JP2006073470A - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP2006073470A
JP2006073470A JP2004258606A JP2004258606A JP2006073470A JP 2006073470 A JP2006073470 A JP 2006073470A JP 2004258606 A JP2004258606 A JP 2004258606A JP 2004258606 A JP2004258606 A JP 2004258606A JP 2006073470 A JP2006073470 A JP 2006073470A
Authority
JP
Japan
Prior art keywords
fuel cell
cell separator
fine carbon
thermosetting resin
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258606A
Other languages
Japanese (ja)
Inventor
Eiki Tsushima
栄樹 津島
Kazuyuki Murakami
一幸 村上
Susumu Katagiri
片桐  進
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fj Composite Kk
Mitsubishi Corp
Original Assignee
Fj Composite Kk
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fj Composite Kk, Mitsubishi Corp filed Critical Fj Composite Kk
Priority to JP2004258606A priority Critical patent/JP2006073470A/en
Publication of JP2006073470A publication Critical patent/JP2006073470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fuel cell separator superior in conductivity, light-weight property, mechanical strength, and impact resistance or the like, of which the manufacturing yield is improved and production efficiency is high. <P>SOLUTION: This manufacturing method of the fuel cell separator includes a molding process in which a material for the fuel cell separator containing graphite powder covered with a thermoset resin and a fine carbon fiber of which the fiber diameter is 0.5-500 nm, the fiber length is 1,000 μm or less, and the center axis has a hollow structure are pressure molded using a die, and a curing process in which the molded body molded in the molding process is cured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性、軽量性、及び機械的強度などに優れた燃料電池用セパレータの生産効率の高い製造方法に関する。   The present invention relates to a manufacturing method with high production efficiency of a separator for a fuel cell excellent in conductivity, lightness, mechanical strength, and the like.

近年、環境問題、エネルギー問題の観点から燃料電池が、水素と酸素を使用して水の電気分解の逆反応で発電し、水以外の排出物がなくクリーンな発電装置として注目されている。なかでも、固体高分子型燃料電池は、低温で作動するため、自動車や民生用として最も有望である。この燃料電池は、高分子固体電解質膜、ガス拡散電極、触媒、及びセパレータから構成された単セルを、例えば、自動車用では400〜800セルという極めて多数積層することによって高出力の発電が達成できる。   In recent years, from the viewpoint of environmental problems and energy problems, fuel cells have been attracting attention as clean power generators that generate hydrogen by the reverse reaction of water electrolysis using hydrogen and oxygen and have no emissions other than water. Among them, polymer electrolyte fuel cells are most promising for automobiles and consumer use because they operate at low temperatures. This fuel cell can achieve high power generation by stacking a large number of single cells composed of a polymer solid electrolyte membrane, a gas diffusion electrode, a catalyst, and a separator, for example, 400 to 800 cells for automobiles. .

この単セルを仕切るために用いられるセパレータは、通常、燃料ガスと酸化剤ガスが供給される溝があり、これら2種のガスを完全に分離できる高い気体不透過性が要求され、また、内部抵抗を小さくするために高い導電性が要求される。さらに、近年、燃料電池を自動車などの移動体に搭載する必要から、その軽量性や、大きい機械的強度、衝突時に備えた耐衝撃性などを備えたセパレ−タを生産効率よく大量に製造方法が求められている。   The separator used to partition this single cell usually has a groove to which fuel gas and oxidant gas are supplied, and requires high gas impermeability to completely separate these two types of gas. High conductivity is required to reduce the resistance. Furthermore, in recent years, since it is necessary to mount a fuel cell on a moving body such as an automobile, a method for manufacturing a separator having light weight, high mechanical strength, impact resistance in the event of a collision, and the like with high production efficiency. Is required.

燃料電池用セパレータは、通常、黒鉛などの炭素粉末とフェノール樹脂などの熱硬化性樹脂とを使用し、その製造方法として、冷間プレス工程による製造方法や熱間プレス工程による製造方法が知られている。   Fuel cell separators usually use carbon powders such as graphite and thermosetting resins such as phenolic resins, and the production methods thereof include a manufacturing method using a cold pressing process and a manufacturing method using a hot pressing process. ing.

冷間プレス工程による製造方法は、まず、黒鉛粉末に熱硬化性樹脂を被覆した材料を、加圧装置にセットした常温の金型に充填し、100MPa以上の高圧でプレス(冷間プレス)して、セパレータとしての所定形状に成型し、得られた成型体を加熱して樹脂を硬化させる方法である。   In the manufacturing method by the cold pressing process, first, a material in which graphite powder is coated with a thermosetting resin is filled in a normal temperature mold set in a pressurizing apparatus, and then pressed (cold pressing) at a high pressure of 100 MPa or more. In this method, the resin is molded by heating the molded body obtained by molding into a predetermined shape as a separator.

一方、熱間プレス工程による製造法は、炭素粉末と熱硬化性樹脂を混合して、加圧装置にセットした金型に投入し、金型を加熱しながらプレス(熱間プレス)して、プレスとほぼ同時に樹脂を硬化させて製造する方法である(例えば特許文献1参照)。
特開昭59−26907号公報(第3頁、図1)
On the other hand, in the manufacturing method by the hot pressing process, carbon powder and thermosetting resin are mixed, put into a mold set in a pressurizing apparatus, and pressed while being heated (hot pressing), In this method, the resin is cured almost simultaneously with the press (see, for example, Patent Document 1).
JP 59-26907 (3rd page, FIG. 1)

上記した従来の冷間プレス工程及び熱間プレスによるいずれの製造方法には下記するような問題点がある。   Any of the above-described conventional cold pressing steps and hot pressing methods have the following problems.

即ち、前者の冷間プレス工程による製造方法は、常温の金型を用い、100MPa以上の高圧でもって加圧することにより、熱硬化樹脂軟化溶融させて成形するという、プレス圧力に依存するメカニズムであるため、熱硬化性樹脂の軟化が不十分となったり、一様な軟化状態とならず、緻密化が不完全となる場合が多い。そのため、不良品の発生頻度が高くなり、歩留まりが低い、といった問題点を有している。   That is, the former manufacturing method by the cold pressing process is a mechanism depending on the pressing pressure, in which a thermosetting resin is softened and melted and molded by pressing with a high pressure of 100 MPa or more using a normal temperature mold. For this reason, the thermosetting resin is often insufficiently softened or is not in a uniform softened state, and densification is often incomplete. Therefore, there is a problem that the frequency of occurrence of defective products is increased and the yield is low.

また、熱間プレス工程による製造方法は、熱硬化性樹脂の熱硬化温度領域によるプレスであるために、キャビティ内の熱硬化性樹脂は、すぐさま軟化溶解が始まり、その直後に硬化反応に転じる。しかし、この一連の現象は、熱の伝わり方にムラがあり、キャビティ内の熱硬化性樹脂のすべて同時に生じるのが困難である。このため、黒鉛粒子間に熱硬化性樹脂が十分に行き渡る前に硬化するなどにより、緻密化が不完全となる場合がある。   Moreover, since the manufacturing method by a hot press process is the press by the thermosetting temperature area | region of a thermosetting resin, the thermosetting resin in a cavity starts softening melt | dissolution immediately, and it changes to hardening reaction immediately after that. However, this series of phenomena is uneven in the way heat is transmitted, and it is difficult for all of the thermosetting resins in the cavity to occur simultaneously. For this reason, the densification may be incomplete due to, for example, curing before the thermosetting resin sufficiently spreads between the graphite particles.

このようにして、熱間プレス工程による製造方法は、不良品とまではいかなくても、緻密化が製品毎に多少異なるために、燃料電池の性能を決定づける一要因である燃料電池用セパレータのガス透過性や電気抵抗不良率にバラツキが生じ、個体差がでてしまう、といった問題点も有している。   In this way, the manufacturing method by the hot pressing process is not a defective product, but the densification is slightly different for each product. Therefore, the fuel cell separator is one factor that determines the performance of the fuel cell. There is also a problem that the gas permeability and the rate of defective electric resistance vary, resulting in individual differences.

かくして、本発明の目的は、導電性、軽量性、機械的強度、及び耐衝撃性などに優れ、性能差のない安定した燃料電池用セパレータを、歩留まり良く、生産効率高く製造できる方法を提供することにある。   Thus, an object of the present invention is to provide a method capable of producing a stable fuel cell separator excellent in conductivity, lightness, mechanical strength, impact resistance, etc. and having no difference in performance with high yield and high production efficiency. There is.

本発明の燃料電池用セパレータの製造方法は、上記課題を解決するためのもので、以下の要旨を有するものである。
(1)熱硬化性樹脂が被覆された黒鉛粉末、繊維径0.5〜500nm、繊維長1000μm以下、アスペクト比3〜1000を有し、かつ中心軸が空洞構造からなる微細炭素繊維を含む燃料電池セパレータ用材料を40〜80℃に加温して軟化溶融した状態にて金型を用いて加圧成型する成型工程と、該成型工程で成型された成型体を硬化させる硬化工程とを含むことを特徴とする燃料電池セパレータの製造方法。
(2)前記成型工程の処理前に、加温装置で前記金型と前記燃料電池セパレータ用材料とを前記所要温度に加温する第1の加温処理工程と、前記金型にヒータを備え、該ヒータによって燃料電池セパレータ用材料を前記所要温度に加温する第2の加温処理工程と、の何れか又は双方の加温処理工程を含む上記(1)に記載の燃料電池セパレータの製造方法。
(3)微細炭素繊維が、非酸化性雰囲気にて2300〜3500℃で黒鉛化処理されている上記(1)又は(2)に記載の燃料電池セパレータの製造方法。
(4)微細炭素繊維が、その100重量部あたり、1〜40重量部の熱硬化性樹脂がその表面に被覆された熱硬化性樹脂被覆微細炭素繊維である上記(1)〜(3)のいずれかに記載の燃料電池セパレータの製造方法。
(5)熱硬化性樹脂が、フェノール樹脂及び/又はフラン樹脂である上記(1)〜(4)のいずれかに記載の燃料電池セパレータの製造方法。
(6)前記成型工程での加圧が、15〜100MPaで行う、上記(1)〜(5)のいずれかに記載の燃料電池セパレータの製造方法。
The manufacturing method of the separator for fuel cells of this invention is for solving the said subject, and has the following summary.
(1) Graphite powder coated with a thermosetting resin, a fuel containing fine carbon fibers having a fiber diameter of 0.5 to 500 nm, a fiber length of 1000 μm or less, an aspect ratio of 3 to 1000, and a central axis having a hollow structure It includes a molding step for pressure molding using a mold in a state where the battery separator material is heated to 40 to 80 ° C. and softened and melted, and a curing step for curing the molded body molded in the molding step. A method for manufacturing a fuel cell separator.
(2) A first heating process step of heating the mold and the fuel cell separator material to the required temperature with a heating device before the processing of the molding step, and a heater in the mold. And manufacturing the fuel cell separator according to the above (1), which includes any one or both of the second heating process step of heating the fuel cell separator material to the required temperature by the heater. Method.
(3) The method for producing a fuel cell separator according to (1) or (2), wherein the fine carbon fiber is graphitized at 2300 to 3500 ° C. in a non-oxidizing atmosphere.
(4) The fine carbon fiber is a thermosetting resin-coated fine carbon fiber having a surface coated with 1 to 40 parts by weight of a thermosetting resin per 100 parts by weight of the above (1) to (3). The manufacturing method of the fuel cell separator in any one.
(5) The method for producing a fuel cell separator according to any one of (1) to (4), wherein the thermosetting resin is a phenol resin and / or a furan resin.
(6) The method for producing a fuel cell separator according to any one of (1) to (5), wherein the pressurization in the molding step is performed at 15 to 100 MPa.

本発明の製造方法によれば、熱硬化性樹脂が被覆された黒鉛粉末、及び特定の物性を有する微細炭素繊維を含む燃料電池セパレータ用材料を所要温度に加温し、熱硬化性樹脂が軟化溶融した状態で短時間でセパレータの所要の形状に加圧成型するので、成型工程において樹脂硬化反応が起こらず、さらに、硬化工程において成型体を硬化させることで、製品毎に性能のバラツキのない均質の燃料電池セパレータを製造することができる。   According to the production method of the present invention, a graphite powder coated with a thermosetting resin and a material for a fuel cell separator including fine carbon fibers having specific physical properties are heated to a required temperature, and the thermosetting resin is softened. Since it is pressure-molded into the required shape of the separator in a short time in a molten state, there is no resin curing reaction in the molding process, and there is no variation in performance by product by curing the molded body in the curing process. A homogeneous fuel cell separator can be produced.

特に、従来の熱間プレスの一段成型に比べて、電気抵抗不良率や水素透過不良率が減少し、また、製品の歩留まりが極めて向上する。   In particular, the electrical resistance failure rate and the hydrogen permeation failure rate are reduced and the product yield is greatly improved as compared with the conventional one-step hot pressing.

また、本発明で、成型工程の処理前に、加温処理工程を設けて、成形工程における金型と燃料電池セパレータ用材料とを軟化溶融させておくことで、成型工程に要する時間を大幅に短縮でき、生産効率を高めることができる。   In addition, in the present invention, a heating process is provided before the molding process, and the mold and the fuel cell separator material in the molding process are softened and melted, thereby greatly reducing the time required for the molding process. It can be shortened and production efficiency can be increased.

本発明で使用される燃料電池セパレータ用材料である、熱硬化性樹脂が被覆された黒鉛粉末、及び特定の物性を有する微細炭素繊維を含む組成物について説明する。   A composition comprising a graphite powder coated with a thermosetting resin, which is a material for a fuel cell separator used in the present invention, and fine carbon fibers having specific physical properties will be described.

本発明で熱硬化性樹脂が被覆された黒鉛粉末は、フェノール樹脂、フラン樹脂、エポキシ樹脂、あるいはこれらの混合系などの熱硬化性樹脂で黒鉛粉末を被覆したものである。黒鉛粉末としては、平均粒径が好ましくは0.1〜150μm、特に好ましくは1〜100μmであり、粉末の形状は、球状でも鱗状であってもよい。また、その結晶子の面間隔(d002)が好ましくは3.354〜3.380Åである。   The graphite powder coated with a thermosetting resin in the present invention is a graphite powder coated with a thermosetting resin such as a phenol resin, a furan resin, an epoxy resin, or a mixed system thereof. The graphite powder preferably has an average particle size of 0.1 to 150 μm, particularly preferably 1 to 100 μm, and the shape of the powder may be spherical or scaly. Further, the plane spacing (d002) of the crystallites is preferably 3.354 to 3.380cm.

黒鉛粉末の熱硬化性樹脂による被覆方法としては、一般的に用いられる溶液被覆、スプレー被覆、反応被覆、溶融被覆などのいずれを用いても良い。熱硬化性樹脂の黒鉛粉末への被覆量は、黒鉛粉末100重量部に対して熱硬化性樹脂が好ましくは1〜40重量部、特に好ましくは、5〜25重量部であるのが好適である。   As a method for coating graphite powder with a thermosetting resin, any of commonly used solution coating, spray coating, reaction coating, melt coating, and the like may be used. The coating amount of the thermosetting resin on the graphite powder is preferably 1 to 40 parts by weight, particularly preferably 5 to 25 parts by weight with respect to 100 parts by weight of the graphite powder. .

本発明で使用される微細炭素繊維としては、繊維径0.5〜500nm以下、繊維長1000μm以下で、好ましくはアスペクト比3〜1000を有する、好ましくは炭素六角網面からなる円筒が同心円状に配置された多層構造を有し、その中心軸が空洞構造の微細炭素繊維が使用される。かかる微細炭素繊維は、従来のPAN、ピッチ、セルロース、レーヨンなどの繊維を熱処理することによって得られる、繊維径が5〜15μmの従来のカーボンファイバーとは大きく異なるものである。本発明で使用される微細炭素繊維は、従来のカーボンファイバーと比べて繊維径や繊維長さが異なるだけでなく、構造的に大きく異なっている。この結果、導電性、熱伝導性、摺動性などの物性の点で極めて優れるものである。 The fine carbon fiber used in the present invention has a fiber diameter of 0.5 to 500 nm or less, a fiber length of 1000 μm or less, preferably an aspect ratio of 3 to 1000, and preferably a cylinder made of a carbon hexagonal mesh surface in a concentric shape. Fine carbon fibers having a multilayer structure arranged and having a hollow structure in the central axis are used. Such fine carbon fibers are greatly different from conventional carbon fibers having a fiber diameter of 5 to 15 μm, which are obtained by heat-treating fibers such as conventional PAN, pitch, cellulose, and rayon. The fine carbon fiber used in the present invention is not only different in fiber diameter and fiber length from the conventional carbon fiber, but also significantly different in structure. As a result, it is extremely excellent in terms of physical properties such as conductivity, thermal conductivity, and slidability.

上記微細炭素繊維は、その繊維径が0.5nmより小さい場合には、得られる複合材料の強度が不十分になり、500nmより大きいと、機械的強度、熱伝導性などが低下する。また、繊維長が1000μmより大きい場合には、微細炭素繊維が均一に分散し難くなるため、材料の組成が不均一になり、得られるセパレータの機械的強度が低下する。本発明で使用される微細炭素繊維は、繊維径が10〜200nm、繊維長が3〜300μm、好ましくはアスペクト比が3〜500を有するものが特に好ましい。なお、本発明において微細炭素繊維の繊維径や繊維長は、電子顕微鏡により測定することができる。 When the fiber diameter of the fine carbon fiber is smaller than 0.5 nm, the strength of the obtained composite material becomes insufficient, and when it is larger than 500 nm, mechanical strength, thermal conductivity, and the like are lowered. On the other hand, when the fiber length is larger than 1000 μm, the fine carbon fibers are difficult to disperse uniformly, so that the composition of the material becomes non-uniform and the mechanical strength of the resulting separator decreases. The fine carbon fiber used in the present invention is particularly preferably one having a fiber diameter of 10 to 200 nm, a fiber length of 3 to 300 μm, and preferably an aspect ratio of 3 to 500. In the present invention, the fiber diameter and fiber length of the fine carbon fiber can be measured with an electron microscope.

本発明で使用される好ましい微細炭素繊維は、カーボンナノチューブである。このカーボンナノチューブは、グラファイトウイスカー、フィラメンタスカーボン、炭素フィブリルなどとも呼ばれているもので、チューブを形成するグラファイト膜が一層である単層カーボンナノチューブと、多層である多層カーボンナノチューブとがあり、本発明ではそのいずれも使用できる。しかし、多層カーボンナノチューブの方が、大きい機械的強度が得られるとともに経済面でも有利であり好ましい。 A preferred fine carbon fiber used in the present invention is a carbon nanotube. These carbon nanotubes are also called graphite whiskers, filamentous carbon, carbon fibrils, etc., and there are single-walled carbon nanotubes with a single graphite film forming the tube and multi-walled carbon nanotubes with multiple layers. Any of them can be used in the invention. However, multi-walled carbon nanotubes are preferred because they provide a high mechanical strength and are advantageous in terms of economy.

カーボンナノチューブは、例えば、「カーボンナノチュ−ブの基礎」(コロナ社発行、23〜57頁、1998年発行)に記載されるようにアーク放電法、レーザ蒸発法及び熱分解法などにより製造される。カーボンナノチューブは、繊維径が好ましくは0.5〜500nm、繊維長が好ましくは1〜500μm、好ましくはアスペクト比が3〜500のものである。 Carbon nanotubes are produced, for example, by an arc discharge method, a laser evaporation method, a thermal decomposition method, or the like as described in “Basics of Carbon Nanotube” (issued by Corona, pages 23-57, issued in 1998). The The carbon nanotube has a fiber diameter of preferably 0.5 to 500 nm, a fiber length of preferably 1 to 500 μm, and preferably an aspect ratio of 3 to 500.

本発明において特に好ましい微細炭素繊維は、上記カーボンナノチューブのうちで繊維径と繊維長が比較的大きい気相法炭素繊維である。このような気相法炭素繊維は、VGCF(Vapor Grown Carbon Fiber)とも呼ばれ、特開2003−176327号公報に記載されるように、炭化水素などのガスを有機遷移金属系触媒の存在下において水素ガスとともに気相熱分解することによって製造される。この気相法炭素繊維(VGCF)は、繊維径が好ましくは50〜300nm、繊維長が好ましくは3〜300μm、好ましくはアスペクト比が3〜500のものである。そして、このVGCFは、製造しやすさや取り扱い性の点で優れている。 Particularly preferred fine carbon fibers in the present invention are vapor grown carbon fibers having a relatively large fiber diameter and fiber length among the carbon nanotubes. Such a vapor grown carbon fiber is also called VGCF (Vapor Grown Carbon Fiber), and as described in Japanese Patent Application Laid-Open No. 2003-176327, a gas such as hydrocarbon is used in the presence of an organic transition metal catalyst. Manufactured by vapor phase pyrolysis with hydrogen gas. The vapor grown carbon fiber (VGCF) has a fiber diameter of preferably 50 to 300 nm, a fiber length of preferably 3 to 300 μm, and preferably an aspect ratio of 3 to 500. This VGCF is excellent in terms of ease of manufacture and handling.

本発明で使用される微細炭素繊維は、2300℃以上、好ましくは2500〜3500℃の温度で非酸化性雰囲気にて熱処理することが好ましく、これにより、その表面が黒鉛化され、機械的強度、化学的安定性が大きく向上し、得られる複合材料の軽量化に貢献する。非酸化性雰囲気は、アルゴン、ヘリウム、窒素ガスが好ましく使用される。 The fine carbon fiber used in the present invention is preferably heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C. or higher, preferably 2500 to 3500 ° C., whereby the surface thereof is graphitized, mechanical strength, Chemical stability is greatly improved, contributing to weight reduction of the resulting composite material. As the non-oxidizing atmosphere, argon, helium, and nitrogen gas are preferably used.

本発明で使用される微細炭素繊維は、そのままでもよいが、フェノール樹脂などの上記した熱硬化性樹脂を表面に被覆した微細炭素繊維の使用が好ましい。かかる熱硬化性樹脂を被覆した微細炭素繊維を使用した場合には、分散状態が均一になり、特性の優れた炭素繊維金属複合材料が得られる。熱硬化性樹脂の微細炭素繊維の表面への被覆量が、上記微細炭素繊維100重量部あたり、好ましくは1〜40重量部、特に好ましくは5〜25重量部が好適である。この熱硬化性樹脂を被覆した微細炭素繊維は、例えば熱硬化性樹脂がフェノール樹脂の場合、フェノール類とアルデヒド類とを、触媒の存在下で、微細炭素繊維と混合させつつ反応させることにより製造される。 The fine carbon fiber used in the present invention may be used as it is, but it is preferable to use fine carbon fiber having a surface coated with the above-described thermosetting resin such as phenol resin. When fine carbon fibers coated with such a thermosetting resin are used, the dispersion state becomes uniform and a carbon fiber metal composite material having excellent characteristics can be obtained. The coating amount of the thermosetting resin on the surface of the fine carbon fibers is preferably 1 to 40 parts by weight, particularly preferably 5 to 25 parts by weight per 100 parts by weight of the fine carbon fibers. For example, when the thermosetting resin is a phenol resin, the fine carbon fiber coated with the thermosetting resin is produced by reacting phenols and aldehydes while mixing with the fine carbon fiber in the presence of a catalyst. Is done.

本発明の燃料電池セパレータ用材料における微細炭素繊維は、黒鉛粉末100重量部に対し、好ましくは0.1〜100重量部、特に好ましくは0.5〜50重量部使用される。微細炭素繊維の使用量が0.1重量部より小さい場合には、導電性向上効果がなく、逆に100重量部を超える場合にはコストが高くなり好ましくない。   The fine carbon fiber in the fuel cell separator material of the present invention is preferably used in an amount of 0.1 to 100 parts by weight, particularly preferably 0.5 to 50 parts by weight, based on 100 parts by weight of the graphite powder. When the amount of fine carbon fiber used is less than 0.1 parts by weight, there is no effect of improving conductivity, and when it exceeds 100 parts by weight, the cost increases, which is not preferable.

上記の熱硬化性樹脂が被覆された黒鉛粉末と特定の物性を有する微細炭素繊維とは、リボンブレンダー、Vブレンダー、プラネタリーミキサー等の樹脂分野で一般的に用いられている混合機を使用し、均一に混合することにより、燃料電池セパレータ用材料が得られる。この燃料電池セパレータ用材料を用い、図1に概略が示されるようにして本発明の燃料電池セパレータが製造される。   The graphite powder coated with the thermosetting resin and the fine carbon fiber having specific properties are obtained by using a mixer generally used in the resin field such as a ribbon blender, a V blender, and a planetary mixer. By mixing uniformly, a fuel cell separator material can be obtained. Using this fuel cell separator material, the fuel cell separator of the present invention is produced as schematically shown in FIG.

(1)第1の加温処理工程
複数個の上下一対の金型1と、その金型1の下型内(キャビティ内)に所定量の燃料電池セパレータ用材料aを投入する。そして、この複数個の金型1を工業用オーブンまたはコンベアなどの搬送手段を有した炉等の加温装置2にセットし、好ましくは40〜80℃、特に好ましくは50〜80℃程度の温度に加温して予熱する(図1(a)参照)。
(1) First Heating Process Step A predetermined amount of the fuel cell separator material a is put into a plurality of upper and lower pairs of molds 1 and the lower mold (inside the cavity) of the mold 1. The plurality of molds 1 are set in a heating apparatus 2 such as an oven having an industrial oven or a conveyer such as a conveyor, preferably at a temperature of about 40 to 80 ° C., particularly preferably about 50 to 80 ° C. And preheat (see FIG. 1 (a)).

なお、燃料電池セパレータ用材料aは必ずしも金型1に投入し、金型1と一緒に加温する必要性はなく、金型1と燃料電池セパレータ用材料a(所望の容器に入れて)とを分別し、それぞれを加温しても良い。   The fuel cell separator material a does not necessarily need to be put into the mold 1 and heated together with the mold 1. The mold 1 and the fuel cell separator material a (in a desired container) May be separated and heated.

キャビティ内の燃料電池セパレータ用材料aは、加温が進むにつれて軟化溶融し始め、黒鉛粉末及び微細炭素繊維間に熱硬化性樹脂が十分に行き渡るようになる。   The fuel cell separator material a in the cavity begins to soften and melt as the heating proceeds, and the thermosetting resin is sufficiently distributed between the graphite powder and the fine carbon fibers.

なお、この第1の加温処理工程に替えて、金型1にヒータを内装させ(図示せず)、該ヒータによって金型1を加温して、上記した熱硬化性樹脂を軟化溶融可能な温度に加温してもよい(第2の加温処理工程)。   In place of the first heating process, a heater is installed in the mold 1 (not shown), and the mold 1 is heated by the heater to soften and melt the thermosetting resin. May be heated to a suitable temperature (second heating treatment step).

(2)成型工程
第1の加温処理工程が終了したら、金型1をプレス装置3にセットして、好ましくは、15〜100MPa、特に好ましくは20〜80MPaの圧力にて成型する(図1(b)参照)。熱硬化性樹脂は、概ね100MPa以上の高圧でもって加圧すると、キャビティ内の燃料電池セパレータ用材料a自体が軟化溶融する温度に発熱してしまう虞れがあるため、圧力の上限は100MPa以下が望ましい。一方、セパレータの機械的強度や電気的な性質を満足するために、圧力の下限は、概ね15MPaが好ましい。
(2) Molding process When the first heating process is completed, the mold 1 is set in the press device 3 and is preferably molded at a pressure of 15 to 100 MPa, particularly preferably 20 to 80 MPa (FIG. 1). (See (b)). When the thermosetting resin is pressurized with a high pressure of approximately 100 MPa or more, the fuel cell separator material a itself in the cavity may generate heat at a temperature at which it softens and melts. Therefore, the upper limit of the pressure is 100 MPa or less. desirable. On the other hand, in order to satisfy the mechanical strength and electrical properties of the separator, the lower limit of the pressure is preferably approximately 15 MPa.

(3)硬化工程
加圧成型が終了したら、プレス装置3から金型1を取り外し、その状態のまま、熱硬化性樹脂が硬化を開始する、好ましくは80℃〜250℃、特に好ましくは100〜230℃に予熱された専用炉4(または上記の加温装置2を共用しても良い)に順次搬入し、熱硬化させる(図1(c)参照)。5分〜15時間の所定時間経過後、熱硬化が完了した形成された燃料電池セパレータAを、金型1から脱型して一連の処理が終了する(図1(d)参照)。
(3) Curing step When the pressure molding is completed, the mold 1 is removed from the press device 3, and the thermosetting resin starts to cure in that state, preferably 80 ° C to 250 ° C, particularly preferably 100 to 100 ° C. It is sequentially carried into a dedicated furnace 4 preheated to 230 ° C. (or the above-described heating device 2 may be shared) and thermally cured (see FIG. 1C). After a predetermined time of 5 minutes to 15 hours has elapsed, the formed fuel cell separator A that has been thermoset is removed from the mold 1 and the series of processes is completed (see FIG. 1D).

硬化処理は、金型1ごとに処理しているが、加圧成型が終了した成型体を金型1から脱型し、その成型体を専用路4または上記の加温装置2に搬入し、熱硬化させても良い。なお、金型1から脱型した硬化処理前の成型体は、極端な外力を与えれば変形するものの、すでに保形性を有しているために、脱型しても型くずれすることはない。   The curing process is performed for each mold 1, but the molded body after the pressure molding is finished is removed from the mold 1, and the molded body is carried into the dedicated path 4 or the heating device 2 described above. It may be thermoset. In addition, although the molded object before the hardening process which was demolded from the mold 1 is deformed when an extreme external force is applied, the molded body already has a shape-retaining property.

特に、上記第2の加温処理工程を採用した場合、金型1をプレス装置3に取り付けたままにして、加圧成型が終了した成型体を金型1から脱型する方法が生産性が向上することから好適である。   In particular, when the second heating process is employed, productivity is improved by removing the molded body from which the pressure molding has been completed from the mold 1 while the mold 1 is attached to the press device 3. It is preferable because it improves.

以下に、本発明の燃料電池セパレータの製造方法についてその実施例を挙げて、更に具体的に説明する。なお、例1〜3は本発明の実施例であり、例4〜5は比較例である。   Hereinafter, the method for producing the fuel cell separator of the present invention will be described more specifically with reference to examples. Examples 1 to 3 are examples of the present invention, and examples 4 to 5 are comparative examples.

例1〜5
各実施例においては、燃料電池セパレータ用材料として、以下のものを使用した。
黒鉛粉末:平均粒子径が17μmの球状または鱗状の黒鉛粉末100重量部に対し20重量部のフェノール樹脂(熱硬化開始温度は80℃)を溶液被覆法により被覆したもの。微細炭素繊維:繊維径が150nm、繊維長が15μm、アスペクト比が30の気相法炭素繊維をアルゴンガス雰囲気中、温度2800℃で30分間、加熱処理して黒鉛化した微細炭素繊維100重量部に対し、15重量部のフェノール樹脂(熱硬化開始温度は80℃)を溶液被覆法により被覆したもの。
Examples 1-5
In each Example, the following were used as the fuel cell separator material.
Graphite powder: 20 parts by weight of a phenol resin (thermal curing start temperature is 80 ° C.) coated by a solution coating method on 100 parts by weight of spherical or scaly graphite powder having an average particle size of 17 μm Fine carbon fiber: 100 parts by weight of fine carbon fiber graphitized by heat treatment of vapor-grown carbon fiber having a fiber diameter of 150 nm, fiber length of 15 μm, and aspect ratio of 30 in an argon gas atmosphere at a temperature of 2800 ° C. for 30 minutes On the other hand, 15 parts by weight of a phenolic resin (thermal curing start temperature is 80 ° C.) coated by a solution coating method.

上記各成分を表1に示される重量割合にてリボンブレンダーを用いて30分攪拌混合し、セパレータ材料を得た。   Each of the above components was stirred and mixed for 30 minutes using a ribbon blender at a weight ratio shown in Table 1 to obtain a separator material.

上記セパレータ材料を使用して、第1の加温処理工程、成型工程、硬化工程を経て燃料電池セパレータAを製造したが、このとき、成型温度(金型1と燃料電池セパレータ用材料aの温度)と、成型圧力(プレス圧)とを表1に示されるように適宜に替えた。また、熱硬化性樹脂の硬化は、150℃に1時間保持して実施した。このようにしてサンプルとしての燃料電池用セパレータを製造した。それぞれサンプル数200において、電気抵抗値不良率(電気抵抗20mΩcm以上のもののパーセント)と、水素透過値不良率(水素透過値10−11mol/msPa以上のもののパーセント)を求めた。結果を表1に示した。 Using the separator material, the fuel cell separator A was manufactured through the first heating process, the molding process, and the curing process. At this time, the molding temperature (the temperature of the mold 1 and the temperature a of the fuel cell separator material a) was obtained. ) And the molding pressure (pressing pressure) were appropriately changed as shown in Table 1. The thermosetting resin was cured by holding at 150 ° C. for 1 hour. In this manner, a fuel cell separator as a sample was manufactured. In each sample number 200, the electrical resistance value failure rate (percentage of electrical resistance of 20 mΩcm or more) and the hydrogen transmission value failure rate (percentage of hydrogen transmission value of 10 −11 mol / m 2 spa or more) were determined. The results are shown in Table 1.

なお、実施例における電気抵抗値の計測方法は、燃料電池用セパレータを、長さ200mm、断面が1mm四方の供試体に加工し、該供試体を用いて4端子法にて測定を行った。また、水素透過値の計測方法は、JIS
K7126のA法(差圧法)に準じて行い、試料調湿:23℃、50%相対湿度で48Hr以上、測定温度:23℃、使用ガス種:水素ガス、の条件下で行った。
In addition, the measuring method of the electrical resistance value in an Example processed the separator for fuel cells into a 200 mm long and 1 mm square test piece, and measured by the 4 terminal method using this test piece. Also, the measurement method of hydrogen permeation value is JIS
The test was carried out in accordance with the A method (differential pressure method) of K7126, under the conditions of sample humidity control: 23 ° C., 48 Hr or higher at 50% relative humidity, measurement temperature: 23 ° C., gas type used: hydrogen gas.

例1
例1は、球状の黒鉛粉末を用い、成型温度を65℃にし、成型圧力を50MPaとした。その結果、電気抵抗不良率は0.3%、水素透過不良率は0.5%であり、製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。
Example 1
In Example 1, spherical graphite powder was used, the molding temperature was 65 ° C., and the molding pressure was 50 MPa. As a result, the electrical resistance failure rate was 0.3% and the hydrogen permeation failure rate was 0.5%, and it was confirmed that the produced fuel cell separator had a very low incidence of defective products.

例2
例2は、球状の黒鉛粉末を用い、成型温度を70℃にし、成型圧力を30MPaとした。その結果、電気抵抗不良率は0.5%、水素透過不良率は0.5%であり、製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。
Example 2
In Example 2, spherical graphite powder was used, the molding temperature was 70 ° C., and the molding pressure was 30 MPa. As a result, the electrical resistance failure rate was 0.5%, the hydrogen permeation failure rate was 0.5%, and it was confirmed that the produced fuel cell separator had a very low incidence of defective products.

例3
例3は、鱗状の黒鉛粉末を用い、成型温度を65℃にし、成型圧力を50MPaとした。その結果、電気抵抗不良率は0.5%、水素透過不良率は0.5%であり、製造された燃料電池用セパレータは、不良品の発生率が極めて低いことが確認された。
Example 3
In Example 3, scaly graphite powder was used, the molding temperature was 65 ° C., and the molding pressure was 50 MPa. As a result, the electrical resistance failure rate was 0.5%, the hydrogen permeation failure rate was 0.5%, and it was confirmed that the produced fuel cell separator had a very low incidence of defective products.

例4
球状の黒鉛粉末を用い、成型温度を25℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は8%、水素透過不良率は11%であり、製造された燃料電池用セパレータは、不良品の発生率が極めて高いことが確認された。
Example 4
Spherical graphite powder was used, the molding temperature was 25 ° C., and the molding pressure was 20 MPa. As a result, the failure rate of electrical resistance was 8%, the failure rate of hydrogen permeation was 11%, and it was confirmed that the manufactured fuel cell separator had an extremely high incidence of defective products.

例5
従来の熱間プレス工程による製法であり、球状の黒鉛粉末を用い、成型温度を、150℃にし、成型圧力を20MPaとした。その結果、電気抵抗不良率は0.5%、水素透過不良率は6%であり、製造された燃料電池用セパレータは、水素透過不良率が1割を越え、不良品の発生率が極めて高いことが確認された。
Example 5
This is a conventional hot pressing process, using spherical graphite powder, a molding temperature of 150 ° C., and a molding pressure of 20 MPa. As a result, the electrical resistance failure rate is 0.5% and the hydrogen permeation failure rate is 6%. The manufactured fuel cell separator has a hydrogen permeation failure rate exceeding 10% and the occurrence rate of defective products is extremely high. It was confirmed.

例6
球状の黒鉛粉末を用い、成型温度を65℃にし、成型圧力を5MPaとした。その結果、電気抵抗不良率は15%、水素透過不良率は13%であり、製造された燃料電池用セパレータは、電気抵抗不良率、水素透過不良率とも1割を越え、不良品の発生率が極めて高いことが確認された。
Example 6
Spherical graphite powder was used, the molding temperature was 65 ° C., and the molding pressure was 5 MPa. As a result, the electrical resistance failure rate was 15% and the hydrogen permeation failure rate was 13%. The manufactured fuel cell separator exceeded 10% in both the electrical resistance failure rate and the hydrogen permeation failure rate. Was found to be extremely high.

Figure 2006073470
Figure 2006073470

: 本発明の一実施形態にかかる燃料電池用セパレータの製造方法の概略を示す製造工程図である。FIG. 5 is a production process diagram illustrating an outline of a method for producing a fuel cell separator according to an embodiment of the present invention.

符号の説明Explanation of symbols

a 燃料電池セパレータ用材料 A 燃料電池セパレータ
1 金型 2 加温装置
3 プレス装置 4 専用路
a Fuel cell separator material A Fuel cell separator
1 Mold 2 Heating device 3 Press device 4 Dedicated path

Claims (6)

熱硬化性樹脂が被覆された黒鉛粉末、繊維径0.5〜500nm、繊維長1000μm以下であり、かつ中心軸が空洞構造からなる微細炭素繊維を含む燃料電池セパレータ用材料を40〜80℃に加温して軟化溶融した状態にて金型を用いて加圧成型する成型工程と、該成型工程で成型された成型体を硬化させる硬化工程とを含むことを特徴とする燃料電池セパレータの製造方法。   A graphite powder coated with a thermosetting resin, a fiber diameter of 0.5 to 500 nm, a fiber length of 1000 μm or less, and a fuel cell separator material containing fine carbon fibers having a central axis having a hollow structure at 40 to 80 ° C. Manufacturing of a fuel cell separator, comprising: a molding step for pressure molding using a mold in a heated and softened state; and a curing step for curing the molded body molded in the molding step Method. 前記成型工程の処理前に、加温装置で前記金型と前記燃料電池セパレータ用材料とを前記所要温度に加温する第1の加温処理工程と、前記金型にヒータを備え、該ヒータによって燃料電池セパレータ用材料を前記所要温度に加温する第2の加温処理工程と、の何れか又は双方の加温処理工程を含む請求項1に記載の燃料電池セパレータの製造方法。   Prior to the processing of the molding step, a first heating processing step of heating the mold and the fuel cell separator material to the required temperature with a heating device, and a heater in the mold, the heater 2. The method for producing a fuel cell separator according to claim 1, comprising: one or both of a second heat treatment step of heating the fuel cell separator material to the required temperature by the second heat treatment step. 微細炭素繊維が、非酸化性雰囲気にて2300〜3500℃で黒鉛化処理されている請求項1又は2に記載の燃料電池セパレータの製造方法。   The method for producing a fuel cell separator according to claim 1 or 2, wherein the fine carbon fibers are graphitized at 2300 to 3500 ° C in a non-oxidizing atmosphere. 微細炭素繊維が、その100重量部あたり、1〜40重量部の熱硬化性樹脂がその表面に被覆された熱硬化性樹脂被覆微細炭素繊維である請求項1〜3のいずれかに記載の燃料電池セパレータの製造方法。   The fuel according to any one of claims 1 to 3, wherein the fine carbon fiber is a thermosetting resin-coated fine carbon fiber whose surface is coated with 1 to 40 parts by weight of a thermosetting resin per 100 parts by weight of the fine carbon fiber. A method for producing a battery separator. 熱硬化性樹脂が、フェノール樹脂及び/又はフラン樹脂である請求項1〜4のいずれかに記載の燃料電池セパレータの製造方法。   The method for producing a fuel cell separator according to any one of claims 1 to 4, wherein the thermosetting resin is a phenol resin and / or a furan resin. 前記成型工程での加圧が、15〜100MPaで行う、請求項1〜5のいずれかに記載の燃料電池セパレータの製造方法。   The method for producing a fuel cell separator according to any one of claims 1 to 5, wherein pressurization in the molding step is performed at 15 to 100 MPa.
JP2004258606A 2004-09-06 2004-09-06 Manufacturing method of fuel cell separator Pending JP2006073470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258606A JP2006073470A (en) 2004-09-06 2004-09-06 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258606A JP2006073470A (en) 2004-09-06 2004-09-06 Manufacturing method of fuel cell separator

Publications (1)

Publication Number Publication Date
JP2006073470A true JP2006073470A (en) 2006-03-16

Family

ID=36153845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258606A Pending JP2006073470A (en) 2004-09-06 2004-09-06 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP2006073470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244899A (en) * 2005-03-04 2006-09-14 Kyocera Chemical Corp Manufacturing method of resin mold separator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025572A (en) * 2000-07-10 2002-01-25 Kureha Chem Ind Co Ltd Separator having groove for solid high polymer molecule fuel cell
JP2003317733A (en) * 2002-04-23 2003-11-07 Nippon Pillar Packing Co Ltd Raw material for forming fuel cell separator, method for manufacturing fuel cell separator using it and fuel cell separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025572A (en) * 2000-07-10 2002-01-25 Kureha Chem Ind Co Ltd Separator having groove for solid high polymer molecule fuel cell
JP2003317733A (en) * 2002-04-23 2003-11-07 Nippon Pillar Packing Co Ltd Raw material for forming fuel cell separator, method for manufacturing fuel cell separator using it and fuel cell separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244899A (en) * 2005-03-04 2006-09-14 Kyocera Chemical Corp Manufacturing method of resin mold separator

Similar Documents

Publication Publication Date Title
US7740971B2 (en) Separator for fuel cell and production process for the same
CN108504096B (en) Preparation method of carbon nano tube/polymer composite material
CN112290040A (en) Preparation method of composite graphite bipolar plate
JPH0136670B2 (en)
US20120280430A1 (en) Composite tooling containing carbon nanotubes and production of parts therefrom
WO2010116620A1 (en) Sheet press molding method and method of fabricating fuel cell separators
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
CA1081313A (en) Glassy carbon grid-like electrodes and method of manufacturing same
JP2001122677A (en) Method for manufacturing separator for fuel battery
KR20160033856A (en) Conducting film and method of manufacturing the same
JP2006073470A (en) Manufacturing method of fuel cell separator
KR20160033857A (en) Flow channel plate for fuel cell and method of manufacturing the same
CN114759209A (en) Expanded graphite/polyimide-polyether sulfone composite bipolar plate and preparation method thereof
CN114335584A (en) Bipolar plate preform and preparation method thereof, bipolar plate and preparation method thereof, and fuel cell
JP2005129507A (en) Graphitic powder for fuel cell separator, and fuel cell separator
JP3715642B2 (en) Manufacturing method of fuel cell separator
CN113903937A (en) Rapid die-pressing composite graphite bipolar plate, preparation method thereof and fuel cell
JP2005262391A (en) Composite material composed of nano carbon and carbonaceous second filler and its manufacturing method
KR101808410B1 (en) Method of fabricating nickel nanotube
JP2007018853A (en) Manufacturing method of separator for fuel cell
JP2018098435A (en) Method for manufacturing thermoelectric conversion material
KR101869963B1 (en) Separators for fuel cell, method for manufacturing the same and fuel cell comprising the same
WO2023054530A1 (en) Method for producing carbon molded article
KR20160082868A (en) carbon composite for polymer electrolyte membrane fuel cell and the preparing method thereof
TWI545082B (en) Manufacturing method of carbon nanotubes with rigid structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116