  A carbonization step of carbonizing the polymer ultrafine particles by heating to obtain carbon ultrafine particles;
前記カーボン超微粒子に白金を担持させることにより炭素基材を得る工程と を含む燃料電池用電極触媒の製造方法。  A process for producing a carbon base material by supporting platinum on the carbon ultrafine particles.
[12] 塩基触媒が炭酸ナトリウムであり、かつフエノールとホルムアルデヒドと炭酸ナトリウ ムの配合重量比(フエノール:ホルムアルデヒド:炭酸ナトリウム)が 1 : (1〜2): (0. 05 〜0. 2)である請求項 11記載の燃料電池用電極触媒の製造方法。  [12] The base catalyst is sodium carbonate, and the weight ratio of phenol, formaldehyde and sodium carbonate (phenol: formaldehyde: sodium carbonate) is 1: (1-2): (0.05-0.2) 12. The method for producing an electrode catalyst for a fuel cell according to claim 11.
[13] 請求項 1、 4、 7又は 10のいずれか 1項に記載の燃料電池用電極触媒を固体高分 子電解質膜の一方又は双方の面に層状に形成した電極反応層を有する燃料電池。  [13] A fuel cell having an electrode reaction layer in which the electrode catalyst for a fuel cell according to any one of claims 1, 4, 7, or 10 is formed in layers on one or both surfaces of a solid polymer electrolyte membrane .
PCT/JP2005/011512 2004-07-05 2005-06-23 Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst WO2006003831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004197481A JP2007311026A (en) 2004-07-05 2004-07-05 Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst
JP2004-197481 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006003831A1 true WO2006003831A1 (en) 2006-01-12

Family

ID=35782642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011512 WO2006003831A1 (en) 2004-07-05 2005-06-23 Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst

Country Status (2)

Country Link
JP (1) JP2007311026A (en)
WO (1) WO2006003831A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282725A (en) * 2007-05-11 2008-11-20 Gunma Univ Manufacturing method of carbon base electrode catalyst for fuel cell
EP2716362A4 (en) * 2011-05-23 2014-11-19 Teijin Ltd Particulate carbon catalyst and method for producing same
CN106000438A (en) * 2016-06-03 2016-10-12 兰州交通大学 Preparation method and application of nitrogen and phosphorus co-doped porous carbon materials
WO2021132475A1 (en) 2019-12-27 2021-07-01 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320579B2 (en) * 2008-06-05 2013-10-23 清蔵 宮田 Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material
JP4964292B2 (en) 2009-12-07 2012-06-27 日清紡ホールディングス株式会社 Electrode and battery
JP5608595B2 (en) 2010-03-30 2014-10-15 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
WO2012096023A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
JP5638433B2 (en) * 2011-03-24 2014-12-10 株式会社東芝 Electrolyzer and refrigerator
JP5893305B2 (en) * 2011-09-09 2016-03-23 国立大学法人東京工業大学 Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP2014188496A (en) * 2013-03-28 2014-10-06 Panasonic Corp Catalyst
CA3017300C (en) 2016-03-11 2020-11-10 Nissan Motor Co., Ltd. Carbon powder for fuel cell and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder for fuel cell
JP6800608B2 (en) * 2016-05-17 2020-12-16 日清紡ホールディングス株式会社 Battery electrode, composition for battery electrode catalyst layer and battery
ES2966033T3 (en) * 2019-11-04 2024-04-18 Heraeus Precious Metals Gmbh High stability catalyst for an electrochemical cell
KR102549883B1 (en) * 2021-03-30 2023-07-03 부산대학교 산학협력단 Metal-organic framework-based catalyst and electrode for oxygen detection using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189168A (en) * 1984-03-06 1985-09-26 Toshiba Corp Porous plate for fuel cell electrode
JPH10223226A (en) * 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JP2004119398A (en) * 2001-01-16 2004-04-15 Showa Denko Kk Catalyst composition for battery, gas diffusion layer, and fuel cell equipped with them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189168A (en) * 1984-03-06 1985-09-26 Toshiba Corp Porous plate for fuel cell electrode
JPH10223226A (en) * 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JP2004119398A (en) * 2001-01-16 2004-04-15 Showa Denko Kk Catalyst composition for battery, gas diffusion layer, and fuel cell equipped with them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANAHARA T. ET AL: "Arinkai oyobi Chorinkai Alcohol o Mochiiru Carbon Alloy Biryushi no Gosei. (Synthesis of carbon alloy particles using sub/supercritical alcohols)", DAI 29 KAI THE CARBON SOCIETY OF JAPAN NENKAI YOSHISHU, 4 December 2002 (2002-12-04), pages 56 - 57, XP002998935 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282725A (en) * 2007-05-11 2008-11-20 Gunma Univ Manufacturing method of carbon base electrode catalyst for fuel cell
EP2716362A4 (en) * 2011-05-23 2014-11-19 Teijin Ltd Particulate carbon catalyst and method for producing same
US9692060B2 (en) 2011-05-23 2017-06-27 Teijin Limited Particulate carbon catalyst including nitrogen and metal and method for producing the same
CN106000438A (en) * 2016-06-03 2016-10-12 兰州交通大学 Preparation method and application of nitrogen and phosphorus co-doped porous carbon materials
WO2021132475A1 (en) 2019-12-27 2021-07-01 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly

Also Published As

Publication number Publication date
JP2007311026A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
WO2006003831A1 (en) Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
JP4452887B2 (en) Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst
Wang et al. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li–O2 batteries
Vinayan et al. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications
Kim et al. Three-dimensional entangled and twisted structures of nitrogen doped poly-(1, 4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst
JP5348658B2 (en) Method for producing platinum-based alloy catalyst for fuel cell electrode material
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
CN1801514A (en) Pt/Ru alloy catalyst for fuel cell
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
JP6244936B2 (en) Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
WO2012114108A1 (en) Oxygen reduction reaction catalyst
Ma et al. Cobalt based non-precious electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells
Liu et al. Pt/graphene with intercalated carbon nanotube spacers introduced by electrostatic self-assembly for fuel cells
Wang et al. Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells
Shiva Kumar et al. Palladium supported on phosphorus–nitrogen dual-doped carbon nanoparticles as cathode for hydrogen evolution in PEM water electrolyser
Wang et al. Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction
Ozdemir A novel method to produce few layers of graphene as support materials for platinum catalyst
JP6757933B2 (en) Platinum carrier, oxygen reduction catalyst using it, its manufacturing method, fuel cell, metal-air battery
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Cao et al. Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@ C–N) for methanol electro-oxidation
Zikhali et al. Electrocatalytic performance of Pd-based electro-catalysts supported on CNTs for isopropanol and ethanol electro-oxidation in alkaline medium
CN111729680B (en) High-efficiency difunctional oxygen electrocatalyst with heterostructure and preparation and application thereof
Bae et al. Carbon-caged palladium catalysts supported on carbon nanofibers for proton exchange membrane fuel cells
WO2019177060A1 (en) Electrode catalyst for fuel cell, and fuel cell using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP