JP2005174882A - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP2005174882A
JP2005174882A JP2003417107A JP2003417107A JP2005174882A JP 2005174882 A JP2005174882 A JP 2005174882A JP 2003417107 A JP2003417107 A JP 2003417107A JP 2003417107 A JP2003417107 A JP 2003417107A JP 2005174882 A JP2005174882 A JP 2005174882A
Authority
JP
Japan
Prior art keywords
fuel cell
cell separator
manufacturing
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003417107A
Other languages
Japanese (ja)
Other versions
JP3864158B2 (en
Inventor
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003417107A priority Critical patent/JP3864158B2/en
Publication of JP2005174882A publication Critical patent/JP2005174882A/en
Application granted granted Critical
Publication of JP3864158B2 publication Critical patent/JP3864158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fuel cell separator capable of improving the yield of the fuel cell separator and manufacturing the fuel cell separator with stable performance. <P>SOLUTION: This manufacturing method comprises a molding step press molding a material for the fuel cell separator having graphite powder covered with a thermosetting resin as a principal component using a die 1 and a hardening step hardening the molded object molded in the molding step. In the molding step, the material for the fuel cell separator wherein the thermosetting resin is heated at desired temperature to be softened and melted is press molded with desired press pressure. With this constitution, the thermosetting resin fully spreads among the graphite powder because a resin hardening reaction does not occur in the molding step. And by hardening the molded object in the hardening step, a homogeneous fuel cell separator having no variation in the performance for every product can be manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池に用いられる燃料電池用セパレータの製造方法に関する。   The present invention relates to a method for producing a fuel cell separator used in a fuel cell.

従来より、燃料電池を構成する一部材として燃料電池用セパレータがある。この燃料電池用セパレータは、左右両側面に複数個の溝部を備えて構成されており、その製造方法として、冷間プレス工程を備えた製造方法と、熱間プレス工程を備えた製造方法とが知られている。   Conventionally, there is a fuel cell separator as one member constituting a fuel cell. This fuel cell separator is configured to have a plurality of groove portions on both the left and right side surfaces. As a manufacturing method thereof, there are a manufacturing method including a cold pressing step and a manufacturing method including a hot pressing step. Are known.

前者の製造方法の概略を説明すると、まず、黒鉛粉末に熱硬化性樹脂が被覆されてなる熱硬化性樹脂被覆粉末黒鉛(以下、単に「燃料電池セパレータ用材料」という)を、プレス装置にセットされた常温の金型に充填し、100MPa以上の高圧でプレス(冷間プレス)して、所定形状に成型し、その成型体を加熱して樹脂を硬化させる方法である。   The outline of the former manufacturing method will be explained. First, thermosetting resin-coated powder graphite (hereinafter simply referred to as “fuel cell separator material”) obtained by coating graphite powder with a thermosetting resin is set in a press device. This is a method in which the normal temperature mold is filled, pressed at a high pressure of 100 MPa or more (cold press), molded into a predetermined shape, and the molded body is heated to cure the resin.

次に後者の製造法の概略を説明すると、炭素粉末と熱硬化性樹脂を混合して、プレス装置にセットされた金型に投入し、それに圧縮力を作用させると同時に金型を加熱(熱間プレス)して、プレスとほぼ同時に樹脂を硬化させて製造する方法である(例えば特許文献1参照)。   Next, the outline of the latter manufacturing method will be explained. Carbon powder and a thermosetting resin are mixed, put into a mold set in a press apparatus, a compression force is applied to the mold, and the mold is heated (heated). And the resin is cured almost simultaneously with the press (see, for example, Patent Document 1).

なお、上記した熱硬化性樹脂は、その物性として軟化溶解温度を有しており、この樹脂を加熱すると、まず軟化溶融が始まり、その後、硬化するものである。   The thermosetting resin described above has a softening and melting temperature as its physical properties. When this resin is heated, the softening and melting starts first and then hardens.

特開昭59−26907号公報(第3頁、図1)JP 59-26907 (3rd page, FIG. 1)

しかしながら、上記した製造方法には下記の問題点がある。
まず、前者の冷間プレス工程を備えた製造方法は、常温の金型を用い、100MPa以上の高圧でもって加圧するとした、プレス圧力に依存したメカニズムであるため、熱硬化性樹脂の軟化が不十分となったり、一様な軟化状態とならず、緻密化が不完全となる場合が多い。
However, the above manufacturing method has the following problems.
First, the former manufacturing method including the cold pressing step uses a normal temperature mold and pressurizes with a high pressure of 100 MPa or more, and is a mechanism depending on the pressing pressure. Therefore, the thermosetting resin is softened. In many cases, it becomes insufficient or does not become a uniform softened state, and the densification is incomplete.

つまり、このような状態のまま樹脂を加熱して硬化させることで、不良品の発生頻度が極めて高くなり、歩留まりが低い、といった問題点を有している。   That is, there is a problem in that the resin is heated and cured in such a state so that the occurrence frequency of defective products becomes extremely high and the yield is low.

次に、後者の熱間プレス工程を備えた製造方法は、熱硬化性樹脂の熱硬化温度領域によるプレスであるために、キャビティ内の燃料電池セパレータ用材料は、すぐさま軟化溶解が始まり、その直後に硬化反応に転じる。   Next, since the manufacturing method including the latter hot pressing step is a pressing by the thermosetting temperature region of the thermosetting resin, the material for the fuel cell separator in the cavity immediately begins to soften and dissolve, and immediately thereafter. It turns into a curing reaction.

しかしながら、この一連の現象は、キャビティ内の燃料電池セパレータ用材料すべて同時に生じるのではなく、熱の伝わり方にムラがあるために時間差が生じている。その結果、黒鉛粒子間に熱硬化性樹脂が十分に行き渡る前に硬化したりして、緻密化が不完全となる場合がある。   However, this series of phenomena does not occur at the same time for all the fuel cell separator materials in the cavity, but causes a time difference due to unevenness in how heat is transmitted. As a result, the thermosetting resin may be hardened before it is sufficiently distributed between the graphite particles, resulting in incomplete densification.

つまり、この熱間プレス工程を備えた製造方法は、合理的な製造方法ではあるが、このような原因による不良品が発生する虞があり、必ずしも歩留まりが高いとはいえない。
また、不良品とまではいかなくても、緻密化が製品毎に多少異なるために、燃料電池の性能を決定づける一要因である燃料電池用セパレータのガス透過性や電気抵抗不良率にバラツキが生じ、個体差がでてしまう、といった問題点をも有している。
That is, the manufacturing method provided with this hot pressing process is a rational manufacturing method, but there is a risk that a defective product due to such a cause may occur, and the yield is not necessarily high.
Even if it is not a defective product, the densification differs slightly from product to product, resulting in variations in the gas permeability and electrical resistance failure rate of the fuel cell separator, which is one factor that determines the performance of the fuel cell. There are also problems such as individual differences.

そこで、本発明は、燃料電池セパレータの歩留まりを向上させ、性能差のない安定した燃料電池セパレータを製造することができる燃料電池セパレータの製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the fuel cell separator which can improve the yield of a fuel cell separator and can manufacture the stable fuel cell separator without a performance difference.

上記課題を解決するために本発明にかかる燃料電池セパレータの製造方法は、下記の技術的手段を講じた。
すなわち、請求項1にかかる燃料電池セパレータの製造方法は、熱硬化性樹脂が被覆された黒鉛粉末を主成分とした燃料電池セパレータ用材料を金型を用いて加圧成型する成型工程と、前記成型工程で成型された成型体を硬化させる硬化工程とを備えた燃料電池セパレータの製造方法であって、前記成型工程は、前記熱硬化性樹脂が所要温度に加温されて軟化溶融した状態の前記燃料電池セパレータ用材料を加圧することを特徴とする。
請求項2にかかる燃料電池セパレータの製造方法は、請求項1において、加温装置を備え、前記成型工程の処理前に、前記加温装置で前記金型と前記燃料電池セパレータ用材料とを前記所要温度に加温する第1の加温処理工程と、前記金型にヒータを備え、該ヒータによって金型を加温して、前記燃料電池セパレータ用材料を前記所要温度に加温する第2の加温処理工程と、の何れかの加温処理工程、または双方の加温処理工程を有することを特徴とする。
請求項3にかかる燃料電池セパレータの製造方法は、請求項1または2において、前記所要温度は、概ね40〜80℃あることを特徴とする。
請求項4にかかる燃料電池セパレータの製造方法は、請求項1〜3の何れか1項において、前記成型工程での加圧力は、概ね15MPa〜100MPa未満であることを特徴とする。
In order to solve the above problems, the fuel cell separator manufacturing method according to the present invention employs the following technical means.
That is, the manufacturing method of the fuel cell separator according to claim 1 includes a molding step of pressure-molding a fuel cell separator material mainly composed of graphite powder coated with a thermosetting resin using a mold, And a curing step of curing the molded body molded in the molding step, wherein the molding step is a state in which the thermosetting resin is heated to a required temperature and softened and melted. The fuel cell separator material is pressurized.
According to a second aspect of the present invention, there is provided a method of manufacturing a fuel cell separator according to the first aspect, further comprising a heating device, wherein the mold and the fuel cell separator material are mixed with the heating device before the molding step. A first heating process for heating to a required temperature; and a second heater for heating the mold to the required temperature by heating the mold with the heater provided in the mold. It is characterized by having any one of these heating processing steps, or both of the heating processing steps.
According to a third aspect of the present invention, there is provided a method for producing a fuel cell separator according to the first or second aspect, wherein the required temperature is approximately 40 to 80 ° C.
According to a fourth aspect of the present invention, there is provided a method for producing a fuel cell separator according to any one of the first to third aspects, wherein the pressing force in the molding step is approximately 15 MPa to less than 100 MPa.

本発明によれば、成型体を成型する成型工程において、熱硬化性樹脂が軟化溶融した状態の燃料電池セパレータ用材料を用いることで、樹脂硬化反応が起こることなく、黒鉛粉末間に熱硬化性樹脂を十分に行き渡らせることができる。さらに、硬化工程において成型体を硬化させることで、製品毎に性能のバラツキのない均質の燃料電池セパレータを製造することができる。したがって、製品の歩留まりを向上することができる。   According to the present invention, in the molding process of molding a molded body, by using a material for a fuel cell separator in which a thermosetting resin is softened and melted, a thermosetting property does not occur between graphite powders without causing a resin curing reaction. The resin can be fully distributed. Furthermore, by curing the molded body in the curing step, it is possible to produce a homogeneous fuel cell separator that does not vary in performance from product to product. Therefore, the product yield can be improved.

特に、熱硬化温度での一段成型(冷間プレス、熱間プレス)に比べて、樹脂不均一による電気抵抗不良率、水素透過不良率が半分以下となり、製品の歩留まりが極めて向上することができる。
また、熱硬化性樹脂が軟化しているため、短時間(極端に言えば一瞬)で所要の形状に成型することができる。
In particular, compared to single-stage molding (cold press, hot press) at the thermosetting temperature, the electrical resistance failure rate and the hydrogen permeation failure rate due to resin non-uniformity are less than half, and the product yield can be greatly improved. .
Further, since the thermosetting resin is softened, it can be molded into a required shape in a short time (in short, in an instant).

また、成型工程の処理前に、加温装置で金型を予熱し、軟化溶融した燃料電池セパレータ用材料を用いることで、成型工程に要する時間を大幅に短縮できる。とくに金型を複数個予め用意しておくことで、極めて効率的に成型工程を行うことができる。
さらに、金型にヒータを内装させた場合、燃料電池セパレータ用材料をそのまま充填することができ、利便性を向上することができる。
燃料電池セパレータ用材料の加温温度や加圧力を限定したことで、上記の効果が最も顕著に得ることができる。
In addition, the time required for the molding process can be greatly shortened by using the fuel cell separator material that has been preheated and softened and melted with a heating device before the molding process. In particular, by preparing a plurality of molds in advance, the molding process can be performed very efficiently.
Further, when the heater is built in the mold, the fuel cell separator material can be filled as it is, and the convenience can be improved.
By limiting the heating temperature and pressure of the fuel cell separator material, the above-mentioned effects can be obtained most remarkably.

次に、本発明の実施の形態を添付図面を用いて説明をする。
まず、燃料電池セパレータ用材料aについて説明すると、この燃料電池セパレータ用材料aは黒鉛粉末を熱硬化性樹脂で被覆されてなる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
First, the fuel cell separator material a will be described. The fuel cell separator material a is obtained by coating graphite powder with a thermosetting resin.

この上記した熱硬化性樹脂は、フェノール樹脂、フラン樹脂、エポキシ樹脂、アクリル樹脂、あるいはこれらの混合系などの熱硬化性樹脂等、いずれでも良い。また、被覆方法としては、一般的に用いられる溶液被覆、スプレー被覆、反応被覆、溶融被覆などいずれを用いても良いものである。ただし反応被覆は単一の樹脂系に用いる場合が多い。   This thermosetting resin may be any of a thermosetting resin such as a phenol resin, a furan resin, an epoxy resin, an acrylic resin, or a mixed system thereof. As a coating method, any of commonly used solution coating, spray coating, reaction coating, melt coating and the like may be used. However, reactive coatings are often used for single resin systems.

次に、以上のように構成された燃料電池セパレータ用材料aを用いた燃料電池セパレータAの製造方法を、順を追って説明する。
(1)第1の加温処理工程
複数個の上下一対の金型1と、その金型1の下型内(キャビティ内)に所定量の燃料電池セパレータ用材料aを投入する。そして、この複数個の金型1を工業用オーブンまたはコンベアなどの搬送手段を有した炉等の加温装置2にセットし、概ね40〜80℃範囲内程度に収まるような温度に加温して予熱する(図1(a)参照)。
Next, a manufacturing method of the fuel cell separator A using the fuel cell separator material a configured as described above will be described in order.
(1) First Heating Process Step A predetermined amount of the fuel cell separator material a is put into a plurality of upper and lower pairs of molds 1 and the lower mold (inside the cavity) of the mold 1. Then, the plurality of molds 1 are set in a heating device 2 such as an oven having an industrial oven or a conveyer such as a conveyor, and heated to a temperature that is generally within the range of 40 to 80 ° C. And preheat (see FIG. 1A).

なお、燃料電池セパレータ用材料aは必ずしも金型1に投入し、金型1と一緒に加温する必要性はなく、金型1と燃料電池セパレータ用材料a(所望の容器に入れて)とを分別し、それぞれを加温しても良い。   The fuel cell separator material a does not necessarily need to be put into the mold 1 and heated together with the mold 1. The mold 1 and the fuel cell separator material a (in a desired container) May be separated and heated.

キャビティ内の燃料電池セパレータ用材料aは、加温が進むにつれて軟化溶融し始め、流動性を有する所謂ゲル化して、黒鉛粉末間に熱硬化性樹脂が十分に行き渡るようになる。
なお、この第1の加温処理工程に替えて、金型1にヒータを内装させ(図示せず)、該ヒータによって金型1を加温して、上記した熱硬化性樹脂を軟化溶融可能な温度に加温してもよい(第2の加温処理工程)。
The fuel cell separator material a in the cavity begins to soften and melt as the heating proceeds, so-called gelling having fluidity, and the thermosetting resin is sufficiently distributed between the graphite powders.
In place of the first heating process, a heater is installed in the mold 1 (not shown), and the mold 1 is heated by the heater to soften and melt the thermosetting resin. May be heated to a suitable temperature (second heating treatment step).

(2)成型工程
第1の加温処理工程が終了したら、金型1をプレス装置3にセットして、概ね20MPa〜80MPaの加圧力でもって加圧成型する(図1(b)参照)。なお、プレス装置が過大になるという点で圧力の上限として100MPa未満であることが望ましく、また、製品の強度などの機械的性質及び電気的な性質を満足するために、圧力の下限は、概ね15MPaは必要である。
(2) Molding process When the first heating process is completed, the mold 1 is set in the press device 3 and is pressure-molded with a pressure of approximately 20 MPa to 80 MPa (see FIG. 1B). In addition, it is desirable that the upper limit of the pressure is less than 100 MPa in that the press device is excessive, and in order to satisfy the mechanical properties and electrical properties such as the strength of the product, the lower limit of the pressure is approximately 15 MPa is necessary.

(3)硬化工程
加圧成型が終了したら、プレス装置3から金型1を取り外し、その状態のまま、一般的な熱硬化性樹脂が硬化開始する約80℃〜250℃未満に予熱された専用炉4(または上記の加温装置2を共用しても良い)に順次搬入し、熱硬化させる(図1(c)参照)。
所定時間経過後、熱硬化が完了した形成された燃料電池セパレータAを、金型1から脱型して一連の処理が終了する(図1(d)参照)。
(3) Curing process After press molding is completed, the mold 1 is removed from the press device 3, and in this state, a general thermosetting resin is preheated to about 80 ° C to less than 250 ° C where curing begins. It is sequentially carried into the furnace 4 (or the above-mentioned heating device 2 may be shared) and thermally cured (see FIG. 1C).
After a predetermined time has elapsed, the formed fuel cell separator A that has undergone thermosetting is removed from the mold 1 and the series of processes ends (see FIG. 1D).

この硬化処理は、金型1ごと処理しているが、加圧成型が終了した成型体を金型1から脱型し、その成型体を専用炉4または上記の加温装置2に搬入し、熱硬化させても良い。なお、金型1から脱型した硬化処理前の成型体は、極端な外力を与えれば変形するものの、すでに保形性を有しているために、脱型してもは型くずれすることはない。   This curing process is performed for each mold 1, but the molded body after pressure molding is removed from the mold 1, and the molded body is carried into the dedicated furnace 4 or the heating device 2. It may be thermoset. In addition, although the molded object before the hardening process which was demolded from the mold 1 is deformed if an extreme external force is applied, since it already has shape retention, it does not lose its shape even when demolded. .

特に、第2の加温処理工程を採用した場合、金型1をプレス装置3に取り付けたままにして、加圧成型が終了した成型体を金型1から脱型する方法が生産性が向上することから好適である。   In particular, when the second heating process is employed, productivity is improved by removing the molded body after the pressure molding is completed from the mold 1 while the mold 1 remains attached to the press device 3. Therefore, it is preferable.

次に、上記した製造方法を、実施例及び比較例を挙げて、本発明を更に具合的に説明する。
まず、各実施例及び各比較例において共通する燃料電池セパレータ用材料aの構成を説明すると、平均粒子径が5〜50μm程度の球状または鱗状の黒鉛粉末100重量部に対し、20重量部のフェノール樹脂を溶液被覆法によって被覆したものを用いた。このフェノール樹脂の熱硬化開始温度は80℃程度である。
Next, the present invention will be described more specifically with reference to the above-described production methods, with Examples and Comparative Examples.
First, the structure of the fuel cell separator material “a” common in each example and each comparative example will be described. 20 parts by weight of phenol with respect to 100 parts by weight of spherical or scaly graphite powder having an average particle diameter of about 5 to 50 μm. What coated resin by the solution coating method was used. The thermosetting start temperature of this phenol resin is about 80 ° C.

そして、上記した第1の加温処理工程、成型工程、硬化工程を経て燃料電池セパレータAを製造するが、このとき、成型温度(金型1と燃料電池セパレータ用材料aの温度)と、成型圧力(プレス圧)と、黒鉛粉末の形状とを適宜を替えてサンプルとしての燃料電池セパレータAを製造し、それぞれサンプル数100において、電気抵抗の不良発生率(電気抵抗不良率:電気抵抗の不合格ラインを、20mΩcm以上とする)と、水素透過の不良率(水素透過不良率:10−11mol/msPa以上とする)を算出した。 The fuel cell separator A is manufactured through the first heating process, the molding process, and the curing process described above. At this time, the molding temperature (the temperature of the mold 1 and the fuel cell separator material a), the molding The fuel cell separator A as a sample is manufactured by appropriately changing the pressure (pressing pressure) and the shape of the graphite powder, and in each of the 100 samples, the occurrence rate of defective electrical resistance (electrical resistance failure rate: electrical resistance failure rate). The pass line was set to 20 mΩcm or more) and the hydrogen permeation failure rate (hydrogen permeation failure rate: 10 −11 mol / m 2 Spa or more) was calculated.

なお、この電気抵抗の計測方法は、燃料電池用セパレータを、長さ200mm、断面が1mm四方の供試体に加工し、該供試体を用いて4端子法にて測定を行った。
また、水素透過の計測方法は、JIS K7126のA法(差圧法)に準じて行い、試料調湿:23℃、50%RH*48Hr以上、測定温度:23℃、使用ガス種:水素ガス、の条件下で行った。
In this measurement method of electric resistance, a fuel cell separator was processed into a specimen having a length of 200 mm and a cross section of 1 mm square, and measurement was performed by the four-terminal method using the specimen.
Moreover, the measurement method of hydrogen permeation is performed according to A method (differential pressure method) of JIS K7126, sample humidity control: 23 ° C., 50% RH * 48Hr or more, measurement temperature: 23 ° C., gas type used: hydrogen gas, It carried out on condition of this.

実施例1は、黒鉛粉末の形状を球状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃以下である65℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は0.3%、水素透過不良率は0.5%であり、実施例1にかかる条件下によって製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。   In Example 1, the shape of the graphite powder was spherical, the molding temperature was 65 ° C., which is 80 ° C. or less, the thermosetting temperature of the phenol resin, and the molding pressure was 20 MPa. As a result, the defective rate of electrical resistance is 0.3%, the defective rate of hydrogen permeation is 0.5%, and the fuel cell separator manufactured under the conditions according to Example 1 has a very low incidence of defective products. It was confirmed.

実施例2は、黒鉛粉末の形状を球状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃以下である70℃にし、成型圧力を30MPaとした。その結果、電気抵抗不良率は0.4%、水素透過不良率は0.4%であり、実施例2にかかる条件下によって製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。   In Example 2, the shape of the graphite powder was spherical, the molding temperature was set to 70 ° C., which is 80 ° C. or less, the thermosetting temperature of phenol resin, and the molding pressure was set to 30 MPa. As a result, the failure rate of electrical resistance is 0.4% and the failure rate of hydrogen permeation is 0.4%. The fuel cell separator manufactured under the conditions according to Example 2 has a very low incidence of defective products. It was confirmed.

実施例3は、黒鉛粉末の形状を鱗状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃以下である65℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は0.8%、水素透過不良率は0.7%であり、実施例3にかかる条件下によって製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。   In Example 3, the shape of the graphite powder was scale-like, the molding temperature was 65 ° C., which is 80 ° C. or less of the thermosetting temperature of the phenol resin, and the molding pressure was 20 MPa. As a result, the electrical resistance failure rate is 0.8% and the hydrogen permeation failure rate is 0.7%, and the fuel cell separator manufactured under the conditions according to Example 3 has a very low incidence of defective products. It was confirmed.

次に、本願発明の条件下から外れたものを比較例として説明する。
[比較例1]
比較例1は、黒鉛粉末の形状を球状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃を下方に大きく外れた25℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は8%、水素透過不良率は11%であり、比較例1にかかる条件下によって製造された燃料電池用セパレータは、不良品の発生率が極めて高いことが確認された。
Next, what deviated from the conditions of the present invention will be described as a comparative example.
[Comparative Example 1]
In Comparative Example 1, the shape of the graphite powder was spherical, the molding temperature was set to 25 ° C., which was far below the thermosetting start temperature of phenol resin, and the molding pressure was set to 20 MPa. As a result, the failure rate of electrical resistance was 8% and the failure rate of hydrogen permeation was 11%. It was confirmed that the fuel cell separator manufactured under the conditions according to Comparative Example 1 had a very high incidence of defective products. It was.

[比較例2]
比較例2は、従来の熱間プレス工程による製法であり、黒鉛粉末の形状を球状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃を上方に大きく外れた150℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は13%、水素透過不良率は0.5%であり、比較例2にかかる条件下によって製造された燃料電池用セパレータは、電気抵抗不良率のみ不良品の発生率が1割を越え、不良品の発生率が極めて高いことが確認された。
[Comparative Example 2]
Comparative Example 2 is a manufacturing method using a conventional hot pressing process, in which the shape of the graphite powder is made spherical, the molding temperature is set to 150 ° C., which is far from the thermosetting start temperature 80 ° C. of the phenol resin, and the molding pressure is set to The pressure was 20 MPa. As a result, the electrical resistance failure rate is 13% and the hydrogen permeation failure rate is 0.5%, and the fuel cell separator manufactured under the conditions according to Comparative Example 2 has only an electrical resistance failure rate and the occurrence rate of defective products. Over 10%, and it was confirmed that the incidence of defective products was extremely high.

[比較例3]
比較例3は、黒鉛粉末の形状を球状とし、成型温度を、フェノール樹脂の熱硬化開始温度80℃以下である65℃にし、成型圧力を5MPaとした。その結果、電気抵抗不良率は15%、水素透過不良率は13%であり、比較例3にかかる条件下によって製造された燃料電池用セパレータは、電気抵抗不良率、水素透過不良率とも不良品の発生率が1割を越え、不良品の発生率が極めて高いことが確認された。
[Comparative Example 3]
In Comparative Example 3, the shape of the graphite powder was spherical, the molding temperature was 65 ° C., which is 80 ° C. or less, and the molding pressure was 5 MPa. As a result, the electrical resistance failure rate is 15% and the hydrogen permeation failure rate is 13%. The fuel cell separator manufactured under the conditions according to Comparative Example 3 is a defective product in both the electrical resistance failure rate and the hydrogen transmission failure rate. It was confirmed that the rate of occurrence of defects exceeded 10% and the rate of defective products was extremely high.

以上、これら実施例1〜3及び比較例1〜3をまとめると、表1のようになる。   The above Examples 1 to 3 and Comparative Examples 1 to 3 are summarized as shown in Table 1.

Figure 2005174882
Figure 2005174882

以上、本実施の形態及び本実施例にかかる燃料電池セパレータの製造方法と、その製造方法を用いて製造された燃料電池セパレータの不良品発生率を説明したが、上述した実施の形態及び実施例は、本発明の好適な実施の形態の一例を示すものであり、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲内において、種々変形実施が可能である。   As described above, the manufacturing method of the fuel cell separator according to the present embodiment and the example and the defective product occurrence rate of the fuel cell separator manufactured by using the manufacturing method have been described. These show an example of a preferred embodiment of the present invention, and the present invention is not limited thereto, and various modifications can be made without departing from the scope of the invention.

本実施の形態にかかる燃料電池用セパレータの製造工程の概略を示す製造工程図である。It is a manufacturing process figure which shows the outline of the manufacturing process of the separator for fuel cells concerning this Embodiment.

符号の説明Explanation of symbols

a 燃料電池セパレータ用材料
A 燃料電池セパレータ
1 金型
2 加温装置
3 プレス装置
4 専用炉
a Fuel cell separator material A Fuel cell separator 1 Mold 2 Heating device 3 Press device 4 Dedicated furnace

Claims (4)

熱硬化性樹脂が被覆された黒鉛粉末を主成分とした燃料電池セパレータ用材料を金型を用いて加圧成型する成型工程と、前記成型工程で成型された成型体を硬化させる硬化工程とを備えた燃料電池セパレータの製造方法であって、
前記成型工程は、前記熱硬化性樹脂が所要温度に加温されて軟化溶融した状態の前記燃料電池セパレータ用材料を加圧することを特徴とした燃料電池セパレータの製造方法。
A molding process in which a fuel cell separator material mainly composed of graphite powder coated with a thermosetting resin is pressure-molded using a mold, and a curing process in which the molded body molded in the molding process is cured. A fuel cell separator manufacturing method comprising:
The method of manufacturing a fuel cell separator, wherein the molding step pressurizes the fuel cell separator material in a state where the thermosetting resin is heated to a required temperature and softened and melted.
加温装置を備え、前記成型工程の処理前に、前記加温装置で前記金型と前記燃料電池セパレータ用材料とを前記所要温度に加温する第1の加温処理工程と、
前記金型にヒータを備え、該ヒータによって前記金型を加温して、前記燃料電池セパレータ用材料を前記所要温度に加温する第2の加温処理工程と、
の何れかの加温処理工程、または双方の加温処理工程を有することを特徴とした請求項1記載の燃料電池セパレータの製造方法。
A first heating process step comprising: a heating device, wherein the mold and the fuel cell separator material are heated to the required temperature by the heating device before the processing of the molding step;
A second heating treatment step of providing the mold with a heater, heating the mold with the heater, and heating the fuel cell separator material to the required temperature;
2. The method of manufacturing a fuel cell separator according to claim 1, comprising any one of the heating treatment steps or both of the heating treatment steps.
前記所要温度は、概ね40〜80℃あることを特徴とする請求項1または2に記載の燃料電池セパレータの製造方法。   The method for producing a fuel cell separator according to claim 1 or 2, wherein the required temperature is approximately 40 to 80 ° C. 前記成型工程での加圧力は、概ね15MPa〜100MPa未満であることを特徴とする請求項1〜3の何れか1項に記載の燃料電池セパレータの製造方法。
The method of manufacturing a fuel cell separator according to any one of claims 1 to 3, wherein the pressing force in the molding step is approximately 15 MPa to less than 100 MPa.
JP2003417107A 2003-12-15 2003-12-15 Manufacturing method of fuel cell separator Expired - Lifetime JP3864158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417107A JP3864158B2 (en) 2003-12-15 2003-12-15 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417107A JP3864158B2 (en) 2003-12-15 2003-12-15 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2005174882A true JP2005174882A (en) 2005-06-30
JP3864158B2 JP3864158B2 (en) 2006-12-27

Family

ID=34736116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417107A Expired - Lifetime JP3864158B2 (en) 2003-12-15 2003-12-15 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP3864158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016041A1 (en) * 2006-07-31 2008-02-07 Seikoh Giken Co., Ltd. Process for producing separator for fuel cell and separator for fuel cell
CN113707900A (en) * 2021-10-28 2021-11-26 湖南耕驰新能源科技有限公司 Preparation method of composite bipolar plate for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016041A1 (en) * 2006-07-31 2008-02-07 Seikoh Giken Co., Ltd. Process for producing separator for fuel cell and separator for fuel cell
CN113707900A (en) * 2021-10-28 2021-11-26 湖南耕驰新能源科技有限公司 Preparation method of composite bipolar plate for fuel cell

Also Published As

Publication number Publication date
JP3864158B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
EP1280217A3 (en) Fuel-cell separator, production of the same, and fuel cell
CN108129148A (en) A kind of preparation method of low bulk graphite material
CN113429118B (en) Glass blank powder injection molding process
CN100432025C (en) Metal/ ceramic laser sintering product post-processing method
JP3864158B2 (en) Manufacturing method of fuel cell separator
KR101759280B1 (en) Method for preparing porous carbon materials using polymer
JP4015179B1 (en) Manufacturing method of fuel cell separator
KR20150013847A (en) Method for producing a heat insulating body
KR100781628B1 (en) Fuel cell separator using the graphite composite and preparing method thereof
EP0523651B1 (en) Method for making high strength injection molded ferrous material
CN115368116A (en) Method for rapidly preparing aluminum oxide ceramic wafer and prepared aluminum oxide ceramic wafer
CN1742399B (en) Method for producing separator of fuel cell
CN108640110B (en) Process for producing high-end graphite material by rapid roasting
JPH0521059B2 (en)
JP2005523872A (en) Process for producing reaction bonded silicon carbide
JP2006249462A (en) Method for producing electrode, and electrode
KR101768766B1 (en) Production method of carbon fiber reinforced silicon carbide molding body
JPS61295016A (en) Preparation of electric conductive thin plate
CN114774706B (en) Controlled synthesis process of functionalized ordered macroporous graphite composite material for aluminum alloy refining
JP5093639B2 (en) Method for producing carbon / ceramic composite material
KR20170037535A (en) Method Of Carbon fiber-binder complex powder, electrical discharge machining electrode and the preparing method thereof
US20230302691A1 (en) Multi-stage pressing process for producing a molded part such as a bipolar plate from a highly filled thermosetting material
JP3198120B2 (en) Method for producing glassy carbon plate
JP2006073470A (en) Manufacturing method of fuel cell separator
JPS62273809A (en) Manufacture of thin green ceramic pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060515

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Ref document number: 3864158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250