JP2008036527A - Method of packing solid catalyst, and method of producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method of packing solid catalyst, and method of producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2008036527A
JP2008036527A JP2006213647A JP2006213647A JP2008036527A JP 2008036527 A JP2008036527 A JP 2008036527A JP 2006213647 A JP2006213647 A JP 2006213647A JP 2006213647 A JP2006213647 A JP 2006213647A JP 2008036527 A JP2008036527 A JP 2008036527A
Authority
JP
Japan
Prior art keywords
reaction tube
solid catalyst
temperature
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006213647A
Other languages
Japanese (ja)
Other versions
JP5063055B2 (en
Inventor
Masahiko Mizuta
真彦 水田
Masahide Kondo
正英 近藤
Toru Kuroda
徹 黒田
Seiichi Kato
誠一 河藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006213647A priority Critical patent/JP5063055B2/en
Publication of JP2008036527A publication Critical patent/JP2008036527A/en
Application granted granted Critical
Publication of JP5063055B2 publication Critical patent/JP5063055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of packing a solid catalyst by which a deterioration in the solid catalyst containing organic matter can be reduced, the deterioration arising when the solid catalyst containing organic matter is packed into a reaction tube and then the temperature of the packed solid catalyst is raised, and to provide a method of producing unsaturated aldehyde and unsaturated carboxylic acid by using the hard-to-deteriorate solid catalyst. <P>SOLUTION: The method of packing the solid catalyst comprises packing the solid catalyst containing organic matter into the reaction tube of the temperature x[°C] satisfying a relationship of expression (1) (wherein T is the decomposition temperature [°C] of the organic matter contained in the solid catalyst). The method of producing the corresponding unsaturated aldehyde and unsaturated carboxylic acid comprises: packing the solid catalyst into the reaction tube according to the above-mentioned packing method: removing the organic matter contained in the solid catalyst in the reaction tube; and subjecting propylene, isobutylene, tertiary butanol or methyl tertiary-buthyl ether to vapor phase contact oxidation by using molecular oxygen in the reaction tube. The method of producing (meth)acrylic acid comprises: packing the solid catalyst into the reaction tube according to the above-mentioned packing method; removing the organic matter contained in the solid catalyst in the reaction tube; and subjecting (meth)acrolein to vapor phase contact oxidation by using molecular oxygen in the reaction tube. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機物を含む固体触媒を反応管に充填する方法、不飽和アルデヒド及び不飽和カルボン酸を製造する方法、並びに(メタ)アクリル酸を製造する方法に関する。   The present invention relates to a method for filling a reaction tube with a solid catalyst containing an organic substance, a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, and a method for producing (meth) acrylic acid.

反応管内へ固体触媒を充填する方法として、特許文献1では固定床反応器の反応管内の雰囲気ガス温度を10℃から40℃の温度範囲で固体触媒を充填することが記載されている。また、特許文献1には固体触媒として、プロピレン、イソブチレン、tert−ブタノールの気相接触酸化反応用、およびメタクロレインの気相接触酸化反応用の固体触媒が例示されている。   As a method of filling a solid catalyst into a reaction tube, Patent Document 1 describes filling the solid catalyst in an atmosphere gas temperature in a temperature range of 10 ° C. to 40 ° C. in a reaction tube of a fixed bed reactor. Patent Document 1 exemplifies solid catalysts for the gas phase catalytic oxidation reaction of propylene, isobutylene and tert-butanol and for the gas phase catalytic oxidation reaction of methacrolein.

特許文献2には、メタクロレインを気相接触酸化してメタクリル酸を製造するための触媒の前駆体の成形品であって有機物を含むものを反応管に充填した後、反応管中で300〜500℃で焼成して触媒を製造できること、焼成した触媒を使用して200〜450℃の反応温度でメタクリル酸を製造できることが記載されている。   In Patent Document 2, a molded product of a precursor of a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein and containing an organic substance is charged into a reaction tube, and then 300 to 300 in the reaction tube. It is described that a catalyst can be produced by calcining at 500 ° C., and that methacrylic acid can be produced at a reaction temperature of 200 to 450 ° C. using the calcined catalyst.

特許文献3には、気相接触酸化法で不飽和アルデヒドおよび不飽和カルボン酸を製造する方法において、有機物を含有する触媒前駆体を反応管に充填した後、気体を反応管に流通させた状態で、気体の触媒前駆体層入口部の温度より触媒前駆体層出口部の温度を高くなるようにして触媒前駆体を昇温して熱処理する方法が記載されている。
特開2005−224661号公報 特開2005−187463号公報 特開2002−239386号公報
In Patent Document 3, in a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid by a gas phase catalytic oxidation method, after filling a reaction tube with a catalyst precursor containing an organic substance, gas is circulated through the reaction tube. Thus, a method is described in which the temperature of the catalyst precursor is raised and heat-treated so that the temperature of the catalyst precursor layer outlet is higher than the temperature of the gas catalyst precursor layer inlet.
JP 2005-224661 A JP 2005-187463 A JP 2002-239386 A

特許文献1および2の方法の場合、焼成工程や反応前に有機バインダー等の有機物を含む触媒を40℃以下の低温から熱処理温度または反応温度まで昇温する必要がある。本発明者らの検討によればその過程で固体触媒に温度斑が発生することがあり、それによって高温部で有機物が分解または気化し、それが低温部に凝集して濃縮されることで有機物の濃度の高い部分が形成される。その部分で有機物が分解される際の急激な発熱によって触媒が劣化するという問題がある。また特許文献3の方法は、前記のような問題は起きにくいが、反応管の温度を気体の入口側から出口側にかけて単調に高めることは容易でなく、温度を段階的に変えると同じ温度の領域において、前記のような問題が発生することがある。   In the case of the methods of Patent Documents 1 and 2, it is necessary to raise the temperature of a catalyst containing an organic substance such as an organic binder from a low temperature of 40 ° C. or lower to a heat treatment temperature or a reaction temperature before the firing step or reaction. According to the study by the present inventors, temperature spots may occur in the solid catalyst during the process, whereby the organic matter is decomposed or vaporized in the high temperature part, and the organic matter is condensed and concentrated in the low temperature part. A portion having a high concentration of is formed. There is a problem that the catalyst deteriorates due to rapid heat generation when the organic matter is decomposed at that portion. In the method of Patent Document 3, it is difficult to cause the above-mentioned problem, but it is not easy to increase the temperature of the reaction tube monotonically from the gas inlet side to the outlet side. Such a problem may occur in the region.

本発明は、有機物を含む固体触媒を反応管へ充填した後の昇温時に、触媒が劣化することを低減できる固体触媒の充填方法、並びに劣化の少ない触媒を使用して不飽和アルデヒド及び不飽和カルボン酸を製造する方法を提供することを目的とする。   The present invention relates to a solid catalyst filling method capable of reducing deterioration of a catalyst at the time of temperature rise after filling a solid catalyst containing an organic substance into a reaction tube, and unsaturated aldehyde and unsaturated using a catalyst with little deterioration. It aims at providing the method of manufacturing carboxylic acid.

本願の請求項1に記載の発明は、有機物を含む固体触媒を下記(1)の関係を満足する温度x[℃]の反応管に充填する固体触媒の充填方法である。   The invention according to claim 1 of the present application is a solid catalyst filling method in which a solid catalyst containing an organic substance is filled in a reaction tube having a temperature x [° C.] satisfying the relationship of the following (1).

100≦x、かつ、(T−150)≦x≦(T+100)・・・・・・(1)
(Tは触媒中の有機物の分解温度[℃]を示す。)
また、本願の請求項2に記載の発明は、プロピレン、イソブチレン、第三級ブタノール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、固体触媒を請求項1記載の方法で反応管に充填し、当該反応管中で固体触媒に含まれる有機物を除去した後、当該反応管を使用してプロピレン、イソブチレン、第三級ブタノール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法である。
100 ≦ x and (T−150) ≦ x ≦ (T + 100) (1)
(T represents the decomposition temperature [° C.] of the organic matter in the catalyst.)
Further, the invention according to claim 2 of the present application is directed to vapor-phase catalytic oxidation of propylene, isobutylene, tertiary butanol or methyl tertiary butyl ether with molecular oxygen, and corresponding unsaturated aldehyde and unsaturated carboxylic acid respectively. In the method for producing an acid, a solid catalyst is filled in a reaction tube by the method according to claim 1, and after removing organic substances contained in the solid catalyst in the reaction tube, propylene, isobutylene, In this method, tertiary butanol or methyl tertiary butyl ether is subjected to gas phase catalytic oxidation with molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid.

さらに、本願の請求項3に記載の発明は、(メタ)アクロレインを分子状酸素により気相接触酸化して、(メタ)アクリル酸を製造する方法において、固体触媒を請求項1記載の方法で反応管に充填し、当該反応管中で固体触媒に含まれる有機物を除去した後、当該反応管を使用して(メタ)アクロレインを分子状酸素により気相接触酸化して、(メタ)アクリル酸を製造する方法である。   Furthermore, the invention according to claim 3 of the present application is a method for producing (meth) acrylic acid by vapor-phase catalytic oxidation of (meth) acrolein with molecular oxygen, wherein the solid catalyst is the method according to claim 1. After filling the reaction tube and removing the organic substances contained in the solid catalyst in the reaction tube, (meth) acrylic acid is vapor-phase contact oxidized with molecular oxygen using the reaction tube, and (meth) acrylic acid It is a method of manufacturing.

本発明の充填方法では、反応管内に投入された有機バインダー等の有機物を含む固体触媒は反応管の熱により、投入と同時に加熱され、斑なく有機物が除去される。これによって有機物の高濃度部分が形成されにくくなり、その結果、昇温時に触媒が劣化することを防ぐことが可能になる。   In the filling method of the present invention, the solid catalyst containing an organic substance such as an organic binder introduced into the reaction tube is heated simultaneously with the addition by the heat of the reaction tube, and the organic substance is removed without any spots. This makes it difficult to form a high-concentration portion of the organic substance, and as a result, it is possible to prevent the catalyst from deteriorating when the temperature is raised.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

本発明の方法は、有機物を含む固体触媒(以下、単に触媒ともいう。)を特定の温度範囲内の反応管に充填することを特徴とする。触媒を反応管に充填する際の反応管の温度は、下記(1)の関係を満足する温度x[℃]である。   The method of the present invention is characterized by filling a reaction tube within a specific temperature range with a solid catalyst containing an organic substance (hereinafter also simply referred to as catalyst). The temperature of the reaction tube when the catalyst is filled in the reaction tube is a temperature x [° C.] that satisfies the following relationship (1).

100≦x、かつ、(T−150)≦x≦(T+100)・・・・・・(1)
(Tは触媒中の有機物の分解温度[℃]を示す。)
触媒中の有機物の分解温度Tとは、有機物の分解成分および/または揮発成分等の発生が最も激しくなる温度であり、微分熱重量分析によって得られたD−TG曲線から求めることができる。例えば、有機物を含んだ触媒を島津熱重量測定装置TGA−50により昇温速度20℃/hの条件で25℃〜700℃の範囲で微分熱重量分析を行い、D−TG曲線を測定し、そのピークトップの温度を触媒中の有機物の分解温度Tとする。また、2種以上の有機物を含む場合など、D−TG曲線に複数のピークが観測された場合は一番低い温度のピークを基準とする。
100 ≦ x and (T−150) ≦ x ≦ (T + 100) (1)
(T represents the decomposition temperature [° C.] of the organic matter in the catalyst.)
The decomposition temperature T of the organic matter in the catalyst is a temperature at which the generation of the decomposition component and / or volatile component of the organic matter becomes the most intense, and can be determined from the D-TG curve obtained by differential thermogravimetric analysis. For example, a catalyst containing an organic substance is subjected to differential thermogravimetric analysis in the range of 25 ° C. to 700 ° C. under a temperature rising rate of 20 ° C./h with a Shimadzu thermogravimetric measuring device TGA-50, and a D-TG curve is measured. The peak top temperature is defined as the decomposition temperature T of the organic substance in the catalyst. In addition, when a plurality of peaks are observed in the D-TG curve, such as when two or more organic substances are included, the lowest temperature peak is used as a reference.

反応管の温度xの下限は、100℃または(T−150)℃のいずれか高い方であり、好ましくは(T−120)℃、さらに好ましくは(T−100)℃(いずれも100℃以上)である。反応管の温度xの上限は、(T+100)℃であり、好ましくは(T+50)℃であり、さらに好ましくは(T+30)℃である。   The lower limit of the temperature x of the reaction tube is 100 ° C or (T-150) ° C, whichever is higher, preferably (T-120) ° C, more preferably (T-100) ° C (both 100 ° C or higher). ). The upper limit of the temperature x of the reaction tube is (T + 100) ° C., preferably (T + 50) ° C., and more preferably (T + 30) ° C.

反応管の温度xとは反応管そのものの温度のことであるが、熱媒による外部加熱型の反応管の場合には実質的に反応管の温度に等しい反応管近傍の熱媒の温度によって代用することもできる。熱媒としては特に限定するものではないが、低温度域においては空気やスチームなどを用いることができる。また、高温度域においては、ナイターなどの硝酸塩系の熱媒を用いることが好ましい。熱媒を加熱するヒーターは、熱媒に温度斑が発生しにくいように設置されていることが好ましく、任意の温度に調整できる構造となっていることが好ましい。また触媒の充填時には反応管に空気や窒素等の気体を流通させてもよく、反応管の温度xは前記気体の温度によって調節することもできる。   The temperature x of the reaction tube is the temperature of the reaction tube itself, but in the case of an externally heated reaction tube using a heat medium, the temperature of the heat medium near the reaction tube is substantially equal to the temperature of the reaction tube. You can also Although it does not specifically limit as a heat medium, Air, steam, etc. can be used in a low temperature range. Further, in a high temperature range, it is preferable to use a nitrate heat medium such as nighter. The heater that heats the heat medium is preferably installed so that temperature spots are unlikely to occur in the heat medium, and preferably has a structure that can be adjusted to an arbitrary temperature. Further, when filling the catalyst, a gas such as air or nitrogen may be circulated through the reaction tube, and the temperature x of the reaction tube can be adjusted by the temperature of the gas.

反応管の温度xの測定方法としては、例えば、熱電対などの温度センサーを用いて反応管表面の温度を直接測定する方法、反応管の外部に熱媒が存在する場合には実質的に反応管の温度に等しい反応管近傍の熱媒の温度を熱電対などの温度センサーにより測定する方法などが挙げられる。反応管の温度xは、反応管の長さ方向において、好ましくは±10℃以内、より好ましくは±5℃以内、特に好ましくは斑なく均一である。   As a method of measuring the temperature x of the reaction tube, for example, a method of directly measuring the temperature of the surface of the reaction tube using a temperature sensor such as a thermocouple, or a substantial reaction when a heat medium exists outside the reaction tube. For example, a method of measuring the temperature of the heat medium near the reaction tube equal to the temperature of the tube with a temperature sensor such as a thermocouple. The temperature x of the reaction tube is preferably within ± 10 ° C., more preferably within ± 5 ° C., and particularly preferably uniform without unevenness in the length direction of the reaction tube.

工業的に使用される反応管の長さは数メートルにもなることがあり、反応管を含む反応器の構造によっては、反応管の端部などで温度斑が発生することがある。本発明では、反応管の全域に渡って上記(1)の関係を満足する温度xの範囲にあることが必要である。   The length of industrially used reaction tubes may be several meters, and depending on the structure of the reactor including the reaction tubes, temperature spots may occur at the ends of the reaction tubes. In the present invention, it is necessary that the temperature x satisfies the relationship (1) over the entire reaction tube.

本発明において、反応管を含む固定床反応器の形式については特に限定はなく、本発明はさまざまな反応器に適用することができる。なかでも多管型固定床反応器のように、反応管の本数が数千本〜数万本と規模が大きいために常温から熱処理温度または反応温度まで昇温する過程で反応管に温度斑が発生しやすい反応器に適用する場合、非常に有効な手段である。反応管の材質は、特に限定するものではないが、ステンレスや炭素鋼などの金属素材を用いることが好ましい。   In the present invention, the type of the fixed bed reactor including the reaction tube is not particularly limited, and the present invention can be applied to various reactors. In particular, like multi-tubular fixed bed reactors, the number of reaction tubes is large, ranging from several thousand to several tens of thousands, so that temperature fluctuations occur in the reaction tube in the process of raising the temperature from room temperature to the heat treatment temperature or reaction temperature. This is a very effective means when applied to a reactor that is likely to generate. The material of the reaction tube is not particularly limited, but it is preferable to use a metal material such as stainless steel or carbon steel.

本発明における触媒の充填作業は、特に限定するものではないが、人手で作業する場合には、十分な断熱対策を行ったうえで作業することが望ましい。また、充填作業は遠隔操作可能な装置等を用いて行うこともできる。   The catalyst filling operation in the present invention is not particularly limited. However, when the operation is performed manually, it is desirable to perform the operation after taking sufficient heat insulation measures. The filling operation can also be performed using a remotely operable device or the like.

触媒を反応管に充填する速度は、特に限定するものではないが、反応管内で触媒同士が架橋を起こさない速度が好ましい。   The rate at which the catalyst is charged into the reaction tube is not particularly limited, but a rate at which the catalysts do not crosslink within the reaction tube is preferable.

また、本発明では充填作業は、触媒の熱処理作業を兼ねる場合があり、反応管を上記の温度にした後、触媒を反応管に少量づつ順次充填していくことが好ましい。反応管中の触媒をシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、セラミックボールやステンレス鋼等の不活性物質で希釈することもできる。この場合は、触媒と共に不活性物質も充填する。   In the present invention, the filling operation may also serve as a heat treatment operation of the catalyst, and after the reaction tube is set to the above temperature, it is preferable to sequentially fill the reaction tube with the catalyst little by little. It is also possible to dilute the catalyst in the reaction tube with an inert substance such as silica, alumina, silica-alumina, silicon carbide, ceramic balls or stainless steel. In this case, an inert substance is charged together with the catalyst.

反応管内に投入された触媒は反応管の熱により、投入と同時に少量づつ加熱され、有機物が斑なく分解される。この充填作業で必ずしも有機物の分解が完了するわけではないが、この方法によって、有機物の高濃度部分が形成されることを防ぐことが出来る。また40℃以下で充填する従来の方法よりも、高い温度で充填して、この温度から昇温し始めることができるので、熱処理温度までの時間が短くなり触媒の充填から反応を開始するまでの工程時間を短縮することが可能になる。また、充填時の反応管雰囲気については特に規定するものではなく、必ずしも空気や窒素等のガスを流通させる必要はないが、有機バインダー等の分解物を除去するために、空気や窒素等のガスを流通させることが好ましい。一例として、空気を5cm/sec〜80cm/secの範囲で流通させることが好ましく、10cm/sec〜65cm/secの範囲で流通させることがより好ましく、15cm/sec〜55cm/secの範囲で流通させることがさらに好ましい。   The catalyst put into the reaction tube is heated little by little by the heat of the reaction tube, and the organic matter is decomposed without spots. Although this filling operation does not necessarily complete the decomposition of the organic matter, this method can prevent the formation of a high concentration portion of the organic matter. Moreover, since it can be charged at a higher temperature than the conventional method of filling at 40 ° C. or lower and the temperature can be raised from this temperature, the time until the heat treatment temperature is shortened and the reaction is started after the catalyst is charged. The process time can be shortened. Further, the atmosphere of the reaction tube at the time of filling is not particularly specified, and it is not always necessary to circulate a gas such as air or nitrogen. However, in order to remove decomposition products such as an organic binder, a gas such as air or nitrogen is not required. Is preferably distributed. As an example, air is preferably circulated in the range of 5 cm / sec to 80 cm / sec, more preferably in the range of 10 cm / sec to 65 cm / sec, and circulated in the range of 15 cm / sec to 55 cm / sec. More preferably.

また、触媒の充填作業の後に、残った有機物を除去することが好ましい。有機物を除去する好ましい方法としては、例えば熱処理による方法が挙げられる。熱処理条件は特に限定されず、公知の熱処理条件を適用することができる。プロピレン、イソブチレン、第三級ブタノール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造するための触媒の場合、200〜600℃の温度範囲で行うことが好ましい。熱処理時間は適宜選択される。また熱処理時には、空気や窒素などのガスを流通させることが好ましい。   Moreover, it is preferable to remove the remaining organic matter after the catalyst filling operation. As a preferable method for removing the organic substance, for example, a method by heat treatment may be mentioned. The heat treatment conditions are not particularly limited, and known heat treatment conditions can be applied. In the case of a catalyst for the gas phase catalytic oxidation of propylene, isobutylene, tertiary butanol or methyl tertiary butyl ether with molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid, 200-600 It is preferable to carry out in the temperature range of ° C. The heat treatment time is appropriately selected. Moreover, it is preferable to distribute | circulate gas, such as air and nitrogen, at the time of heat processing.

本発明において、反応管に充填する固体触媒とは、触媒活性を有するものだけでなく、反応管内で熱処理されることで賦活される触媒の前駆体をも意味する。   In the present invention, the solid catalyst filled in the reaction tube means not only a catalyst having a catalytic activity but also a catalyst precursor activated by heat treatment in the reaction tube.

本発明で使用される有機物を含む固体触媒としては、例えば、イソブチレン等からメタクロレイン等への酸化反応、プロピレンからアクロレイン等への酸化反応、メタクロレインからメタクリル酸への酸化反応、アクロレインからアクリル酸への酸化反応等に用いられる触媒、およびその前駆体が挙げられる。   Examples of the solid catalyst containing an organic substance used in the present invention include an oxidation reaction from isobutylene or the like to methacrolein or the like, an oxidation reaction from propylene to acrolein or the like, an oxidation reaction from methacrolein to methacrylic acid, or acrolein to acrylic acid. Examples thereof include catalysts used for the oxidation reaction and the like, and precursors thereof.

好ましいものとして、プロピレン、イソブチレン、第三級ブタノール(以下、TBAと略記する。)又はメチル第三級ブチルエーテル(以下、MTBEと略記する。)を分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を合成するための固体触媒であるMo、Bi、Fe系の複合酸化物触媒が挙げられる。なかでも、次の一般式(I)で示される組成(有機物を除く)を有する触媒が好ましく用いられる。   Preferably, propylene, isobutylene, tertiary butanol (hereinafter abbreviated as TBA) or methyl tertiary butyl ether (hereinafter abbreviated as MTBE) is subjected to gas phase catalytic oxidation with molecular oxygen, respectively. Examples thereof include Mo, Bi, and Fe-based composite oxide catalysts that are solid catalysts for synthesizing corresponding unsaturated aldehydes and unsaturated carboxylic acids. Among these, a catalyst having a composition represented by the following general formula (I) (excluding organic substances) is preferably used.

一般式Moa Bib Fecdefgh (I)
(式(I)中、Mo、Bi、Fe及びOはそれぞれモリブデン、ビスマス、鉄及び酸素を表し、Aはニッケル及び/又はコバルト、Xはマグネシウム、亜鉛、マンガン、スズ及び鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、セレン、ゲルマニウム、タングステン及びアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を示す。ただし、a、b、c、d、e、f、g及びhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦5、0≦f≦5、0.0.1≦g≦3であり、hは前記各成分の原子価を満足するのに必要な酸素原子比である。)
また、本発明の方法は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いる固体触媒にも好適に用いることができる。メタクリル酸製造用触媒は、モリブデンおよびリンを必須成分として含有する複合酸化物触媒であれば特に限定されないが、好ましくは下記の式(II)で表される組成(有機物を除く)を有するものである。
Formula Mo a Bi b Fe c A d X e Y f Z g O h (I)
(In the formula (I), Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is selected from the group consisting of magnesium, zinc, manganese, tin and lead. At least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, silicon, selenium, germanium, tungsten and antimony, Z is potassium, sodium, rubidium, cesium and 1 represents at least one element selected from the group consisting of thallium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, 0. 1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 5, 0 ≦ f ≦ 5, 0.01 ≦ g ≦ 3. Necessary to satisfy the valence It is an atom ratio.)
The method of the present invention can also be suitably used for a solid catalyst used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. The catalyst for producing methacrylic acid is not particularly limited as long as it is a composite oxide catalyst containing molybdenum and phosphorus as essential components, but preferably has a composition (excluding organic matter) represented by the following formula (II). is there.

MoCu(II)
(式(II)中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、ヒ素、ゲルマニウム、ジルコニウム、テルル、セレン、ケイ素、タングステン、ホウ素および銀からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、マンガン、コバルト、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示し、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各成分の原子価を満足するのに必要な酸素原子比である。)
固体触媒の製造に用いられる触媒成分元素の原料は特に限定されるものではないが、酸化物又は強熱することにより酸化物に成り得る例えば塩化物、硫酸塩、硝酸塩、炭酸塩、アンモニウム塩又はそれらの混合物を用いることが好ましい。触媒またはその前駆体を調製する方法は、特殊な方法に限定する必要はなく、従来から知られている蒸発乾固法、沈殿法、酸化物混合法等の種々の方法を用いることができる。
P a Mo b V c Cu d X e Y f Z g O h (II)
(In the formula (II), P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively, X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, selenium, silicon, tungsten, Represents at least one element selected from the group consisting of boron and silver, and Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, manganese, cobalt, barium, gallium, cerium and lanthanum Z represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium, and a, b, c, d, e, f, g, and h represent atoms of each element. The ratio is expressed as follows: when b = 12, a = 0.5-3, c = 0.01-3, d = 0-2, e = 0-3, f = 0-3, g = 0. Is 1 to 3, h is an oxygen atom ratio required for satisfying the valency of each component.)
The raw material of the catalyst component element used in the production of the solid catalyst is not particularly limited, but can be converted into an oxide or an oxide by igniting, for example, chloride, sulfate, nitrate, carbonate, ammonium salt or It is preferable to use a mixture thereof. The method for preparing the catalyst or its precursor need not be limited to a special method, and various methods such as a conventionally known evaporation to dryness method, precipitation method, and oxide mixing method can be used.

上記の調製方法により得られた触媒またはその前駆体を成形して固体触媒にする方法としては例えば湿式成形法、乾式成形法が挙げられる。湿式成形法では、例えば(1)触媒またはその前駆体成分を含む粉体を製造する工程、(2)得られた粉体と有機物を混練りする工程、(3)得られた混練り品を押出成形する工程、(4)得られた押出成形品を乾燥および/または熱処理する工程を経て固体触媒が製造される。   Examples of a method for forming a catalyst obtained by the above preparation method or a precursor thereof into a solid catalyst include a wet molding method and a dry molding method. In the wet molding method, for example, (1) a step of producing a powder containing a catalyst or a precursor component thereof, (2) a step of kneading the obtained powder and an organic substance, and (3) a kneaded product obtained A solid catalyst is produced through a step of extruding and (4) a step of drying and / or heat-treating the obtained extrudate.

乾式成形法では、例えば(1)触媒またはその前駆体成分を含む粉体を製造する工程、(2)得られた粉体と有機物を打錠成型する工程を経て固体触媒が製造される。   In the dry molding method, for example, a solid catalyst is produced through (1) a step of producing a powder containing a catalyst or a precursor component thereof, and (2) a step of tableting and molding the obtained powder and an organic substance.

有機物は特に限定するものではないが、例えば有機バインダーと呼ばれるものが挙げられる。好ましい有機バインダーとしては例えば多糖類やセルロース誘導体が挙げられる。   Although organic substance is not specifically limited, For example, what is called an organic binder is mentioned. Preferred organic binders include, for example, polysaccharides and cellulose derivatives.

このようなセルロース誘導体としては、例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等を挙げることができる。中でも、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースが好ましい。セルロース誘導体は1種を用いても2種以上を用いることもできる。また、多糖類としては、例えば、カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等を挙げることができる。多糖類は1種を用いても2種以上を用いてもよい。これらのセルロース誘導体及び多糖類を任意の割合で混合させて用いることもできる。   Examples of such cellulose derivatives include methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, hydroxypropylcellulose and the like. be able to. Of these, methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose are preferable. A cellulose derivative can be used alone or in combination of two or more. Examples of the polysaccharide include curdlan, laminaran, paramylon, callose, pacifican, scleroglucan and the like. A polysaccharide may be used alone or in combination of two or more. These cellulose derivatives and polysaccharides can be mixed and used at an arbitrary ratio.

本発明において用いられる固体触媒の形状及び成形方法については特に限定するものではなく、触媒の形状は、例えば球状、円柱状、円筒状、星型状等の任意の形状が挙げられる。触媒またはその前駆体の粉体を成形して固体触媒を得るための手段としては、例えば打錠成型機、押出成形機、転動造粒機等の成形装置を使用した成形方法が挙げられる。また、固体触媒は担体に触媒またはその前駆体を担持した担持成形体であってもよく、その場合の担体の種類としては、例えばシリカ、アルミナ、シリカ・アルミナ、マグネシア、チタニア等の担体が挙げられる。本発明は、触媒または触媒前駆体の粒子と成形助剤である有機バインダー等の有機物とを混合したものを成形した固体触媒について用いる場合に非常に有効な手段である。   The shape and molding method of the solid catalyst used in the present invention are not particularly limited, and examples of the shape of the catalyst include arbitrary shapes such as a spherical shape, a cylindrical shape, a cylindrical shape, and a star shape. Examples of means for obtaining a solid catalyst by molding a catalyst or its precursor powder include a molding method using a molding apparatus such as a tableting molding machine, an extrusion molding machine, and a rolling granulator. Further, the solid catalyst may be a supported molded body in which a catalyst or a precursor thereof is supported on a carrier. Examples of the carrier in that case include carriers such as silica, alumina, silica / alumina, magnesia, titania, and the like. It is done. The present invention is a very effective means in the case of using a solid catalyst obtained by molding a mixture of catalyst or catalyst precursor particles and an organic substance such as an organic binder as a molding aid.

本発明の方法により充填され、適宜熱処理された固体触媒を用いた反応条件としては以下のようなものが挙げられる。   The reaction conditions using the solid catalyst charged by the method of the present invention and appropriately heat-treated include the following.

プロピレン、イソブチレン、TBA又はMTBEを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造するための固体触媒の場合は、プロピレン、イソブチレン、TBA又はMTBEと分子状酸素とを含む原料ガスを触媒と接触させることにより反応させる。その際の反応条件としては、原料のプロピレン、イソブチレン、TBAまたはMTBE対分子状酸素のモル比は1:0.5〜3の範囲が好ましい。原料と分子状酸素とを含む原料ガスは、不活性ガスで希釈して用いることが経済的である。原料ガス中の原料の濃度は、2〜40容量%が好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気も用いうる。原料ガスに水蒸気を加えることもできる。反応圧力は大気圧から3気圧までが好ましい。反応温度は200〜400℃の範囲が好ましく、280〜380℃の範囲がより好ましい。原料ガスと触媒との接触時間は1.5〜15秒が好ましく、2〜5秒がより好ましい。   In the case of a solid catalyst for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of propylene, isobutylene, TBA or MTBE with molecular oxygen, respectively, propylene, isobutylene, TBA or MTBE and The reaction is performed by bringing a raw material gas containing molecular oxygen into contact with the catalyst. As the reaction conditions at that time, the molar ratio of raw material propylene, isobutylene, TBA or MTBE to molecular oxygen is preferably in the range of 1: 0.5-3. It is economical to use a raw material gas containing a raw material and molecular oxygen diluted with an inert gas. The concentration of the raw material in the raw material gas is preferably 2 to 40% by volume. Although it is economical to use air as the molecular oxygen source, air enriched with pure oxygen can also be used if necessary. Water vapor can also be added to the source gas. The reaction pressure is preferably from atmospheric pressure to 3 atmospheres. The reaction temperature is preferably in the range of 200 to 400 ° C, more preferably in the range of 280 to 380 ° C. The contact time between the source gas and the catalyst is preferably 1.5 to 15 seconds, and more preferably 2 to 5 seconds.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための固体触媒の場合は、メタクロレインと分子状酸素とを含む原料ガスを触媒と接触させることにより反応させる。その際の原料ガス中のメタクロレイン濃度は広い範囲で変えることができるが、1〜20容量%、特に3〜10容量%であることが好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いることができる。原料ガス中の分子状酸素濃度はメタクロレイン1モルに対して0.4〜4モル、特に0.5〜3モルであることが好ましい。原料ガスはメタクロレインおよび分子状酸素源を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。また、原料ガスには水(水蒸気)を加えることもできる。水の存在下で反応を行うと、より高収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1〜50容量%が好ましく、1〜40容量%がより好ましい。原料ガスには、低級飽和アルデヒド等の不純物を少量含んでいてもかまわないが、その量はできるだけ少ないことが好ましい。メタクリル酸製造反応の反応圧力は、大気圧から3気圧までが好ましい。反応温度は、230〜450℃の範囲が好ましく、250〜400℃がより好ましい。原料ガスと触媒との接触時間は1.5〜15秒が好ましく、2〜5秒がより好ましい。   In the case of a solid catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, the reaction is carried out by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the catalyst. In this case, the concentration of methacrolein in the raw material gas can be varied in a wide range, but it is preferably 1 to 20% by volume, particularly 3 to 10% by volume. Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary. The molecular oxygen concentration in the raw material gas is preferably 0.4 to 4 mol, particularly preferably 0.5 to 3 mol, relative to 1 mol of methacrolein. The source gas may be obtained by diluting methacrolein and a molecular oxygen source with an inert gas such as nitrogen or carbon dioxide. Further, water (steam) can be added to the raw material gas. When the reaction is carried out in the presence of water, methacrylic acid is obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably from 0.1 to 50% by volume, more preferably from 1 to 40% by volume. The source gas may contain a small amount of impurities such as lower saturated aldehyde, but the amount is preferably as small as possible. The reaction pressure of the methacrylic acid production reaction is preferably from atmospheric pressure to 3 atmospheres. The reaction temperature is preferably in the range of 230 to 450 ° C, more preferably 250 to 400 ° C. The contact time between the source gas and the catalyst is preferably 1.5 to 15 seconds, and more preferably 2 to 5 seconds.

以下、実施例および比較例により本発明を具体的に説明する。実施例および比較例中の「部」は質量部であり、混練りにはバッチ式の双腕型の攪拌羽根を備えた混練り機を使用した。触媒原料を含むスラリーを乾燥した触媒前駆体の粉末、熱処理した粒子、成形した押出成形体のすべてを触媒という。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. “Part” in Examples and Comparative Examples is part by mass, and a kneader equipped with a batch type double-arm type stirring blade was used for kneading. The catalyst precursor powder obtained by drying the slurry containing the catalyst raw material, the heat-treated particles, and the molded extruded product are all referred to as a catalyst.

反応管に充填した固体触媒について、昇温後の劣化の有無及び度合いを定量的に比較するため、充填終了後に焼成し原料ガスを反応させ、原料の転化率を反応の種類により異なる特定の値に維持するのに必要な反応管の温度を反応温度として計測した。すなわち、同じ触媒及び条件で反応させた時、反応温度が相対的に高い場合は、触媒に劣化が生じている、あるいは劣化の度合いが大きいために、原料の一定割合を転化させるのに必要な温度が高くなっていると判断することができる。また、定性的には反応管から抜き出した触媒に劣化していることを示す黒く変色した部分の有無を目視により確認することで判断した。   In order to quantitatively compare the presence and degree of deterioration after temperature rise, the solid catalyst filled in the reaction tube is calcined after the completion of filling and reacted with the raw material gas, and the conversion rate of the raw material varies depending on the type of reaction. The temperature of the reaction tube necessary for maintaining the temperature was measured as the reaction temperature. That is, when the reaction is carried out under the same catalyst and conditions, if the reaction temperature is relatively high, the catalyst has deteriorated or the degree of deterioration is large, so that it is necessary to convert a certain proportion of the raw material. It can be determined that the temperature is high. Further, qualitatively, it was judged by visually confirming the presence or absence of a black-colored portion indicating that the catalyst was deteriorated to be extracted from the reaction tube.

実施例1
イソブチレンの気相接触酸化によるメタクロレイン合成用触媒1として、触媒原料を含むスラリーを乾燥し、下記の組成の粉末を調製した。
Example 1
As a catalyst 1 for synthesizing methacrolein by gas phase catalytic oxidation of isobutylene, a slurry containing a catalyst raw material was dried to prepare a powder having the following composition.

Mo12Bi0.6 Fe2 Ni4 Co2 Mg2 Sb0.7 Cs0.6
(式中、Mo、Bi、Fe、Ni、Co、Mg、Sb、Cs及びOはそれぞれモリブデン、ビスマス、鉄、ニッケル、コバルト、マグネシウム、アンチモン、セシウム及び酸素を表す。また、元素記号右下併記の数字は各元素の原子比であり、zは前記各成分の原子価を満足するのに必要な酸素原子比である(以下同じ)。)
得られた粉末を300℃で1時間、510℃で3時間熱処理して触媒粉末を得た。このようにして得られた触媒粉末500部に対して、メチルセルロース(メトローズ60SH−4000:信越化学工業株式会社製)25部、カードラン(ビオポリーP−103:武田薬品工業株式会社製)5部を加え、乾式混合した。ここに純水160部を混合し、混練り機にて粘土状になるまで混練りした。この粘土状になった混練り品をオーガー式押出成形機を用いて外径5mm、内径2mmの円筒状に押出し、平均長さ5mmに切断してリング状の押出成形体を得た。得られた押出成形体は熱風乾燥機を用いて110℃で乾燥した。
Mo 12 Bi 0.6 Fe 2 Ni 4 Co 2 Mg 2 Sb 0.7 Cs 0.6 O z
(In the formula, Mo, Bi, Fe, Ni, Co, Mg, Sb, Cs, and O represent molybdenum, bismuth, iron, nickel, cobalt, magnesium, antimony, cesium, and oxygen, respectively. Is the atomic ratio of each element, and z is the oxygen atomic ratio necessary to satisfy the valence of each component (the same applies hereinafter).
The obtained powder was heat-treated at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain a catalyst powder. To 500 parts of the catalyst powder thus obtained, 25 parts of methylcellulose (Metroses 60SH-4000: manufactured by Shin-Etsu Chemical Co., Ltd.) and 5 parts of curdlan (Biopoly P-103: manufactured by Takeda Pharmaceutical Co., Ltd.) were added. In addition, dry mixing. This was mixed with 160 parts of pure water and kneaded with a kneader until it became clayy. The kneaded product in the form of clay was extruded into a cylindrical shape having an outer diameter of 5 mm and an inner diameter of 2 mm using an auger type extruder, and cut into an average length of 5 mm to obtain a ring-shaped extruded product. The obtained extruded product was dried at 110 ° C. using a hot air dryer.

得られたメチルセルロース及びカードランを含有する固体触媒は茶色であった。この触媒を島津熱重量測定装置TGA−50により昇温速度20℃/hの条件で25℃〜700℃の範囲で微分熱重量分析を行い、D−TG曲線を測定したところ、メチルセルロースに帰属されるピークトップ温度が250℃、カードランに帰属されるピークトップ温度が308℃であったことから触媒中の有機物の分解温度Tは250℃であった。   The obtained solid catalyst containing methylcellulose and curdlan was brown. This catalyst was subjected to differential thermogravimetric analysis in the range of 25 ° C. to 700 ° C. under the condition of a temperature rising rate of 20 ° C./h with a Shimadzu thermogravimetric measuring apparatus TGA-50, and a D-TG curve was measured. The peak top temperature was 250 ° C. and the peak top temperature attributed to curdlan was 308 ° C., so the decomposition temperature T of the organic matter in the catalyst was 250 ° C.

この分析結果をもとに、得られた固体触媒を、反応管の温度がその全長に渡って200℃(T−50℃)に保持された長手方向を垂直に設置した内径26mm、長さ5mのステンレス製反応管に上部から少量づつ落下させて充填した。なお、反応管の温度はその近傍の熱媒の温度とした。また、触媒を充填する間、反応管の上部から下部に向けて空気を18.8cm/secの線速度で供給した。   Based on the results of this analysis, the solid catalyst thus obtained was adjusted so that the temperature of the reaction tube was maintained at 200 ° C. (T-50 ° C.) over its entire length. The stainless steel reaction tube was dropped little by little from the top and filled. The temperature of the reaction tube was the temperature of the heat medium in the vicinity thereof. Further, while filling the catalyst, air was supplied from the upper part to the lower part of the reaction tube at a linear velocity of 18.8 cm / sec.

その後、空気を供給したままで反応管の温度を340℃まで25℃/hrの昇温速度で昇温した後、340℃で12時間保持した。   Thereafter, the temperature of the reaction tube was increased to 340 ° C. at a temperature increase rate of 25 ° C./hr with air being supplied, and then held at 340 ° C. for 12 hours.

この後、反応管に流していた空気を停止し、反応管にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを、大気圧下、反応温度(反応管の温度)310℃、接触時間3.6秒にて通過させて反応を開始した。その後イソブチレンの転化率が95%となるまで反応管の温度を上昇させた結果、反応温度は317.0℃となった。反応開始72時間後に反応を中止し、反応管から触媒を抜き出したところ、触媒は充填前より濃い茶色となっていたが黒い変色はなく劣化していないことが確認された。   Thereafter, the air flowing through the reaction tube was stopped, and a raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor, and 73% by volume of nitrogen was added to the reaction tube at the reaction temperature (reaction temperature). (Temperature of tube) The reaction was started by passing at 310 ° C. and a contact time of 3.6 seconds. Thereafter, the temperature of the reaction tube was increased until the conversion of isobutylene reached 95%. As a result, the reaction temperature was 317.0 ° C. When the reaction was stopped 72 hours after the start of the reaction and the catalyst was extracted from the reaction tube, it was confirmed that the catalyst had a dark brown color before filling but no black discoloration and no deterioration.

実施例2
あらかじめ保持しておいた反応管の温度を140℃(T−110℃)にした以外は実施例1と同様に行ったところ、イソブチレンの転化率が95%となる反応温度は317.0℃であった。反応管から抜き出した触媒は充填前より濃い茶色となっていたが黒い変色はなく劣化していないことが確認された。
Example 2
The reaction was performed in the same manner as in Example 1 except that the temperature of the reaction tube held in advance was 140 ° C. (T-110 ° C.). The reaction temperature at which the conversion of isobutylene was 95% was 317.0 ° C. there were. The catalyst extracted from the reaction tube was dark brown before filling, but it was confirmed that there was no black discoloration and no deterioration.

実施例3
あらかじめ保持しておいた反応管の温度を180℃(T−70℃)にした以外は実施例1と同様に行ったところ、イソブチレンの転化率が95%となる反応温度は314.0℃であった。反応管から抜き出した触媒は充填前より濃い茶色となっていたが黒い変色はなく劣化していないことが確認された。
Example 3
The reaction was carried out in the same manner as in Example 1 except that the temperature of the reaction tube held in advance was 180 ° C. (T-70 ° C.). The reaction temperature at which the conversion of isobutylene was 95% was 314.0 ° C. there were. The catalyst extracted from the reaction tube was dark brown before filling, but it was confirmed that there was no black discoloration and no deterioration.

比較例1
あらかじめ保持しておいた反応管の温度を25℃(T−225℃)にした以外は実施例1と同様に行ったところ、イソブチレンの転化率が95%となる反応温度は323.0℃であった。反応管から抜き出した触媒は充填前より濃い茶色で一部に黒く変色した部分があり劣化していることが確認された。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that the temperature of the reaction tube held in advance was 25 ° C. (T-225 ° C.). The reaction temperature at which the conversion of isobutylene was 95% was 323.0 ° C. there were. It was confirmed that the catalyst extracted from the reaction tube was deteriorated with dark brown and partly blackened before filling.

実施例4
イソブチレンの気相接触酸化によるメタクロレイン合成用触媒2として、触媒原料を含むスラリーを乾燥し、下記の組成の粉末を調製した。
Example 4
As a catalyst 2 for synthesizing methacrolein by gas phase catalytic oxidation of isobutylene, a slurry containing a catalyst raw material was dried to prepare a powder having the following composition.

Mo12Bi1 Fe3.2 Co6 Rb0.4
(式中、Mo、Bi、Fe、Co、Rb及びOはそれぞれモリブデン、ビスマス、鉄、コバルト、ルビジウム及び酸素を表す。)
得られた粉末を用いた以外は実施例1と同様に行ったところ、Tは250℃であり、イソブチレンの転化率が95%となる反応温度は315.0℃であった。反応管から抜き出した触媒は充填前より濃い茶色となっていたが黒い変色はなく劣化していないことが確認された。
Mo 12 Bi 1 Fe 3.2 Co 6 Rb 0.4 O z
(In the formula, Mo, Bi, Fe, Co, Rb and O represent molybdenum, bismuth, iron, cobalt, rubidium and oxygen, respectively.)
The same procedure as in Example 1 was conducted except that the obtained powder was used. As a result, T was 250 ° C., and the reaction temperature at which the conversion of isobutylene was 95% was 315.0 ° C. The catalyst extracted from the reaction tube was dark brown before filling, but it was confirmed that there was no black discoloration and no deterioration.

比較例2
あらかじめ保持しておいた反応管の温度を25℃(T−225℃)にした以外は実施例4と同様に行ったところ、イソブチレンの転化率が95%となる反応温度は324.5℃であった。反応管から抜き出した触媒は充填前より濃い茶色で一部に黒く変色した部分があり劣化していることが確認された。
Comparative Example 2
The reaction was performed in the same manner as in Example 4 except that the temperature of the reaction tube held in advance was 25 ° C. (T-225 ° C.). The reaction temperature at which the conversion of isobutylene was 95% was 324.5 ° C. there were. It was confirmed that the catalyst extracted from the reaction tube was deteriorated with dark brown and partly blackened before filling.

実施例5
イソブチレンの気相接触酸化によるメタクロレイン合成用触媒3として、触媒原料を含むスラリーを乾燥し、下記の組成の粉末を調製した。
Example 5
As catalyst 3 for synthesizing methacrolein by gas phase catalytic oxidation of isobutylene, the slurry containing the catalyst raw material was dried to prepare a powder having the following composition.

Mo12Bi0.5 Fe3 Ni9 Mg1 Mn0.30.2 Te0.1 Si0.40.1 Cs0.3
(式中、Mo、Bi、Fe、Ni、Mg、Mn、B、Te、Si、K、Cs及びOはそれぞれモリブデン、ビスマス、鉄、ニッケル、マグネシウム、マンガン、ホウ素、テルル、ケイ素、カリウム、セシウム及び酸素を表す。)
得られた粉末を用いた以外は実施例1と同様に行ったところ、Tは250℃であり、イソブチレンの転化率が95%となる反応温度は315.0℃であった。反応管から抜き出した触媒は充填前より濃い茶色となっていたが黒い変色はなく劣化していないことが確認された。
Mo 12 Bi 0.5 Fe 3 Ni 9 Mg 1 Mn 0.3 B 0.2 Te 0.1 Si 0.4 K 0.1 Cs 0.3 O z
(In the formula, Mo, Bi, Fe, Ni, Mg, Mn, B, Te, Si, K, Cs and O are molybdenum, bismuth, iron, nickel, magnesium, manganese, boron, tellurium, silicon, potassium, cesium, respectively. And oxygen.)
The same procedure as in Example 1 was conducted except that the obtained powder was used. As a result, T was 250 ° C., and the reaction temperature at which the conversion of isobutylene was 95% was 315.0 ° C. The catalyst extracted from the reaction tube was dark brown before filling, but it was confirmed that there was no black discoloration and no deterioration.

比較例3
あらかじめ保持しておいた反応管の温度を25℃(T−225℃)にした以外は実施例5と同様に行ったところ、イソブチレンの転化率が95%となる反応温度は322.5℃であった。反応管から抜き出した触媒は充填前より濃い茶色で一部に黒く変色した部分があり劣化していることが確認された。
Comparative Example 3
The reaction was performed in the same manner as in Example 5 except that the temperature of the reaction tube held in advance was 25 ° C. (T-225 ° C.). The reaction temperature at which the conversion of isobutylene was 95% was 322.5 ° C. there were. It was confirmed that the catalyst extracted from the reaction tube was deteriorated with dark brown and partly blackened before filling.

実施例6
メタクロレインの気相接触酸化によるメタクリル酸合成用触媒として、触媒原料を含むスラリーを乾燥し、下記組成(ただし酸素を除く)のメタクロレインの気相接触酸化によるメタクリル酸合成用触媒の粉末を調製した。
Example 6
As a catalyst for synthesizing methacrylic acid by gas-phase catalytic oxidation of methacrolein, the slurry containing the catalyst raw material is dried, and a powder of catalyst for synthesizing methacrylic acid by gas-phase catalytic oxidation of methacrolein of the following composition (excluding oxygen) is prepared did.

Mo12Cu0.20.5Ge0.2Bi0.2Cs
(式中、Mo、P、Cu、V、Ge、Bi、Csはそれぞれモリブデン、リン、銅、バナジウム、ゲルマニウム、ビスマス、セシウムを表す。)
得られた粉末を380℃で5時間焼成して触媒粉末を得た以外は実施例1と同様に成形して、リング状の押出成形体を得た。得られた押出成形体は熱風乾燥機を用いて110℃で乾燥した。得られたメチルセルロース及びカードランを含有する固体触媒は緑色であった。この触媒中の有機物の分解温度Tを実施例1と同様にして測定した結果、250℃であった。
Mo 12 P 1 Cu 0.2 V 0.5 Ge 0.2 Bi 0.2 Cs 1
(In the formula, Mo, P, Cu, V, Ge, Bi, and Cs represent molybdenum, phosphorus, copper, vanadium, germanium, bismuth, and cesium, respectively.)
The obtained powder was molded in the same manner as in Example 1 except that the catalyst powder was obtained by baking at 380 ° C. for 5 hours to obtain a ring-shaped extruded product. The obtained extruded product was dried at 110 ° C. using a hot air dryer. The resulting solid catalyst containing methylcellulose and curdlan was green. The decomposition temperature T of the organic matter in the catalyst was measured in the same manner as in Example 1. As a result, it was 250 ° C.

この分析結果をもとに、得られた固体触媒を、反応管の温度としてあらかじめ200℃(T−50℃)に保持しておいた内径26mm、長さ5mのステンレス製反応管に上部から少量づつ落下させて充填した。   Based on the results of this analysis, the obtained solid catalyst was placed in a small amount from the top in a stainless steel reaction tube having an inner diameter of 26 mm and a length of 5 m, which was previously maintained at 200 ° C. (T-50 ° C.) as the reaction tube temperature. It was dropped and filled one by one.

触媒を充填後、反応管の温度を377℃まで25℃/hrの昇温速度で昇温した後、377℃で12時間保持した。また、触媒を充填する間、反応器内の上部から下部に向けて空気を18.8cm/secの線速度で供給した。   After charging the catalyst, the temperature of the reaction tube was increased to 377 ° C. at a temperature increase rate of 25 ° C./hr and then held at 377 ° C. for 12 hours. Further, while filling the catalyst, air was supplied from the upper part to the lower part in the reactor at a linear velocity of 18.8 cm / sec.

この後、反応管に流していた空気を停止し、反応管にメタクロレイン5%、酸素12%、水蒸気10%および窒素73%からなる原料混合ガスを、反応温度(反応管の温度)290℃、接触時間4.5秒にて通過させて反応を開始した。その後、メタクロレインの転化率が75%となるまで反応管の温度を上昇させた結果、反応温度は291.0℃となった。反応開始72時間後に反応を中止し、反応管から触媒を抜き出したところ、触媒は充填前より濃い緑色となっていたが黒い変色はなく劣化していないことが確認された。   Thereafter, the air flowing in the reaction tube was stopped, and a raw material mixed gas consisting of 5% methacrolein, 12% oxygen, 10% water vapor and 73% nitrogen was added to the reaction tube at a reaction temperature (reaction tube temperature) of 290 ° C. The reaction was started with a contact time of 4.5 seconds. Thereafter, the temperature of the reaction tube was increased until the methacrolein conversion rate became 75%. As a result, the reaction temperature was 291.0 ° C. When the reaction was stopped 72 hours after the start of the reaction and the catalyst was extracted from the reaction tube, it was confirmed that the catalyst had a darker green color than before the charge, but there was no black discoloration and no deterioration.

実施例7
あらかじめ保持しておいた反応管の温度を140℃(T−110℃)にした以外は実施例6と同様に行ったところ、メタクロレインの転化率が75%となる反応温度は291.5℃であった。反応管から抜き出した触媒は充填前より濃い緑色となっていたが黒い変色はなく劣化していないことが確認された。
Example 7
The reaction was carried out in the same manner as in Example 6 except that the temperature of the reaction tube held in advance was 140 ° C. (T-110 ° C.). The reaction temperature at which methacrolein conversion was 75% was 291.5 ° C. Met. The catalyst extracted from the reaction tube was darker green than before filling, but it was confirmed that there was no black discoloration and no deterioration.

実施例8
あらかじめ保持しておいた反応管の温度を180℃(T−70℃)にした以外は実施例6と同様に行ったところ、メタクロレインの転化率が75%となる反応温度は290.5℃であった。反応管から抜き出した触媒は充填前より濃い緑色となっていたが黒い変色はなく劣化していないことが確認された。
Example 8
The reaction was performed in the same manner as in Example 6 except that the temperature of the reaction tube held in advance was 180 ° C. (T-70 ° C.). The reaction temperature at which methacrolein conversion was 75% was 290.5 ° C. Met. The catalyst extracted from the reaction tube was darker green than before filling, but it was confirmed that there was no black discoloration and no deterioration.

比較例4
あらかじめ保持しておいた反応管の温度を25℃(T−225℃)にした以外は実施例6と同様に行ったところ、メタクロレインの転化率が75%となる反応温度は298.0℃であった。反応管から抜き出した触媒は充填前より濃い緑色で一部に黒く変色した部分があり劣化していることが確認された。
Comparative Example 4
The reaction was carried out in the same manner as in Example 6 except that the temperature of the reaction tube held in advance was 25 ° C. (T-225 ° C.). The reaction temperature at which methacrolein conversion was 75% was 298.0 ° C. Met. It was confirmed that the catalyst extracted from the reaction tube was deteriorated with a dark green part and a black discolored part before filling.

Claims (3)

有機物を含む固体触媒を下記(1)の関係を満足する温度x[℃]の反応管に充填する固体触媒の充填方法。
100≦x、かつ、(T−150)≦x≦(T+100)・・・(1)
(Tは触媒中の有機物の分解温度[℃]を示す。)
A solid catalyst filling method in which a solid catalyst containing an organic substance is filled in a reaction tube having a temperature x [° C.] that satisfies the relationship (1) below.
100 ≦ x and (T−150) ≦ x ≦ (T + 100) (1)
(T represents the decomposition temperature [° C.] of the organic matter in the catalyst.)
プロピレン、イソブチレン、第三級ブタノール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法において、固体触媒を請求項1記載の方法で反応管に充填し、当該反応管中で固体触媒に含まれる有機物を除去した後、当該反応管を使用してプロピレン、イソブチレン、第三級ブタノール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する方法。 A solid catalyst is used in the process for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of propylene, isobutylene, tertiary butanol or methyl tertiary butyl ether with molecular oxygen, respectively. After filling the reaction tube by the method described and removing organic substances contained in the solid catalyst in the reaction tube, the reaction tube is used to form propylene, isobutylene, tertiary butanol or methyl tertiary butyl ether in molecular form. A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to each of them by gas phase catalytic oxidation with oxygen. (メタ)アクロレインを分子状酸素により気相接触酸化して、(メタ)アクリル酸を製造する方法において、固体触媒を請求項1記載の方法で反応管に充填し、当該反応管中で固体触媒に含まれる有機物を除去した後、当該反応管を使用して(メタ)アクロレインを分子状酸素により気相接触酸化して、(メタ)アクリル酸を製造する方法。 In a method for producing (meth) acrylic acid by vapor-phase catalytic oxidation of (meth) acrolein with molecular oxygen, a solid catalyst is filled in the reaction tube by the method according to claim 1, and the solid catalyst is contained in the reaction tube (Meth) acrylic acid is produced by removing the organic substances contained in the product and then subjecting (meth) acrolein to gas phase catalytic oxidation with molecular oxygen using the reaction tube.
JP2006213647A 2006-08-04 2006-08-04 Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid Active JP5063055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006213647A JP5063055B2 (en) 2006-08-04 2006-08-04 Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213647A JP5063055B2 (en) 2006-08-04 2006-08-04 Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2008036527A true JP2008036527A (en) 2008-02-21
JP5063055B2 JP5063055B2 (en) 2012-10-31

Family

ID=39172150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213647A Active JP5063055B2 (en) 2006-08-04 2006-08-04 Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP5063055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001732A1 (en) * 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
JP5574434B2 (en) * 2008-11-06 2014-08-20 日本化薬株式会社 Method for producing methacrylic acid and catalyst for producing methacrylic acid
JP2017080731A (en) * 2015-10-27 2017-05-18 三菱化学株式会社 Composite oxide catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239386A (en) * 2001-02-20 2002-08-27 Mitsubishi Rayon Co Ltd Reaction tube, method for manufacturing catalyst, method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
JP2002292291A (en) * 2001-03-30 2002-10-08 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, preparation method thereof and synthetic method of unsaturated carboxylic acid using its catalyst
JP2005161309A (en) * 2003-11-14 2005-06-23 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239386A (en) * 2001-02-20 2002-08-27 Mitsubishi Rayon Co Ltd Reaction tube, method for manufacturing catalyst, method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
JP2002292291A (en) * 2001-03-30 2002-10-08 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, preparation method thereof and synthetic method of unsaturated carboxylic acid using its catalyst
JP2005161309A (en) * 2003-11-14 2005-06-23 Mitsubishi Chemicals Corp Method for manufacturing compound oxide catalyst
WO2005058497A1 (en) * 2003-12-18 2005-06-30 Mitsubishi Rayon Co., Ltd. Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001732A1 (en) * 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
JP5574434B2 (en) * 2008-11-06 2014-08-20 日本化薬株式会社 Method for producing methacrylic acid and catalyst for producing methacrylic acid
JP2017080731A (en) * 2015-10-27 2017-05-18 三菱化学株式会社 Composite oxide catalyst

Also Published As

Publication number Publication date
JP5063055B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5063055B2 (en) Method for packing solid catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4179780B2 (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP6229497B2 (en) Method for producing methacrolein and methacrylic acid
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP4846114B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using catalyst produced by the production method
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3936055B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and / or unsaturated carboxylic acid and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP5485013B2 (en) Method for producing a catalyst for methacrylic acid production
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP5366646B2 (en) Catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2007130519A (en) Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
JP2010207803A (en) Compound oxide catalyst
JP2013034918A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, method for producing methacrylic acid
JP4902991B2 (en) Method for producing oxide catalyst
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP3313968B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH07289902A (en) Production of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2006263677A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
WO2021172423A1 (en) Catalyst
JPH06170239A (en) Catalytic formed body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R151 Written notification of patent or utility model registration

Ref document number: 5063055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250