WO2012133614A1 - Carbon fiber bulk - Google Patents

Carbon fiber bulk Download PDF

Info

Publication number
WO2012133614A1
WO2012133614A1 PCT/JP2012/058301 JP2012058301W WO2012133614A1 WO 2012133614 A1 WO2012133614 A1 WO 2012133614A1 JP 2012058301 W JP2012058301 W JP 2012058301W WO 2012133614 A1 WO2012133614 A1 WO 2012133614A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
carbon
bulk
cylindrical member
filled
Prior art date
Application number
PCT/JP2012/058301
Other languages
French (fr)
Japanese (ja)
Inventor
清水 保雄
充 関野
壮則 早川
芹澤 和泉
Original Assignee
株式会社オーク製作所
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011078922A external-priority patent/JP5732298B2/en
Priority claimed from JP2011279567A external-priority patent/JP5850451B2/en
Application filed by 株式会社オーク製作所, 国立大学法人信州大学 filed Critical 株式会社オーク製作所
Priority to KR1020137025796A priority Critical patent/KR20140014208A/en
Priority to CN201280015045.5A priority patent/CN103459314B/en
Publication of WO2012133614A1 publication Critical patent/WO2012133614A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • H01J61/526Heating or cooling particular parts of the lamp heating or cooling of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the present invention relates to a carbon fiber bulk obtained by forming a long-fiber carbon material into a bundle, and a method for producing a carbon fiber-filled bulk.
  • Carbon fiber is light and high in strength, and has excellent functionality in terms of conductivity, thermal conductivity, adsorptivity, etc., and is used in various technical fields.
  • a continuous carbon fiber having a tensile strength can be provided on the conductor center line and covered to form a power transmission line (see Patent Document 1).
  • CFRP carbon fiber reinforced resin
  • carbon fiber as an adsorbing material for an adsorption tank for gas separation, paying attention to the high adsorbability of carbon fiber.
  • a continuous carbon fiber for separating nitrogen and oxygen can be filled in an adsorption tank, and nitrogen gas can be separated with high purity (see Patent Document 3).
  • a method of press-fitting is described as a method of filling carbon fibers.
  • carbon fibers having a predetermined length are arranged in the axial direction and filled in an inverted split jig to form a fiber bundle in the jig.
  • the fiber bundle is press-fitted along the axial direction from the jig toward the filling tank to fill the adsorption tank with the carbon fiber.
  • Patent Document 4 As a carbon fiber composite material (C / C composite) with improved thermal conductivity, a carbon fiber-boron carbide composite material in which carbon fibers are bundled and carbon is filled in the gaps is known (Patent Document 4). reference).
  • the bundled carbon fiber is immersed in a solution in which a phenol resin is dissolved, dried, and then fired at a high temperature.
  • the phenol resin is carbonized and adheres to the carbon fiber bundle, thereby preventing a decrease in thermal conductivity caused by the contact of boron carbide.
  • the present invention is directed to providing a carbon fiber bulk filled with carbon fibers at an unprecedented high density.
  • the carbon fiber filling bulk which filled the cylindrical member with the carbon fiber shall also be contained in a carbon fiber bulk.
  • the carbon fiber bulk manufacturing method of the present invention is characterized in that a cylindrical member is filled with carbon fibers aligned in the axial direction, and the cylindrical member filled with the carbon fiber is stretched and reduced in diameter.
  • the diameter of the cylindrical member can be reduced by swaging.
  • the tubular member can be filled with the carbon fiber bundle at a filling rate of 75% or more.
  • the cylindrical member in the manufacturing method, can be stretched and reduced in diameter so that the cross-sectional shape is deformed in at least a part of the filled carbon fibers.
  • the bundle can be cured by heat treatment. After curing by heat treatment, the carbon fiber bundle can be carbonized.
  • the manufacturing method it is possible to immerse one end of the cylindrical member in the solution. Further, it is possible to immerse the cylindrical member so that a portion of 70 to 80% of the remaining void portion of the carbon fiber bundle filled in the cylindrical member is impregnated with the thermosetting resin. Or it is also possible to take out a carbon fiber bundle from the said cylindrical member after a thermosetting process.
  • the carbon fiber bulk in another aspect of the present invention is formed by integrally forming a bundle of carbon fibers that are long fibers and having anisotropy, and carbon is converted into carbon fibers inside the carbon fiber bundle. It adheres and the filling rate of the carbon fiber in the said carbon fiber bundle is 75% or more, It is characterized by the above-mentioned.
  • the carbon contained in the carbon fiber bundle has no anisotropy.
  • the carbon content in the vicinity of one end face of the carbon fiber bundle is lower than the carbon content in the vicinity of the other end face.
  • the occupation ratio of carbon in the region other than the carbon fiber bundle may be in the range of 40 to 90%.
  • the thermal conductivity in the length direction of the carbon fiber bundle may be more than five times the thermal conductivity in the direction perpendicular to the length direction.
  • FIG. 1 is a process diagram showing a carbon fiber-filled bulk manufacturing method according to the first embodiment.
  • a carbon fiber 100 having a predetermined length and a hollow cylindrical member 200 are prepared as bulk materials.
  • the carbon fiber 100 has a fiber structure in which a carbon fiber yarn composed of hundreds to thousands of carbon fiber filaments is a single body, and is composed of a plurality of carbon fiber yarns.
  • the cylindrical member 200 is made of a metal pipe such as tantalum or molybdenum.
  • the axial length is set shorter than that of the carbon fiber bundle 100.
  • the cylindrical member 200 is formed from a plate-shaped metal member by welding.
  • the weld joint 210 is formed in the axial direction here, but can also be formed in a spiral shape.
  • the carbon fiber 100 is inserted into the cylindrical member 200 and filled.
  • the carbon fiber 100 is prepared in an amount that fills up the internal space of the cylindrical member 200 to the maximum, and the carbon fiber 100 is accommodated in the cylindrical member 200 as a bundle.
  • a filling method a method of pushing the carbon fiber 100 into the cylindrical member 200 by manual work can be applied, or press-fitting can be performed using a press machine or the like.
  • the carbon fiber bundle 100 is inserted into the cylindrical member 200 so that the cylindrical member 200 is not plastically deformed. At this time, the end face of the carbon fiber bundle 100 is filled so as to protrude from the cylindrical member 200.
  • the filling rate of the cylindrical member 200 in a predetermined cross section reaches approximately 60 to 70 percent here.
  • the filling rate represents the ratio of the cross-sectional area of the carbon fiber 100 to the internal space cross-sectional area of the tubular member 200.
  • the filling rate of the carbon fibers 100 is substantially uniform along the axial direction.
  • the cylindrical member 200 filled with the carbon fiber bundle 100 is set in a swaging machine. Then, swaging is performed through the die 50 of the swaging machine. By the swaging process, the cylindrical member 200 is plastically deformed and extends along the axial direction, and the peripheral portion is narrowed to reduce the diameter. At this time, the diameter is reduced so that the filling rate of the carbon fibers 100 is 90% or more and so that the filling rate is uniform along the axial direction. Here, the diameter of the cylindrical member 200 is reduced so as to be approximately 2/3 of that before processing.
  • swaging at least a part or the whole of the carbon fiber bundle 100, the carbon fiber having a circular cross section is elastically deformed by pressure welding. Thereafter, the end of the carbon fiber bundle 100 is cut to obtain a predetermined length.
  • cutting is performed using a cutting tool such as a fine cutter.
  • the carbon fiber-filled bulk 400 is a molded body in which the filling density (bulk density) of carbon fibers is extremely increased, and is pressed against each other until the carbon fibers having a circular cross section are elastically deformed and are compactly filled. Also, the inner carbon fiber bundle has high convergence. By such high-density filling, the carbon fiber-filled bulk 400 is formed into a molded body having excellent thermal conductivity and thermal diffusibility.
  • FIG. 2 is a schematic cross-sectional view of a discharge lamp electrode incorporating a carbon fiber filled bulk.
  • the anode 30 is a discharge electrode used in the short arc type discharge lamp 10 and is held in the vertical direction by the electrode support rod 40.
  • the anode 30 has a cylindrical space 33 at the center of the electrode body 32, and a carbon fiber filled bulk 36 is accommodated in the cylindrical space 33.
  • a columnar electrode lid 39 that matches the size of the cylindrical space 33 is coupled to the electrode body 32 to seal the cylindrical space 33.
  • the electrode support bar 40 is connected and fixed to the electrode lid 39 and holds the anode 30 via the electrode lid 39.
  • the electrode body 32, the electrode lid 39, and the electrode support rod 40 are made of tungsten (W).
  • the carbon fiber-filled bulk 36 extending along the electrode axis inside the anode 30 is configured as a heat transfer body in which the carbon fibers 38 are filled in a hollow pipe 37 made of tantalum metal at a high density, and is manufactured as described above. Molded according to the method.
  • the end face of the carbon fiber 38 having high convergence properties protrudes from both ends of the hollow pipe 37, and both end faces are smooth. That is, when the end portions of the carbon fiber filaments are aligned along the axial direction, the entire end surface of the carbon fiber is smooth so as to define a flat surface without distortion, and a state in which the carbon fiber filament partially protrudes or is short in length. It does not occur substantially. Further, one end surface of the carbon fiber 38 is in close contact with the electrode lid 39 and the bottom surface of the cylindrical space 33 and is connected to the electrode tip portion 32S. Therefore, the heat generated by the collision with the electrons from the cathode (not shown) received by the electrode tip 32S during the discharge is caused by the high density filled carbon fibers 38 having excellent thermal conductivity and thermal responsiveness. Transported to the side.
  • the temperature of the anode 30 is made uniform as a whole without locally heating the electrode tip 32S.
  • it is possible to prevent devitrification due to melting and evaporation of the electrode tip portion 32S, and to reduce the light emission efficiency, and to suppress electrode consumption.
  • it since it has suitable electroconductivity, even if input electric power becomes large and an electric current amount increases, it does not affect discharge.
  • the carbon fiber 100 constituted by a plurality of yarns and the hollow cylindrical member 200 made of metal are prepared, and the carbon fiber 100 is aligned in the axial direction with respect to the hollow cylindrical member 200.
  • the carbon fibers By stretching the carbon fiber after filling it, that is, reducing the diameter, there were relatively many gaps between the carbon fibers in the stage before the stretching, but the carbon fibers were substantially free of gaps as the carbon fibers were elastically deformed.
  • the fibers are filled in a consolidated state.
  • it has excellent thermal conductivity and thermal diffusivity along the entire axial length inside the bulk without impairing the thermal conductivity and thermal diffusibility of the carbon fiber itself.
  • the thermal conductivity and diffusibility are equal in any part of the bulk cross section, and the uniformity of the heat transport capability is maintained.
  • the filling rate to 90% or more, the carbon fibers can be brought into close contact with each other while being elastically deformed so that there is no gap, and can have better thermal conductivity.
  • the filling method and swaging process are not limited to the above carbon fiber filling method and swaging process.
  • other plastic working that reduces the diameter substantially uniformly along the axial direction may be used.
  • the carbon fiber may be packed as tightly as possible in the cylinder internal space without applying a force that plastically deforms the cylindrical member.
  • the carbon fibers are not limited to filament-like carbon fibers in yarn units, and may have any cross-sectional shape and a structure in which a plurality of carbon fibers are filled in a bundle.
  • the smoothing of the carbon fiber end face may be performed on at least one end face. Moreover, it is not necessary to smooth the carbon fiber end face.
  • a method for manufacturing a carbon fiber-filled bulk according to the second embodiment will be described with reference to FIGS.
  • a carbon fiber-filled bulk having excellent thermal conductivity is manufactured.
  • FIG. 3A and FIG. 3B are process diagrams showing a carbon fiber-filled bulk manufacturing method according to the second embodiment.
  • carbon fibers (CF) 100 which are long fibers arranged in a predetermined length, and a hollow cylindrical member 200 are prepared as bulk materials before production.
  • the carbon fiber 100 has a fiber structure in which a carbon fiber yarn composed of hundreds to thousands of carbon fiber filaments is a single body, and is composed of a plurality of carbon fiber yarns.
  • the carbon fiber 100 has extremely high anisotropy with respect to thermal conductivity, and the thermal conductivity in the fiber length direction is extremely larger than that in the vertical direction.
  • mesophase pitch CF which is a high-performance carbon fiber that realizes high thermal conductivity, is applicable.
  • the cylindrical member 200 is made of a metal pipe such as tantalum, molybdenum, or stainless steel (SUS), and has a shorter axial length than the carbon fiber 100 here.
  • the cylindrical member 200 is formed from a plate-shaped metal member by welding.
  • the weld joint 210 is formed in the axial direction here, but can also be formed in a spiral shape.
  • the carbon fiber bundle 100 is bundled and inserted into the cylindrical member 200 for filling. At this time, the carbon fibers 100 are aligned in the axial direction of the cylindrical member 200 and filled so that the fibers do not intersect (hereinafter, the bundled carbon fibers 100 are also expressed as the carbon fiber bundle 100).
  • the carbon fiber 100 is prepared in an amount that fills the inner space of the cylindrical member 200 as much as possible.
  • a filling method a method of pushing the carbon fiber 100 into the cylindrical member 200 by manual work can be applied, or press-fitting can be performed using a press machine or the like.
  • the carbon fiber bundle 100 is inserted into the cylindrical member 200 so that the cylindrical member 200 is not plastically deformed. Moreover, it is filled so that the end surface of the carbon fiber bundle 100 may protrude from the cylindrical member 200.
  • the filling rate of the cylindrical member 200 in a predetermined cross section reaches approximately 60 to 70% here.
  • the filling rate represents the ratio of the cross-sectional area occupied by the carbon fiber bundle 100 to the arbitrary internal space cross-sectional area of the tubular member 200.
  • the filling rate of the carbon fiber bundle 100 along the axial direction is assumed to be substantially uniform.
  • the cylindrical member 200 filled with the carbon fiber bundle 100 is set in a swaging machine including a die 150. After setting, swaging is performed through the die 150.
  • the tubular member 200 is plastically deformed by swaging and extends along the axial direction, and the peripheral portion is narrowed down to reduce the diameter.
  • the diameter of the carbon fiber 100 is reduced to 75% or more (preferably 80% or more). Further, the diameter is reduced so that the filling rate is substantially uniform along the axial direction.
  • the ideal filling rate at which the highest density is obtained is theoretically about 91% at maximum, and it is preferable to suppress the carbon fiber to the above-mentioned maximum filling rate at which the carbon fibers are not elastically deformed by contact between the fibers.
  • one end of the carbon fiber bundle 100 is cut to obtain a predetermined length. Here, it cuts using cutting tools, such as a fine cutter.
  • the solution 400 ′ is a solution containing the thermosetting resin F.
  • a solution in which a resol type phenol resin is dissolved is used as the solution.
  • a novolac type phenolic resin is also applicable, and in this case, an additive for thermosetting is added.
  • the entire tubular member 300 is not dipped in the solution 400 ′, but the end portion 100T of the carbon fiber bundle 100 is dipped in the solution 400 ′, and the other not shown is illustrated. The end is not soaked.
  • the thermosetting resin F of the solution 400 ′ is sucked up into the carbon fiber bundle 100 by capillary action, and the liquid thermosetting resin F is inside the carbon fiber bundle 100. Impregnate into.
  • thermosetting resin F By impregnating the carbon fiber bundle 100 with the thermosetting resin F along one direction, the air inside the carbon fiber bundle 100 is not immersed in the carbon fiber bundle 100 according to the penetration of the thermosetting resin F. Discharged from the edge. As a result, a large amount of the thermosetting resin F is impregnated in the voids inside the carbon fiber bundle 100.
  • thermosetting resin has a low viscosity and a low density. Moreover, it is desirable to use a thermosetting resin having a high residual carbon ratio as the thermosetting resin.
  • thermosetting process using the heating device 600 is then performed at a predetermined temperature (here, 140 ° C. or higher). Further, an impurity removal process is performed at a predetermined temperature (eg, 700 ° C. or higher) in a vacuum atmosphere. As a result, the liquid thermosetting resin F contained in the carbon fiber bundle 100 is cured.
  • thermosetting treatment is repeated a plurality of times. Specifically, the process is repeated until the thermosetting resin F occupies 70 to 80% of the void portion of the carbon fiber bundle 100.
  • the carbon fiber bulk 100 ′ is taken out from the tubular member 500.
  • the carbon fiber bundle 100 ′ can be pulled out from the tubular member 500 by extrusion or the like due to a difference in thermal expansion coefficient between the tubular member 500 and the carbon fiber material.
  • the taken-out carbon fiber bulk 100 ' forms a glossy lump molded body, and the thermosetting resin F is exposed to the bulk surface.
  • the carbon fiber bulk 100 ′ is finally carbonized at a predetermined temperature (for example, 1000 to 2300 ° C.) using a vacuum furnace 700 (or a heating apparatus containing an inert gas).
  • carbon having no anisotropy with respect to thermal conductivity adheres between the carbon fibers and partially fills the void portion.
  • the carbon occupancy in the space region other than the carbon fiber bundle reaches 40 to 90%.
  • the carbon occupancy is substantially within the range of 40 to 90% along the fiber length direction of the carbon fiber bundle 100, but since the phenol resin is impregnated from one direction into the carbon fiber bundle, it is immersed in the solution.
  • the occupying ratio of carbon at the other end portion of the carbon fiber bundle that is not is smaller than the occupying ratio of carbon at the end side immersed in the solution.
  • the dipping is performed twice or more here.
  • the carbon fiber bulk 100 ′ is a molded body in which the packing density (bulk density) of the carbon fibers is extremely increased, and the inner carbon fiber bundle has high convergence. By such high-density filling, the carbon fiber bulk 100 ′ becomes a molded body having excellent thermal conductivity and thermal diffusivity.
  • the carbon fiber bulk 100 ′ has excellent thermal conductivity along the fiber arrangement direction, and has large anisotropy with respect to thermal conductivity.
  • the thermal conductivity in the fiber length direction is 5 times or more, for example, 20 times or more compared to the vertical direction. Therefore, it can be used as a heat transfer member for a discharge lamp electrode or a heat conducting member such as a heat pump and a thermoelectric conversion element. Therefore, it can be used as a heat transfer member for a discharge lamp electrode or a heat conducting member such as a heat pump and a thermoelectric conversion element.
  • FIG. 4 is a schematic cross-sectional view of a discharge lamp electrode incorporating a carbon fiber bulk.
  • the anode 30 is a discharge electrode used in the short arc type discharge lamp 10 and is held in the vertical direction by the electrode support rod 40.
  • the anode 30 has a cylindrical space 37 in the center of the electrode body 32, and the carbon fiber bulk 50 is accommodated in the cylindrical space 37.
  • a similar configuration can be adopted for the cathode.
  • a columnar electrode lid 39 that matches the size of the cylindrical space 37 is coupled to the electrode body 32 to seal the internal space 37.
  • the electrode support bar 40 is connected and fixed to the electrode lid 39 and holds the anode 30 via the electrode lid 39.
  • the electrode body 32, the electrode lid 39, and the electrode support rod 40 are made of tungsten (W).
  • the carbon fiber bulk 50 extending along the electrode axis inside the anode 30 is a heat transfer body in which the carbon fibers 38 are bundled in a high density as described above, and according to the manufacturing method described above. Molded.
  • Both end surfaces of the carbon fiber bulk 50 are smooth, and both the electrode lid 39 and the bottom surface of the cylindrical space 37 are in close contact with each other and connected to the electrode tip portion 32S. Accordingly, heat generated by collision with electrons from the cathode (not shown) received by the electrode tip 32S during discharge is transported to the electrode support rod side by the carbon fiber bulk 50.
  • the temperature of the anode 30 is made uniform as a whole without locally heating the electrode tip 32S.
  • it is possible to prevent devitrification due to melting and evaporation of the electrode tip portion 32S, and to reduce the light emission efficiency, and to suppress electrode consumption.
  • it since it has suitable electroconductivity, even if input electric power becomes large and an electric current amount increases, it does not affect discharge.
  • the structure since there is a gap between the carbon fiber bulk 50 and the electrode internal space, the structure has excellent heat dissipation even in the radial direction and the oblique direction.
  • carbon fibers that are long fibers are bundled and filled in the axial direction in the tubular member to reduce the diameter of the tubular member. Then, one end portion 100 ⁇ / b> T of the carbon fiber bundle is immersed in a solution 400 ′ containing the thermosetting resin F, and the carbon fiber bundle 100 is impregnated with the thermosetting resin F. Then, after carbonizing, the carbon fiber bulk 100 'is produced.
  • the cylindrical member filled with the carbon fiber bundle is reduced in diameter to improve the filling rate, and the entire portion is impregnated with the thermosetting resin from one end side of the carbon fiber bundle, so that a slight carbon fiber gap is filled with carbon.
  • a large amount of carbon adheres to the surface of the bundle.
  • a high-density carbon fiber bundle is formed as a strong lump. And it can have very excellent thermal conductivity in the fiber length direction.
  • the filling rate is 75% or more, so that the thermal conductivity anisotropy can be easily ensured when the thermosetting treatment is performed.
  • the penetration of the thermosetting resin by capillary action is facilitated.
  • thermosetting resin by impregnating the thermosetting resin in a region of 70 to 80% with respect to the void portion between the carbon fibers in the cylindrical member, the proportion of carbon after the carbonization treatment becomes 40 to 90%, The carbon fiber bulk is more firmly integrated.
  • the carbon content is 90% or more, the carbon fiber bulk shrinks during the carbonization treatment, but at this time, distortion tends to occur and cracks may occur. This can be prevented by adjusting the degree of impregnation of the thermosetting resin.
  • thermosetting resin in the carbon fiber bundle in a cylindrical member, without performing a swaging process.
  • the carbon fiber bundle may not be filled into the cylindrical member, but the carbon fiber bundle may be integrally held with other configurations, and the thermosetting resin may be permeated from one end.
  • the first embodiment and the second embodiment have been described above, but the present invention is not limited to such an embodiment.
  • the present invention described in the first embodiment and the second embodiment pays attention to the following problems and realizes an excellent carbon fiber-filled bulk by an unprecedented manufacturing method.
  • a molded body in which a cylindrical member is filled with carbon fiber is configured as a molded body in consideration of mechanical strength, adsorptivity, and the like.
  • these carbon fiber-filled bulks are structured on the premise of products such as electric wires with direct external force, power transmission shafts, or adsorption devices that suck in outside air, and these products have good flexibility or Inflow of outside air is inevitable. Therefore, the carbon fiber is filled with a certain amount of gaps and gaps between the fibers.
  • carbon fiber is graphitized at a high temperature (about 3000 ° C), so it has excellent thermal conductivity and thermal diffusion (temperature diffusion) properties, and uses carbon fiber-filled bulk for products that reach high temperatures. It is possible. For example, in a short arc type discharge lamp, it is necessary to heat the electrode to a stable lighting state early in order to ensure good lamp startability, while heat is released from the electrode (particularly the electrode tip) that becomes hot during lamp lighting. Therefore, an electrode made of a material having excellent thermal conductivity is required.
  • the present invention is a method for producing a carbon fiber-filled bulk, which is a production method for providing a bulk filled with carbon fibers at an unprecedented high density, further comprising a filling step and further densifying the filled carbon fibers. Including a step of improving the filling rate.
  • the cylindrical member is filled with carbon fibers aligned in the axial direction.
  • the densification (high filling rate) step the cylindrical member filled with carbon fiber is stretched to reduce the diameter.
  • the tubular member whose inside is already filled with carbon fibers by the filling step is processed by stretching, which is a process that cannot be taken from the viewpoint of loss of functionality in the conventional bulk molding, so that the tubular member is Stretching in the direction to reduce the diameter, creating a higher density filling state inside the cylindrical member.
  • stretching is a process that cannot be taken from the viewpoint of loss of functionality in the conventional bulk molding, so that the tubular member is Stretching in the direction to reduce the diameter, creating a higher density filling state inside the cylindrical member.
  • thermal conductivity is determined by multiplying thermal diffusivity, specific heat capacity and specific gravity. According to the carbon fiber filling structure in a state of being pressed at high density (consolidation state) as in the present invention, even if the carbon fibers are packed in a bundle, the original thermal conductivity of the carbon fibers is not impaired in the bulk. Good heat transport capability works. In addition, by realizing higher density by stretching and shrinking the cylindrical member as in the present invention, the thermal conductivity along the axial direction as a single bulk is further increased, The heat transport capability along the axial direction is effectively utilized, and a bulk having excellent thermal conductivity can be formed.
  • the carbon fiber inside the tubular member is accommodated in a more integrated and close state than the conventional carbon fiber-filled bulk, and is compactly filled in the axial direction.
  • the degree is uniform, and the filling rate is almost equal in any cross section.
  • Carbon fiber filled bulk that realizes such high-density filling can be applied to various products, and it can be used for products in which heat-related functionality such as heat resistance and heat conductivity is important as well as electrical conductivity.
  • the carbon fiber filled bulk can be configured as an electrode body of a discharge lamp such as a short arc type discharge lamp or a part thereof.
  • the carbon fiber-filled bulk can be used for electric wires that supply a large current, and the influence of heat loss due to electric power can be suppressed.
  • it can be used as a heat conducting member such as a heat pipe.
  • the carbon fiber filling step various filling methods can be applied. To the extent that the cylindrical member does not apply as much force as possible to plastically deform in the filling step, the carbon fiber is filled in the inner space of the cylindrical member with as little gap as possible. Insert it so that it fills up.
  • the carbon fiber may be filled manually, or the carbon fiber may be filled using a machine such as a press. Further, in consideration of bonding with other members or the like, the filling process may be performed so that at least one end face of the carbon fiber protrudes from the tubular member.
  • the cylindrical member In the step of expanding and reducing the diameter of the cylindrical member, it is desirable to perform swaging processing in consideration of stably reducing the diameter of the plastic cylindrical member made of metal or the like.
  • the cylindrical member By swaging, the cylindrical member can be reduced in diameter with a uniform thickness, and a bulk with a uniform carbon filling rate can be formed along the axial direction.
  • the functionality of the carbon fiber can be improved by heat treatment after swaging.
  • a hollow or tubular member such as a pipe
  • a metal pipe that is stably plastically deformed during the swaging process is preferably applied.
  • Carbon fibers can be filled with various forms of carbon fiber, and when manually filled, yarns composed of a certain number (thousands to tens of thousands) of long carbon fiber filaments are filled. You may let them.
  • the filling rate (volume ratio) at that time is limited, and the filling rate before the swaging step is, for example, approximately 75% or less.
  • the filling rate is at least 85 percent.
  • the bulk having the same high heat transport capability can be obtained by stretching and reducing the diameter of the cylindrical member so that the cross-sectional shape of the plurality of filled carbon fibers is elastically deformed or plastically deformed. Can be molded.
  • a high-density carbon fiber filling structure that eliminates gaps between carbon fibers as much as possible is realized with a filling rate of 90 percent or more.
  • the diameter is determined based on the material characteristics of the cylindrical member, the strength of the carbon fiber, the size, and the like.
  • high-density filling can be achieved by reducing the diameter of the cylindrical member within a range of 1/4 to 3/4.
  • by reducing the diameter of the cylindrical member by about 3/4 it is possible to mold a bulk having a filling rate of nearly 95%. This is a density higher than the theoretical density of 78.6% when the cross-section circular carbon fibers are arranged in a square lattice.
  • the carbon fiber end faces are brought into total contact.
  • the carbon fiber is preferably filled so that at least one end face of the carbon fiber that has been compactly filled is smooth.
  • the smoothness means the smoothness required for a general fiber end face. For example, even by SEM observation, the ends of the carbon fibers are aligned in the axial direction, and the carbon fiber end face is Smooth enough to define the plane as a whole.
  • the cutting process may be performed after the stretching process and before or after the heat treatment.
  • the carbon fiber-filled bulk of the present invention includes a cylindrical member that is stretched and reduced in diameter, and a carbon fiber that is densely filled inside the cylindrical member, and the carbon fibers are filled in the axial direction. ing. And carbon fiber is filled in the cylindrical member so that the cross-sectional shape may deform
  • the carbon fiber-filled bulk of the present invention having the same heat-related functionality is characterized in that carbon fibers are filled in a cylindrical member so that the cross-sectional shape of at least a part of the carbon fibers is deformed. To do.
  • This filling rate is a filling rate that can be realized by a cylindrical member that is stretched and reduced in diameter after filling with carbon fibers.
  • the conventional carbon fiber bundle manufacturing method cannot manufacture a high-density carbon fiber bundle and does not provide a carbon fiber bundle with sufficient thermal conductivity. In particular, it is required to obtain a high-density carbon fiber bundle that does not depend on the carbon fiber material of the C / C composite.
  • the present invention is a manufacturing method for providing a single / bulk carbon fiber bulk having high density and excellent thermal conductivity along the fiber arrangement direction.
  • the carbon fiber which is a long fiber, is bundled to form a carbon fiber.
  • One end side of the bundle is immersed in a solution containing a thermosetting resin, and the carbon fiber bundle impregnated with the thermosetting resin along the fiber length direction is cured by heat treatment. It is also possible to perform an impurity removal treatment after the thermosetting treatment. Impregnation and thermosetting treatment (or including impurity removal treatment) can be repeated a plurality of times.
  • the carbon fiber bundle may be taken out from the tubular member and carbonized. Further, in the dipping step, the carbon fiber bundle can be filled in the cylindrical member in the axial direction, and the end of the carbon fiber bulk can be dipped in the solution after filling.
  • the cylindrical member In consideration of securing the anisotropy of the thermal conductivity along the fiber length direction, it is desirable to fill the cylindrical member with the carbon fiber bundle at a filling rate of 75% or more. Further, it is desirable that the content of the remaining void portion of the carbon having no anisotropy generated by the carbonization treatment be 40 to 90%. For this purpose, 70 to 80 of the remaining void portion of the filled carbon fiber bundle is preferable. It is preferable to immerse the carbon fiber bundle so that the thermosetting resin is impregnated in the% portion.
  • thermosetting resin In order to impregnate the carbon fiber as much as possible by impregnating the thermosetting resin, it is preferable to stretch and reduce the diameter of the cylindrical member filled with the carbon fiber bundle.
  • the carbon fiber bulk in another aspect of the present invention is formed by integrally forming a bundle of carbon fibers having long fibers and anisotropy, and impregnated with a thermosetting resin containing carbon.
  • a thermosetting resin containing carbon For example, carbon adheres to the carbon fiber inside the carbon fiber bundle, and the filling rate of the carbon fiber in the carbon fiber bundle is 75% or more.
  • the filling rate here represents the cross-sectional area occupied by the carbon fiber with respect to the cross-sectional area defined by the carbon fiber periphery in the predetermined cross-section.
  • the carbon content in the vicinity of one end face of the carbon fiber bundle is lower than the carbon content in the vicinity of the other end face.
  • the occupation ratio of carbon in a region other than the carbon fiber bundle is preferably in the range of 40 to 90%.
  • the thermal conductivity in the length direction of the carbon fiber bundle is 5 times or more of the thermal conductivity in the direction perpendicular to the length direction. Due to this anisotropic characteristic, excellent heat conduction can be realized.
  • the first example corresponds to the first embodiment
  • the second example corresponds to the second embodiment.
  • a high-density-filled carbon fiber-filled bulk was produced by the same production method as in the first embodiment, and the filling rate, thermal conductivity, and specific gravity were measured and compared with a reference metal. The physical quantities were measured before and after the heat treatment.
  • sample 1 and sample 2 two high-density carbon fiber-filled bulks (hereinafter referred to as sample 1 and sample 2) were manufactured according to the type of carbon fiber.
  • a tantalum (Ta) plate material was prepared as a metal material for Samples 1 and 2, and the tantalum plate material was rolled and welded to form a metal pipe. At this time, welding was performed so that the joint line was along the axial direction.
  • the metal pipes prepared for Samples 1 and 2 were formed to have a diameter of 30 mm, a length of 200 mm, and a wall thickness of 1.0 mm.
  • CF carbon fiber
  • GRANOC registered trademark
  • XN-90-60S manufactured by Nippon Graphite Fiber Co., Ltd.
  • the yarn-like carbon fiber has a thermal conductivity of 500 W / m ⁇ K and a carbon fiber density of 2.19 g / cm 3 .
  • DIALEAD registered trademark
  • K13D2U manufactured by Mitsubishi Plastics, Inc.
  • the thermal conductivity is 800 W / m ⁇ K
  • the carbon fiber density is 2.21 g / cm 3 .
  • carbon fiber yarns were inserted into metal pipes while being aligned in the axial direction by hand.
  • the interior of the pipe was filled with about 530 carbon fiber yarns for sample 1 and about 1320 carbon fiber yarns for sample 2.
  • the end face of the carbon fiber yarn is filled so as to protrude from the pipe.
  • FIG. 5 is a view showing a photograph of the metal pipe filled with the carbon fiber yarn of Sample 1 taken from an oblique direction.
  • FIG. 6 is a view showing a photograph of a state in which the carbon fibers of Sample 1 are aligned in the axial direction when a metal pipe is cut in the carbon fiber axial direction using an optical microscope. As is apparent from FIGS. 5 and 6, the carbon fibers are filled inside the metal pipe and aligned along the axial direction. Sample 2 is similarly filled with carbon fibers.
  • 35.354Cm 3 is the volume of the carbon fibers in the carbon fiber filled bulk molded samples 2, carbon fiber density of 2.064g / cm 3, it was filling ratio 93.4 percent. It is shown in Table 1 below.
  • the carbon fiber density and the filling rate at the carbon fiber cut surface are measured. However, due to the high convergence of the carbon fibers inside the pipe, the filling state at any carbon fiber cross section is substantially the same as the carbon fiber cut surface. Can be considered equal.
  • the thermal conductivity was measured for the bulk in which the carbon fibers were densely filled in this way.
  • the thermal conductivity was measured at the center of the cut surface of the carbon fiber by the flash method, specifically, the nano flash method, and the specific gravity was obtained.
  • the thermal conductivity was calculated based on the formula of thermal diffusivity ⁇ density ⁇ specific heat capacity.
  • the specific gravity was determined by the Archimedes method.
  • the specific heat capacity used in calculating the thermal conductivity was obtained by calculation based on a comparative method. As a standard sample to be compared at this time, Poco Graphite made of the same carbon element was used. As a result, the specific heat capacity was 0.49 J ⁇ K / g for both samples 1 and 2. Further, the thermal diffusivity (temperature diffusivity) used for calculating the thermal conductivity is determined by irradiating the cut surface of the cylinder with infrared rays and measuring the temperature change of the infrared rays with respect to samples 1 and 2, respectively. Calculated.
  • (alpha) is a thermal diffusivity (m ⁇ 2 > / s) and D represents the cross-sectional diameter (mm) of a filling carbon fiber.
  • T represents time (s) required to reach a half of the maximum temperature value.
  • Sample 1 has a thermal conductivity of 350.2 W / m ⁇ K.
  • Sample 2 with a smooth end surface of carbon fiber had a thermal conductivity of 678.8 W / m ⁇ K (see Table 1).
  • the change in carbon fiber density and thermal conductivity before and after heating is estimated based on shrinkage due to heat treatment and the influence of sizing material contained in the yarn-like carbon fiber yarn. Moreover, the change also differs in the samples 1 and 2 by the difference in the kind of yarn-like carbon fiber, etc. However, a sufficient filling rate (85% or more) and thermal conductivity are maintained even after the heat treatment. In particular, in Sample 2, the thermal conductivity after the heat treatment was almost equal to the thermal conductivity of 800 W / m ⁇ K of the yarn-like carbon fiber.
  • FIG. 7 is a view showing a photograph obtained by SEM observation of a high density filling state of carbon fibers on the cut surface of Sample 1 after heat treatment. However, the edge part of the carbon fiber end face is observed here.
  • FIG. 8 is a view showing a photograph obtained by SEM observation of a high-density filling state of carbon fibers on the cut surface of Sample 2 after heat treatment. However, the part near the edge of the carbon fiber end face is observed here.
  • the carbon fiber filaments in Sample 2 are packed in close contact with each other without any boundary (no gap). Further, the measured filling rate exceeds an ideal filling rate, that is, a filling rate of 90.65% when the carbon fibers having a circular cross section are arranged in a close-packed manner. This indicates that the cross-section circular carbon fiber is compactly packed while being elastically deformed.
  • the carbon fiber filaments of the sample 2 are aligned in the axial direction on the carbon fiber end surface, and the end surface is smooth and compactly packed. It can be seen that the entire carbon fiber cut surface defines a single plane and is uneven or flat without distortion.
  • the cutting device is different from the sample 2, so that the carbon fiber end faces are partially irregular.
  • the carbon fiber is cut while being drawn. It is caused by that.
  • the filling rate exceeds the ideal filling rate, and it is clear from FIG. 7 that the carbon fibers are closely packed with no gap while elastically deforming each other.
  • thermal conductivity and specific gravity were compared with high thermal conductivity metals.
  • copper (Cu) which is a high heat conductive metal
  • W tungsten
  • Table 1 The results of comparing the thermal conductivity and specific gravity are also shown in Table 1.
  • the thermal conductivity inside the metal pipe filled with high density is 2 to 7 times better than copper and W.
  • the specific gravity of the carbon fiber bundle is 1/4 that of copper, it can be said that the heat conductivity is extremely high. Further, it has a thermal conductivity much higher than that of tungsten (W) (174 W / m ⁇ K), which is one of refractory metals used for electrodes of a discharge lamp.
  • W tungsten
  • the volumetric efficiency is about 20 times.
  • the carbon fiber filled bulk of the first example had excellent thermal conductivity and volumetric efficiency.
  • Sample 1 and Sample 2 two high-density carbon fiber filled bulks (hereinafter referred to as Sample 1 and Sample 2) were manufactured by the same manufacturing method as in the second embodiment, and the thermal conductivity and its anisotropy were measured.
  • a SUS plate material was prepared for sample 1 as a metal material, and a Ta plate material was prepared for sample 2, and a metal pipe was formed by rolling and welding the plate material. At this time, welding was performed so that the joint line was along the axial direction.
  • the metal pipes prepared for Samples 1 and 2 were formed to have a diameter of 30 mm, a length of 200 mm, and a wall thickness of 1.0 mm.
  • CF carbon fiber
  • GRANOC registered trademark
  • XN-90-60S manufactured by Nippon Graphite Fiber Co., Ltd.
  • This yarn-like carbon fiber has a thermal conductivity of 500 W / m ⁇ K and a carbon fiber density of 2.19 g / cm 3 .
  • DIALEAD registered trademark
  • K13D2U manufactured by Mitsubishi Plastics, Inc.
  • the thermal conductivity is 800 W / m ⁇ K
  • the carbon fiber density is 2.21 g / cm 3 .
  • thermosetting treatment at 140 ° C. and impurity removal treatment at 700 ° C. in a vacuum atmosphere were performed, and from impregnation to impurity removal treatment as one set, two or more sets were repeated.
  • Both Sample 1 and Sample 2 used IF-3300 from Dainippon Ink & Chemicals, Inc. as the phenol resin. The remaining coal rate is 63%.
  • FIG. 9 is a view showing a photograph of a cross section of the carbon fiber bundle after impregnation with the phenol resin, taken with an enlarged microscope. As shown in FIG. 9, it can be seen that the phenol resin is impregnated in the carbon fiber bundle. FIG. 9 shows a carbon fiber bundle not containing a phenol resin for comparison.
  • carbonization treatment was performed by heat curing treatment (140 ° C.) and impurity removal treatment (1800 to 2000 ° C.).
  • the molded carbon fiber bulk was examined for carbon adhesion and thermal conductivity.
  • FIG. 10 is a view showing a photograph of an axial cross section of the carbon fiber bundle after carbonization, taken with an electron microscope. As shown in FIG. 10, it can be seen that a carbon component generated by the carbonization treatment of the phenol resin is adhered to the surface of the carbon fiber.
  • FIG. 11A is a graph showing the anisotropy related to thermal conductivity in Sample 1.
  • FIG. 11B is a graph showing the coefficient of thermal expansion in Sample 1.
  • the carbon fiber length direction is defined as a axis
  • the vertical direction (cross-sectional direction) is defined as c axis.
  • the thermal conductivity changes with temperature.
  • the thermal conductivity in the fiber direction is up to about 70 times that in the vertical direction. Even in a high temperature state such as when a discharge lamp is used, it is clear that the thermal conductivity in the fiber direction is 5 times or more and 20 times or more compared to the vertical direction.
  • FIG. 12 is a diagram showing the thermal conductivity of Samples 1 and 2. As can be seen from FIG. 12, a high thermal conductivity can be obtained by setting the filling rate of the carbon fiber bundle to 75% or more and 80% or more.

Abstract

In this method for producing carbon fiber bulk, carbon fibers are aligned in the axial direction and packed into a cylindrical member and the cylindrical member packed with the carbon fibers is stretched and reduced in diameter. This carbon fiber bulk is a long fiber wherein anisotropic carbon fibers are formed integrally into a bundle shape and carbon is attached to the carbon fibers within the carbon fiber bundle, the packing rate of the carbon fibers within the carbon fiber bundle being 75% or higher.

Description

炭素繊維バルクCarbon fiber bulk
 本発明は、長繊維の炭素材料を束状に形成した炭素繊維バルク、炭素繊維充填バルクの製造方法に関する。 The present invention relates to a carbon fiber bulk obtained by forming a long-fiber carbon material into a bundle, and a method for producing a carbon fiber-filled bulk.
 炭素繊維は、軽くて高強度であること及び導電性、熱伝導性、吸着性などに関して優れた機能性をもっており、様々な技術分野で使用されている。例えば、引張強度のある連続炭素繊維を導体中心線に設け、それを被覆して送電線を構成することが可能である(特許文献1参照)。 Carbon fiber is light and high in strength, and has excellent functionality in terms of conductivity, thermal conductivity, adsorptivity, etc., and is used in various technical fields. For example, a continuous carbon fiber having a tensile strength can be provided on the conductor center line and covered to form a power transmission line (see Patent Document 1).
 また、軽くて高強度である炭素繊維を長手方向に引き揃えた、薄肉太径の炭素繊維強化樹脂(CFRP)を中空状金属パイプに挿入し、動力伝達シャフトを構成することができる(特許文献2参照)。 Moreover, a thin and thick carbon fiber reinforced resin (CFRP) in which light and high-strength carbon fibers are aligned in the longitudinal direction can be inserted into a hollow metal pipe to form a power transmission shaft (Patent Literature). 2).
 一方、炭素繊維の吸着性の高さに着目し、ガス分離用吸着槽の吸着材料として炭素繊維を使用することも可能である。例えば、窒素、酸素分離用の連続炭素繊維を吸着槽に充填し、高純度で窒素ガスを分離することができる(特許文献3参照)。 On the other hand, it is also possible to use carbon fiber as an adsorbing material for an adsorption tank for gas separation, paying attention to the high adsorbability of carbon fiber. For example, a continuous carbon fiber for separating nitrogen and oxygen can be filled in an adsorption tank, and nitrogen gas can be separated with high purity (see Patent Document 3).
 そこでは、炭素繊維を充填させる方法として、プレス圧入する方法が記載されている。まず、所定の長さの炭素繊維を軸線方向に並べて反割型治具に充填し、治具内に繊維束を形成する。そして、治具から充填槽に向けて繊維束を軸線方向に沿ってプレス圧入することで、炭素繊維を吸着槽に充填させる。 There, a method of press-fitting is described as a method of filling carbon fibers. First, carbon fibers having a predetermined length are arranged in the axial direction and filled in an inverted split jig to form a fiber bundle in the jig. Then, the fiber bundle is press-fitted along the axial direction from the jig toward the filling tank to fill the adsorption tank with the carbon fiber.
 熱伝導性を高めた炭素繊維複合材料(C/Cコンポジット)としては、炭素繊維を束状にし、その隙間に炭素を充填させた炭素繊維-炭化ホウ素複合材料が知られている(特許文献4参照)。 As a carbon fiber composite material (C / C composite) with improved thermal conductivity, a carbon fiber-boron carbide composite material in which carbon fibers are bundled and carbon is filled in the gaps is known (Patent Document 4). reference).
 そこでは、高伝導性の炭素繊維束を製造するため、フェノール樹脂を溶解した溶液に束状の炭素繊維を浸し、乾燥させた後に高温で焼成する。焼結体では、フェノール樹脂が炭化して炭素繊維束に付着し、炭化ホウ素の接触に起因する熱伝導率の低下を防ぐ。 Therefore, in order to produce a highly conductive carbon fiber bundle, the bundled carbon fiber is immersed in a solution in which a phenol resin is dissolved, dried, and then fired at a high temperature. In the sintered body, the phenol resin is carbonized and adheres to the carbon fiber bundle, thereby preventing a decrease in thermal conductivity caused by the contact of boron carbide.
特許第3475433号公報Japanese Patent No. 3475433 特開2002-235726号公報JP 2002-235726 A 特開平6-190272号公報JP-A-6-190272 特開平8-81261号公報JP-A-8-81261
 本発明は、従来にない高密度で炭素繊維を充填させた炭素繊維バルクを提供することに向けられている。なお、筒状部材に炭素繊維を充填させた炭素繊維充填バルクも、炭素繊維バルクに含まれるものとする。 The present invention is directed to providing a carbon fiber bulk filled with carbon fibers at an unprecedented high density. In addition, the carbon fiber filling bulk which filled the cylindrical member with the carbon fiber shall also be contained in a carbon fiber bulk.
 本発明の炭素繊維バルクの製造方法は、筒状部材に、炭素繊維を軸方向に揃えて充填し、前記炭素繊維を充填した前記筒状部材を、引き伸ばして縮径させることを特徴とする。例えば、スエージング加工によって、前記筒状部材を引き伸ばして縮径させることが可能である。また、前記炭素繊維束を、充填率75%以上で前記筒状部材に充填させることができる。 The carbon fiber bulk manufacturing method of the present invention is characterized in that a cylindrical member is filled with carbon fibers aligned in the axial direction, and the cylindrical member filled with the carbon fiber is stretched and reduced in diameter. For example, the diameter of the cylindrical member can be reduced by swaging. In addition, the tubular member can be filled with the carbon fiber bundle at a filling rate of 75% or more.
 例えば、製造方法において、充填された前記炭素繊維の少なくとも一部において断面形状が変形するように、前記筒状部材を引き伸ばして縮径させることができる。 For example, in the manufacturing method, the cylindrical member can be stretched and reduced in diameter so that the cross-sectional shape is deformed in at least a part of the filled carbon fibers.
 また、製造方法において、縮径させた前記筒状部材の一方の端部側を、熱硬化性樹脂の含まれる溶液に浸し、繊維長さ方向に沿って熱硬化性樹脂を含浸させた炭素繊維束を、熱処理によって硬化させることが可能である。熱処理による硬化後、炭素繊維束に炭化処理を施すことが可能である。 Further, in the manufacturing method, a carbon fiber in which one end side of the reduced cylindrical member is immersed in a solution containing a thermosetting resin and impregnated with the thermosetting resin along the fiber length direction. The bundle can be cured by heat treatment. After curing by heat treatment, the carbon fiber bundle can be carbonized.
 例えば、製造方法において、前記筒状部材の一方の端部を溶液内に浸すことが可能である。また、前記筒状部材に充填された炭素繊維束の残空隙部分の70~80%の部分において熱硬化性樹脂が含浸されるように、前記筒状部材を浸すことが可能である。あるいは、熱硬化処理の後、炭素繊維束を前記筒状部材から取り出すことも可能である。 For example, in the manufacturing method, it is possible to immerse one end of the cylindrical member in the solution. Further, it is possible to immerse the cylindrical member so that a portion of 70 to 80% of the remaining void portion of the carbon fiber bundle filled in the cylindrical member is impregnated with the thermosetting resin. Or it is also possible to take out a carbon fiber bundle from the said cylindrical member after a thermosetting process.
 このような炭素繊維バルクの製造方法によって製造された炭素繊維バルクを、少なくとも一方の電極の一部として構成する放電ランプを提供することも可能である。 It is also possible to provide a discharge lamp in which a carbon fiber bulk manufactured by such a carbon fiber bulk manufacturing method is configured as a part of at least one electrode.
 一方、本発明の他の局面における炭素繊維バルクは、長繊維であって異方性をもつ炭素繊維が束状になって一体的に形成されており、炭素繊維束内部において炭素が炭素繊維に付着し、前記炭素繊維束内における炭素繊維の充填率が75%以上であることを特徴とする。例えば、炭素繊維束内に含まれる炭素が異方性のないものになる。 On the other hand, the carbon fiber bulk in another aspect of the present invention is formed by integrally forming a bundle of carbon fibers that are long fibers and having anisotropy, and carbon is converted into carbon fibers inside the carbon fiber bundle. It adheres and the filling rate of the carbon fiber in the said carbon fiber bundle is 75% or more, It is characterized by the above-mentioned. For example, the carbon contained in the carbon fiber bundle has no anisotropy.
 一例として、炭素繊維束の一方の端面付近における炭素の含有割合が、他方の端面付近における炭素の含有割合よりも低い。また、炭素繊維束以外の領域における炭素の占有率が、40~90%の範囲になることもある。さらには、炭素繊維束の長さ方向の熱伝導度は、長さ方向に垂直な方向の熱伝導度の5倍以上になることもある。 As an example, the carbon content in the vicinity of one end face of the carbon fiber bundle is lower than the carbon content in the vicinity of the other end face. In addition, the occupation ratio of carbon in the region other than the carbon fiber bundle may be in the range of 40 to 90%. Furthermore, the thermal conductivity in the length direction of the carbon fiber bundle may be more than five times the thermal conductivity in the direction perpendicular to the length direction.
 このような炭素繊維バルクを、少なくとも一方の電極の一部として構成する放電ランプを提供することが可能である。 It is possible to provide a discharge lamp in which such a carbon fiber bulk is configured as a part of at least one electrode.
 本発明によれば、熱に関して優れた機能性をもつ炭素繊維を素材とした成形体を提供することができる。 According to the present invention, it is possible to provide a molded body made of carbon fiber having excellent heat-related functionality.
第1の実施形態である炭素繊維充填バルクの製造方法を示した工程図である。It is process drawing which showed the manufacturing method of the carbon fiber filling bulk which is 1st Embodiment. 炭素繊維充填バルクを組み込んだ放電ランプ用電極の模式的断面図である。It is typical sectional drawing of the electrode for discharge lamps incorporating the carbon fiber filling bulk. 第2の実施形態である炭素繊維バルクの製造方法の前半を示した工程図である。It is process drawing which showed the first half of the manufacturing method of the carbon fiber bulk which is 2nd Embodiment. 第2の実施形態である炭素繊維バルクの製造方法の後半を示した工程図である。It is process drawing which showed the second half of the manufacturing method of the carbon fiber bulk which is 2nd Embodiment. 炭素繊維バルクを組み込んだ放電ランプ用電極の模式的断面図である。It is typical sectional drawing of the electrode for discharge lamps incorporating a carbon fiber bulk. 炭素繊維を充填させた金属パイプを斜め方向から撮影した写真を示した図である。It is the figure which showed the photograph which image | photographed the metal pipe filled with carbon fiber from the diagonal direction. 光学顕微鏡を使って金属パイプを切断したときの炭素繊維の圧密充填状態を撮影した写真を示した図である。It is the figure which showed the photograph which image | photographed the compaction filling state of the carbon fiber when a metal pipe was cut | disconnected using the optical microscope. サンプル1の炭素繊維充填バルクを切断し、SEM観察によって切断面における炭素繊維の高密度充填状態を撮影した写真を示した図である。It is the figure which cut | disconnected the carbon fiber filling bulk of the sample 1, and showed the photograph which image | photographed the high density filling state of the carbon fiber in a cut surface by SEM observation. サンプル2の炭素繊維充填バルクを切断し、SEM観察によって切断面における炭素繊維の高密度充填状態を撮影した写真を示した図である。It is the figure which cut | disconnected the carbon fiber filling bulk of the sample 2, and showed the photograph which image | photographed the high-density filling state of the carbon fiber in a cut surface by SEM observation. フェノール樹脂を含浸させた炭素繊維束およびフェノール樹脂を含浸させていない炭素繊維束の断面を撮影した写真を示す図である。It is a figure which shows the photograph which image | photographed the cross section of the carbon fiber bundle impregnated with the phenol resin, and the carbon fiber bundle not impregnated with the phenol resin. 炭化処理した後の炭素繊維束内部の顕微鏡写真を示す図である。It is a figure which shows the microscope picture inside the carbon fiber bundle after carbonizing. 熱伝導率の異方性を示したグラフである。It is the graph which showed the anisotropy of thermal conductivity. 熱膨張率の異方性を示したグラフである。It is the graph which showed the anisotropy of the thermal expansion coefficient. 炭素繊維充填バルクにおける熱伝導度と温度との関係を示したグラフである。It is the graph which showed the relationship between the thermal conductivity in a carbon fiber filling bulk, and temperature.
 以下では、図面を参照して本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態である炭素繊維充填バルクの製造方法を示した工程図である。 FIG. 1 is a process diagram showing a carbon fiber-filled bulk manufacturing method according to the first embodiment.
 図1に示すように、バルク用素材として、所定の長さに揃えられた炭素繊維100と、中空の筒状部材200が用意される。炭素繊維100は、数百本~数千本の炭素繊維フィラメントから成る炭素繊維ヤーンを単体とした繊維構造であり、複数の炭素繊維ヤーンから構成されている。 As shown in FIG. 1, a carbon fiber 100 having a predetermined length and a hollow cylindrical member 200 are prepared as bulk materials. The carbon fiber 100 has a fiber structure in which a carbon fiber yarn composed of hundreds to thousands of carbon fiber filaments is a single body, and is composed of a plurality of carbon fiber yarns.
 筒状部材200は、タンタルあるいはモリブデンなどの金属パイプによって構成されており、ここでは、炭素繊維束100に比べて軸方向長さが短く定められている。筒状部材200は、溶接によってプレート状金属部材から成形される。溶接のつなぎ目210は、ここでは軸方向に形成されているが、螺旋状に形成することも可能である。 The cylindrical member 200 is made of a metal pipe such as tantalum or molybdenum. Here, the axial length is set shorter than that of the carbon fiber bundle 100. The cylindrical member 200 is formed from a plate-shaped metal member by welding. The weld joint 210 is formed in the axial direction here, but can also be formed in a spiral shape.
 最初に行われる充填工程では、炭素繊維100が筒状部材200に挿入され、充填される。炭素繊維100は、筒状部材200の内部空間を最大限埋め尽くす量だけ用意されており、炭素繊維100は筒状部材200内に束となって収容される。充填方法としては、手作業によって筒状部材200に炭素繊維100を押し込む方法などが適用可能であり、あるいは、プレス機などを使って圧入することも可能である。 In the first filling step, the carbon fiber 100 is inserted into the cylindrical member 200 and filled. The carbon fiber 100 is prepared in an amount that fills up the internal space of the cylindrical member 200 to the maximum, and the carbon fiber 100 is accommodated in the cylindrical member 200 as a bundle. As a filling method, a method of pushing the carbon fiber 100 into the cylindrical member 200 by manual work can be applied, or press-fitting can be performed using a press machine or the like.
 充填工程では、筒状部材200が塑性変形したりすることがないように、炭素繊維束100が筒状部材200に挿入される。このとき、炭素繊維束100の端面が筒状部材200から突出するように充填されている。充填工程により、筒状部材200の所定断面における充填率は、およそ60~70パーセントにここでは達している。ただし、充填率は、筒状部材200の内部空間断面積に対する炭素繊維100の断面積の割合を表す。また、軸方向に沿って炭素繊維100の充填率がほぼ均一になっているものとする。 In the filling step, the carbon fiber bundle 100 is inserted into the cylindrical member 200 so that the cylindrical member 200 is not plastically deformed. At this time, the end face of the carbon fiber bundle 100 is filled so as to protrude from the cylindrical member 200. By the filling process, the filling rate of the cylindrical member 200 in a predetermined cross section reaches approximately 60 to 70 percent here. However, the filling rate represents the ratio of the cross-sectional area of the carbon fiber 100 to the internal space cross-sectional area of the tubular member 200. In addition, it is assumed that the filling rate of the carbon fibers 100 is substantially uniform along the axial direction.
 炭素繊維束100が充填された筒状部材200は、スエージング加工機械にセッティングされる。そして、スエージング加工機械のダイス50を通じてスエージング加工が施される。スエージング加工により、筒状部材200は塑性変形し、軸方向に沿って伸びるとともに、周縁部が絞り込まれて縮径する。このとき、炭素繊維100の充填率が90パーセント以上になるように、また、充填率が軸方向に沿って均一と成るように、細径化される。ここでは、筒状部材200の径が加工前のほぼ2/3となるように細径化されている。スエージング加工により、炭素繊維束100の少なくとも一部もしくは全体的において、断面円形状である炭素繊維が圧接によって弾性変形する。その後、所定の長さにするため、炭素繊維束100の端部を切断する。ここでは、ファインカッターなどの切断器具を使って切断している。 The cylindrical member 200 filled with the carbon fiber bundle 100 is set in a swaging machine. Then, swaging is performed through the die 50 of the swaging machine. By the swaging process, the cylindrical member 200 is plastically deformed and extends along the axial direction, and the peripheral portion is narrowed to reduce the diameter. At this time, the diameter is reduced so that the filling rate of the carbon fibers 100 is 90% or more and so that the filling rate is uniform along the axial direction. Here, the diameter of the cylindrical member 200 is reduced so as to be approximately 2/3 of that before processing. By swaging, at least a part or the whole of the carbon fiber bundle 100, the carbon fiber having a circular cross section is elastically deformed by pressure welding. Thereafter, the end of the carbon fiber bundle 100 is cut to obtain a predetermined length. Here, cutting is performed using a cutting tool such as a fine cutter.
 スエージング加工によって軸方向に延伸した筒状部材200を製造し、切断処理を行った後、所定温度(例えば1500℃~2000℃)の温度雰囲気の下、筒状部材200に対して熱処理を数時間行う。この熱処理を経て、炭素繊維充填バルク400が製造される。炭素繊維充填バルク400は、炭素繊維の充填密度(かさ密度)を極度に高めた成形体であって、断面円状の炭素繊維が弾性変形するまで互いに圧接され、圧密充填されている。また、内部の炭素繊維束は高い集束性をもっている。このような高密度充填によって、炭素繊維充填バルク400は熱伝導性、熱拡散性が優れた成形体になっており、例えば、放電ランプ用電極の伝熱体、あるいはヒートポンプなどの熱伝導部材として使用することができる。 After manufacturing the cylindrical member 200 stretched in the axial direction by swaging and performing a cutting process, heat treatment is performed on the cylindrical member 200 under a temperature atmosphere of a predetermined temperature (eg, 1500 ° C. to 2000 ° C.). Do time. Through this heat treatment, the carbon fiber-filled bulk 400 is manufactured. The carbon fiber-filled bulk 400 is a molded body in which the filling density (bulk density) of carbon fibers is extremely increased, and is pressed against each other until the carbon fibers having a circular cross section are elastically deformed and are compactly filled. Also, the inner carbon fiber bundle has high convergence. By such high-density filling, the carbon fiber-filled bulk 400 is formed into a molded body having excellent thermal conductivity and thermal diffusibility. For example, as a heat transfer member for a discharge lamp electrode or a heat conductive member such as a heat pump. Can be used.
 図2は、炭素繊維充填バルクを組み込んだ放電ランプ用電極の模式的断面図である。 FIG. 2 is a schematic cross-sectional view of a discharge lamp electrode incorporating a carbon fiber filled bulk.
 陽極30は、ショートアーク型放電ランプ10に用いられる放電用電極であり、電極支持棒40によって鉛直方向に保持されている。陽極30は、電極本体32中心部に筒状空間33を有し、筒状空間33には炭素繊維充填バルク36が収容されている。 The anode 30 is a discharge electrode used in the short arc type discharge lamp 10 and is held in the vertical direction by the electrode support rod 40. The anode 30 has a cylindrical space 33 at the center of the electrode body 32, and a carbon fiber filled bulk 36 is accommodated in the cylindrical space 33.
 筒状空間33のサイズに合わせた柱状の電極蓋39は、電極本体32と結合して筒状空間33を密封する。電極支持棒40は電極蓋39に連結固定されており、電極蓋39を介して陽極30を保持している。 A columnar electrode lid 39 that matches the size of the cylindrical space 33 is coupled to the electrode body 32 to seal the cylindrical space 33. The electrode support bar 40 is connected and fixed to the electrode lid 39 and holds the anode 30 via the electrode lid 39.
 電極本体32、電極蓋39、電極支持棒40は、タングステン(W)によって構成される。一方、陽極30内部で電極軸に沿って延在する炭素繊維充填バルク36は、炭素繊維38をタンタル金属からなる中空パイプ37内に高密度充填した伝熱体として構成されており、上述した製造方法に従って成形されている。 The electrode body 32, the electrode lid 39, and the electrode support rod 40 are made of tungsten (W). On the other hand, the carbon fiber-filled bulk 36 extending along the electrode axis inside the anode 30 is configured as a heat transfer body in which the carbon fibers 38 are filled in a hollow pipe 37 made of tantalum metal at a high density, and is manufactured as described above. Molded according to the method.
 高い集束性をもつ炭素繊維38の端面は、中空パイプ37両端から突出しており、両端面とも平滑である。すなわち、炭素繊維フィラメント各々端部が軸方向に沿って揃うことにより、炭素繊維端面全体が歪なく平面を規定するように滑らかであり、一部炭素繊維フィラメントが突出あるいは長さ不足となる状態が実質的に生じていない。また、炭素繊維38の一方の端面は、電極蓋39と筒状空間33の底面と密着し、電極先端部32Sと繋がっている。したがって、放電中に電極先端部32Sが受ける陰極(図示せず)からの電子との衝突によって生じる熱は、熱伝導性、熱応答性の優れた高密度充填された炭素繊維38によって電極支持棒側へ輸送される。 The end face of the carbon fiber 38 having high convergence properties protrudes from both ends of the hollow pipe 37, and both end faces are smooth. That is, when the end portions of the carbon fiber filaments are aligned along the axial direction, the entire end surface of the carbon fiber is smooth so as to define a flat surface without distortion, and a state in which the carbon fiber filament partially protrudes or is short in length. It does not occur substantially. Further, one end surface of the carbon fiber 38 is in close contact with the electrode lid 39 and the bottom surface of the cylindrical space 33 and is connected to the electrode tip portion 32S. Therefore, the heat generated by the collision with the electrons from the cathode (not shown) received by the electrode tip 32S during the discharge is caused by the high density filled carbon fibers 38 having excellent thermal conductivity and thermal responsiveness. Transported to the side.
 これにより、電極先端部32Sが局所的に過熱することなく、陽極30の温度が全体的に均一化される。その結果、電極先端部32Sの溶融、蒸発によって失透し、発光効率が低下するのを防ぎ、電極消耗を抑えることができる。また、好適な導電性をもつため、入力電力が大きくなって電流量が増大しても、放電に影響しない。 Thereby, the temperature of the anode 30 is made uniform as a whole without locally heating the electrode tip 32S. As a result, it is possible to prevent devitrification due to melting and evaporation of the electrode tip portion 32S, and to reduce the light emission efficiency, and to suppress electrode consumption. Moreover, since it has suitable electroconductivity, even if input electric power becomes large and an electric current amount increases, it does not affect discharge.
 このように本実施形態によれば、複数のヤーンによって構成される炭素繊維100と、金属からなる中空筒状部材200を用意し、炭素繊維100を中空筒状部材200に対し軸方向に揃えながら充填させる。充填後、中空筒状部材200に対してダイス50を利用したスエージング加工を施す。スエージング加工の後、切断して熱処理を施し、炭素繊維充填バルク400を成形する。 As described above, according to the present embodiment, the carbon fiber 100 constituted by a plurality of yarns and the hollow cylindrical member 200 made of metal are prepared, and the carbon fiber 100 is aligned in the axial direction with respect to the hollow cylindrical member 200. Fill. After filling, the hollow cylindrical member 200 is subjected to swaging using a die 50. After swaging, the carbon fiber-filled bulk 400 is formed by cutting and heat treatment.
 炭素繊維を充填させた後に引き伸ばし、すなわち縮径を行うことにより、引き伸ばし前の段階では比較的多くの炭素繊維間で隙間があったものが、炭素繊維が弾性変形するほど実質的に隙間なく炭素繊維が圧密状態で充填される。その結果、炭素繊維自体の熱伝導性、熱拡散性を損なうことなく、バルク内部の軸方向長さ全体に沿って優れた熱伝導性、熱拡散性をもつことになる。また、バルク断面いずれの部分においてもその熱伝導性、拡散性が等しく、熱輸送能力の均一性が保たれる。特に、充填率を90パーセント以上にすることにより、隙間がなくなるように炭素繊維同士が弾性変形しながら互いに密接し、よりすぐれた熱伝導性をもつことができる。 By stretching the carbon fiber after filling it, that is, reducing the diameter, there were relatively many gaps between the carbon fibers in the stage before the stretching, but the carbon fibers were substantially free of gaps as the carbon fibers were elastically deformed. The fibers are filled in a consolidated state. As a result, it has excellent thermal conductivity and thermal diffusivity along the entire axial length inside the bulk without impairing the thermal conductivity and thermal diffusibility of the carbon fiber itself. Moreover, the thermal conductivity and diffusibility are equal in any part of the bulk cross section, and the uniformity of the heat transport capability is maintained. In particular, by setting the filling rate to 90% or more, the carbon fibers can be brought into close contact with each other while being elastically deformed so that there is no gap, and can have better thermal conductivity.
 なお、充填方法、スエージング加工については、上記炭素繊維の充填方法、スエージング加工には限定されない。引き伸ばして縮径させるのには、軸方向に沿って略均一に縮径させる他の塑性加工であってもよい。また、充填工程においては、筒状部材を塑性変形させるような力を加えない程度で、炭素繊維を筒内部空間にできる限り圧密充填させればよい。さらに、炭素繊維はヤーン単位のフィラメント状炭素繊維に限定されず、任意の断面形状であって複数の炭素繊維を束状に充填させた構造であればよい。炭素繊維端面の平滑化については、少なくとも一方の端面において行うようにしてもよい。また、炭素繊維端面を平滑化させなくてもよい。 The filling method and swaging process are not limited to the above carbon fiber filling method and swaging process. In order to stretch and reduce the diameter, other plastic working that reduces the diameter substantially uniformly along the axial direction may be used. Further, in the filling step, the carbon fiber may be packed as tightly as possible in the cylinder internal space without applying a force that plastically deforms the cylindrical member. Furthermore, the carbon fibers are not limited to filament-like carbon fibers in yarn units, and may have any cross-sectional shape and a structure in which a plurality of carbon fibers are filled in a bundle. The smoothing of the carbon fiber end face may be performed on at least one end face. Moreover, it is not necessary to smooth the carbon fiber end face.
 次に、図3、4を用いて、第2の実施形態である炭素繊維充填バルクの製造方法について説明する。第2の実施形態では、熱伝導性の優れた炭素繊維充填バルクを製造する。 Next, a method for manufacturing a carbon fiber-filled bulk according to the second embodiment will be described with reference to FIGS. In the second embodiment, a carbon fiber-filled bulk having excellent thermal conductivity is manufactured.
 図3A、図3Bは、第2の実施形態である炭素繊維充填バルクの製造方法を示した工程図である。 FIG. 3A and FIG. 3B are process diagrams showing a carbon fiber-filled bulk manufacturing method according to the second embodiment.
 図3Aに示すように、バルク用素材として、所定の長さに揃えられた長繊維である炭素繊維(CF)100と、中空の筒状部材200が製造前に用意される。炭素繊維100は、数百本~数千本の炭素繊維フィラメントから成る炭素繊維ヤーンを単体とした繊維構造であり、複数の炭素繊維ヤーンから構成されている。 As shown in FIG. 3A, carbon fibers (CF) 100, which are long fibers arranged in a predetermined length, and a hollow cylindrical member 200 are prepared as bulk materials before production. The carbon fiber 100 has a fiber structure in which a carbon fiber yarn composed of hundreds to thousands of carbon fiber filaments is a single body, and is composed of a plurality of carbon fiber yarns.
 炭素繊維100は、熱伝導性に関し極めて高い異方性を備えており、繊維長さ方向の熱伝導率は、その垂直方向に比べて極めて大きい。例えば、高熱伝導度を実現する高性能炭素繊維であるメソフェーズピッチCFが適用可能である。 The carbon fiber 100 has extremely high anisotropy with respect to thermal conductivity, and the thermal conductivity in the fiber length direction is extremely larger than that in the vertical direction. For example, mesophase pitch CF, which is a high-performance carbon fiber that realizes high thermal conductivity, is applicable.
 筒状部材200は、タンタル、モリブデンあるいはステンレス鋼(SUS)などの金属パイプによって構成されており、ここでは、炭素繊維100に比べて軸方向長さが短く定められている。筒状部材200は、溶接によってプレート状金属部材から成形される。溶接のつなぎ目210は、ここでは軸方向に形成されているが、螺旋状に形成することも可能である。 The cylindrical member 200 is made of a metal pipe such as tantalum, molybdenum, or stainless steel (SUS), and has a shorter axial length than the carbon fiber 100 here. The cylindrical member 200 is formed from a plate-shaped metal member by welding. The weld joint 210 is formed in the axial direction here, but can also be formed in a spiral shape.
 最初に行われる充填工程では、炭素繊維束100を、束状にして筒状部材200に挿入し、充填する。このとき、炭素繊維100を筒状部材200の軸方向に揃え、繊維が交差しないように充填させる(以下では、束状の炭素繊維100を、炭素繊維束100とも表現する)。 In the first filling step, the carbon fiber bundle 100 is bundled and inserted into the cylindrical member 200 for filling. At this time, the carbon fibers 100 are aligned in the axial direction of the cylindrical member 200 and filled so that the fibers do not intersect (hereinafter, the bundled carbon fibers 100 are also expressed as the carbon fiber bundle 100).
 炭素繊維100は、筒状部材200の内部空間をできる限り埋め尽くす量だけ用意されている。充填方法としては、手作業によって筒状部材200に炭素繊維100を押し込む方法などが適用可能であり、あるいは、プレス機などを使って圧入することも可能である。 The carbon fiber 100 is prepared in an amount that fills the inner space of the cylindrical member 200 as much as possible. As a filling method, a method of pushing the carbon fiber 100 into the cylindrical member 200 by manual work can be applied, or press-fitting can be performed using a press machine or the like.
 充填工程では、筒状部材200が塑性変形したりすることがないように、炭素繊維束100が筒状部材200に挿入される。また、炭素繊維束100の端面が筒状部材200から突出するように充填されている。 In the filling step, the carbon fiber bundle 100 is inserted into the cylindrical member 200 so that the cylindrical member 200 is not plastically deformed. Moreover, it is filled so that the end surface of the carbon fiber bundle 100 may protrude from the cylindrical member 200.
 充填工程により、筒状部材200の所定断面における充填率は、ここではおよそ60~70%に達する。ただし、充填率は、筒状部材200の任意の内部空間断面積に対する炭素繊維束100の占める断面積の割合を表す。また、軸方向に沿った炭素繊維束100の充填率は、ほぼ均一であるものとする。 In the filling step, the filling rate of the cylindrical member 200 in a predetermined cross section reaches approximately 60 to 70% here. However, the filling rate represents the ratio of the cross-sectional area occupied by the carbon fiber bundle 100 to the arbitrary internal space cross-sectional area of the tubular member 200. Moreover, the filling rate of the carbon fiber bundle 100 along the axial direction is assumed to be substantially uniform.
 炭素繊維束100が充填された筒状部材200は、ダイス150を含むスエージング加工機械にセッティングされる。セッティング後、ダイス150を通じてスエージング加工が施される。スエージング加工により筒状部材200は塑性変形し、軸方向に沿って伸びるとともに、周縁部が絞り込まれて縮径する。 The cylindrical member 200 filled with the carbon fiber bundle 100 is set in a swaging machine including a die 150. After setting, swaging is performed through the die 150. The tubular member 200 is plastically deformed by swaging and extends along the axial direction, and the peripheral portion is narrowed down to reduce the diameter.
 このとき、炭素繊維100の充填率が75%以上になるように(好ましくは80%以上)細径化される。また、充填率が軸方向に沿って略均一と成るように、細径化される。 At this time, the diameter of the carbon fiber 100 is reduced to 75% or more (preferably 80% or more). Further, the diameter is reduced so that the filling rate is substantially uniform along the axial direction.
 ただし、細径化に関しては、最も高密度となる理想充填率が理論的に最大約91%であり、繊維間の接触によって炭素繊維が弾性変形しない上記最大充填率に抑えるのが好ましい。細径化後、所定の長さにするため、炭素繊維束100の一方の端部を切断する。ここでは、ファインカッターなどの切断器具を使って切断する。 However, regarding the diameter reduction, the ideal filling rate at which the highest density is obtained is theoretically about 91% at maximum, and it is preferable to suppress the carbon fiber to the above-mentioned maximum filling rate at which the carbon fibers are not elastically deformed by contact between the fibers. After reducing the diameter, one end of the carbon fiber bundle 100 is cut to obtain a predetermined length. Here, it cuts using cutting tools, such as a fine cutter.
 次に、スエージング加工によって軸方向に延伸した筒状部材300を、その端部側から容器Mに入った溶液400’に浸す(図3B参照)。溶液400’は、熱硬化樹脂Fを含む溶液であり、例えば、溶液として、レゾールタイプのフェノール樹脂を溶かした溶液が用いられる。ノボラックタイプのフェノール樹脂も適用可能であり、この場合、熱硬化用添加物が加えられる。 Next, the cylindrical member 300 extended in the axial direction by swaging is immersed in the solution 400 ′ contained in the container M from the end side (see FIG. 3B). The solution 400 ′ is a solution containing the thermosetting resin F. For example, a solution in which a resol type phenol resin is dissolved is used as the solution. A novolac type phenolic resin is also applicable, and in this case, an additive for thermosetting is added.
 炭素繊維束100の浸漬工程においては、筒状部材300全体を溶液400’の中に浸すようなことをせず、炭素繊維束100の端部100Tを溶液400’内に浸し、図示しない他方の端部を浸さないようにしている。このように炭素繊維束100を部分的に浸しておくと、毛細管現象により、溶液400’の熱硬化樹脂Fが炭素繊維束100へ吸い上げられ、液状の熱硬化樹脂Fが炭素繊維束100の内部に含浸する。 In the dipping process of the carbon fiber bundle 100, the entire tubular member 300 is not dipped in the solution 400 ′, but the end portion 100T of the carbon fiber bundle 100 is dipped in the solution 400 ′, and the other not shown is illustrated. The end is not soaked. When the carbon fiber bundle 100 is partially immersed in this way, the thermosetting resin F of the solution 400 ′ is sucked up into the carbon fiber bundle 100 by capillary action, and the liquid thermosetting resin F is inside the carbon fiber bundle 100. Impregnate into.
 炭素繊維束100に対し、熱硬化樹脂Fを一方向に沿って含浸させることにより、炭素繊維束100内部の空気は、熱硬化樹脂Fの浸透に応じて炭素繊維束100の浸されていない他端から排出される。その結果、炭素繊維束100内部における空隙部分に熱硬化樹脂Fが多く含浸される。 By impregnating the carbon fiber bundle 100 with the thermosetting resin F along one direction, the air inside the carbon fiber bundle 100 is not immersed in the carbon fiber bundle 100 according to the penetration of the thermosetting resin F. Discharged from the edge. As a result, a large amount of the thermosetting resin F is impregnated in the voids inside the carbon fiber bundle 100.
 毛細管現象は、液体の表面張力、材料の濡れ性および液体の密度で吸い込み高さが決まるため、熱硬化樹脂は粘性が低く低密度であることが望ましい。また、熱硬化樹脂は、残炭素率が高い熱硬化樹脂を用いることが望ましい。 In the capillary phenomenon, since the suction height is determined by the surface tension of the liquid, the wettability of the material, and the density of the liquid, it is desirable that the thermosetting resin has a low viscosity and a low density. Moreover, it is desirable to use a thermosetting resin having a high residual carbon ratio as the thermosetting resin.
 炭素繊維束100に熱硬化樹脂Fを含浸させると、次に、所定の温度(ここでは、140℃以上)によって加熱装置600を使った熱硬化処理を施す。さらに、真空雰囲気下において、所定の温度(例えば700℃以上)で不純物の除去処理を施す。その結果、炭素繊維束100に含まれていた液状の熱硬化樹脂Fが硬化する。 Once the carbon fiber bundle 100 is impregnated with the thermosetting resin F, a thermosetting process using the heating device 600 is then performed at a predetermined temperature (here, 140 ° C. or higher). Further, an impurity removal process is performed at a predetermined temperature (eg, 700 ° C. or higher) in a vacuum atmosphere. As a result, the liquid thermosetting resin F contained in the carbon fiber bundle 100 is cured.
 上述した溶液400’への浸漬処理、熱硬化処理、そして不純物除去処理を、複数回繰り返し行う。具体的には、熱硬化樹脂Fが炭素繊維束100の空隙部分の70~80%を占めるようになるまで繰り返す。 The above-described immersion treatment in the solution 400 ', thermosetting treatment, and impurity removal treatment are repeated a plurality of times. Specifically, the process is repeated until the thermosetting resin F occupies 70 to 80% of the void portion of the carbon fiber bundle 100.
 そして、筒状部材500から炭素繊維バルク100’が取り出される。筒状部材500と炭素繊維材料の熱膨張率の違い等により、炭素繊維束100’を押し出しなどによって筒状部材500から引き出すことができる。 Then, the carbon fiber bulk 100 ′ is taken out from the tubular member 500. The carbon fiber bundle 100 ′ can be pulled out from the tubular member 500 by extrusion or the like due to a difference in thermal expansion coefficient between the tubular member 500 and the carbon fiber material.
 取り出された炭素繊維バルク100’は、光沢のある一塊の成形体を成しており、熱硬化樹脂Fはバルク表面にまで露出している。このような炭素繊維バルク100’に対し、真空炉700(あるいは不活性ガスを入れた加熱装置)を使って所定の温度(例えば1000~2300℃)による炭化処理を最後に行う。 The taken-out carbon fiber bulk 100 'forms a glossy lump molded body, and the thermosetting resin F is exposed to the bulk surface. The carbon fiber bulk 100 ′ is finally carbonized at a predetermined temperature (for example, 1000 to 2300 ° C.) using a vacuum furnace 700 (or a heating apparatus containing an inert gas).
 その結果、炭素繊維バルク100’内部には、熱伝導性に関して異方性のない炭素が炭素繊維間に付着し、空隙部分を部分的に埋める。炭素繊維束以外の空間領域における炭素占有率は、40~90%に至る。 As a result, in the carbon fiber bulk 100 ′, carbon having no anisotropy with respect to thermal conductivity adheres between the carbon fibers and partially fills the void portion. The carbon occupancy in the space region other than the carbon fiber bundle reaches 40 to 90%.
 炭素占有率は、炭素繊維束100の繊維長さ方向に沿って40~90%範囲内に略納まっているが、フェノール樹脂を炭素繊維束内に一方向から含浸させているため、溶液に浸かっていない他方の炭素繊維束端部における炭素の占有割合は、溶液に浸かっていた端部側の炭素占有割合よりも小さい。できるだけ他方の端部の炭素占有割合を含浸側端部の炭素占有割合に近づけるため、ここでは2回以上の浸漬を行なっている。 The carbon occupancy is substantially within the range of 40 to 90% along the fiber length direction of the carbon fiber bundle 100, but since the phenol resin is impregnated from one direction into the carbon fiber bundle, it is immersed in the solution. The occupying ratio of carbon at the other end portion of the carbon fiber bundle that is not is smaller than the occupying ratio of carbon at the end side immersed in the solution. In order to make the carbon occupying ratio of the other end as close as possible to the carbon occupying ratio of the impregnation side end as much as possible, the dipping is performed twice or more here.
 炭素繊維バルク100’は、炭素繊維の充填密度(かさ密度)を極めて高めた成形体であって、内部の炭素繊維束は高い集束性をもっている。このような高密度充填によって、炭素繊維バルク100’は熱伝導性、熱拡散性が優れた成形体になる。 The carbon fiber bulk 100 ′ is a molded body in which the packing density (bulk density) of the carbon fibers is extremely increased, and the inner carbon fiber bundle has high convergence. By such high-density filling, the carbon fiber bulk 100 ′ becomes a molded body having excellent thermal conductivity and thermal diffusivity.
 特に、炭素繊維バルク100’は繊維配列方向に沿って優れた熱伝導性を備え、また、熱伝導性に関して大きな異方性をもつ。具体的には、繊維長さ方向の熱伝導率は、その垂直方向と比べて5倍以上であり、例えば20倍以上になる。したがって、放電ランプ用電極の伝熱体、あるいはヒートポンプおよび熱電変換素子などの熱伝導部材として使用することができる。したがって、放電ランプ用電極の伝熱体、あるいはヒートポンプおよび熱電変換素子などの熱伝導部材として使用することができる。 Particularly, the carbon fiber bulk 100 ′ has excellent thermal conductivity along the fiber arrangement direction, and has large anisotropy with respect to thermal conductivity. Specifically, the thermal conductivity in the fiber length direction is 5 times or more, for example, 20 times or more compared to the vertical direction. Therefore, it can be used as a heat transfer member for a discharge lamp electrode or a heat conducting member such as a heat pump and a thermoelectric conversion element. Therefore, it can be used as a heat transfer member for a discharge lamp electrode or a heat conducting member such as a heat pump and a thermoelectric conversion element.
 図4は、炭素繊維バルクを組み込んだ放電ランプ用電極の模式的断面図である。 FIG. 4 is a schematic cross-sectional view of a discharge lamp electrode incorporating a carbon fiber bulk.
 陽極30は、ショートアーク型放電ランプ10に用いられる放電用電極であり、電極支持棒40によって鉛直方向に保持されている。陽極30は、電極本体32中心部に筒状空間37を有し、筒状空間37には炭素繊維バルク50が収容されている。なお、陰極にも同様の構成を採用することが可能である。 The anode 30 is a discharge electrode used in the short arc type discharge lamp 10 and is held in the vertical direction by the electrode support rod 40. The anode 30 has a cylindrical space 37 in the center of the electrode body 32, and the carbon fiber bulk 50 is accommodated in the cylindrical space 37. A similar configuration can be adopted for the cathode.
 筒状空間37のサイズに合わせた柱状の電極蓋39は、電極本体32と結合して内部空間37を密封する。電極支持棒40は電極蓋39に連結固定されており、電極蓋39を介して陽極30を保持している。 A columnar electrode lid 39 that matches the size of the cylindrical space 37 is coupled to the electrode body 32 to seal the internal space 37. The electrode support bar 40 is connected and fixed to the electrode lid 39 and holds the anode 30 via the electrode lid 39.
 電極本体32、電極蓋39、電極支持棒40は、タングステン(W)によって構成される。一方、陽極30内部で電極軸に沿って延在する炭素繊維バルク50は、上述したように、高密度に炭素繊維38が束状の塊となった伝熱体であり、上述した製造方法に従って成形されている。 The electrode body 32, the electrode lid 39, and the electrode support rod 40 are made of tungsten (W). On the other hand, the carbon fiber bulk 50 extending along the electrode axis inside the anode 30 is a heat transfer body in which the carbon fibers 38 are bundled in a high density as described above, and according to the manufacturing method described above. Molded.
 炭素繊維バルク50の両端面は平滑であり、電極蓋39と筒状空間37の底面両方とも密着し、電極先端部32Sと繋がっている。したがって、放電中に電極先端部32Sが受ける陰極(図示せず)からの電子との衝突によって生じる熱は炭素繊維バルク50によって電極支持棒側へ輸送される。 Both end surfaces of the carbon fiber bulk 50 are smooth, and both the electrode lid 39 and the bottom surface of the cylindrical space 37 are in close contact with each other and connected to the electrode tip portion 32S. Accordingly, heat generated by collision with electrons from the cathode (not shown) received by the electrode tip 32S during discharge is transported to the electrode support rod side by the carbon fiber bulk 50.
 これにより、電極先端部32Sが局所的に過熱することなく、陽極30の温度が全体的に均一化される。その結果、電極先端部32Sの溶融、蒸発によって失透し、発光効率が低下するのを防ぎ、電極消耗を抑えることができる。また、好適な導電性をもつため、入力電力が大きくなって電流量が増大しても、放電に影響しない。さらに、炭素繊維バルク50と電極内空間との間に隙間が存在するため、径方向、斜め方向に関しても放熱性に優れた構造となっている。 Thereby, the temperature of the anode 30 is made uniform as a whole without locally heating the electrode tip 32S. As a result, it is possible to prevent devitrification due to melting and evaporation of the electrode tip portion 32S, and to reduce the light emission efficiency, and to suppress electrode consumption. Moreover, since it has suitable electroconductivity, even if input electric power becomes large and an electric current amount increases, it does not affect discharge. Furthermore, since there is a gap between the carbon fiber bulk 50 and the electrode internal space, the structure has excellent heat dissipation even in the radial direction and the oblique direction.
 このように第2の実施形態によれば、長繊維である炭素繊維を束状にして管状部材内の軸方向に揃えて充填し、管状部材を縮径させる。そして、炭素繊維束の一方の端部100Tを熱硬化樹脂Fの含まれる溶液400’内に浸し、熱硬化樹脂Fを炭素繊維束100内に含浸させる。その後、熱硬化処理した後に炭化処理を施し、炭素繊維バルク100’を生成する。 Thus, according to the second embodiment, carbon fibers that are long fibers are bundled and filled in the axial direction in the tubular member to reduce the diameter of the tubular member. Then, one end portion 100 </ b> T of the carbon fiber bundle is immersed in a solution 400 ′ containing the thermosetting resin F, and the carbon fiber bundle 100 is impregnated with the thermosetting resin F. Then, after carbonizing, the carbon fiber bulk 100 'is produced.
 炭素繊維束の充填した筒状部材を縮径して充填率を向上させ、炭素繊維束の一方の端部側から熱硬化性樹脂を全体へ含浸させることにより、わずかな炭素繊維の隙間に炭素が付着し、さらには束表面にまで露出するほど多くの炭素が付着する。その結果、高密度の炭素繊維束が強固な塊として成形される。そして、繊維長さ方向に極めて優れた熱伝導性をもつことができる。 The cylindrical member filled with the carbon fiber bundle is reduced in diameter to improve the filling rate, and the entire portion is impregnated with the thermosetting resin from one end side of the carbon fiber bundle, so that a slight carbon fiber gap is filled with carbon. As a result, a large amount of carbon adheres to the surface of the bundle. As a result, a high-density carbon fiber bundle is formed as a strong lump. And it can have very excellent thermal conductivity in the fiber length direction.
 特に、炭素繊維束が筒状部材内で充填されるとき、その充填率が75%以上であるため、熱硬化処理を行ったときに熱伝導率の異方性を容易に確保することができるのに加え、毛細管現象による熱硬化樹脂の浸透が容易となる。 In particular, when the carbon fiber bundle is filled in the cylindrical member, the filling rate is 75% or more, so that the thermal conductivity anisotropy can be easily ensured when the thermosetting treatment is performed. In addition, the penetration of the thermosetting resin by capillary action is facilitated.
 さらに、筒状部材内で炭素繊維間の空隙部分に対し、70~80%の領域で熱硬化樹脂を含浸させることにより、炭化処理後の炭素の空隙部分に占める割合が40~90%となり、炭素繊維バルクがより強固に一体的構造となる。炭素が90%以上の場合、炭化処理のときに炭素繊維バルクが収縮するが、このとき歪が生じやすくなって、クラックが発生する恐れがある。熱硬化性樹脂の含浸程度を調整することにより、これを防ぐことができる。 Further, by impregnating the thermosetting resin in a region of 70 to 80% with respect to the void portion between the carbon fibers in the cylindrical member, the proportion of carbon after the carbonization treatment becomes 40 to 90%, The carbon fiber bulk is more firmly integrated. When the carbon content is 90% or more, the carbon fiber bulk shrinks during the carbonization treatment, but at this time, distortion tends to occur and cracks may occur. This can be prevented by adjusting the degree of impregnation of the thermosetting resin.
 また、炭素繊維を充填させた後に引き伸ばし、すなわち縮径を行うことにより、引き伸ばし前の段階では比較的多くの炭素繊維間で隙間があったものが、炭素繊維が密接した状態で充填される。その結果、炭素繊維自体の熱伝導性、熱拡散性を損なうことなく、バルク内部の軸方向長さ全体に沿って優れた熱伝導性、熱拡散性をもつことになる。 In addition, when carbon fibers are filled and then stretched, that is, when the diameter is reduced, a relatively large number of gaps between carbon fibers are filled in a state in which carbon fibers are in close contact before stretching. As a result, it has excellent thermal conductivity and thermal diffusivity along the entire axial length inside the bulk without impairing the thermal conductivity and thermal diffusibility of the carbon fiber itself.
 なお、上記炭素繊維バルクの製造方法に関しては、スエージング加工せずに筒状部材内の炭素繊維束に熱硬化性樹脂を含浸させてもよい。さらには、炭素繊維束を筒状部材に充填させず、それ以外の構成で炭素繊維束を一体的に保持し、熱硬化性樹脂を一方の端部から浸透させてもよい。また、筒状部材の一方の端部を溶液に浸す以外の方法によって含浸させてもよい。 In addition, regarding the manufacturing method of the said carbon fiber bulk, you may impregnate the thermosetting resin in the carbon fiber bundle in a cylindrical member, without performing a swaging process. Furthermore, the carbon fiber bundle may not be filled into the cylindrical member, but the carbon fiber bundle may be integrally held with other configurations, and the thermosetting resin may be permeated from one end. Moreover, you may make it impregnate by methods other than immersing one edge part of a cylindrical member in a solution.
 以上、第1の実施形態、第2の実施形態について説明したが、本発明は、このような実施形態に限定されるものではない。第1の実施形態、第2の実施形態によって説明された本発明は、以下のような課題に着目し、従来にはない製造方法によって優れた炭素繊維充填バルクを実現している。 The first embodiment and the second embodiment have been described above, but the present invention is not limited to such an embodiment. The present invention described in the first embodiment and the second embodiment pays attention to the following problems and realizes an excellent carbon fiber-filled bulk by an unprecedented manufacturing method.
 まず、第1の実施形態に関する本発明について説明する。 First, the present invention relating to the first embodiment will be described.
 従来、炭素繊維を筒状部材に充填させた成形体は、機械的強度、吸着性などを考慮した成形体として構成されている。しかしながら、これらの炭素繊維充填バルクは、直接的に外力が働く電線、動力伝達シャフト、あるいは、外気を吸入させる吸着装置といった製品を前提とした構造であり、これら製品は、良好なフレキシビリティ、あるいは外気流入が必然的である。したがって、炭素繊維の充填に関しても、繊維間にある程度の隙間、空隙を設けた構成になっている。 Conventionally, a molded body in which a cylindrical member is filled with carbon fiber is configured as a molded body in consideration of mechanical strength, adsorptivity, and the like. However, these carbon fiber-filled bulks are structured on the premise of products such as electric wires with direct external force, power transmission shafts, or adsorption devices that suck in outside air, and these products have good flexibility or Inflow of outside air is inevitable. Therefore, the carbon fiber is filled with a certain amount of gaps and gaps between the fibers.
 一方、炭素繊維は高温(約3000℃)で黒鉛化処理されていることから、熱伝導性、熱拡散(温度拡散)性が優れており、高温状態になる製品に炭素繊維充填バルクを使用することが考えられる。例えば、ショートアーク型放電ランプにおいては、良好なランプ始動性を確保するため電極を早期に安定点灯状態まで加熱する必要がある一方、ランプ点灯中高温になる電極(特に電極先端部)の熱放出が必要であり、熱伝導性等の優れた素材による電極が求められる。 On the other hand, carbon fiber is graphitized at a high temperature (about 3000 ° C), so it has excellent thermal conductivity and thermal diffusion (temperature diffusion) properties, and uses carbon fiber-filled bulk for products that reach high temperatures. It is possible. For example, in a short arc type discharge lamp, it is necessary to heat the electrode to a stable lighting state early in order to ensure good lamp startability, while heat is released from the electrode (particularly the electrode tip) that becomes hot during lamp lighting. Therefore, an electrode made of a material having excellent thermal conductivity is required.
 しかしながら、このような製品に炭素繊維充填バルクを適用しようとしても、炭素繊維の熱伝導性、熱拡散性を充分に引き出すようなバルク製造方法が従来確立していないため、熱に関する優れた機能性をもつ炭素繊維充填バルクを成形することができない。 However, even when trying to apply carbon fiber-filled bulk to such products, no bulk manufacturing method has been established so far that can fully exploit the thermal conductivity and thermal diffusivity of carbon fiber. It is not possible to mold a carbon fiber filled bulk with
 本発明は、炭素繊維充填バルクの製造方法であり、従来にない高密度で炭素繊維を充填させたバルクを提供する製造方法であって、充填工程と、充填された炭素繊維をさらに高密度化させる(充填率を向上させる)工程を含む。充填工程では、筒状部材に、炭素繊維を軸方向に揃えて充填する。そして、高密度化(高充填率化)工程では、炭素繊維を充填した筒状部材を引き伸ばして縮径させる。 The present invention is a method for producing a carbon fiber-filled bulk, which is a production method for providing a bulk filled with carbon fibers at an unprecedented high density, further comprising a filling step and further densifying the filled carbon fibers. Including a step of improving the filling rate. In the filling step, the cylindrical member is filled with carbon fibers aligned in the axial direction. In the densification (high filling rate) step, the cylindrical member filled with carbon fiber is stretched to reduce the diameter.
 本発明では、充填工程によってすでに内部が炭素繊維に埋め尽くされた筒状部材に対し、引き伸ばしという、従来のバルク成形では機能性損失の観点から採りえない加工を行うことによって、管状部材を軸方向に延伸させて細径化し、さらなる高密度な充填状態を筒状部材内部に作り出している。これにより、バルクの内部密度は炭素繊維に極限まで近付き、炭素繊維間の隙間がほとんどなくなる。 In the present invention, the tubular member whose inside is already filled with carbon fibers by the filling step is processed by stretching, which is a process that cannot be taken from the viewpoint of loss of functionality in the conventional bulk molding, so that the tubular member is Stretching in the direction to reduce the diameter, creating a higher density filling state inside the cylindrical member. Thereby, the internal density of the bulk approaches the carbon fiber to the limit, and there are almost no gaps between the carbon fibers.
 一般的に、熱伝導率は、熱拡散率と比熱容量と比重とを乗算することで定まる。本願発明のような高密度で圧接した状態(圧密状態)の炭素繊維充填構造によれば、炭素繊維が束状に充填されても、炭素繊維本来の熱伝導性が損なわれることなくそのままバルクにおいて良好な熱輸送能力が機能する。そればかりか、本願発明のように筒状部材の引き伸ばし-縮径によって高密度化を実現させることにより、バルク単体としての軸方向に沿った熱伝導率がより一層高められることになり、バルクの軸方向に沿った熱輸送能力が有効に活用され、熱伝導性に優れたバルクを成形することができる。 Generally, thermal conductivity is determined by multiplying thermal diffusivity, specific heat capacity and specific gravity. According to the carbon fiber filling structure in a state of being pressed at high density (consolidation state) as in the present invention, even if the carbon fibers are packed in a bundle, the original thermal conductivity of the carbon fibers is not impaired in the bulk. Good heat transport capability works. In addition, by realizing higher density by stretching and shrinking the cylindrical member as in the present invention, the thermal conductivity along the axial direction as a single bulk is further increased, The heat transport capability along the axial direction is effectively utilized, and a bulk having excellent thermal conductivity can be formed.
 また、引き伸ばしによって筒状部材を縮径させるため、筒状部材内部の炭素繊維は従来の炭素繊維充填バルクと比べて、より一体的で密接な状態で収容されるとともに、軸方向に関して圧密充填の程度が均一化されており、どの断面においても充填率がほぼ等しい。 Moreover, in order to reduce the diameter of the tubular member by stretching, the carbon fiber inside the tubular member is accommodated in a more integrated and close state than the conventional carbon fiber-filled bulk, and is compactly filled in the axial direction. The degree is uniform, and the filling rate is almost equal in any cross section.
 このように、従来にはない高密度、高充填率で炭素繊維を充填化することにより、熱伝導性、熱容量、熱拡散など熱に関する機能性が優れたバルクを成形することができる。その一方、炭素繊維としての高強度、電気伝導性といった従来の機能も十分に備えており、複雑な構造体、金属材料を組み合わせたアッセンブリーなどに組み込むことが可能である。特に、炭素繊維はタングステンなどの金属に比べて比重が小さいため、体積効率の優れた(より細径で)熱輸送能力のあるバルクを成形することが可能である。 Thus, by filling the carbon fiber with a high density and a high filling rate, which is not conventional, a bulk having excellent heat-related functionalities such as thermal conductivity, heat capacity, and thermal diffusion can be formed. On the other hand, conventional functions such as high strength and electrical conductivity as a carbon fiber are sufficiently provided, and can be incorporated into a complex structure, an assembly combining metal materials, and the like. In particular, since carbon fiber has a lower specific gravity than metals such as tungsten, it is possible to form a bulk having a high volumetric efficiency (with a smaller diameter) and a heat transport capability.
 このような高密度充填を実現させた炭素繊維充填バルクは、様々な製品に適用可能であり、電気伝導性ともに耐熱性、熱伝導性といった熱に関する機能性が重要となる製品に使用することが可能である。例えば、炭素繊維充填バルクは、ショートアーク型放電ランプなど放電ランプの電極本体もしくはその一部として構成することが可能である。また、炭素繊維充填バルクは、大電流を供給する電線にも利用可能であり、電力の発熱損の影響を抑えることができる。あるいは、ヒートパイプなどの熱伝導部材としても使用可能である。 Carbon fiber filled bulk that realizes such high-density filling can be applied to various products, and it can be used for products in which heat-related functionality such as heat resistance and heat conductivity is important as well as electrical conductivity. Is possible. For example, the carbon fiber filled bulk can be configured as an electrode body of a discharge lamp such as a short arc type discharge lamp or a part thereof. In addition, the carbon fiber-filled bulk can be used for electric wires that supply a large current, and the influence of heat loss due to electric power can be suppressed. Alternatively, it can be used as a heat conducting member such as a heat pipe.
 炭素繊維充填工程においては、様々な充填方法を適用することが可能であり、筒状部材が充填工程において塑性変形させる力をできるだけ加えない程度において、筒状部材内部空間にできるだけ隙間なく炭素繊維を埋め尽くすように挿入させればよい。手作業によって炭素繊維を充填してもよく、あるいは、プレス機などの機械を使って炭素繊維を充填させてもよい。また、熱伝導率を高める、あるいは他の部材との結合等を考慮し、炭素繊維の少なくとも一方の端面が筒状部材から突出するように、充填処理を行ってもよい。 In the carbon fiber filling step, various filling methods can be applied. To the extent that the cylindrical member does not apply as much force as possible to plastically deform in the filling step, the carbon fiber is filled in the inner space of the cylindrical member with as little gap as possible. Insert it so that it fills up. The carbon fiber may be filled manually, or the carbon fiber may be filled using a machine such as a press. Further, in consideration of bonding with other members or the like, the filling process may be performed so that at least one end face of the carbon fiber protrudes from the tubular member.
 筒状部材を引き伸ばして縮径する工程では、金属などで構成される塑性の筒状部材を安定して縮径させることを考慮し、スエージング(swaging)加工を施すのが望ましい。スエージング加工によって、筒状部材が均一な肉厚で縮径し、軸方向に沿って炭素充填率が均一なバルクを成形することが可能となる。また、スエージング加工後に熱処理することで、炭素繊維の機能性を向上させることができる。 In the step of expanding and reducing the diameter of the cylindrical member, it is desirable to perform swaging processing in consideration of stably reducing the diameter of the plastic cylindrical member made of metal or the like. By swaging, the cylindrical member can be reduced in diameter with a uniform thickness, and a bulk with a uniform carbon filling rate can be formed along the axial direction. Moreover, the functionality of the carbon fiber can be improved by heat treatment after swaging.
 筒状部材については、例えばパイプなどの中空状、管状部材が適用可能であり、特に、スエージング工程のときに安定して塑性変形する金属パイプなどを適用するのがよい。炭素繊維の構成も様々な態様の炭素繊維を充填させることが可能であり、手作業で充填させる場合には、ある程度の本数(数千~数万本)の長炭素繊維フィラメントから成るヤーンを充填させてもよい。 As the cylindrical member, for example, a hollow or tubular member such as a pipe can be applied, and in particular, a metal pipe that is stably plastically deformed during the swaging process is preferably applied. Carbon fibers can be filled with various forms of carbon fiber, and when manually filled, yarns composed of a certain number (thousands to tens of thousands) of long carbon fiber filaments are filled. You may let them.
 手作業、あるいは圧入プレスなどの機械加工によって充填したとき、そのときの充填率(体積率)には限度があり、スエージング工程前の充填率は、例えばおよそ75パーセント以下である。高密度充填を実現させるためには、炭素繊維の充填率が少なくとも85パーセント以上になるように、引き伸ばすのがよい。あるいは、充填された複数の炭素繊維の少なくとも一部においてその断面形状が弾性変形、あるいは塑性変形するように、筒状部材を引き伸ばして縮径させることによっても、同等の熱輸送能力の高いバルクを成形することができる。特に、90パーセント以上の充填率によって、炭素繊維間の隙間を極力排した高密度炭素繊維充填構造が実現される。 When filling is performed manually or by machining such as a press-fitting press, the filling rate (volume ratio) at that time is limited, and the filling rate before the swaging step is, for example, approximately 75% or less. In order to achieve high density filling, it is preferable to stretch the carbon fiber so that the filling rate is at least 85 percent. Alternatively, the bulk having the same high heat transport capability can be obtained by stretching and reducing the diameter of the cylindrical member so that the cross-sectional shape of the plurality of filled carbon fibers is elastically deformed or plastically deformed. Can be molded. In particular, a high-density carbon fiber filling structure that eliminates gaps between carbon fibers as much as possible is realized with a filling rate of 90 percent or more.
 高密度充填を実現するためには、スエージング工程において適度な縮径を行うのがよい。縮径の程度については、筒状部材の材料特性、炭素繊維の強度、サイズなどに基づいて定められる。例えば、筒状部材径を1/4~3/4の範囲で縮径することによって、高密度充填できる。特に、筒状部材径を3/4ほど縮径することによって、95パーセント近い充填率のバルクを成形することが可能となる。これは、断面円状炭素繊維を正方格子配列させた場合の理論密度78.6パーセントよりも大きな密度になる。 In order to achieve high-density filling, it is preferable to reduce the diameter appropriately in the swaging process. The degree of diameter reduction is determined based on the material characteristics of the cylindrical member, the strength of the carbon fiber, the size, and the like. For example, high-density filling can be achieved by reducing the diameter of the cylindrical member within a range of 1/4 to 3/4. In particular, by reducing the diameter of the cylindrical member by about 3/4, it is possible to mold a bulk having a filling rate of nearly 95%. This is a density higher than the theoretical density of 78.6% when the cross-section circular carbon fibers are arranged in a square lattice.
 ある部材間にバルクを接続させ、熱伝導機能を発揮させる場合、炭素繊維端面を全体的に接触させるのが望ましい。そのため、圧密充填された炭素繊維の少なくとも一方の端面が平滑となるように、炭素繊維を充填させるのがよい。ただし、ここでの平滑は、一般的な繊維端面において必要とされる平滑性を意味し、例えば、SEM観察などによっても、炭素繊維それぞれの端部がその軸方向に揃えられ、炭素繊維端面が全体的に平面を規定するほどの滑らかさをもつ。切断処理は、延伸処理後であって熱処理前あるいは熱処理後に行えばよい。 When connecting a bulk between certain members and exerting a heat conduction function, it is desirable that the carbon fiber end faces are brought into total contact. For this reason, the carbon fiber is preferably filled so that at least one end face of the carbon fiber that has been compactly filled is smooth. However, the smoothness here means the smoothness required for a general fiber end face. For example, even by SEM observation, the ends of the carbon fibers are aligned in the axial direction, and the carbon fiber end face is Smooth enough to define the plane as a whole. The cutting process may be performed after the stretching process and before or after the heat treatment.
 本発明の炭素繊維充填バルクは、引き伸ばされて縮径されている筒状部材と、筒状部材内部に高密度に充填された炭素繊維とを備え、炭素繊維が、軸方向に揃って充填されている。そして、炭素繊維の少なくとも一部においてその断面形状が変形するように、炭素繊維が筒状部材内に充填されていることを特徴とする。これにより、熱に関する優れた機能性をもたせることができる。一方、同等の熱に関する機能性をもつ本発明の炭素繊維充填バルクは、炭素繊維の少なくとも一部においてその断面形状が変形するように炭素繊維が筒状部材内に充填されていることを特徴とする。この充填率は、炭素繊維充填後に引き伸ばされて縮径される筒状部材によって実現可能な充填率である。 The carbon fiber-filled bulk of the present invention includes a cylindrical member that is stretched and reduced in diameter, and a carbon fiber that is densely filled inside the cylindrical member, and the carbon fibers are filled in the axial direction. ing. And carbon fiber is filled in the cylindrical member so that the cross-sectional shape may deform | transform in at least one part of carbon fiber, It is characterized by the above-mentioned. Thereby, the outstanding functionality regarding a heat | fever can be given. On the other hand, the carbon fiber-filled bulk of the present invention having the same heat-related functionality is characterized in that carbon fibers are filled in a cylindrical member so that the cross-sectional shape of at least a part of the carbon fibers is deformed. To do. This filling rate is a filling rate that can be realized by a cylindrical member that is stretched and reduced in diameter after filling with carbon fibers.
 次に、第2の実施形態に関する本発明について説明する。 Next, the present invention relating to the second embodiment will be described.
 従来の炭素繊維束の製造方法では、高密度の炭素繊維束を製造することができず、十分な熱伝導性もつ炭素繊維束にはならない。特に、C/Cコンポジットの炭素繊維材料に依存しない高密度の炭素繊維束を得ることが求められる。 The conventional carbon fiber bundle manufacturing method cannot manufacture a high-density carbon fiber bundle and does not provide a carbon fiber bundle with sufficient thermal conductivity. In particular, it is required to obtain a high-density carbon fiber bundle that does not depend on the carbon fiber material of the C / C composite.
 本発明は、高密度で繊維配列方向に沿った熱伝導性が非常に優れた一体的/一塊の炭素繊維バルクを提供する製造方法であり、長繊維である炭素繊維を束状にし、炭素繊維束の一方の端部側を熱硬化性樹脂の含まれる溶液に浸し、繊維長さ方向に沿って熱硬化性樹脂を含浸させた炭素繊維束を、熱処理によって硬化させる。熱硬化処理の後、不純物除去処理を行うことも可能である。含浸、熱硬化処理を(あるいは不純物除去処理も含めて)複数回繰り返し行なうことが可能である。 The present invention is a manufacturing method for providing a single / bulk carbon fiber bulk having high density and excellent thermal conductivity along the fiber arrangement direction. The carbon fiber, which is a long fiber, is bundled to form a carbon fiber. One end side of the bundle is immersed in a solution containing a thermosetting resin, and the carbon fiber bundle impregnated with the thermosetting resin along the fiber length direction is cured by heat treatment. It is also possible to perform an impurity removal treatment after the thermosetting treatment. Impregnation and thermosetting treatment (or including impurity removal treatment) can be repeated a plurality of times.
 炭素繊維束の集束性、高密度を向上させることを考慮すると、熱処理による硬化後、炭素繊維束に炭化処理を施すことが可能である。この場合、熱硬化処理の後、炭素繊維束を筒状部材から取り出し、炭化処理をしてもよい。また、浸漬の工程では、炭素繊維束を、軸方向に揃えて筒状部材に充填させ、充填後に炭素繊維バルクの端部を溶液内に浸すことが可能である。 In consideration of improving the convergence and high density of the carbon fiber bundle, it is possible to carbonize the carbon fiber bundle after curing by heat treatment. In this case, after the thermosetting treatment, the carbon fiber bundle may be taken out from the tubular member and carbonized. Further, in the dipping step, the carbon fiber bundle can be filled in the cylindrical member in the axial direction, and the end of the carbon fiber bulk can be dipped in the solution after filling.
 熱伝導率の繊維長さ方向に沿った異方性を確保することを考慮すると、炭素繊維束を、充填率75%以上で筒状部材に充填させるのが望ましい。また、炭化処理によって生成される異方性のない炭素の残空隙部分の含有率を40~90%にするのが望ましく、そのためには、充填された炭素繊維束の残空隙部分の70~80%の部分において熱硬化性樹脂が含浸されるように、炭素繊維束を浸すのがよい。 In consideration of securing the anisotropy of the thermal conductivity along the fiber length direction, it is desirable to fill the cylindrical member with the carbon fiber bundle at a filling rate of 75% or more. Further, it is desirable that the content of the remaining void portion of the carbon having no anisotropy generated by the carbonization treatment be 40 to 90%. For this purpose, 70 to 80 of the remaining void portion of the filled carbon fiber bundle is preferable. It is preferable to immerse the carbon fiber bundle so that the thermosetting resin is impregnated in the% portion.
 熱硬化樹脂を含浸させて炭素繊維間にできるだけ樹脂を含浸させるため、炭素繊維束を充填した筒状部材を、引き伸ばして縮径させるのがよい。 In order to impregnate the carbon fiber as much as possible by impregnating the thermosetting resin, it is preferable to stretch and reduce the diameter of the cylindrical member filled with the carbon fiber bundle.
 本発明の他の局面における炭素繊維バルクは、長繊維であって異方性をもつ炭素繊維が束状になって一体的に形成されており、炭素を含む熱硬化性樹脂を含浸させたことなどによって、炭素繊維束内部に炭素が炭素繊維に付着し、炭素繊維束内における炭素繊維の充填率が75%以上である。 The carbon fiber bulk in another aspect of the present invention is formed by integrally forming a bundle of carbon fibers having long fibers and anisotropy, and impregnated with a thermosetting resin containing carbon. For example, carbon adheres to the carbon fiber inside the carbon fiber bundle, and the filling rate of the carbon fiber in the carbon fiber bundle is 75% or more.
 これによって、高密度で集束性が強く、繊維方向に熱伝導性に関して非常に大きな異方性をもつ炭素繊維バルクが生成される。ただし、ここでの充填率は、所定の断面における炭素繊維周縁によって規定される断面積に対する炭素繊維の占める断面積を表す。 This creates a carbon fiber bulk with high density, strong convergence, and very large anisotropy with respect to thermal conductivity in the fiber direction. However, the filling rate here represents the cross-sectional area occupied by the carbon fiber with respect to the cross-sectional area defined by the carbon fiber periphery in the predetermined cross-section.
 特に、炭素繊維束の一方の端部から熱硬化性樹脂を含浸させることによって、高密度の状態を維持したまま炭素繊維間に多くの炭素が付着する。この場合、炭素繊維束の一方の端面付近における炭素の含有割合が、他方の端面付近における炭素の含有割合よりも低い。炭素繊維バルクの集束性を高める構成として、例えば、炭素繊維束以外の領域における炭素の占有率が、40~90%の範囲であるのがよい。 Particularly, by impregnating the thermosetting resin from one end of the carbon fiber bundle, a large amount of carbon adheres between the carbon fibers while maintaining a high density state. In this case, the carbon content in the vicinity of one end face of the carbon fiber bundle is lower than the carbon content in the vicinity of the other end face. As a configuration for improving the convergence of the carbon fiber bulk, for example, the occupation ratio of carbon in a region other than the carbon fiber bundle is preferably in the range of 40 to 90%.
 また、炭素繊維束の長さ方向の熱伝導度は、長さ方向に垂直な方向の熱伝導度の5倍以上である。この異方性の特性により、すぐれた熱伝導を実現させることができる。 Also, the thermal conductivity in the length direction of the carbon fiber bundle is 5 times or more of the thermal conductivity in the direction perpendicular to the length direction. Due to this anisotropic characteristic, excellent heat conduction can be realized.
 以下では、図5~12を用いて、本発明の実施例について説明する。第1の実施例は、第1の実施形態に対応する実施例であり、第2の実施例は、第2の実施形態に対応する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. The first example corresponds to the first embodiment, and the second example corresponds to the second embodiment.
 まず、図5~8を用いて、第1の実施例について説明する。 First, the first embodiment will be described with reference to FIGS.
 第1の実施例では、第1の実施形態と同様の製造方法によって高密度充填炭素繊維充填バルクを製造し、充填率、熱伝導率、比重を測定し、参考となる金属と比較した。また、熱処理前と熱処理後において、上記物理量をそれぞれ測定した。ここでは、炭素繊維の種類に応じて、2つの高密度炭素繊維充填バルク(以下、サンプル1、サンプル2という)を製造した。 In the first example, a high-density-filled carbon fiber-filled bulk was produced by the same production method as in the first embodiment, and the filling rate, thermal conductivity, and specific gravity were measured and compared with a reference metal. The physical quantities were measured before and after the heat treatment. Here, two high-density carbon fiber-filled bulks (hereinafter referred to as sample 1 and sample 2) were manufactured according to the type of carbon fiber.
 筒状部材については、金属材料としてタンタル(Ta)板材をサンプル1、2のために用意し、タンタル板材を丸めて溶接することで金属パイプを成形した。このとき、つなぎ目が軸方向に沿うように溶接した。サンプル1、2のために用意された金属パイプは、直径30mm、長さ200mm、肉厚1.0mmとなるように成形された。 For the cylindrical member, a tantalum (Ta) plate material was prepared as a metal material for Samples 1 and 2, and the tantalum plate material was rolled and welded to form a metal pipe. At this time, welding was performed so that the joint line was along the axial direction. The metal pipes prepared for Samples 1 and 2 were formed to have a diameter of 30 mm, a length of 200 mm, and a wall thickness of 1.0 mm.
 炭素繊維(CF)については、サンプル1用にGRANOC(登録商標)XN-90-60S(日本グラファイトファイバー(株)製)が使用され、炭素繊維フィラメント6000本からなるヤーン状繊維を多数用意した。このヤーン状炭素繊維の熱伝導率は500W/m・K、炭素繊維密度は2.19g/cmである。サンプル2では、ダイアリード(登録商標)K13D2U(三菱樹脂(株)製)が使用され、炭素繊維フィラメント2000本からなるヤーン状繊維を多数用意した。熱伝導率は800W/m・K、炭素繊維密度は2.21g/cmである。 As for carbon fiber (CF), GRANOC (registered trademark) XN-90-60S (manufactured by Nippon Graphite Fiber Co., Ltd.) was used for sample 1, and many yarn-like fibers composed of 6000 carbon fiber filaments were prepared. The yarn-like carbon fiber has a thermal conductivity of 500 W / m · K and a carbon fiber density of 2.19 g / cm 3 . In sample 2, DIALEAD (registered trademark) K13D2U (manufactured by Mitsubishi Plastics, Inc.) was used, and a large number of yarn-like fibers composed of 2000 carbon fiber filaments were prepared. The thermal conductivity is 800 W / m · K, and the carbon fiber density is 2.21 g / cm 3 .
 まず、充填工程では、手作業によって炭素繊維ヤーンを軸方向に揃えながら金属パイプに挿入した。パイプ内部を、サンプル1については約530本、サンプル2については約1320本の炭素繊維ヤーンで埋め尽くした。いずれにおいても、炭素繊維ヤーンの端面がパイプから突出するように充填処理されている。 First, in the filling process, carbon fiber yarns were inserted into metal pipes while being aligned in the axial direction by hand. The interior of the pipe was filled with about 530 carbon fiber yarns for sample 1 and about 1320 carbon fiber yarns for sample 2. In either case, the end face of the carbon fiber yarn is filled so as to protrude from the pipe.
 図5は、サンプル1の炭素繊維ヤーンを充填させた金属パイプを斜め方向から撮影した写真を示した図である。図6は、光学顕微鏡を使って金属パイプを炭素繊維軸方向に切断したときのサンプル1の炭素繊維が軸方向に揃った状態を撮影した写真を示した図である。図5、6から明らかなように、炭素繊維は金属パイプ内部に充填されており、軸方向に沿って揃えられている。サンプル2においても、同様に炭素繊維が充填されている。 FIG. 5 is a view showing a photograph of the metal pipe filled with the carbon fiber yarn of Sample 1 taken from an oblique direction. FIG. 6 is a view showing a photograph of a state in which the carbon fibers of Sample 1 are aligned in the axial direction when a metal pipe is cut in the carbon fiber axial direction using an optical microscope. As is apparent from FIGS. 5 and 6, the carbon fibers are filled inside the metal pipe and aligned along the axial direction. Sample 2 is similarly filled with carbon fibers.
 次に、炭素繊維が充填されたサンプル1、2用の金属パイプに対し、スエージング加工を施した。ここでは、円周状に配置した複数のハンマーダイス対を用いて金属パイプを引き抜き、外径20mmに縮径させた。そして、スエージング加工処理後、炭素繊維ヤーンの両端面を切断した。サンプル1については、旋盤を用いて炭素繊維を切断し、サンプル2については、炭素繊維端面平滑化のため、ファインカッターを用いて炭素繊維を切断した。 Next, swaging was applied to the metal pipes for Samples 1 and 2 filled with carbon fiber. Here, the metal pipe was drawn out using a plurality of hammer die pairs arranged circumferentially, and the diameter was reduced to 20 mm. Then, after the swaging process, both end faces of the carbon fiber yarn were cut. For sample 1, the carbon fiber was cut using a lathe, and for sample 2, the carbon fiber was cut using a fine cutter to smooth the carbon fiber end face.
 成形されたサンプル1の炭素繊維充填バルクにおける炭素繊維の体積は35.354cmとなり、炭素繊維密度は2.001g/cm、充填率は91.8パーセントとなった。一方、成形されたサンプル2の炭素繊維充填バルクにおける炭素繊維の体積は35.354cmとなり、炭素繊維密度は2.064g/cm、充填率は93.4パーセントとなった。以下の表1に示す。なお、ここでは炭素繊維切断面における炭素繊維密度および充填率を測定しているが、パイプ内部における炭素繊維の高集束性により、任意の炭素繊維断面における充填状態も炭素繊維切断面と実質的に等しいものとみなせる。 The volume of the carbon fibers in the carbon fiber filled bulk molding samples 1 35.354Cm 3, and the carbon fiber density of 2.001g / cm 3, the filling rate was 91.8 percent. On the other hand, next 35.354Cm 3 is the volume of the carbon fibers in the carbon fiber filled bulk molded samples 2, carbon fiber density of 2.064g / cm 3, it was filling ratio 93.4 percent. It is shown in Table 1 below. Here, the carbon fiber density and the filling rate at the carbon fiber cut surface are measured. However, due to the high convergence of the carbon fibers inside the pipe, the filling state at any carbon fiber cross section is substantially the same as the carbon fiber cut surface. Can be considered equal.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように炭素繊維が高密度充填されたバルクに対し、熱伝導率を測定した。熱伝導率測定では、炭素繊維切断面の中心部に対し、フラッシュ法、具体的にはナノフラッシュ(Nano Flash)法により熱伝導率を測定するとともに、比重を求めた。熱伝導率は、熱拡散率×密度×比熱容量の式に基づいて算出した。また、比重はアルキメデス法で求めた。 The thermal conductivity was measured for the bulk in which the carbon fibers were densely filled in this way. In the thermal conductivity measurement, the thermal conductivity was measured at the center of the cut surface of the carbon fiber by the flash method, specifically, the nano flash method, and the specific gravity was obtained. The thermal conductivity was calculated based on the formula of thermal diffusivity × density × specific heat capacity. The specific gravity was determined by the Archimedes method.
 なお、熱伝導率算出の際に用いられる比熱容量は、比較法に基づき計算で求めた。このとき比較する標準試料は、同じ炭素元素からなるPoco Graphiteを使用した。その結果、比熱容量は、サンプル1、2ともに0.49J・K/gであった。また、熱伝導率算出に用いられる熱拡散率(温度拡散率)は、筒体切断面に赤外線を照射して赤外線の温度時間変化をサンプル1、2についてそれぞれ測定し、以下の式に基づいて算出した。
 
       α=0.1388×D/T         ・・・・・(1)
 
ただし、αは熱拡散率(m/s)、Dは充填炭素繊維の断面直径(mm)を表す。また、Tは、温度最大値の1/2に到達するまでの時間(s)を表す。
In addition, the specific heat capacity used in calculating the thermal conductivity was obtained by calculation based on a comparative method. As a standard sample to be compared at this time, Poco Graphite made of the same carbon element was used. As a result, the specific heat capacity was 0.49 J · K / g for both samples 1 and 2. Further, the thermal diffusivity (temperature diffusivity) used for calculating the thermal conductivity is determined by irradiating the cut surface of the cylinder with infrared rays and measuring the temperature change of the infrared rays with respect to samples 1 and 2, respectively. Calculated.

α = 0.1388 × D 2 / T (1)

However, (alpha) is a thermal diffusivity (m < 2 > / s) and D represents the cross-sectional diameter (mm) of a filling carbon fiber. T represents time (s) required to reach a half of the maximum temperature value.
 熱伝導率測定の結果、サンプル1については、熱伝導率350.2W/m・Kとなった。一方、炭素繊維端面が平滑になっているサンプル2については、熱伝導率678.8W/m・Kとなった(表1参照)。 As a result of thermal conductivity measurement, Sample 1 has a thermal conductivity of 350.2 W / m · K. On the other hand, Sample 2 with a smooth end surface of carbon fiber had a thermal conductivity of 678.8 W / m · K (see Table 1).
 次に、サンプル1、2の高密度炭素繊維充填バルクに対して熱処理を施し、熱処理後の密度、充填率、熱伝導率を測定した。熱処理工程では、1800℃で1時間に渡る加熱を行った。その結果、サンプル1については、炭素繊維密度1.868g/cm、充填率85.7パーセント、熱伝導率294.3W/m・Kとなった。一方、サンプル2については、炭素繊維密度1.990g/cm、充填率90.1パーセント、熱伝導率800.8W/m・Kとなった(表1参照)。 Next, heat treatment was performed on the high-density carbon fiber-filled bulks of Samples 1 and 2, and the density, filling rate, and thermal conductivity after the heat treatment were measured. In the heat treatment step, heating was performed at 1800 ° C. for 1 hour. As a result, Sample 1 had a carbon fiber density of 1.868 g / cm 3 , a filling rate of 85.7%, and a thermal conductivity of 294.3 W / m · K. On the other hand, Sample 2 had a carbon fiber density of 1.990 g / cm 3 , a filling rate of 90.1%, and a thermal conductivity of 800.8 W / m · K (see Table 1).
 加熱前後の炭素繊維密度、熱伝導率の変化については、熱処理による収縮、ヤーン状炭素繊維ヤーンに含まれているサイジング材等の影響によるもと推定される。また、ヤーン状炭素繊維の種類の違い等により、その変化もサンプル1、2において相違する。しかしながら、熱処理後においても十分な充填率(85パーセント以上)、熱伝導率を維持している。特に、サンプル2では、熱処理後の熱伝導率が、ヤーン状炭素繊維の熱伝導率800W/m・Kとほぼ等しくなった。 The change in carbon fiber density and thermal conductivity before and after heating is estimated based on shrinkage due to heat treatment and the influence of sizing material contained in the yarn-like carbon fiber yarn. Moreover, the change also differs in the samples 1 and 2 by the difference in the kind of yarn-like carbon fiber, etc. However, a sufficient filling rate (85% or more) and thermal conductivity are maintained even after the heat treatment. In particular, in Sample 2, the thermal conductivity after the heat treatment was almost equal to the thermal conductivity of 800 W / m · K of the yarn-like carbon fiber.
 図7は、熱処理後のサンプル1の炭素繊維切断面における炭素繊維の高密度充填状態をSEM観察した写真を示す図である。ただし、ここでは炭素繊維端面の縁部分を観察している。 FIG. 7 is a view showing a photograph obtained by SEM observation of a high density filling state of carbon fibers on the cut surface of Sample 1 after heat treatment. However, the edge part of the carbon fiber end face is observed here.
 一方、図8は、熱処理後のサンプル2の炭素繊維切断面における炭素繊維の高密度充填状態をSEM観察した写真を示す図である。ただし、ここでは炭素繊維端面の縁近くの部分を観察している。 On the other hand, FIG. 8 is a view showing a photograph obtained by SEM observation of a high-density filling state of carbon fibers on the cut surface of Sample 2 after heat treatment. However, the part near the edge of the carbon fiber end face is observed here.
 図8から明らかなように、サンプル2における炭素繊維フィラメントは、互いに境界なく(隙間なく)密接しながら充填されている。また、計測された充填率は、理想的充填率、すなわち、断面円状の炭素繊維が最密で配列するときの充填率90.65パーセントを超えている。このことは、断面円状炭素繊維が弾性変形しながら圧密充填されていることを示している。 As is apparent from FIG. 8, the carbon fiber filaments in Sample 2 are packed in close contact with each other without any boundary (no gap). Further, the measured filling rate exceeds an ideal filling rate, that is, a filling rate of 90.65% when the carbon fibers having a circular cross section are arranged in a close-packed manner. This indicates that the cross-section circular carbon fiber is compactly packed while being elastically deformed.
 さらに、図7との比較で明らかなように、サンプル2の炭素繊維端面では、炭素繊維フィラメントが軸方向に揃っており、端面が平滑となって圧密充填されている。炭素繊維切断面全体が一平面を規定するように、繊維不揃い、あるいは歪みなく平らであることがわかる。 Further, as apparent from comparison with FIG. 7, the carbon fiber filaments of the sample 2 are aligned in the axial direction on the carbon fiber end surface, and the end surface is smooth and compactly packed. It can be seen that the entire carbon fiber cut surface defines a single plane and is uneven or flat without distortion.
 一方、図7に示すサンプル1では、切断器具がサンプル2と違うため、炭素繊維端面が一部不揃いとなっているが、これは旋盤での切断加工においては、炭素繊維が引き抜かれながら切断されることに原因している。しかしながら、充填率は理想的充填率を超えており、炭素繊維が互いに弾性変形しながら隙間なく密接して充填されていることは、図7からも明らかである。 On the other hand, in the sample 1 shown in FIG. 7, the cutting device is different from the sample 2, so that the carbon fiber end faces are partially irregular. In the cutting process with a lathe, the carbon fiber is cut while being drawn. It is caused by that. However, the filling rate exceeds the ideal filling rate, and it is clear from FIG. 7 that the carbon fibers are closely packed with no gap while elastically deforming each other.
 次に、測定した熱伝導率および比重を、高熱伝導性金属と比較した。ここでは、比較対象となる高熱伝導性金属として、高熱伝導性金属の銅(Cu)、高耐熱性金属のタングステン(W)を用いている。熱伝導率及び比重を比較した結果も、表1に示している。 Next, the measured thermal conductivity and specific gravity were compared with high thermal conductivity metals. Here, copper (Cu), which is a high heat conductive metal, and tungsten (W), which is a high heat resistance metal, are used as high heat conductive metals to be compared. The results of comparing the thermal conductivity and specific gravity are also shown in Table 1.
 表1から明らかなように、高密度充填させた金属パイプ内部の熱伝導性は、銅やWに比べて2倍から7倍程度優れていることが分かる。炭素繊維束は比重が銅の1/4であることを考えると、熱伝導性きわめて高いと言える。また、放電ランプの電極に使用される高融点金属の1つであるタングステン(W)の熱伝導率(174W/m・K)よりもはるかに大きな熱伝導率をもつ。特に、炭素繊維の比重はタングステンの比重の約1/9であることを考えると、体積効率はおよそ20倍になる。 As can be seen from Table 1, the thermal conductivity inside the metal pipe filled with high density is 2 to 7 times better than copper and W. Considering that the specific gravity of the carbon fiber bundle is 1/4 that of copper, it can be said that the heat conductivity is extremely high. Further, it has a thermal conductivity much higher than that of tungsten (W) (174 W / m · K), which is one of refractory metals used for electrodes of a discharge lamp. In particular, considering that the specific gravity of carbon fiber is about 1/9 that of tungsten, the volumetric efficiency is about 20 times.
 以上により、第1の実施例の炭素繊維充填バルクが、すぐれた熱伝導性、体積効率をもつことが確かめられた。 From the above, it was confirmed that the carbon fiber filled bulk of the first example had excellent thermal conductivity and volumetric efficiency.
 次に、図9~12を用いて、第2の実施例について説明する。 Next, a second embodiment will be described with reference to FIGS.
 本実施例では、第2の実施形態と同様の製造方法によって2つの高密度炭素繊維充バルク(以下、サンプル1、サンプル2という)を製造し、熱伝導率およびその異方性を測定した。 In this example, two high-density carbon fiber filled bulks (hereinafter referred to as Sample 1 and Sample 2) were manufactured by the same manufacturing method as in the second embodiment, and the thermal conductivity and its anisotropy were measured.
 筒状部材については、金属材料としてサンプル1にSUS板材、サンプル2にTaの板材を用意し、板材を丸めて溶接することで金属パイプを成形した。このとき、つなぎ目が軸方向に沿うように溶接した。サンプル1、2のために用意された金属パイプは、直径30mm、長さ200mm、肉厚1.0mmとなるように成形された。 For the cylindrical member, a SUS plate material was prepared for sample 1 as a metal material, and a Ta plate material was prepared for sample 2, and a metal pipe was formed by rolling and welding the plate material. At this time, welding was performed so that the joint line was along the axial direction. The metal pipes prepared for Samples 1 and 2 were formed to have a diameter of 30 mm, a length of 200 mm, and a wall thickness of 1.0 mm.
 炭素繊維(CF)については、サンプル1用にGRANOC(登録商標)XN-90-60S(日本グラファイトファイバー(株)製)が使用され、炭素繊維フィラメント6000本からなるヤーン状繊維を多数用意した。 For carbon fiber (CF), GRANOC (registered trademark) XN-90-60S (manufactured by Nippon Graphite Fiber Co., Ltd.) was used for sample 1, and a large number of yarn-like fibers composed of 6000 carbon fiber filaments were prepared.
 このヤーン状炭素繊維の熱伝導率は500W/m・K、炭素繊維密度は2.19g/cmある。サンプル2では、ダイアリード(登録商標)K13D2U(三菱樹脂(株)製)が使用され、炭素繊維フィラメント2000本からなるヤーン状繊維を多数用意した。熱伝導率は800W/m・K、炭素繊維密度は2.21g/cmである。 This yarn-like carbon fiber has a thermal conductivity of 500 W / m · K and a carbon fiber density of 2.19 g / cm 3 . In sample 2, DIALEAD (registered trademark) K13D2U (manufactured by Mitsubishi Plastics, Inc.) was used, and a large number of yarn-like fibers composed of 2000 carbon fiber filaments were prepared. The thermal conductivity is 800 W / m · K, and the carbon fiber density is 2.21 g / cm 3 .
 充填工程では、手作業によって炭素繊維ヤーンを軸方向に揃えながら金属パイプに挿入した。いずれにおいても、炭素繊維ヤーンの端面がパイプから突出するように充填処理されている。 In the filling process, carbon fiber yarns were inserted into metal pipes while being aligned in the axial direction by hand. In either case, the end face of the carbon fiber yarn is filled so as to protrude from the pipe.
 次に、炭素繊維が充填されたサンプル1、2用の金属パイプに対し、スエージング加工を施した。ここでは、円周状に配置した複数のハンマーダイス対を用いて金属パイプを引き抜き、外径20mmに縮径させた。 Next, swaging was applied to the metal pipes for Samples 1 and 2 filled with carbon fiber. Here, the metal pipe was drawn out using a plurality of hammer die pairs arranged circumferentially, and the diameter was reduced to 20 mm.
 そして、スエージング加工処理後、炭素繊維ヤーンの両端面を切断した。サンプル1、2とも切断は旋盤で切削し、フェノール樹脂浸漬面のヤーン1本1本を解けさせることによって、毛細管現象によるフェノール樹脂の含浸を効率的に行なった。 Then, after the swaging process, both end faces of the carbon fiber yarn were cut. Samples 1 and 2 were cut with a lathe, and each yarn on the surface immersed with phenol resin was unwound to efficiently impregnate the phenol resin by capillary action.
 その後、ノボラックタイプのフェノール樹脂が含まれる溶液を入れた容器を用意し、その中に金属パイプを立ててパイプ端面側を溶液に浸けた。そして、140℃による熱硬化処理および700℃による真空雰囲気下での不純物除去処理を行い、含浸から不純物除去処理までを1セットとして、2セット以上繰り返した。 After that, a container containing a solution containing a novolac type phenolic resin was prepared, a metal pipe was set up in the container, and the end face side of the pipe was immersed in the solution. Then, thermosetting treatment at 140 ° C. and impurity removal treatment at 700 ° C. in a vacuum atmosphere were performed, and from impregnation to impurity removal treatment as one set, two or more sets were repeated.
 サンプル1、サンプル2ともに、フェノール樹脂として大日本インキ化学工業(株)のIF-3300を使用した。残炭率は63%である。 Both Sample 1 and Sample 2 used IF-3300 from Dainippon Ink & Chemicals, Inc. as the phenol resin. The remaining coal rate is 63%.
 図9は、フェノール樹脂含浸後の炭素繊維束の断面を拡大顕微鏡で撮影した写真を示す図である。図9に示すように、フェノール樹脂が炭素繊維束内に含浸されていることがわかる。図9には、比較のため、フェノール樹脂が含まれていない炭素繊維束を示している。 FIG. 9 is a view showing a photograph of a cross section of the carbon fiber bundle after impregnation with the phenol resin, taken with an enlarged microscope. As shown in FIG. 9, it can be seen that the phenol resin is impregnated in the carbon fiber bundle. FIG. 9 shows a carbon fiber bundle not containing a phenol resin for comparison.
 そして、熱硬化処理(140℃)および不純物除去処理(1800~2000℃)による炭化処理を行った。成形された炭素繊維バルクについて、炭素の付着および熱伝導性について調べた。 Then, carbonization treatment was performed by heat curing treatment (140 ° C.) and impurity removal treatment (1800 to 2000 ° C.). The molded carbon fiber bulk was examined for carbon adhesion and thermal conductivity.
 図10は、炭化処理後の炭素繊維束の軸方向断面を電子顕微鏡で撮影した写真を示す図である。図10に示すように、炭素繊維表面には、フェノール樹脂の炭化処理により生成された炭素成分が付着していることがわかる。 FIG. 10 is a view showing a photograph of an axial cross section of the carbon fiber bundle after carbonization, taken with an electron microscope. As shown in FIG. 10, it can be seen that a carbon component generated by the carbonization treatment of the phenol resin is adhered to the surface of the carbon fiber.
 図11Aは、サンプル1における熱伝導性に関する異方性を示したグラフである。図11Bは、サンプル1における熱膨張率を示したグラフである。ここでは、炭素繊維長さ方向をa軸、その垂直方向(断面方向)をc軸としている。 FIG. 11A is a graph showing the anisotropy related to thermal conductivity in Sample 1. FIG. FIG. 11B is a graph showing the coefficient of thermal expansion in Sample 1. Here, the carbon fiber length direction is defined as a axis, and the vertical direction (cross-sectional direction) is defined as c axis.
 図11Aに示すように、温度変化によって熱伝導率は変化する。繊維方向の熱伝導率は、その垂直方向に比べて最大で約70倍である。放電ランプ使用時などの高温度状態であったとしても、繊維方向の熱伝導率は、その垂直方向に比べて、5倍以上、20倍以上となることが明らかである。 As shown in FIG. 11A, the thermal conductivity changes with temperature. The thermal conductivity in the fiber direction is up to about 70 times that in the vertical direction. Even in a high temperature state such as when a discharge lamp is used, it is clear that the thermal conductivity in the fiber direction is 5 times or more and 20 times or more compared to the vertical direction.
 図12は、サンプル1、2における熱伝導率を示した図である。図12から明らかなように、炭素繊維束の充填率を75%以上、80%以上にすることによって、高い熱伝導率を得ることができる。 FIG. 12 is a diagram showing the thermal conductivity of Samples 1 and 2. As can be seen from FIG. 12, a high thermal conductivity can be obtained by setting the filling rate of the carbon fiber bundle to 75% or more and 80% or more.
 以上により、第2の実施例の炭素繊維バルクがすぐれた熱伝導性をもつことが確かめられた。 From the above, it was confirmed that the carbon fiber bulk of the second example had excellent thermal conductivity.
 本発明に関しては、添付されたクレームによって定義される本発明の意図および範囲から離れることなく、様々な変更、置換、代替が可能である。さらに、本発明では、明細書に記載された特定の実施形態のプロセス、装置、製造、構成物、手段、方法およびステップに限定されることを意図していない。当業者であれば、本発明の開示から、ここに記載された実施形態がもたらす機能と同様の機能を実質的に果たし、又は同等の作用、効果を実質的にもたらす装置、手段、方法が導かれることを認識するであろう。したがって、添付した請求の範囲は、そのような装置、手段、方法の範囲に含まれることが意図されている。 -Various changes, substitutions, and alternatives are possible with respect to the present invention without departing from the spirit and scope of the present invention as defined by the appended claims. Furthermore, the present invention is not intended to be limited to the specific embodiments of the processes, apparatus, manufacture, components, means, methods, and steps described in the specification. Those skilled in the art will appreciate from the disclosure of the present invention devices, means, and methods that perform substantially the same functions as those provided by the embodiments described herein, or that provide substantially the same operations and effects. You will recognize it. Accordingly, the appended claims are intended to be included within the scope of such devices, means, and methods.
 本願は、日本出願(特願2011-078922号、2011年3月31日出願)、および日本出願(特願2011-279567号、2011年12月21日出願)を基礎出願として優先権主張する出願であり、基礎出願の明細書、図面およびクレームを含む開示内容は、参照することによって本願全体に組み入れられている。 This application is a Japanese application (Japanese Patent Application No. 2011-079922, filed on March 31, 2011), and a Japanese application (Japanese Patent Application No. 2011-279567, filed on December 21, 2011) as a basic application. The disclosure, including the specification, drawings and claims of the basic application, is hereby incorporated by reference in its entirety.
 10 ショートアーク型放電ランプ
 30 陽極
 50 ダイス
 100 炭素繊維、炭素繊維束
 100’ 炭素繊維バルク
 200 中空筒状部材
 300 筒状部材
 400 炭素繊維充填バルク
 400’ 溶液
 F 熱硬化樹脂
DESCRIPTION OF SYMBOLS 10 Short arc type discharge lamp 30 Anode 50 Dice 100 Carbon fiber, carbon fiber bundle 100 'Carbon fiber bulk 200 Hollow cylindrical member 300 Cylindrical member 400 Carbon fiber filling bulk 400' Solution F Thermosetting resin

Claims (16)

  1.  筒状部材に、炭素繊維を軸方向に揃えて充填し、
     前記炭素繊維を充填した前記筒状部材を、引き伸ばして縮径させることを特徴とする炭素繊維バルクの製造方法。
    Fill the cylindrical member with carbon fibers aligned in the axial direction,
    A method for producing a carbon fiber bulk, wherein the cylindrical member filled with the carbon fiber is stretched to have a reduced diameter.
  2.  スエージング加工によって、前記筒状部材を引き伸ばして縮径させることを特徴とする請求項1に記載の炭素繊維バルクの製造方法。 The method for producing a carbon fiber bulk according to claim 1, wherein the tubular member is stretched and contracted by swaging.
  3.  充填された前記炭素繊維の少なくとも一部において断面形状が変形するように、前記筒状部材を引き伸ばして縮径させることを特徴とする請求項1乃至2のいずれかに記載の炭素繊維バルクの製造方法。 The carbon fiber bulk production according to any one of claims 1 to 2, wherein the cylindrical member is stretched and reduced in diameter so that a cross-sectional shape is deformed in at least a part of the filled carbon fibers. Method.
  4.  縮径させた前記筒状部材を、熱硬化性樹脂の含まれる溶液に浸し、
     繊維長さ方向に沿って熱硬化性樹脂を含浸させた炭素繊維束を、熱処理によって硬化させることを特徴とする請求項1乃至2のいずれかに記載の炭素繊維バルクの製造方法。
    Immerse the reduced cylindrical member in a solution containing a thermosetting resin,
    The method for producing a carbon fiber bulk according to any one of claims 1 to 2, wherein the carbon fiber bundle impregnated with the thermosetting resin along the fiber length direction is cured by heat treatment.
  5.  熱処理による硬化後、炭素繊維束に炭化処理を施すことを特徴とする請求項4に記載の炭素繊維バルクの製造方法。 The method for producing a carbon fiber bulk according to claim 4, wherein the carbon fiber bundle is carbonized after being cured by heat treatment.
  6.  前記筒状部材の一方の端部を溶液内に浸すことを特徴とする請求項4に記載の炭素繊維バルクの製造方法。 The method for producing a carbon fiber bulk according to claim 4, wherein one end of the cylindrical member is immersed in the solution.
  7.  前記炭素繊維束を、充填率75%以上で前記筒状部材に充填させることを特徴とする請求項1乃至2のいずれかに記載の炭素繊維バルクの製造方法。 The method for producing a carbon fiber bulk according to any one of claims 1 to 2, wherein the cylindrical member is filled with the carbon fiber bundle at a filling rate of 75% or more.
  8.  前記筒状部材に充填された炭素繊維束の残空隙部分の70~80%の部分において熱硬化性樹脂が含浸されるように、前記筒状部材を浸すことを特徴とする請求項4に記載の炭素繊維バルクの製造方法。 The cylindrical member is immersed in such a manner that a portion of 70 to 80% of the remaining void portion of the carbon fiber bundle filled in the cylindrical member is impregnated with a thermosetting resin. Carbon fiber bulk manufacturing method.
  9.  熱硬化処理の後、炭素繊維束を前記筒状部材から取り出すことを特徴とする請求項1乃至2のいずれかに記載の炭素繊維バルクの製造方法。 3. The method for producing a carbon fiber bulk according to claim 1, wherein the carbon fiber bundle is taken out of the cylindrical member after the thermosetting treatment.
  10.  請求項1乃至2のいずれかに記載された炭素繊維バルクの製造方法によって製造された炭素繊維バルクを、少なくとも一方の電極の一部として構成することを特徴とする放電ランプ。 3. A discharge lamp comprising a carbon fiber bulk produced by the carbon fiber bulk production method according to claim 1 as a part of at least one electrode.
  11.  長繊維であって異方性をもつ炭素繊維が束状になって一体的に形成されており、
     炭素繊維束内部において炭素が炭素繊維に付着し、
     前記炭素繊維束内における炭素繊維の充填率が75%以上であることを特徴とする炭素繊維バルク。
    Long fibers and anisotropic carbon fibers are bundled and formed integrally.
    Carbon adheres to the carbon fiber inside the carbon fiber bundle,
    A carbon fiber bulk, wherein a filling rate of carbon fibers in the carbon fiber bundle is 75% or more.
  12.  炭素繊維束の一方の端面付近における炭素の含有割合が、他方の端面付近における炭素の含有割合よりも低いことを特徴とする請求項11に記載の炭素繊維バルク。 The carbon fiber bulk according to claim 11, wherein the carbon content in the vicinity of one end face of the carbon fiber bundle is lower than the carbon content in the vicinity of the other end face.
  13.  炭素繊維束以外の領域における炭素の占有率が、40~90%の範囲であることを特徴とする請求項11乃至12のいずれかに記載の炭素繊維バルク。 The carbon fiber bulk according to any one of claims 11 to 12, wherein an occupation ratio of carbon in a region other than the carbon fiber bundle is in a range of 40 to 90%.
  14.  炭素繊維束の長さ方向の熱伝導度は、長さ方向に垂直な方向の熱伝導度の5倍以上であることを特徴とする請求項11乃至12のいずれかに記載の炭素繊維バルク。 The carbon fiber bulk according to any one of claims 11 to 12, wherein the thermal conductivity in the longitudinal direction of the carbon fiber bundle is 5 times or more of the thermal conductivity in the direction perpendicular to the longitudinal direction.
  15.  炭素繊維束内に含まれる炭素が異方性のないことを特徴とする請求項11乃至12のいずれかに記載の炭素繊維バルク。 The carbon fiber bulk according to any one of claims 11 to 12, wherein carbon contained in the carbon fiber bundle has no anisotropy.
  16.  請求項11乃至12のいずれかに記載された炭素繊維バルクを、少なくとも一方の電極の一部として構成することを特徴とする放電ランプ。 A discharge lamp comprising the carbon fiber bulk according to any one of claims 11 to 12 as a part of at least one electrode.
PCT/JP2012/058301 2011-03-31 2012-03-29 Carbon fiber bulk WO2012133614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137025796A KR20140014208A (en) 2011-03-31 2012-03-29 Carbon fiber bulk
CN201280015045.5A CN103459314B (en) 2011-03-31 2012-03-29 Carbon fiber bulk

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-078922 2011-03-31
JP2011078922A JP5732298B2 (en) 2011-03-31 2011-03-31 High density carbon fiber filled bulk
JP2011-279567 2011-12-21
JP2011279567A JP5850451B2 (en) 2011-12-21 2011-12-21 High thermal conductive carbon fiber bulk and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012133614A1 true WO2012133614A1 (en) 2012-10-04

Family

ID=46931316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058301 WO2012133614A1 (en) 2011-03-31 2012-03-29 Carbon fiber bulk

Country Status (4)

Country Link
KR (1) KR20140014208A (en)
CN (1) CN103459314B (en)
TW (1) TW201238651A (en)
WO (1) WO2012133614A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304189A (en) * 2015-12-04 2016-02-03 江苏亨通电力特种导线有限公司 Stainless-steel-coated carbon fiber single conductor wire and corresponding production technology thereof
KR20200063040A (en) * 2018-11-27 2020-06-04 엘에스전선 주식회사 Carbon Fiber Braid Member And Carbon Fiber Heat Shrinkable Tube
CN112029172A (en) * 2020-09-08 2020-12-04 四川大学 Polymer-based heat-conducting composite material and preparation method thereof
CN112503569A (en) * 2020-12-16 2021-03-16 深圳市鑫洋新能源科技有限公司 Carbon fiber arc ignition structure based on point discharge principle
CN113990729B (en) * 2021-10-28 2023-06-06 郑州航空工业管理学院 Quasi-macroscopic cold field emission electron gun and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796453A (en) * 1980-12-06 1982-06-15 Matsushita Electric Works Ltd Sintered electrode for discharge lamp
JPH0483529A (en) * 1990-07-24 1992-03-17 Chiyoda Kohan Kk Ultraviolet lamp
JPH0881261A (en) * 1994-09-09 1996-03-26 Hitachi Ltd Highly heat-conductive carbon fiber/boron carbide composite material
JPH1088256A (en) * 1996-09-19 1998-04-07 Tokyo Univ Carbon nano-tube reinforced aluminum composite material
JP2002184351A (en) * 2000-12-13 2002-06-28 Hamamatsu Photonics Kk Discharge lamp electrode
JP2002235726A (en) * 2001-02-07 2002-08-23 Ntn Corp Fiber-reinforced resin pipe and power transmission shaft using the resin pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285343A (en) * 1986-06-03 1987-12-11 Nishibori Minoru Precise setting method for distance between electrodes of discharge lamp
JP5160925B2 (en) * 2008-03-04 2013-03-13 株式会社ユメックス Electrode with heat dissipation member
CN101789289B (en) * 2010-03-19 2011-06-08 佛冈鑫源恒业电缆科技有限公司 Manufacturing method of carbon fiber composite core
CN101807446B (en) * 2010-04-01 2011-05-04 张国志 Cable composite core and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796453A (en) * 1980-12-06 1982-06-15 Matsushita Electric Works Ltd Sintered electrode for discharge lamp
JPH0483529A (en) * 1990-07-24 1992-03-17 Chiyoda Kohan Kk Ultraviolet lamp
JPH0881261A (en) * 1994-09-09 1996-03-26 Hitachi Ltd Highly heat-conductive carbon fiber/boron carbide composite material
JPH1088256A (en) * 1996-09-19 1998-04-07 Tokyo Univ Carbon nano-tube reinforced aluminum composite material
JP2002184351A (en) * 2000-12-13 2002-06-28 Hamamatsu Photonics Kk Discharge lamp electrode
JP2002235726A (en) * 2001-02-07 2002-08-23 Ntn Corp Fiber-reinforced resin pipe and power transmission shaft using the resin pipe

Also Published As

Publication number Publication date
CN103459314B (en) 2016-08-17
CN103459314A (en) 2013-12-18
TW201238651A (en) 2012-10-01
KR20140014208A (en) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2012133614A1 (en) Carbon fiber bulk
JP5352893B2 (en) Carbon fiber carbon composite molded body, carbon fiber reinforced carbon composite material, and method for producing the same
CN113563091B (en) Extreme-high-temperature ablation-resistant thermal dredging composite material and preparation method thereof
EP3129321B1 (en) Electrodes comprising nanostructured carbon
CA2550015C (en) Metal-based carbon fiber composite material and method for producing the same
JP5286591B2 (en) Crucible holding member and manufacturing method thereof
US20080019485A1 (en) Method for manufacturing a heat sink as well as heat sinks
JP2013035747A (en) Improved method for producing tubular geometry part made from ceramic matrix composite material
JP2017088913A (en) Method for producing complex of aluminum and carbon particle
CN105172245A (en) Carbon Fiber Insulator And Preparing Method Thereof
KR102342310B1 (en) Method for preparing graphite sheet
JP5850451B2 (en) High thermal conductive carbon fiber bulk and method for producing the same
JP5732298B2 (en) High density carbon fiber filled bulk
JP2009203092A (en) Vessel holding member
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP4260426B2 (en) heatsink
JP2011093758A (en) Carbonaceous material
JP2005262391A (en) Composite material composed of nano carbon and carbonaceous second filler and its manufacturing method
JP2007217256A (en) Aluminum-impregnated three-dimensional c/c composite and method for producing the same
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
WO2008050906A1 (en) Composite material and method for producing the same
Mohammad et al. The effect of modification of matrix on densification efficiency of pitch based carbon composites
Choi et al. Manufacturing of Carbon Nanotube Preform with High Porosity and Its Application in Metal Matrix Composites
JP2014133686A (en) Method for manufacturing a carbon-based metal composite material
JP4437580B2 (en) High thermal conductivity carbon fiber composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764445

Country of ref document: EP

Kind code of ref document: A1