WO2023054530A1 - Method for producing carbon molded article - Google Patents

Method for producing carbon molded article Download PDF

Info

Publication number
WO2023054530A1
WO2023054530A1 PCT/JP2022/036298 JP2022036298W WO2023054530A1 WO 2023054530 A1 WO2023054530 A1 WO 2023054530A1 JP 2022036298 W JP2022036298 W JP 2022036298W WO 2023054530 A1 WO2023054530 A1 WO 2023054530A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
raw material
carbon
material resin
Prior art date
Application number
PCT/JP2022/036298
Other languages
French (fr)
Japanese (ja)
Inventor
英行 生駒
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Publication of WO2023054530A1 publication Critical patent/WO2023054530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix

Definitions

  • the present invention relates to a method for manufacturing a carbon molded body, and more particularly to a method for manufacturing a carbon molded body by three-dimensional printing.
  • Carbon materials are excellent in properties such as heat resistance, electrical conductivity, thermal conductivity and chemical stability. Widely used in the field.
  • carbon compacts are manufactured by forming a preform using a raw material resin, carbon powder as an optional aggregate, and pitch or tar as a binder, and then sintering it to carbonize it. It had been.
  • this conventional carbon molded body is complicated, and a large amount of volatile gas is generated especially in the firing process, and if the generated gas is not smoothly volatilized and discharged from the molded body, deformation such as blistering may occur. and cracks are likely to occur. Therefore, it is necessary to heat at an extremely slow rate of temperature rise during the firing process, and in some cases, the firing cycle requires a long period of one month or more. Moreover, in order to obtain a three-dimensional final product, it may be necessary to machine the obtained carbon compact into a desired shape.
  • Patent Documents 1 and 2 disclose a method of manufacturing a carbon molded body by three-dimensional printing, in contrast to the conventional carbon molded body manufacturing method described above.
  • US Pat. No. 6,202,900 discloses a method of manufacturing a densified carbon product comprising the steps of (a) providing a carbon powder; (b) depositing a layer of said carbon powder; (d) for additional layers of carbon powder and additional patterns until the powder body of the product is complete; b) and step (c), each of said additional patterns representing an additional slice of said product; (f) impregnating the cured print with pitch to provide an impregnated print; ing.
  • a method of forming a carbon airgel is to 3D print an ink to produce a printed part, and the ink contains a solvent, a resorcinol-formaldehyde resin, and an organic thickener. removing solvent from the printed part, and carbonizing the printed part to create the airgel, wherein the resorcinol-formaldehyde resin comprises an acid catalyst and has a formaldehyde:resorcinol ratio greater than 1:1. wherein the thickening agent is water-soluble, consists solely of C, H, O atoms, and contains only ether or alcohol functional groups. .
  • the present invention provides a novel method of manufacturing a carbon compact by 3D printing.
  • ⁇ Aspect 1> A method for manufacturing a carbon molded body by three-dimensional printing, (a) providing a first layer comprising a first raw material resin; (b) irradiating the first layer with laser light to carbonize it in a first non-oxidizing atmosphere; (c) providing a second layer comprising a second raw material resin on the first layer after carbonization; and (d) under a second non-oxidizing atmosphere, the second layer is carbonized by irradiating with laser light, and integrating the first layer after carbonization and the second layer after carbonization.
  • ⁇ Aspect 2> A method according to aspect 1, wherein said first raw material resin and said second raw material resin are each independently selected from thermosetting resins or thermoplastic resins.
  • the first layer and the second layer are each independently in the first raw resin and the second raw resin in addition to the first raw resin and the second raw resin, respectively.
  • Cellulosic materials such as glass fiber, carboxymethyl cellulose, cellulose nanofiber, etc., carbon fiber, graphite, graphene, carbon nanotubes, carbon black, acetylene black, and black organic pigments such as ketjen black, aniline black, etc.
  • the method for producing a carbon molded body of the present invention comprises: A method for producing a carbon molded body by three-dimensional printing, (a) providing a first layer comprising a first raw material resin; (b) irradiating the first layer with laser light to carbonize it in a first non-oxidizing atmosphere; (c) providing a second layer comprising a second raw material resin on top of the first layer after carbonization; The method includes irradiating light to carbonize and integrating the first layer after carbonization and the second layer after carbonization.
  • laminate i.e., stacking layers of raw materials one by one until the desired shape is created. It is to repeat one by one.
  • the three-dimensional printing method that can be used in the present invention is not particularly limited, and any method using a laser can be used. Specifically, therefore, three-dimensional printing that can be used in the present invention may be a deposition method (DED: Direct Energy Deposition) or a powder bed method (PBF: Powder Bed Fusion). .
  • DED Direct Energy Deposition
  • PPF Powder Bed Fusion
  • the material powder containing the first or second raw material resin is applied to the base layer to form the first or second layer, and at the same time, the non-oxidizing atmosphere This layer can be carbonized by irradiating with laser light.
  • the material powder containing the first or second raw material resin is spread over the base layer to form the first or second layer, and in a non-oxidizing atmosphere Carbonization of this layer can be achieved by irradiation with a laser beam.
  • the present invention uses three-dimensional printing and does not use a firing furnace, it is possible to easily produce various carbon molded bodies regardless of size, and is particularly suitable for manufacturing large carbon molded bodies. .
  • the inventors of the present invention provided a layer containing a raw material resin on the carbonized layer, and irradiated the layer containing the raw material resin with a laser beam in a non-oxidizing atmosphere so that the layer containing the raw material resin was carbonized.
  • the inventors have found that the carbonized layer and the carbonized layer located therebelow adhere to each other as the carbonization progresses, and based on this, the inventors came up with the method of the present invention.
  • the resin is softened by laser light irradiation, adhered to the underlying layer, and then carbonized, thereby promoting integration between the carbonized layers.
  • integrated means that two layers are in close contact with each other, and the two layers cannot be separated from each other without destroying at least a part, preferably all, of the two layers.
  • Step (a) provides a first layer comprising a first raw material resin.
  • the first layer is a layer to be carbonized in step (b) described later.
  • the place where the first layer is provided may be, for example, on the stage of the apparatus used for manufacturing, or on another layer already formed after carbonization.
  • a film containing the first resin may be used as it is, or a layer obtained by applying and drying a coating liquid containing the first resin, or as the first resin It may be a layer formed by dispersing carbonizable resin powder particles.
  • the thickness of the first layer is not particularly limited, and can be appropriately set according to the accuracy of the desired carbon molded body, the intensity of the laser beam in step (b), and the like.
  • the thickness of the first layer may be 0.001 mm or more, 0.005 mm or more, 0.008 mm or more, 0.01 mm or more, or 0.03 mm or more, and 2.0 mm or less, 1.0 mm or more. 0.50 mm or less, or 0.30 mm or less.
  • the first raw material resin and the second raw material resin described later are not particularly limited as long as they can be carbonized by laser light irradiation.
  • the first raw material resin and the second raw material resin may each independently be selected from thermosetting resins or thermoplastic resins.
  • thermoplastic resins examples include thermoplastic polyimide resin (TPI), chlorinated polyvinyl chloride resin (CPVC), vinyl chloride resin (PVC), polyetherimide resin (PEI), polyacrylonitrile resin (PAN), and the like. but not limited to these.
  • thermosetting resin examples include polyimide resin, furan resin, phenol resin, and the like, but are not limited to these.
  • the first raw material resin and the second raw material resin are respectively Various substances can be compounded.
  • the first layer and the second layer are independently dispersed in the first raw resin and the second raw resin, respectively, in addition to the first raw resin and the second raw resin.
  • such substances include cellulosic materials such as glass fiber, carboxymethyl cellulose, and cellulose nanofiber, carbon fiber, graphite, graphene, carbon nanotube, carbon black, acetylene black, and black materials such as ketjen black and aniline black.
  • step (b) the first layer is carbonized by irradiating laser light in a first non-oxidizing atmosphere.
  • the step (b) is performed in a non-oxidizing atmosphere in order to prevent complete combustion of the first layer when the first layer is carbonized by laser light irradiation.
  • the first non-oxidizing atmosphere for example, an inert gas atmosphere such as nitrogen gas, argon gas, or helium gas, or a reducing atmosphere such as hydrogen-containing nitrogen gas may be adopted. It is preferably used from the viewpoint of ease and low cost.
  • the non-oxidizing atmosphere may contain oxygen within a range capable of preventing complete combustion of the first layer and carbonizing it, for example, 5% by volume or less, 3% by volume or less, or Oxygen may be contained in the range of vol% or less.
  • the intensity of laser light irradiation may be appropriately set within a range in which the layer containing the raw material resin can be carbonized according to the type of raw material resin, beam diameter, etc.
  • the intensity of laser light irradiation may be 1 W or more, 10 W or more, 15 W or more, or 20 W or more, and may be 200 W or less, or 100 W or less, or 50 W or less.
  • the wavelength of the laser light is not particularly limited, and may be appropriately set within the range of wavelengths absorbed by the raw material resin, and may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less. At this time, it is preferable to set so that the difference between the wavelength of the laser light and the wavelength at which the material resin has the highest absorptance is small.
  • the scanning speed of the laser light is not particularly limited, and is, for example, 1.0 mm/sec or more, 2.0 mm/sec or more, 3.0 mm/sec or more, 4.0 mm/sec or more, 5.0 mm/sec or more, or It may be 8.0 mm/sec or more, and may be 20 mm/sec or less, or 15 mm/sec or less.
  • the beam diameter of the laser light is not particularly limited, and may be set as appropriate according to the accuracy of the desired carbon molded body.
  • step (c) a second layer containing a second raw material resin is provided on the carbonized first layer obtained in step (b).
  • This second layer is the layer to be carbonized in step (d) described later.
  • a film containing the second resin may be used as it is, a layer obtained by applying and drying a coating liquid containing the second resin, or a layer obtained by applying and drying a coating liquid containing the second resin. It may be a layer on which carbonizable resin powder particles as a second resin are dispersed.
  • the thickness of the second layer is not particularly limited, and the thickness of the first layer described above may be referred to as appropriate. Also, the thickness of the second layer and the thickness of the first layer may be the same or different.
  • the second raw material resin is as described above for the first raw material resin. Therefore, the second raw material resin may be the same as or different from the first raw material resin, but it is preferable that they are the same in order to facilitate the preparation of the raw material resin.
  • Step (d)> in a second non-oxidizing atmosphere, the second layer is carbonized by irradiating it with a laser beam, and the carbonized first layer and the carbonized second layer are separated from each other. unify.
  • the second non-oxidizing atmosphere is as described above for the first non-oxidizing atmosphere. Therefore, the second non-oxidizing atmosphere may be the same as or different from the first non-oxidizing atmosphere, but is preferably the same to facilitate the preparation of the non-oxidizing atmosphere.
  • step (b) the description in the above step (b) can be referred to as appropriate, so the description is omitted here.
  • the desired carbon compact can be obtained by repeating the above steps (a) to (d) a plurality of times.
  • “multiple times” means two times or more, and the upper limit of the number of times is not particularly limited, and can be appropriately set according to the size of the target carbon compact.
  • the apparatus for producing the carbon compact is not particularly limited as long as it can perform the steps (a) to (b) described above. More specifically, for example, a 3D printer such as a powder layered three-dimensional modeling apparatus may be used as the carbon compact manufacturing apparatus.
  • Example 1 was performed using a modular laser welding apparatus for plastics.
  • a polyimide film (thickness: 0.1 mm) containing a polyimide resin as a raw material resin was laminated on a polyimide film that had been carbonized in advance in a baking furnace.
  • the laser light irradiation conditions were as follows: ⁇ Laser type: Semiconductor laser ⁇ Laser light wavelength: 940 nm ⁇ Laser light intensity: 15W ⁇ Laser beam diameter: 1.4 mm in diameter ⁇ Laser beam scanning speed: 8.0 mm/sec
  • a carbon molded body can be easily manufactured by repeating steps (a) to (d) according to the manufacturing method of the present invention multiple times on the layer after carbonization. Also, this method is considered to be suitable for various carbon compacts regardless of their size.
  • Example 2 was carried out in the same manner as in Example 1, except that the laser beam intensity was changed to 18W. A result similar to that of Example 1 was obtained, confirming reproducibility.
  • Example 3 was carried out in the same manner as in Example 1, except that the laser beam scanning speed was changed to 4 mm/sec and 15 mm/sec. At any scanning speed, results similar to those of Example 1 were obtained, confirming reproducibility.
  • Example 1 When the polyimide film used in Example 1 was irradiated with laser light in the same manner as in Example 1 in an air atmosphere instead of in a nitrogen gas atmosphere, the irradiated portion of the polyimide film was completely burned, resulting in holes. was opened as a result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided is a production method which enables the easy production of a carbon molded article, also enables the easy production of various carbon molded articles having various sizes, and is particularly suitable for the production of a large-size carbon molded article. A method for producing a carbon molded article by a three-dimensional printing technique includes (a) preparing a first layer containing a first raw material resin, (b) irradiating the first layer with a laser beam under a first non-oxidative atmosphere to carbonize the first layer, (c) preparing a second layer containing a second raw material resin on the carbonized first layer, and (d) irradiating the second layer with a laser beam under a second non-oxidative atmosphere to carbonize the second layer and integrating the carbonized first layer with the carbonized second layer.

Description

炭素成形体の製造方法Method for manufacturing carbon compact
 本発明は、炭素成形体の製造方法に関し、特に、3次元印刷による炭素成形体の製造方法に関する。 The present invention relates to a method for manufacturing a carbon molded body, and more particularly to a method for manufacturing a carbon molded body by three-dimensional printing.
 炭素材料は、耐熱性、導電性、熱伝導性及び化学安定性等の性質に優れているため、炭素材料から作られている炭素成形体は、電気、電子、機械、冶金、化学等の幅広い分野に広く使用されている。 Carbon materials are excellent in properties such as heat resistance, electrical conductivity, thermal conductivity and chemical stability. Widely used in the field.
 従来、炭素成形体は、原料樹脂、並びに随意の骨材としての炭素粉末、及び結合剤としてのピッチやタールを用いて予備成形体を形成し、そしてこれを焼成して炭素化することによって製造されていた。 Conventionally, carbon compacts are manufactured by forming a preform using a raw material resin, carbon powder as an optional aggregate, and pitch or tar as a binder, and then sintering it to carbonize it. It had been.
 しかしながら、この従来の炭素成形体の製造工程は、複雑であって、特に焼成工程では多量の揮発性ガスが発生し、発生したガスが成形体から円滑に揮散、排出されないと、膨れ等の変形や割れが生じ易い。そのため、焼成過程における昇温速度を極めて緩やかに加熱する必要があり、場合によっては、焼成サイクルは1ヶ月以上もの長期間を要している。また、立体形状の最終製品を得るためには、得られた炭素成形体を所望の形状に機械加工する必要がある場合もある。 However, the manufacturing process of this conventional carbon molded body is complicated, and a large amount of volatile gas is generated especially in the firing process, and if the generated gas is not smoothly volatilized and discharged from the molded body, deformation such as blistering may occur. and cracks are likely to occur. Therefore, it is necessary to heat at an extremely slow rate of temperature rise during the firing process, and in some cases, the firing cycle requires a long period of one month or more. Moreover, in order to obtain a three-dimensional final product, it may be necessary to machine the obtained carbon compact into a desired shape.
 上記のような従来の炭素成形体の製造方法に対して、特許文献1及び2は、3次元印刷による炭素成形体の製造方法を開示している。 Patent Documents 1 and 2 disclose a method of manufacturing a carbon molded body by three-dimensional printing, in contrast to the conventional carbon molded body manufacturing method described above.
 より具体的には、特許文献1では、高密度化炭素製品の製造方法であって、(a)炭素粉末を提供するステップと、(b)当該炭素粉末の層を堆積するステップと、(c)当該製品のスライスに対応するパターンで結合剤を当該層の上にインクジェットで堆積させるステップと、(d)当該製品の粉末体が完成するまで、追加の炭素粉末層と追加のパターンについてステップ(b)とステップ(c)を繰り返し、当該追加のパターンのそれぞれは当該製品の追加のスライスに相当するものであるステップと、(e)少なくとも当該結合剤の一部が硬化する温度で当該製品の当該粉末体を硬化することにより、硬化した印刷物を提供するステップと、(f)当該硬化した印刷物にピッチを含浸させることにより、含浸された印刷物を提供するステップと、から成る製造方法が開示されている。 More specifically, US Pat. No. 6,202,900 discloses a method of manufacturing a densified carbon product comprising the steps of (a) providing a carbon powder; (b) depositing a layer of said carbon powder; (d) for additional layers of carbon powder and additional patterns until the powder body of the product is complete; b) and step (c), each of said additional patterns representing an additional slice of said product; (f) impregnating the cured print with pitch to provide an impregnated print; ing.
 また、特許文献2では、カーボンエアロゲルの形成方法であって、インクを3D印刷して印刷部品を作製することであり、前記インクは、溶媒、レゾルシノール-ホルムアルデヒド樹脂、及び有機増粘剤を含むものであること、前記印刷部品から溶剤を除去すること、並びに前記印刷部品を炭化して前記エアロゲルを作製すること、を含み、前記レゾルシノール-ホルムアルデヒド樹脂は、酸触媒を含み、1:1を超えるホルムアルデヒド:レゾルシノールのモル比を有し、前記増粘剤は、水溶性で、C、H、O原子のみから構成され、かつエーテル官能基又はアルコール官能基のみを含む、カーボンエアロゲルの形成方法が開示されている。 Further, in Patent Document 2, a method of forming a carbon airgel is to 3D print an ink to produce a printed part, and the ink contains a solvent, a resorcinol-formaldehyde resin, and an organic thickener. removing solvent from the printed part, and carbonizing the printed part to create the airgel, wherein the resorcinol-formaldehyde resin comprises an acid catalyst and has a formaldehyde:resorcinol ratio greater than 1:1. wherein the thickening agent is water-soluble, consists solely of C, H, O atoms, and contains only ether or alcohol functional groups. .
特表2018-502811号公報Japanese Patent Publication No. 2018-502811 特表2020-524625号公報Japanese Patent Publication No. 2020-524625
 本発明では、3D印刷によって炭素成形体を製造する新規な方法を提供する。 The present invention provides a novel method of manufacturing a carbon compact by 3D printing.
 上記の目的を達成する本発明は、以下のとおりである。 The present invention that achieves the above objects is as follows.
 〈態様1〉
 3次元印刷による炭素成形体の製造方法であって、
 (a)第1の原料樹脂を含む第1の層を提供すること、
 (b)第1の非酸化雰囲気下で、前記第1の層をレーザー光照射して炭素化させること、
 (c)炭素化後の前記第1の層の上に、第2の原料樹脂を含む第2の層を提供すること、及び
 (d)第2の非酸化雰囲気下で、前記第2の層をレーザー光照射して炭素化させると共に、炭素化後の前記第1の層と炭素化後の前記第2の層を一体化させること
を含む、方法。
 〈態様2〉
 前記第1の原料樹脂及び前記第2の原料樹脂が、それぞれ独立して、熱硬化性樹脂又は熱可塑性樹脂から選択される、態様1に記載の方法。
 〈態様3〉
 前記第1の非酸化雰囲気及び前記第2の非酸化雰囲気が、窒素ガス雰囲気である、態様1又は2に記載の方法。
 〈態様4〉
 前記レーザー光照射の強度が、1~200Wである、態様1~3のいずれか一項に記載の方法。
 〈態様5〉
 前記(a)~(d)を複数回繰り返すことを含む、態様1~4のいずれか一項に記載の方法。
 〈態様6〉
 前記第1の層及び前記第2の層が、それぞれ独立して、前記第1の原料樹脂及び前記第2の原料樹脂に加えて、それぞれ前記第1の原料樹脂及び前記第2の原料樹脂中に分散しているガラスファイバー、カルボキシメチルセルロース、セルロースナノファイバーなどのセルロース系材料、カーボンファイバー、グラファイト、グラフェン、カーボンナノチューブ、カーボンブラック、アセチレンブラック、及びケッチェンブラック、アニリンブラックなどの黒色を有する有機顔料からなる群より選択される少なくとも1つの物質を含む、態様1~5のいずれか一項に記載の方法。
<Aspect 1>
A method for manufacturing a carbon molded body by three-dimensional printing,
(a) providing a first layer comprising a first raw material resin;
(b) irradiating the first layer with laser light to carbonize it in a first non-oxidizing atmosphere;
(c) providing a second layer comprising a second raw material resin on the first layer after carbonization; and (d) under a second non-oxidizing atmosphere, the second layer is carbonized by irradiating with laser light, and integrating the first layer after carbonization and the second layer after carbonization.
<Aspect 2>
A method according to aspect 1, wherein said first raw material resin and said second raw material resin are each independently selected from thermosetting resins or thermoplastic resins.
<Aspect 3>
The method according to aspect 1 or 2, wherein the first non-oxidizing atmosphere and the second non-oxidizing atmosphere are nitrogen gas atmospheres.
<Aspect 4>
The method according to any one of aspects 1 to 3, wherein the intensity of the laser light irradiation is 1 to 200W.
<Aspect 5>
5. The method of any one of aspects 1-4, comprising repeating (a)-(d) multiple times.
<Aspect 6>
The first layer and the second layer are each independently in the first raw resin and the second raw resin in addition to the first raw resin and the second raw resin, respectively. Cellulosic materials such as glass fiber, carboxymethyl cellulose, cellulose nanofiber, etc., carbon fiber, graphite, graphene, carbon nanotubes, carbon black, acetylene black, and black organic pigments such as ketjen black, aniline black, etc. A method according to any one of aspects 1 to 5, comprising at least one substance selected from the group consisting of:
 本発明の製造方法によれば、焼成炉を使用しないため、サイズに寄らず様々な炭素成形体を簡単に製造することができ、特に、大型の炭素成形体を簡単に製造することができる。 According to the manufacturing method of the present invention, since a firing furnace is not used, various carbon molded bodies can be easily manufactured regardless of size, and in particular, large-sized carbon molded bodies can be easily manufactured.
 以下、本発明の実施の形態について詳述する。なお、本発明は、以下の実施の形態に限定されるものではなく、発明の本旨の範囲内で種々変形して実施できる。 The embodiment of the present invention will be described in detail below. It should be noted that the present invention is not limited to the following embodiments, and can be modified in various ways within the scope of the gist of the invention.
 《炭素成形体の製造方法》
 本発明の炭素成形体の製造方法は、
 3次元印刷による炭素成形体の製造方法であって、
 (a)第1の原料樹脂を含む第1の層を提供すること、
 (b)第1の非酸化雰囲気下で、第1の層をレーザー光照射して炭素化させること、
 (c)炭素化後の第1の層の上に、第2の原料樹脂を含む第2の層を提供すること、及び
 (d)第2の非酸化雰囲気下で、第2の層をレーザー光照射して炭素化させると共に、炭素化後の第1の層と炭素化後の第2の層を一体化させること
を含む、方法
である。
<<Manufacturing method of carbon compact>>
The method for producing a carbon molded body of the present invention comprises:
A method for producing a carbon molded body by three-dimensional printing,
(a) providing a first layer comprising a first raw material resin;
(b) irradiating the first layer with laser light to carbonize it in a first non-oxidizing atmosphere;
(c) providing a second layer comprising a second raw material resin on top of the first layer after carbonization; The method includes irradiating light to carbonize and integrating the first layer after carbonization and the second layer after carbonization.
 3次元印刷には、様々な原理、仕組み、又は種類が開発されているが、その共通の特徴は、「積層する」こと、すなわち、所望の形状が作成するまで、原料からなる層を1枚ずつ繰り返して重ねることである。 Various principles, schemes, or types of 3D printing have been developed, but the common feature is "lamination", i.e., stacking layers of raw materials one by one until the desired shape is created. It is to repeat one by one.
 本発明において用いることができる3次元印刷の方式は、特に限定されるものではなく、レーザーを用いる任意の方式を用いることができる。したがって具体的には、本発明において用いることができる3次元印刷は、デポジション方式(DED:Direct Energy Deposition)であっても、パウダーべッド方式(PBF:Powder Bed Fusion)であってもよい。ここで、デポジション方式の3次元印刷を用いる場合、第1又は第2の原料樹脂を含む材料粉末を下地層に適用して第1又は第2の層を形成するのと同時に、非酸化雰囲気においてレーザー光照射して、この層の炭化を行うことができる。また、パウダーべッド方式の3次元印刷を用いる場合、第1又は第2の原料樹脂を含む材料粉末を下地層上に敷き詰めて第1又は第2の層を形成し、そして非酸化雰囲気においてレーザー光照射して、この層の炭化を行うことができる。 The three-dimensional printing method that can be used in the present invention is not particularly limited, and any method using a laser can be used. Specifically, therefore, three-dimensional printing that can be used in the present invention may be a deposition method (DED: Direct Energy Deposition) or a powder bed method (PBF: Powder Bed Fusion). . Here, when using deposition type three-dimensional printing, the material powder containing the first or second raw material resin is applied to the base layer to form the first or second layer, and at the same time, the non-oxidizing atmosphere This layer can be carbonized by irradiating with laser light. Further, when using three-dimensional printing of the powder bed method, the material powder containing the first or second raw material resin is spread over the base layer to form the first or second layer, and in a non-oxidizing atmosphere Carbonization of this layer can be achieved by irradiation with a laser beam.
 本発明は、3次元印刷を用いることによって、焼成炉を使用しないため、サイズに寄らず様々な炭素成形体を簡単に製造することができ、特に、大型の炭素成形体の製造に適している。 Since the present invention uses three-dimensional printing and does not use a firing furnace, it is possible to easily produce various carbon molded bodies regardless of size, and is particularly suitable for manufacturing large carbon molded bodies. .
 本発明の発明者らは、炭素化層上に原料樹脂を含む層を提供し、そして非酸化雰囲気下においてこの原料樹脂を含む層にレーザー光を照射することによって、原料樹脂を含む層が炭素化すると共に、炭素化された層とその下に位置する炭素化層とが密着して一体化することを見いだし、これに基づいて、本発明の方法に想到した。なお、理論に限定されるものではないが、レーザー光照射によって樹脂が軟化し、その下の層に密着した後で炭素化することによって、炭素化層間の一体化を促進できると考えられる。 The inventors of the present invention provided a layer containing a raw material resin on the carbonized layer, and irradiated the layer containing the raw material resin with a laser beam in a non-oxidizing atmosphere so that the layer containing the raw material resin was carbonized. The inventors have found that the carbonized layer and the carbonized layer located therebelow adhere to each other as the carbonization progresses, and based on this, the inventors came up with the method of the present invention. Although not limited to theory, it is believed that the resin is softened by laser light irradiation, adhered to the underlying layer, and then carbonized, thereby promoting integration between the carbonized layers.
 なお、本発明において、「一体化」とは、2つの層が互いに密着しており、2つの層の少なくとも一部、好ましくは全部を破壊せずには、それら2つの層を互いに分離できない状態を意味する。 In the present invention, "integrated" means that two layers are in close contact with each other, and the two layers cannot be separated from each other without destroying at least a part, preferably all, of the two layers. means
 〈工程(a)〉
 工程(a)では、第1の原料樹脂を含む第1の層を提供する。
<Step (a)>
Step (a) provides a first layer comprising a first raw material resin.
 ここで、第1の層は、後述する工程(b)における炭素化の対象となる層である。また、第1の層が提供される場所として、例えば、製造に用いる装置のステージ上であってもよく、すでに形成されている他の炭素化後の層の上であってもよい。 Here, the first layer is a layer to be carbonized in step (b) described later. Further, the place where the first layer is provided may be, for example, on the stage of the apparatus used for manufacturing, or on another layer already formed after carbonization.
 第1の層としては、第1の樹脂を含むフィルムをそのまま用いてもよく、第1の樹脂を含む塗布液を塗布及び乾燥して得られる層であってもよく、又は第1の樹脂としての炭素化可能な樹脂パウダー粒子を散布してなる層であってもよい。 As the first layer, a film containing the first resin may be used as it is, or a layer obtained by applying and drying a coating liquid containing the first resin, or as the first resin It may be a layer formed by dispersing carbonizable resin powder particles.
 第1の層の厚さは、特に限定されず、目的とする炭素成形体の精度や工程(b)のレーザー光の強度等に応じて、適宜設定することができる。例えば、第1の層の厚さは、0.001mm以上、0.005mm以上、0.008mm以上、0.01mm以上、又は0.03mm以上であってよく、また2.0mm以下、1.0mm以下、0.50mm以下、又は0.30mm以下であってよい。 The thickness of the first layer is not particularly limited, and can be appropriately set according to the accuracy of the desired carbon molded body, the intensity of the laser beam in step (b), and the like. For example, the thickness of the first layer may be 0.001 mm or more, 0.005 mm or more, 0.008 mm or more, 0.01 mm or more, or 0.03 mm or more, and 2.0 mm or less, 1.0 mm or more. 0.50 mm or less, or 0.30 mm or less.
 第1の原料樹脂及び後述する第2の原料樹脂は、レーザー光照射により炭素化できるものであれば、特に限定されない。例えば、第1の原料樹脂及び第2の原料樹脂は、それぞれ独立して、熱硬化性樹脂又は熱可塑性樹脂から選択されてよい。 The first raw material resin and the second raw material resin described later are not particularly limited as long as they can be carbonized by laser light irradiation. For example, the first raw material resin and the second raw material resin may each independently be selected from thermosetting resins or thermoplastic resins.
 熱可塑性樹脂としては、例えば、熱可塑性ポリイミド樹脂(TPI)、塩素化塩ビ樹脂(CPVC)、塩化ビニル樹脂(PVC)、ポリエーテルイミド樹脂(PEI)、又はポリアクリロニトリル樹脂(PAN)等が挙げられるが、これらに限定されない。また、熱硬化性樹脂としては、例えば、ポリイミド樹脂、フラン樹脂、又はフェノール樹脂等が挙げられるが、これらに限定されない。 Examples of thermoplastic resins include thermoplastic polyimide resin (TPI), chlorinated polyvinyl chloride resin (CPVC), vinyl chloride resin (PVC), polyetherimide resin (PEI), polyacrylonitrile resin (PAN), and the like. but not limited to these. Further, examples of the thermosetting resin include polyimide resin, furan resin, phenol resin, and the like, but are not limited to these.
 また、第1の層及び後述する第2の層において、造形物の強度・導電性・放熱性等の性能アップや密度調整を目的として、それぞれ第1の原料樹脂及び第2の原料樹脂に、様々の物質をコンパウンドすることができる。 In addition, in the first layer and the second layer described later, for the purpose of improving performance such as strength, conductivity, heat dissipation, etc. of the model and adjusting the density, the first raw material resin and the second raw material resin are respectively Various substances can be compounded.
 すなわち、第1の層及び第2の層は、それぞれ独立して、第1の原料樹脂及び第2の原料樹脂に加えて、それぞれ第1の原料樹脂及び第2の原料樹脂中に分散している他の物質を含んでいてもよい。このような物質としては、例えばガラスファイバー、カルボキシメチルセルロース、セルロースナノファイバーなどのセルロース系材料、カーボンファイバー、グラファイト、グラフェン、カーボンナノチューブ、カーボンブラック、アセチレンブラック、及びケッチェンブラック、アニリンブラックなどの黒色を有する有機顔料からなる群より選択される少なくとも1つの物質を挙げることができる。 That is, the first layer and the second layer are independently dispersed in the first raw resin and the second raw resin, respectively, in addition to the first raw resin and the second raw resin. may contain other substances Examples of such substances include cellulosic materials such as glass fiber, carboxymethyl cellulose, and cellulose nanofiber, carbon fiber, graphite, graphene, carbon nanotube, carbon black, acetylene black, and black materials such as ketjen black and aniline black. at least one substance selected from the group consisting of organic pigments having
 〈工程(b)〉
 工程(b)では、第1の非酸化雰囲気下で、前記第1の層をレーザー光照射して炭素化させる。
<Step (b)>
In step (b), the first layer is carbonized by irradiating laser light in a first non-oxidizing atmosphere.
 第1の層をレーザー光照射して炭素化させる際に、第1の層の完全燃焼を予防するために、工程(b)は非酸化雰囲気下で実行される。 The step (b) is performed in a non-oxidizing atmosphere in order to prevent complete combustion of the first layer when the first layer is carbonized by laser light irradiation.
 第1の非酸化雰囲気としては、例えば、窒素ガス、アルゴンガス、若しくはヘリウムガス等の不活性ガス雰囲気、又は水素含有窒素ガス等の還元性雰囲気を採用してよく、中でも窒素ガス雰囲気は、取り扱い容易で、かつ安価である観点から、好ましく用いられる。なお、非酸化雰囲気は、第1の層の完全燃焼を予防して炭素化させることが可能な範囲で、酸素を含有していてもよく、例えば5体積%以下、3体積%以下、又は1体積%以下の範囲で酸素を含有していてもよい。 As the first non-oxidizing atmosphere, for example, an inert gas atmosphere such as nitrogen gas, argon gas, or helium gas, or a reducing atmosphere such as hydrogen-containing nitrogen gas may be adopted. It is preferably used from the viewpoint of ease and low cost. In addition, the non-oxidizing atmosphere may contain oxygen within a range capable of preventing complete combustion of the first layer and carbonizing it, for example, 5% by volume or less, 3% by volume or less, or Oxygen may be contained in the range of vol% or less.
 レーザー光照射の強度(出力時のパワー)は、原料樹脂の種類、ビーム径等に合わせて、原料樹脂を含む層が炭素化できる範囲内で適宜に設定してよい。例えば、レーザー光照射の強度は、1W以上、10W以上、15W以上、又は20W以上であってよく、また200W以下、又は100W以下、または50W以下であってよい。 The intensity of laser light irradiation (power at the time of output) may be appropriately set within a range in which the layer containing the raw material resin can be carbonized according to the type of raw material resin, beam diameter, etc. For example, the intensity of laser light irradiation may be 1 W or more, 10 W or more, 15 W or more, or 20 W or more, and may be 200 W or less, or 100 W or less, or 50 W or less.
 レーザー光の波長は、特に限定されず、原料樹脂が吸収する波長の範囲内で適宜設定してよく、例えば0.1μm以上2μm以下であってよい。この際に、レーザー光の波長と、原料樹脂の吸収率が最も高くなる波長との差が小さくなるように設定することが好ましい。 The wavelength of the laser light is not particularly limited, and may be appropriately set within the range of wavelengths absorbed by the raw material resin, and may be, for example, 0.1 μm or more and 2 μm or less. At this time, it is preferable to set so that the difference between the wavelength of the laser light and the wavelength at which the material resin has the highest absorptance is small.
 レーザー光の走査速度は、特に限定されず、例えば、1.0mm/秒以上、2.0mm/秒以上、3.0mm/秒以上、4.0mm/秒以上、5.0mm/秒以上、又は8.0mm/秒以上であってよく、また、20mm/秒以下、又は15mm/秒以下であってよい。 The scanning speed of the laser light is not particularly limited, and is, for example, 1.0 mm/sec or more, 2.0 mm/sec or more, 3.0 mm/sec or more, 4.0 mm/sec or more, 5.0 mm/sec or more, or It may be 8.0 mm/sec or more, and may be 20 mm/sec or less, or 15 mm/sec or less.
 また、レーザー光のビーム径は、特に限定されず、目的とする炭素成形体の精度に応じて、適宜設定してよい。 Also, the beam diameter of the laser light is not particularly limited, and may be set as appropriate according to the accuracy of the desired carbon molded body.
 〈工程(c)〉
 工程(c)では、上記工程(b)で得られた炭素化後の第1の層の上に、第2の原料樹脂を含む第2の層を提供する。
<Step (c)>
In step (c), a second layer containing a second raw material resin is provided on the carbonized first layer obtained in step (b).
 この第2の層は、後述する工程(d)における炭素化の対象となる層である。第2の層としては、第2の樹脂を含むフィルムをそのまま用いてもよく、第2の樹脂を含む塗布液を塗布及び乾燥して得られる層であってもよく、又は第1の層の上に第2の樹脂としての炭素化可能な樹脂パウダー粒子を散布してなる層であってもよい。 This second layer is the layer to be carbonized in step (d) described later. As the second layer, a film containing the second resin may be used as it is, a layer obtained by applying and drying a coating liquid containing the second resin, or a layer obtained by applying and drying a coating liquid containing the second resin. It may be a layer on which carbonizable resin powder particles as a second resin are dispersed.
 第2の層の厚さは、特に限定されず、上述した第1の層の厚さを適宜参照してよい。また、第2の層の厚さと第1の層の厚さは、同じであってもよく、異なっていてもよい。 The thickness of the second layer is not particularly limited, and the thickness of the first layer described above may be referred to as appropriate. Also, the thickness of the second layer and the thickness of the first layer may be the same or different.
 第2の原料樹脂は、上述した第1の原料樹脂について説明したとおりである。したがって、第2の原料樹脂は、第1の原料樹脂と同じであっても異なっていてもよいが、同じであることが原料樹脂の準備を容易にするために好ましい。 The second raw material resin is as described above for the first raw material resin. Therefore, the second raw material resin may be the same as or different from the first raw material resin, but it is preferable that they are the same in order to facilitate the preparation of the raw material resin.
 〈工程(d)〉
 工程(d)では、第2の非酸化雰囲気下で、第2の層をレーザー光照射して炭素化させると共に、炭素化後の前記第1の層と炭素化後の前記第2の層を一体化させる。
<Step (d)>
In step (d), in a second non-oxidizing atmosphere, the second layer is carbonized by irradiating it with a laser beam, and the carbonized first layer and the carbonized second layer are separated from each other. unify.
 第2の非酸化雰囲気は、上述した第1の非酸化雰囲気について説明したとおりである。したがって、第2の非酸化雰囲気は、第1の非酸化雰囲気と同じであっても異なっていてもよいが、同じであることが非酸化雰囲気の準備を容易にするために好ましい。 The second non-oxidizing atmosphere is as described above for the first non-oxidizing atmosphere. Therefore, the second non-oxidizing atmosphere may be the same as or different from the first non-oxidizing atmosphere, but is preferably the same to facilitate the preparation of the non-oxidizing atmosphere.
 レーザー光に関して、上述した工程(b)における記載内容を適宜参照できるため、ここでは説明を省略する。 Regarding the laser beam, the description in the above step (b) can be referred to as appropriate, so the description is omitted here.
 〈工程の繰り返し〉
 炭素成形体を製造する際に、上述した工程(a)~工程(d)を複数回繰り返すことによって、所望の炭素成形体を得ることができる。ここで、複数回とは、2回以上であり、回数の上限は、特に限定されず、目的とする炭素成形体の大きさ等に応じて適宜設定できる。
<Repetition of process>
When manufacturing the carbon compact, the desired carbon compact can be obtained by repeating the above steps (a) to (d) a plurality of times. Here, "multiple times" means two times or more, and the upper limit of the number of times is not particularly limited, and can be appropriately set according to the size of the target carbon compact.
 〈製造装置〉
 本発明において、炭素成形体の製造装置としては、上述した工程(a)~(b)を行えるものであれば、特に限定されない。より具体的には、炭素成形体の製造装置として、例えば、粉末積層式3次元造形装置等の3Dプリンター等を用いてよい。
<Manufacturing equipment>
In the present invention, the apparatus for producing the carbon compact is not particularly limited as long as it can perform the steps (a) to (b) described above. More specifically, for example, a 3D printer such as a powder layered three-dimensional modeling apparatus may be used as the carbon compact manufacturing apparatus.
 以下に実施例を挙げて、本発明について更に詳しく説明を行うが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these.
 《実施例1》
 プラスチック用モジュール式レーザー溶着装置を用いて、以下の実施例1を行った。
<<Example 1>>
Example 1 below was performed using a modular laser welding apparatus for plastics.
 より具体的には、予め焼成炉にて炭素化されたポリイミドフィルムの上に、原料樹脂としてのポリイミド樹脂を含むポリイミドフィルム(厚さ:0.1mm)を積層した。 More specifically, a polyimide film (thickness: 0.1 mm) containing a polyimide resin as a raw material resin was laminated on a polyimide film that had been carbonized in advance in a baking furnace.
 そして、窒素ガス雰囲気下で、上層のポリイミドフィルムの一部の領域をレーザー光照射して、炭素化させた。この際、レーザー光の照射条件は、以下のとおりであった:
 ・レーザー種類:半導体レーザー
 ・レーザー光波長:940nm
 ・レーザー光強度:15W
 ・レーザー光径:直径1.4mm
 ・レーザー光走査速度:8.0mm/秒
Then, in a nitrogen gas atmosphere, a partial area of the upper polyimide film was irradiated with a laser beam to carbonize it. At this time, the laser light irradiation conditions were as follows:
・Laser type: Semiconductor laser ・Laser light wavelength: 940 nm
・Laser light intensity: 15W
・Laser beam diameter: 1.4 mm in diameter
・Laser beam scanning speed: 8.0 mm/sec
 (結果及び考察)
 炭素化後、目視によって観察したところ、レーザー光照射して炭素化された領域と、それに隣接して積層された炭素化後の層とは密着しており、一体化になっていることが分かった。
(Results and discussion)
After carbonization, visual observation revealed that the region carbonized by laser light irradiation and the layer after carbonization laminated adjacent thereto were in close contact and integrated. rice field.
 この結果から、炭素化後の層の上に、本発明の製造方法に係る工程(a)から(d)まで複数回を繰り返すことによって、炭素成形体を簡単に製造できることが考えられる。また、この方法は、サイズによらず様々な炭素成形体にも適していると考えられる。 From this result, it is conceivable that a carbon molded body can be easily manufactured by repeating steps (a) to (d) according to the manufacturing method of the present invention multiple times on the layer after carbonization. Also, this method is considered to be suitable for various carbon compacts regardless of their size.
 《実施例2》
 実施例2は、レーザー光強度を18Wに変更したこと以外に、実施例1と同様にして行われた。実施例1と同様の結果が得られて、再現性があることを確認できた。
<<Example 2>>
Example 2 was carried out in the same manner as in Example 1, except that the laser beam intensity was changed to 18W. A result similar to that of Example 1 was obtained, confirming reproducibility.
 《実施例3》
 実施例3は、レーザー光走査速度を、4mm/秒及び15mm/秒に変更したこと以外に、実施例1と同様にして行われた。そして、いずれの走査速度においても実施例1と同様の結果が得られて、再現性があることを確認できた。
<<Example 3>>
Example 3 was carried out in the same manner as in Example 1, except that the laser beam scanning speed was changed to 4 mm/sec and 15 mm/sec. At any scanning speed, results similar to those of Example 1 were obtained, confirming reproducibility.
 《比較例1》
 実施例1で用いたポリイミドフィルムに対して、窒素ガス雰囲気下ではなく空気雰囲気下で、実施例1と同様のレーザー光照射を行ったところ、照射箇所のポリイミドフィルムが完全燃焼してしまい、孔が開いた結果となった。
<<Comparative example 1>>
When the polyimide film used in Example 1 was irradiated with laser light in the same manner as in Example 1 in an air atmosphere instead of in a nitrogen gas atmosphere, the irradiated portion of the polyimide film was completely burned, resulting in holes. was opened as a result.

Claims (6)

  1.  3次元印刷による炭素成形体の製造方法であって、
     (a)第1の原料樹脂を含む第1の層を提供すること、
     (b)第1の非酸化雰囲気下で、前記第1の層をレーザー光照射して炭素化させること、
     (c)炭素化後の前記第1の層の上に、第2の原料樹脂を含む第2の層を提供すること、及び
     (d)第2の非酸化雰囲気下で、前記第2の層をレーザー光照射して炭素化させると共に、炭素化後の前記第1の層と炭素化後の前記第2の層を一体化させること
    を含む、方法。
    A method for manufacturing a carbon molded body by three-dimensional printing,
    (a) providing a first layer comprising a first raw material resin;
    (b) irradiating the first layer with laser light to carbonize it in a first non-oxidizing atmosphere;
    (c) providing a second layer comprising a second raw material resin on the first layer after carbonization; and (d) under a second non-oxidizing atmosphere, the second layer is carbonized by irradiating with laser light, and integrating the first layer after carbonization and the second layer after carbonization.
  2.  前記第1の原料樹脂及び前記第2の原料樹脂が、それぞれ独立して、熱硬化性樹脂又は熱可塑性樹脂から選択される、請求項1に記載の方法。 The method according to claim 1, wherein said first raw material resin and said second raw material resin are each independently selected from thermosetting resins and thermoplastic resins.
  3.  前記第1の非酸化雰囲気及び前記第2の非酸化雰囲気が、窒素ガス雰囲気である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the first non-oxidizing atmosphere and the second non-oxidizing atmosphere are nitrogen gas atmospheres.
  4.  前記レーザー光照射の強度が、1~200Wである、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the intensity of the laser light irradiation is 1 to 200W.
  5.  前記(a)~(d)を複数回繰り返すことを含む、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, comprising repeating (a) to (d) multiple times.
  6.  前記第1の層及び前記第2の層が、それぞれ独立して、前記第1の原料樹脂及び前記第2の原料樹脂に加えて、それぞれ前記第1の原料樹脂及び前記第2の原料樹脂中に分散しているガラスファイバー、カルボキシメチルセルロース、セルロースナノファイバーなどのセルロース系材料、カーボンファイバー、グラファイト、グラフェン、カーボンナノチューブ、カーボンブラック、アセチレンブラック、及びケッチェンブラック、アニリンブラックなどの黒色を有する有機顔料からなる群より選択される少なくとも1つの物質を含む、請求項1~5のいずれか一項に記載の方法。 The first layer and the second layer are each independently in the first raw resin and the second raw resin in addition to the first raw resin and the second raw resin, respectively. Cellulosic materials such as glass fiber, carboxymethyl cellulose, cellulose nanofiber, carbon fiber, graphite, graphene, carbon nanotube, carbon black, acetylene black, and black organic pigments such as ketjen black and aniline black The method according to any one of claims 1 to 5, comprising at least one substance selected from the group consisting of
PCT/JP2022/036298 2021-09-28 2022-09-28 Method for producing carbon molded article WO2023054530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-158270 2021-09-28
JP2021158270A JP2023048771A (en) 2021-09-28 2021-09-28 Method for producing carbon molded product

Publications (1)

Publication Number Publication Date
WO2023054530A1 true WO2023054530A1 (en) 2023-04-06

Family

ID=85780113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036298 WO2023054530A1 (en) 2021-09-28 2022-09-28 Method for producing carbon molded article

Country Status (2)

Country Link
JP (1) JP2023048771A (en)
WO (1) WO2023054530A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170072587A1 (en) * 2015-09-15 2017-03-16 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
JP2017535459A (en) * 2014-11-27 2017-11-30 ジョージア − パシフィック ケミカルズ エルエルシー Thixotropic thermosetting resins for use in material extrusion processes in additive manufacturing.
CN110436437A (en) * 2019-08-16 2019-11-12 苏州大学 It is a kind of to encapsulate carbon array and its preparation method and application certainly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535459A (en) * 2014-11-27 2017-11-30 ジョージア − パシフィック ケミカルズ エルエルシー Thixotropic thermosetting resins for use in material extrusion processes in additive manufacturing.
US20170072587A1 (en) * 2015-09-15 2017-03-16 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
CN110436437A (en) * 2019-08-16 2019-11-12 苏州大学 It is a kind of to encapsulate carbon array and its preparation method and application certainly

Also Published As

Publication number Publication date
JP2023048771A (en) 2023-04-07

Similar Documents

Publication Publication Date Title
JP6859441B2 (en) Manufacturing method of C / C-SiC composite material parts and their products
JP4148984B2 (en) Fuel cell separator and method for producing the same
KR100850657B1 (en) Method for manufacturing carbon fiber reinforced carbon composite material suitable for semiconductor heat sink
KR102411873B1 (en) Process for making densified carbon articles by three dimensional printing
JPH0136670B2 (en)
US20120280430A1 (en) Composite tooling containing carbon nanotubes and production of parts therefrom
CN108504096B (en) Preparation method of carbon nano tube/polymer composite material
CN107651667A (en) Solid carbon product comprising CNT with and forming method thereof
US20170334725A1 (en) Solid carbon products comprising carbon nanotubes and methods of forming same
CN109809821A (en) A kind of self-blockade stratiform CNT paper/SiC gradient nano composite material and preparation method
WO2023054530A1 (en) Method for producing carbon molded article
KR20180003086A (en) Photocurable 3d printing material composition and high-strength 3d printed matter manufacturing method using same
JPH03150266A (en) Production of carbon/carbon composite material
JP2009057407A (en) Method for improving electrical conductivity of carbon nanotube-containing resin molded body by lamination heating and pressurization
US20040180157A1 (en) Tube laminate and method for producing the same
US20090246511A1 (en) Cellulose carbide material having graphite nanolayer and synthesis method thereof
JPH01160867A (en) Production of electrically conductive material
KR20230004858A (en) Glassy Carbon Compositions, Multilayer Laminates, and 3-D Printed Articles
TW202116704A (en) Method for molding a ceramic material and molding apparatus thereof
DE4139597A1 (en) METHOD FOR PRODUCING FULLEREN AND HETEROFULLEREN
US20230193469A1 (en) Process for graphene-like carbon coating on substrates
JPS63967A (en) Manufacture of electrode base plate for fuel cell
CN113881214B (en) High-conductivity graphene/polymer composite material and preparation method thereof
KR102481131B1 (en) Manufacturing method of continuous skeletal porous carbon material for application to supercapacitor
KR101383800B1 (en) Porous carbon materials using mesophase pitch and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE