JP2008034525A - 超電導磁石装置および磁気共鳴イメージング装置 - Google Patents

超電導磁石装置および磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP2008034525A
JP2008034525A JP2006204724A JP2006204724A JP2008034525A JP 2008034525 A JP2008034525 A JP 2008034525A JP 2006204724 A JP2006204724 A JP 2006204724A JP 2006204724 A JP2006204724 A JP 2006204724A JP 2008034525 A JP2008034525 A JP 2008034525A
Authority
JP
Japan
Prior art keywords
coil
superconducting
cylinder
outer peripheral
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204724A
Other languages
English (en)
Inventor
Hiroyuki Takahashi
弘行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006204724A priority Critical patent/JP2008034525A/ja
Publication of JP2008034525A publication Critical patent/JP2008034525A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】軽量かつ単純な構造で超電導コイルを支持しつつ、摩擦熱の発生を抑制できる支持構造体を備えた超電導磁石装置を提供する。
【解決手段】コイル軸23が互いに一致し、コイル端面24が対向するように配置され、作用する電磁力によって相互に引き合う複数の円筒形の超電導コイル6と、超電導コイル6の外周面25を覆い、電磁力のコイル軸23に垂直な径方向成分の作用により超電導コイル6に圧接される内周面を有する外周壁円筒26と、外周壁円筒26に対してコイル軸23の方向に嵌合され、電磁力が作用することにより遊嵌状態になり、電磁力のコイル軸23に平行な軸方向成分の作用により対向するコイル端面24それぞれに圧接される互いに平行な側壁端面を有する壁側円筒29とを有する。
【選択図】図2

Description

本発明は、超電導磁石装置および、それを用いた磁気共鳴イメージング(以下、MRIと称す)装置に関する。
MRI装置は、核磁気共鳴(Nuclear Magnetic Resonance、以下NMRと称す)現象により水素原子核スピンが放出する電磁波を計測し、その電磁波を信号として演算処理することで、被検体を水素原子核密度によって断層像化するものである。水素原子核スピンが放出する電磁波の計測には、計測領域として、高強度な均一磁場領域を生成する必要があるので、超電導磁石装置が用いられている。
超電導磁石装置では、超電導コイルが超電導状態となる温度が極低温であるので、液体ヘリウム(He)を用いて冷却しているが、超電導コイルは、支持構造体によって支持されつつ電磁力が作用するので、超電導コイルと支持構造体との間で摩擦熱が生じ、超電導状態が壊れるクエンチが発生する場合が考えられた。
そこで、従来の支持構造体としては、電磁力に対抗して超電導コイルが動かないように強固に固定し摩擦熱を抑えるために、冷媒を保持する極低温容器と支持構造体を一体とする方式(例えば、特許文献1および非特許文献1参照)が提案されている。また、支持構造体を固定金具を用いて固定する方式が提案され、固定金具を含めた支持構造体の部品が溶接で締結される方式(例えば、特許文献2参照)と、ボルトもしくはキーで機械的に締結される方式(例えば、非特許文献2参照)が提案されている。
特開平11−121223号公報 特開平6−290938号公報 「大型ヘリカル装置の超電導ヘリカルコイル」、核融合科学研究所ニュース、1995年(平成7年)2月 「トカマク国内重点化装置におけるトロイダル磁場コイル支持構造の評価・検討」、2004年度秋期低温工学・超電導学会講演概要集
しかし、支持構造体で、超電導コイルを強固に固定すればするほど、支持構造体と超電導コイルとが圧接され、この圧接された箇所が電磁力によって擦れ、摩擦熱が発生する場合が考えられた。そして、このような摩擦熱の発生を避けるために、さらに、支持構造体で超電導コイルを強固に固定しようとすれば、支持構造体は重量化し複雑になると考えられた。
本発明は前記の課題を解決しようとするもので、その目的は、軽量かつ単純な構造で超電導コイルを支持しつつ、摩擦熱の発生を抑制できる支持構造体を備えた超電導磁石装置を提供し、さらに、この超電導磁石装置を用いたMRI装置を提供することにある。
前記目的を達成するために、本発明の超電導電磁石装置およびMRI装置は、コイル軸が互いに一致し、コイル端面が対向するように配置され、作用する電磁力によって相互に引き合う複数の円筒形の超電導コイルと、前記超電導コイルの外周面を覆い、前記電磁力の前記コイル軸に垂直な径方向成分の作用により前記超電導コイルに圧接される内周面を有する外周壁円筒と、前記外周壁円筒に対して前記コイル軸の方向に嵌合され、前記電磁力が作用することにより遊嵌状態になり、前記電磁力の前記コイル軸に平行な軸方向成分の作用により対向する前記コイル端面それぞれに圧接される互いに平行な側壁端面を有する壁側円筒とを有することを特徴とする。
このような超電導磁石装置およびMRI装置によれば、軽量かつ単純な構造で超電導コイルを支持しつつ、摩擦熱の発生を抑制できる支持構造体を備えた超電導磁石装置を提供し、さらに、この超電導磁石装置を用いたMRI装置を提供することができる。
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
(第1の実施形態)
図1に示すように、第1の実施形態に係るMRI(磁気共鳴イメージング)装置1は、冷凍機4が突出しているものの略円筒形の超電導磁石装置2と、超電導磁石装置2の筒の中の撮像空間に挿入された被検体をのせるベッド3と、超電導磁石装置2を用いて被検体からの核磁気共鳴信号を解析し断層像化する制御装置5とを有している。
図2に示すように、第1の実施形態に係る超電導磁石装置2は、永久電流を流し磁場を発生させ、中心軸となるコイル軸23が水平方向の円筒状の複数の超電導コイル6と、この超電導コイル6を冷媒8と共に収納する極低温容器9と、この極低温容器9を包囲するように設けられた熱シールド11と、この熱シールド11を包囲し、内部を真空に保持している真空容器15と、冷凍機4とを有している。冷凍機4は、極低温に冷却する第2ステージと、中低温に冷却する第1ステージとを有する、具体的には二段GM冷凍機のような冷凍機である。冷凍機4は、メンテナンス時に脱着可能なように超電導磁石装置2に設置されている。凝縮機が取り付けられた第2ステージ17では極低温容器9内で蒸発したヘリウムガスを冷却して再液化している。
複数の超電導コイル6は、コイル軸23が互いに一致している。超電導コイル6のコイル軸23を含む面での断面形状は、正方形又は長方形のような矩形であり、超電導コイル6の両端にあるコイル端面24は、それぞれ平面上に配置され、互いに平行になっている。また、超電導コイル6のコイル端面24は、隣接する超電導コイル6のコイル端面24に対向して平行になるように配置されている。超電導コイル6の外周面25は、コイル軸23と平行に、コイル軸23からどの周方向にも等距離になるように配置されている。
冷媒8は超電導コイル6を直接冷却し、具体的には、液体ヘリウム(He)が用いられている。冷媒8は、超電導コイル6によって温められると、冷凍機4の第2ステージ17によって極低温に冷却される。極低温容器9は、複数の円環状の超電導コイル6それぞれに沿い収納するように、円環状に形成され、容積をできるだけ小さくしている。同様に、熱シールド11は、円環状の極低温容器9に沿って覆うように、円環状に形成され、表面積をできるだけ小さくしている。真空容器15は、円環状の熱シールド11に沿って覆うように、円環状に形成され、容積をできるだけ小さくしている。
超電導磁石装置2が、室温の室内に配置されても、真空容器15内が真空になっているので、室内の熱が伝導や自然対流で、極低温容器9に伝わることはない。また、熱シールド11は、冷凍機4の第1ステージ16によって冷却されることで、真空容器15からの輻射熱を吸収し冷凍機4の第1ステージ16に放出するので、輻射熱で極低温容器9が昇温されることはない。熱シールド11は、冷凍機4の第1ステージ16によって、冷媒8の温度の極低温と室温との間の中低温に設定される。
極低温容器9は荷重支持体22によって支持され、荷重支持体22は室内の床に固定される。熱シールド11と真空容器15も荷重支持体22に支持されている。荷重支持体22は、熱侵入を少なくする工夫がされている。こうして、超電導コイル6と極低温容器9は極低温に安定して設定されている。
真空容器15の内周面にはそれぞれ、RFコイル19と、傾斜磁場コイル18とが設けられている。MRI装置1は、NMR現象により水素原子核スピンが放出する核磁気共鳴信号を計測し、その核磁気共鳴信号を演算処理することで、ベッド3にのせられた被検体21の体内を水素原子核密度によって断層像化する。その際に、被検体21が入る撮像空間には、強度が0.2T以上の高強度であり、高い静磁場均一度を有する静磁場を生成させる。撮像空間の上下1対の傾斜磁場コイル18は、撮像空間内の位置情報を得る目的で、磁場を空間的に変化させた傾斜磁場を撮像空間に印加する。さらに、撮像空間の上下1対のRFコイル19は、NMR現象を引起すための共鳴周波数の電磁波を撮像空間に印加する。これらにより、撮像空間内の微小領域ごとに水素原子核スピンが放出する核磁気共鳴信号を計測し、その核磁気共鳴信号を演算処理することで、被検体21の体内を水素原子核密度によって断層像化することができる。
超電導コイル6は、支持構造体によって極低温容器9に支持されている。支持構造体は超電導コイル6と冷媒8と共に極低温容器9に収納されている。支持構造体は、超電導コイル6の外周面25を内周面で覆うように配置される外周壁円筒26と、隣り合う超電導コイル6の間に配置される壁側円筒29と、超電導コイル6と極低温容器9との間に配置される円筒形のスペーサ33とを有している。外周壁円筒26と壁側円筒29と円筒形のスペーサ33のそれぞれの中心軸は、コイル軸23に一致している。壁側円筒29は、1対の片側円環27とスペーサ円環28とを有している。1対の片側円環27とスペーサ円環28のそれぞれの中心軸は、コイル軸23に一致している。片側円環27は、コイル端面24に平行に対向し面接触可能な側壁端面を1つずつ有している。
また、スペーサ33は、極低温容器9に接し、超電導コイル6と外周壁円筒26と壁側円筒29とを、極低温容器9の内壁から離している。スペーサ33は、コイル側円環31と容器側円環32とを有している。コイル側円環31と容器側円環32のそれぞれの中心軸は、コイル軸23に一致している。
理解を容易にするために、図3では、超電導磁石装置2から超電導コイル6と極低温容器9と支持構造体のみを記載し、極低温容器9は、円筒形から円柱形に変えている。
図2と図3に示すように、超電導コイル6と、支持構造体とは、溶接やボルトなどにより締結されていない。また、極低温容器9と、支持構造体とは、溶接やボルトなどにより締結されていない。さらに、外周壁円筒26と壁側円筒29も溶接やボルトなどにより締結されておらず、外周壁円筒26とスペーサ33も溶接やボルトなどにより締結されていない。さらに詳細には、片側円環27とスペーサ円環28も溶接やボルトなどにより締結されておらず、コイル側円環31と容器側円環32も溶接やボルトなどにより締結されていない。
このような、状態でどのように、支持構造体は超電導コイル6を極低温容器9中に支持するのかを以下に説明する。まず、超電導コイル6に通電されず、超電導コイル6に電磁力が作用していない場合の支持について説明する。
まず、壁側円筒29は、外周壁円筒26に対してコイル軸23の方向に嵌合されている。この嵌合では、壁側円筒29が内側に、外周壁円筒26が外側になるように嵌め合わされる。スペーサ33は、外周壁円筒26に対してコイル軸23の方向に嵌合されている。この嵌合では、スペーサ33が内側に、外周壁円筒26が外側になるように嵌め合わされる。外周壁円筒26のコイル軸23の方向の幅が、超電導コイル6のコイル軸23の方向の幅より広く設定することにより、超電導コイル6の両側に、外周壁円筒26によるひさしができ、これらの嵌合を可能にしている。
極低温容器9は、法線がコイル軸23と平行で対向するフランジ34を有しており、スペーサ33は、フランジ34に対してコイル軸23の方向に嵌合されている。この嵌合では、スペーサ33がフランジ34の内側と外側のどちら側になるように嵌め合い交差されていてもよい。1対のフランジ34はそれぞれ、極低温容器9の円筒形の胴部に溶接にて締結されている。
スペーサ円環28は、一対の片側円環27の間に設けられ、一対の片側円環27に支持される。スペーサ円環28は、一対の片側円環27それぞれに対してコイル軸23の方向に嵌合されている。この嵌合では、スペーサ円環28が片側円環27の内側と外側のどちら側になるように嵌め合わされていてもよい。
コイル側円環31は、外周壁円筒26に対してコイル軸23の方向に嵌合されている。この嵌合では、コイル側円環31が内側に、外周壁円筒26が外側になるように嵌め合わされる。容器側円環32は、コイル側円環31とフランジ34の間に設けられ、コイル側円環31を支持し、フランジ34に対してコイル軸23の方向に嵌合されている。この嵌合では、容器側円環32がフランジ34の内側と外側のどちら側になるように嵌め合い交差されていてもよい。容器側円環32は、コイル側円環31に対してコイル軸23の方向に嵌合されている。この嵌合では、容器側円環32がコイル側円環31の内側と外側のどちら側になるように嵌め合わされていてもよい。
以上のように複数の箇所で嵌合されることにより、電磁力が作用しない際の支持構造体による超電導コイルの支持が次のように可能になる。超電導コイル6と支持構造体には、それぞれの重力が作用しているので、支持されないと落下してしまうわけであるが、まず、容器側円環32は、フランジ34に嵌合されていることにより、フランジ34に支持されている。次に、コイル側円環31は、容器側円環32に嵌合されていることにより、容器側円環32に支持されている。さらに、外周壁円筒26は、コイル側円環31に嵌合されていることにより、コイル側円環31に支持されている。超電導コイル6は、外周壁円筒26に嵌められていることにより、外周壁円筒26に支持されている。さらに、片側円環27は、外周壁円筒26に嵌合されていることにより、外周壁円筒26に支持されている。最後に、スペーサ円環28は、両側から片側円環27に嵌合されていることにより、片側円環27に支持されている。
以上により、超電導コイル6を極低温容器9から離間させ、かつ、隣接する超電導コイル6を互いに離間させた状態で、支持構造体は、超電導コイル6を支持することができる。なお、これらのことは、次のように考えることができる。
まず、スペーサ33は、フランジ34に嵌合されていることにより、フランジ34に支持されている。外周壁円筒26は、スペーサ33に嵌合されていることにより、スペーサ33に支持されている。超電導コイル6は、外周壁円筒26に嵌められていることにより、外周壁円筒26に支持されている。壁側円筒29は、外周壁円筒26に嵌合されていることにより、外周壁円筒26に支持されている。
重力は、コイル軸23と垂直な方向に働き、コイル軸23と平行な方向には力は作用していないので、超電導コイル6と片側円環27との間にはすきま35が生じうるように力の相互作用は生じていない。同様に、図2と図3では図示を省略したが、超電導コイル6とコイル側円環31との間にもすきま35が生じうるように力の相互作用は生じていない。
また、スペーサ円環28と片側円環27との間にもすきま35が生じうるようにコイル軸23の方向の力の相互作用は生じていない。同様に、外周壁円筒26と片側円環27との間にもすきま35が生じうるようにコイル軸23の方向の力の相互作用は生じていない。図2と図3では図示を省略したが、フランジ34と容器側円環32との間にもすきま35が生じうるようにコイル軸23の方向の力の相互作用は生じていない。同様に、コイル側円環31と容器側円環32との間にもすきま35が生じうるようにコイル軸23の方向の力の相互作用は生じていない。コイル側円環31と外周壁円筒26との間にもすきま35が生じうるようにコイル軸23の方向の力の相互作用は生じていない。
次に、超電導コイル6に通電され、超電導コイル6に電磁力が作用している場合の支持について説明する。このような状態でどのように、支持構造体は超電導コイル6を極低温容器9中に支持するのかを以下に説明する。
図4に示すように、複数の超電導コイル6には、超電導コイル6が膨張するように作用するコイル軸23に垂直な径方向成分37と、複数の超電導コイル6が相互に引き合うように作用するコイル軸23に平行な軸方向成分38とからなる電磁力が作用する。
電磁力の径方向成分37により、超電導コイル6が膨張することで、超電導コイル6のコイル外周面25は、外周壁円筒26の内周面に圧接する。この圧接により、外周壁円筒26は、周方向に引き伸ばされるように張力が働くが、周方向に引き伸ばされることによりこの反作用で外周壁円筒26に周方向に縮まろうとする張力が生じバランスする。超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされることで、外周壁円筒26の直径が大きくなり、外周壁円筒26と壁側円筒29とは遊嵌状態になり、すきま35を生じさせることができる。具体的には、外周壁円筒26と片側円環27とが遊嵌状態になる。このため、超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされた変形が、壁側円筒29におよぶことはない。
電磁力の軸方向成分38により、隣接する超電導コイル6が相互に引き合うことで、超電導コイル6それぞれのコイル端面24は、それぞれのコイル端面24に対向し平行な壁側円筒29の壁側端面それぞれに圧接する。この圧接により、超電導コイル6のコイル端面24と、壁側円筒29の壁側端面との間のすきま35は消失し、同様に、片側円環27とスペーサ円環28との間のすきま35も消失し、隣接する超電導コイル6間の距離を一定に保つことができる。そして、超電導コイル6が引き合い、超電導コイル6間のすきま35が消失する変形が発生しても、外周壁円筒26と壁側円筒29とは遊嵌状態になっているので、この変形が外周壁円筒26におよぶことはない。
また、超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされることで、外周壁円筒26の直径が大きくなり、外周壁円筒26とスペーサ33とは遊嵌状態になり、すきま35を生じさせることができる。具体的には、外周壁円筒26とコイル側円環31とが遊嵌状態になる。このため、超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされた変形が、スペーサ33におよぶことはない。
ここで、圧接する、超電導コイル6のコイル外周面25と外周壁円筒26の内周面とに注目する。超電導コイル6のコイル外周面25と外周壁円筒26の内周面との法線方向は、電磁力の径方向成分37の方向と一致するので、超電導コイル6のコイル外周面25と外周壁円筒26の内周面とが擦れにくく、したがって、摩擦熱の発生が抑制できる。そして、外周壁円筒26と壁側円筒29とが遊嵌状態になり、壁側円筒29の変形が外周壁円筒26におよばないので、壁側円筒29の変形によって、外周壁円筒26は運動せず、超電導コイル6のコイル外周面25と外周壁円筒26の内周面とは擦れないので、このことによっても摩擦熱の発生を抑制できる。
同様に、圧接する、超電導コイル6のコイル端面24と、壁側円筒29の壁側端面とに注目すると、超電導コイル6のコイル端面24と壁側円筒29の壁側端面との法線方向は、電磁力の軸方向成分38の方向と一致するので、超電導コイル6のコイル端面24と壁側円筒29の壁側端面とが擦れにくく、したがって、摩擦熱の発生が抑制できる。そして、外周壁円筒26と壁側円筒29とが遊嵌状態になり、外周壁円筒26の変形が壁側円筒29におよばないので、外周壁円筒26の変形によって、壁側円筒29は運動せず、超電導コイル6のコイル端面24と壁側円筒29の壁側端面とは擦れないので、このことによっても摩擦熱の発生を抑制できる。
なお、片側円環27とスペーサ円環28も圧接する。圧接する、片側円環27の法線がコイル軸23と平行な端面と、スペーサ円環28の法線がコイル軸23と平行な端面とに注目すると、これらの端面の法線方向は、電磁力の軸方向成分38の方向と一致するので、これらの端面は互いに擦れにくく、したがって、摩擦熱の発生が抑制できる。そして、外周壁円筒26と壁側円筒29とが遊嵌状態にあるので、外周壁円筒26の変形が壁側円筒29におよばないので、外周壁円筒26の変形によって、片側円環27は運動せず、片側円環27の端面とスペーサ円環28の端面とは擦れないので、このことによっても摩擦熱の発生を抑制できる。
そして、このような支持構造体によれば、電磁力による、超電導コイル6の膨張に伴う外周壁円筒26の変形を許容でき、超電導コイル6が引き合うことによる壁側円筒29の変形を許容できるので、従来の変形をさせない支持構造体に比べ、軽量かつ単純な構造にすることができる。そして、溶接もしくはボルトやキーの締結機構を使用せずに支持構造体を構成できるので、構造が簡略化されコストが低減される効果がある。また、単純に支持構造体の部品を積上げて極低温容器9のフランジ34と胴部を溶接するだけで組立てられるため、締結構造を組立てる為の工数が低減でき製造効率が向上できる。
(第2の実施形態)
図5(a)に示すように、第2の実施形態に係る超電導磁石装置2の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置2から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図5(a)と(b)に示すように、第2の実施形態に係る超電導磁石装置2は、スペーサ円環28が、一対の片側円環27それぞれに、全周ではない離散した数箇所の溶接部39での隅肉溶接により締結されている点と、容器側円環32が、コイル側円環31に、全周ではない離散した数箇所の溶接部39での隅肉溶接により締結されている点が、第1の実施形態の超電導磁石装置2とは異なっている。
溶接部39は、位置決めのみを目的として浅く溶接しているので、溶接された支持構造体の部品が変形することはない。また、電磁力は、溶接部39を剥がしたりして破壊する方向の力として作用しないので、溶接部39は、超電導コイル6と支持構造体の重さを支えられるだけの強度があればよい。溶接部39を用いることで、嵌合の構造を省略することができ、支持構造体の構造が単純になり、製造工程を一層容易にすることができる。
一方、スペーサ33は、フランジ34に嵌合されていることにより、フランジ34に支持され、外周壁円筒26は、スペーサ33に嵌合されていることにより、スペーサ33に支持され、超電導コイル6は、外周壁円筒26に嵌められていることにより、外周壁円筒26に支持され、壁側円筒29は、外周壁円筒26に嵌合されていることにより、外周壁円筒26に支持されている。この構造は、第1の実施形態と同じであるので、第1の実施形態と同じ効果を得ることができる。
(第3の実施形態)
図6に示すように、第3の実施形態に係る超電導磁石装置2の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置2から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図6に示すように、第3の実施形態に係る超電導磁石装置2は、スペーサ円環28が、一対の片側円環27それぞれに、接着剤41により締結されている点と、容器側円環32が、コイル側円環31に、接着剤41により締結されている点が、第1および第2の実施形態の超電導磁石装置2とは異なっている。
接着剤41により支持構造体に部品を締結すれば、支持構造体の部品が変形することがない。また、電磁力は、接着剤41を剥がしたりして破壊する方向の力として作用しないので、接着剤41は、超電導コイル6と支持構造体の重さを支えられるだけの強度があればよい。接着剤41を用いることで、嵌合の構造を省略しすることかでき、支持構造体の構造が単純になり、製造工程を一層容易にすることができる。
一方、スペーサ33は、フランジ34に嵌合されていることにより、フランジ34に支持され、外周壁円筒26は、スペーサ33に嵌合されていることにより、スペーサ33に支持され、超電導コイル6は、外周壁円筒26に嵌められていることにより、外周壁円筒26に支持され、壁側円筒29は、外周壁円筒26に嵌合されていることにより、外周壁円筒26に支持されている。この構造は、第1の実施形態と同じであるので、第1の実施形態と同じ効果を得ることができる。
(第4の実施形態)
図7に示すように、第4の実施形態に係る超電導磁石装置2の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置2から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図7に示すように、第4の実施形態に係る超電導磁石装置2は、超電導コイル6の外周面と、外周壁円筒26の内周面との間に、潤滑剤42が挿入されている点と、コイル端面24と、壁側円筒29の壁側端面との間に、潤滑剤42が挿入されている点と、コイル端面24と、スペーサ33の端面との間に、潤滑剤42が挿入されている点とが、第1の実施形態の超電導磁石装置2とは異なっている。
支持構造体と超電導コイル6とは、超電導コイル6に電磁力が作用し膨張する際に、支持構造体と超電導コイル6の間に、クエンチ原因となる摩擦による摩擦熱が生じると考えられる。そこで、支持構造体と超電導コイル6の間に潤滑剤42を挟むことで、支持構造体と超電導コイル6の間の摩擦係数を低減し、摩擦熱をクエンチが生じない程度にまで低減している。潤滑剤42としては、板状に成形した潤滑板を用いることができる。潤滑板を超電導コイル6に接着することで、支持構造体と潤滑板との間を滑らすことができる。この滑りにより発生した摩擦熱は、潤滑板に熱伝導率が低い材質を使用することで超電導コイル6に伝わり難くすることができる。また、潤滑板を支持構造体と一体化してもよい。この場合は、支持構造体に潤滑板を貼り付けるだけでなく、潤滑剤42を支持構造体に塗布する方法が用いることが出来るため、製作が容易というメリットがある。
(第5の実施形態)
図8と図9に示すように、第5の実施形態に係る超電導磁石装置2は、図2の複数の外周壁円筒26は、互いに連結され一体型外周壁円筒45を構成している点と、複数の超電導コイル6の内周面に接し、壁側円筒29とスペーサ33を固定し、中心軸がコイル軸23に一致している内周壁円筒43をさらに有する点とが、第1の実施形態の超電導磁石装置2とは異なっている。そして、壁側円筒29とスペーサ33と内周壁円筒43とは一体になり、一体型ボビン44が構成されている。
なお、図9は、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置2から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
スペーサ33は、フランジ34に嵌合されていることにより、フランジ34に支持され、このことにより、一体型ボビン44が支持される。一体型ボビン44が支持されることにより、内周壁円筒43が支持され、内周壁円筒43に固定された壁側円筒29が支持され、内周壁円筒43に内周が接する超電導コイル6が支持される。一体型外周壁円筒45は、複数の超電導コイル6に嵌められることによりに支持され、スペーサ33と壁側円筒29には溶接等で締結されていない。ここで、電磁力により超電導コイル6が膨張し、外周壁円筒26を連結した一体型外周壁円筒45が周方向に引き伸ばされ、一体型外周壁円筒45の直径が大きくなり、一体型外周壁円筒45と壁側円筒29とが遊嵌状態になり、すきまを生じさせることができるような構造は、第1の実施形態と同じであるので、第1の実施形態と同じ効果を得ることができる。
(第6の実施形態)
図10に示すように、第6の実施形態に係る超電導磁石装置の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図10に示すように、第6の実施形態に係る超電導磁石装置は、超電導コイル6毎に設けられた外周壁円筒26は互いに連結されている点と、スペーサ33が荷重支持体22を兼ねて連結された外周壁円筒26を支持している点と、外周壁円筒26が、壁側円筒29と超電導コイル6とを支持している点とが、第1の実施形態の超電導磁石装置2とは異なっている。極低温容器9とスペーサ33との間は溶接し極低温容器9内部を密封している。
なお、荷重不支持スペーサ46が、フランジ34に嵌合され支持されているが、荷重不支持スペーサ46と超電導コイル6との間にはすきま35が生じ得るように、荷重不支持スペーサ46には、超電導コイル6の荷重はかからず、超電導コイル6のコイル軸23の方向のゆれ等の運動を抑制する。
連結された外周壁円筒26の内周面には、中央側の深いところほど、内径を小さくした段差が設けられている。この段差により、壁側円筒29のコイル軸23の方向の位置決めができる。そして、この位置決めにより、超電導コイル6は壁側円筒29接するように配置されるので、超電導コイル6の位置決めもすることができる。
外周壁円筒26は壁側円筒29と超電導コイル6とを嵌合することで支持しており、特に、外周壁円筒26と壁側円筒29とは、溶接等で締結されていない。ここで、電磁力により超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされ直径が大きくなり、外周壁円筒26と壁側円筒29とが遊嵌状態になり、すきま35を生じさせることができるような構造は、第1の実施形態と同じであるので、第1の実施形態と同じ効果を得ることができる。
(第7の実施形態)
図11に示すように、第7の実施形態に係る超電導磁石装置の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図11に示すように、第7の実施形態に係る超電導磁石装置は、複数のシールドコイル47を有している点が、第6の実施形態の超電導磁石装置とは異なっている。超電導磁石装置では、磁場を外部に漏洩させないために超電導コイル(メインコイル)6の外部における磁場を打ち消すために、シールドコイル47を、一連の超電導コイル6の中の外側の一対の超電導コイル6のそれぞれの外側に設置する。このため一対のシールドコイル47は超電導コイル6とは向きを逆に通電して、相互に反発し合うように電磁力がシールドコイル47に作用する。このため、電磁力の軸方向成分54は外向きとなる。シールドコイル47は、円筒形であり、その中心軸がコイル軸23に一致している。そして、複数のシールドコイル47は、互いの端面が対向するように配置されている。
さらに、超電導磁石装置は、シールド内周壁円筒49と、シールド壁側円筒51と、シールドスペーサ52とを有している。シールド内周壁円筒49は、シールドコイル47の内周面に接してシールドコイル47を支持し、中心軸がコイル軸23に一致している。シールド壁側円筒51は、シールドコイル47に作用する電磁力のコイル軸23に平行な軸方向成分38の作用によりシールドコイル47それぞれに圧接されるシールド側壁端面を有している。シールドスペーサ52は、シールド内周壁円筒49とシールド壁側円筒51とを、外周壁円筒26、壁側円筒29、スペーサ33の少なくともいずれか1つ、図11では外周壁円筒26に固定し、シールドコイル47の外周面を極低温容器9の内壁から離している。また、シールド内周壁円筒49とシールド壁側円筒51とは、シールドコイルボビン55として、一体成形すればよい。シールドスペーサ52とシールドコイルボビン55とは、ボルト等により機械的に締結すればよい。同様に、シールドスペーサ52と、外周壁円筒26、壁側円筒29、スペーサ33の少なくともいずれか1つ、図11では外周壁円筒26とも、ボルト等により機械的に締結すればよい。
(第8の実施形態)
図12に示すように、第8の実施形態に係る超電導磁石装置の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図12に示すように、第8の実施形態に係る超電導磁石装置は、シールドコイルボビン55がフランジ34に嵌合されていることで支持されている点と、シールドコイル47の外周面が、シールド外周円筒56で覆われている点が、第7の実施形態の超電導磁石装置とは異なっている。そして、フランジ34から嵌合されているシールドコイルボビン55が抜けないように、一対のシールドコイルボビン55の間に、位置決め板57が設けられている。
シールドコイル47に関して、電磁力によりシールドコイル47が膨張し、シールド外周壁円筒56が周方向に引き伸ばされ直径が大きくなり、シールド外周壁円筒56とシールド壁側円筒51とが遊嵌状態になり、すきま35を生じさせることができるような構造は、第1の実施形態の超電導コイル6の場合と同じであるので、第1の実施形態の超電導コイル6の場合と同じ効果を得ることができる。
(第9の実施形態)
図13に示すように、第9の実施形態に係る超電導磁石装置の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図13に示すように、第9の実施形態に係る超電導磁石装置は、一体型ボビン44が用いられている点で第5の実施形態の超電導磁石装置と同じであり、シールドコイルボビン55とシールドスペーサ52とが用いられている点で第7の実施形態の超電導磁石装置と同じである。この2点を両立させるために、一体型ボビン44をスペーサ33に支持させるためのスペーサ59が新たに設けられている。また、シールドコイルボビン55を、シールドスペーサ52を介して、スペーサ33に支持させるために、新たにシールド支持円筒58が設けられている。このため、第7と第9の実施形態の場合と同じ効果を得ることができる。
(第10の実施形態)
図14(a)と(b)に示すように、第10の実施形態に係る超電導磁石装置の図面の記載では、図3と図4と同様に本発明の理解を容易にするために、超電導磁石装置から超電導コイル6と極低温容器9と支持構造体のみを記載し、真空容器15等は記載を省略し、極低温容器9は円筒形から円柱形に変えている。
図14(a)と(b)に示すように、第10の実施形態に係る超電導磁石装置は、対向する一対のフランジ34の間隔が狭くなるような曲げ応力60が、極低温容器9に掛かっている点で第1の実施形態の超電導磁石装置と異なっている。この相違点により、第1の実施形態の超電導磁石装置内、特に、支持構造体内と支持構造体とフランジ34の間に生じていたすきま35を消失させることができる。すきま35の消失により、支持構造体の部品間の片あたりが防げ、片あたりによる局所的な摩擦による摩擦熱の発生を抑制することができる。これは、必要とされる曲げ応力60の大きさは、電磁力に比べて桁違いに小さくてすむからである。曲げ応力60を生むためには、支持構造体を挟み込む一対のフランジ34の間隔が軸方向に縮むように、フランジ34あるいは極低温容器に胴部をたわませたまま、フランジと胴部とを溶接すればよい。
なお、電磁力により超電導コイル6が膨張し、外周壁円筒26が周方向に引き伸ばされて直径が大きくなり、外周壁円筒26と壁側円筒29とが遊嵌状態になったことによるすきま35は、消失しない。このすきま35は消失せずに残りうることで、第1の実施形態と同じ効果を得ることができる。
(第11の実施形態)
図14(c)に示すように、第11の実施形態に係る超電導磁石装置は、超電導コイル6に巻かれた超電導線材62に引っ張り応力が掛かっている点で、第1乃至第10の実施形態の超電導磁石装置と異なっている。超電導コイル6は、超電導線材62が複数回巻かれ、超電導線材62の間には樹脂61が埋め込まれている。超電導コイル6に通電されると、超電導線材62の間に斥力が生じ、このことにより、超電導コイル6が膨張している。樹脂61は、超電導線材62を固定することで、超電導コイル6の膨張を低減させている。第11の実施形態では、超電導線材62に引っ張り応力が掛かっているので、一層、超電導コイル6の膨張を低減させることができる。超電導コイル6の膨張が低減できれば、外周壁円筒26が周方向に引き伸ばされたことによる直径の増加は小さくてすみ、超電導コイル6と支持構造体の間のクエンチの原因となる擦れの長さが短くなるので、摩擦熱をクエンチが生じない程度にまで低減できる。なお、小さくなっても、外周壁円筒26の直径は増加するので、外周壁円筒26と壁側円筒29とは遊嵌状態になり、第1の実施形態と同じ効果を得ることができる。
本発明の一実施形態に係る磁気共鳴イメージング装置の斜視図である。 図1のA−A方向の断面図である。 図2から本発明の一実施形態に係る超電導磁石装置の主要部を抜き出して記載した断面図である。 電磁力が発生しているときの超電導磁石装置の主要部の断面図である。 (a)は、本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図であり、(b)は、(a)のB−B方向の断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 本発明の一実施形態に係る磁気共鳴イメージング装置の断面図である。 図8から本発明の一実施形態に係る超電導磁石装置の主要部を抜き出して記載した断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 本発明の一実施形態に係る超電導磁石装置の主要部の電磁力が発生しているときの断面図である。 (a)は、本発明の一実施形態に係る超電導磁石装置の主要部を抜き出して記載した断面図であり、(b)は、その超電導磁石装置に電磁力が発生しているときの断面図であり、(c)は、超電導コイルの断面図である。
符号の説明
1 MRI(磁気共鳴イメージング)装置
2 超電導磁石装置
6 超電導コイル
8 冷媒
9 極低温容器
22 荷重支持体
23 コイル軸
24 コイル端面
25 コイル外周面
26 外周壁円筒
27 片側円環
28 スペーサ円環
29 壁側円筒
31 コイル側円環
32 容器側円環
33 スペーサ
34 フランジ
35 すきま
37 電磁力の径方向成分
38 電磁力の軸方向成分
41 接着層
42 潤滑板
43 内周壁円筒
44 一体型ボビン
45 一体型外周壁円筒
47 シールドコイル
48 シールドコイルの内周面
49 シールド内周壁円筒
51 シールド壁側円筒
52 シールドスペーサ
53 電磁力の径方向成分
54 電磁力の軸方向成分
55 シールドコイルボビン
56 シールド外周壁円筒
58 シールド支持円筒
59 スペーサ
60 曲げ応力
61 樹脂
62 超電導線材

Claims (20)

  1. コイル軸が互いに一致し、コイル端面が対向するように配置され、作用する電磁力によって相互に引き合う複数の円筒形の超電導コイルと、
    前記超電導コイルの外周面を覆い、前記電磁力の前記コイル軸に垂直な径方向成分の作用により前記超電導コイルに圧接される内周面を有する外周壁円筒と、
    前記外周壁円筒に対して前記コイル軸の方向に嵌合され、前記電磁力が作用することにより遊嵌状態になり、前記電磁力の前記コイル軸に平行な軸方向成分の作用により対向する前記コイル端面それぞれに圧接される互いに平行な側壁端面を有する壁側円筒とを有することを特徴とする超電導磁石装置。
  2. 前記超電導コイルと、前記外周壁円筒と、前記壁側円筒とを冷媒と共に収納する極低温容器と、
    前記極低温容器に接し、前記超電導コイルと前記外周壁円筒と前記壁側円筒とを、極低温容器の内壁から離すスペーサをさらに有することを特徴とする請求項1に記載の超電導磁石装置。
  3. 前記スペーサは、前記外周壁円筒に対して前記コイル軸の方向に嵌合され、前記電磁力が作用することにより遊嵌状態になることを特徴とする請求項2に記載の超電導磁石装置。
  4. 前記極低温容器は、法線が前記コイル軸と平行で対向するフランジを有し、
    前記スペーサは、軸が前記コイル軸に一致する円筒であり、前記フランジに対して前記コイル軸の方向に嵌合されていることを特徴とする請求項2または請求項3に記載の超電導磁石装置。
  5. 前記外周壁円筒の前記コイル軸の方向の幅は、前記超電導コイルの前記コイル軸の方向の幅より広いことを特徴とする請求項1乃至請求項4のいずれか1項に記載の超電導磁石装置。
  6. 前記壁側円筒は、
    前記側壁端面を1つずつ有する一対の片側円環と、
    一対の前記片側円環の間に設けられ、一対の前記片側円環に支持され、軸が前記コイル軸に一致するスペーサ円環とを有することを特徴とする請求項1乃至請求項5のいずれか1項に記載の超電導磁石装置。
  7. 前記スペーサ円環は、一対の前記片側円環それぞれに対して前記コイル軸の方向に嵌合されていることを特徴とする請求項6に記載の超電導磁石装置。
  8. 前記スペーサ円環は、一対の前記片側円環それぞれに溶接または接着剤により締結されていることを特徴とする請求項6に記載の超電導磁石装置。
  9. 前記スペーサは、
    前記外周壁円筒に対して前記コイル軸の方向に嵌合され、前記電磁力が作用することにより遊嵌状態になるコイル側円環と、
    前記コイル側円環と前記フランジの間に設けられ、前記コイル側円環を支持し、軸が前記コイル軸に一致し、前記フランジに対して前記コイル軸の方向に嵌合されている容器側円環とを有することを特徴とする請求項2乃至請求項8のいずれか1項に記載の超電導磁石装置。
  10. 前記容器側円環は、前記コイル側円環に対して前記コイル軸の方向に嵌合されていることを特徴とする請求項9に記載の超電導磁石装置。
  11. 前記容器側円環は、前記コイル側円環に溶接または接着剤により締結されていることを特徴とする請求項9に記載の超電導磁石装置。
  12. 前記超電導コイルの外周面と、前記外周壁円筒の内周面との間に、潤滑剤が挿入されていることを特徴とする請求項1乃至請求項11のいずれか1項に記載の超電導磁石装置。
  13. 前記コイル端面と、前記側壁端面との間に、潤滑剤が挿入されていることを特徴とする請求項1乃至請求項12のいずれか1項に記載の超電導磁石装置。
  14. 前記超電導コイルに巻かれた超電導線材には、引っ張り応力が掛かっていることを特徴とする請求項1乃至請求項13のいずれか1項に記載の超電導磁石装置。
  15. 対向する前記フランジの間隔が狭くなるような応力が、前記極低温容器に掛かっていることを特徴とする請求項1乃至請求項14のいずれか1項に記載の超電導磁石装置。
  16. 前記外周壁円筒は、互いに連結され、
    前記スペーサは、連結された前記外周壁円筒を支持していることを特徴とする請求項2乃至請求項15のいずれか1項に記載の超電導磁石装置。
  17. 複数の前記超電導コイルの内周面に接し、前記壁側円筒を固定し、軸が前記コイル軸に一致している内周壁円筒をさらに有することを特徴とする請求項2乃至請求項16のいずれか1項に記載の超電導磁石装置。
  18. 前記内周壁円筒は、前記スペーサを固定していることを特徴とする請求項17に記載の超電導磁石装置。
  19. 軸が前記コイル軸に一致し、前記超電導コイルの外側に、端面が対向するように配置され、作用する電磁力によって相互に反発し合う複数の円筒形のシールドコイルと、
    前記シールドコイルの内周面に接し、前記シールドコイルを支持し、軸が前記コイル軸に一致しているシールド内周壁円筒と、
    前記シールドコイルに作用する電磁力の前記コイル軸に平行な軸方向成分の作用により前記シールドコイルそれぞれに圧接されるシールド側壁端面を有するシールド壁側円筒と、
    シールド内周壁円筒とシールド壁側円筒とを、前記極低温容器、前記外周壁円筒、前記壁側円筒、前記スペーサの少なくともいずれか1つに固定し、前記シールドコイルの外周面を極低温容器の内壁から離すシールドスペーサをさらに有することを特徴とする請求項2乃至請求項18のいずれか1項に記載の超電導磁石装置。
  20. 請求項1乃至請求項19のいずれか1項に記載の超電導磁石装置を用いたことを特徴とする磁気共鳴イメージング装置。
JP2006204724A 2006-07-27 2006-07-27 超電導磁石装置および磁気共鳴イメージング装置 Pending JP2008034525A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204724A JP2008034525A (ja) 2006-07-27 2006-07-27 超電導磁石装置および磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204724A JP2008034525A (ja) 2006-07-27 2006-07-27 超電導磁石装置および磁気共鳴イメージング装置

Publications (1)

Publication Number Publication Date
JP2008034525A true JP2008034525A (ja) 2008-02-14

Family

ID=39123656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204724A Pending JP2008034525A (ja) 2006-07-27 2006-07-27 超電導磁石装置および磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP2008034525A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012737A (ja) * 2011-06-27 2013-01-17 General Electric Co <Ge> 磁気共鳴撮像(mri)マグネット用のコイル支持体及び支持方法
JP2013021324A (ja) * 2011-07-06 2013-01-31 Siemens Shenzhen Magnetic Resonance Ltd 超電導磁石装置および磁気共鳴画像システム
US8653920B2 (en) 2010-02-09 2014-02-18 General Electric Company Superconducting magnets with an improved support structure
JP2014241384A (ja) * 2013-06-12 2014-12-25 中部電力株式会社 超電導パンケーキコイル装置及びその製造方法
JP2017006733A (ja) * 2010-05-26 2017-01-12 シーメンス ピーエルシー 幾つかの軸方向に位置合わせされるコイルから成るソレノイドマグネット
WO2019176557A1 (ja) * 2018-03-12 2019-09-19 三菱電機株式会社 超電導コイル装置
CN112858971A (zh) * 2019-11-26 2021-05-28 西门子(深圳)磁共振有限公司 磁共振成像装置的超导磁体及磁共振成像装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653920B2 (en) 2010-02-09 2014-02-18 General Electric Company Superconducting magnets with an improved support structure
JP2017006733A (ja) * 2010-05-26 2017-01-12 シーメンス ピーエルシー 幾つかの軸方向に位置合わせされるコイルから成るソレノイドマグネット
JP2013012737A (ja) * 2011-06-27 2013-01-17 General Electric Co <Ge> 磁気共鳴撮像(mri)マグネット用のコイル支持体及び支持方法
US9535143B2 (en) 2011-06-27 2017-01-03 General Electric Company Coil support for a magnetic resonance imaging (MRI) magnet and method of support
JP2013021324A (ja) * 2011-07-06 2013-01-31 Siemens Shenzhen Magnetic Resonance Ltd 超電導磁石装置および磁気共鳴画像システム
JP2014241384A (ja) * 2013-06-12 2014-12-25 中部電力株式会社 超電導パンケーキコイル装置及びその製造方法
WO2019176557A1 (ja) * 2018-03-12 2019-09-19 三菱電機株式会社 超電導コイル装置
CN112858971A (zh) * 2019-11-26 2021-05-28 西门子(深圳)磁共振有限公司 磁共振成像装置的超导磁体及磁共振成像装置

Similar Documents

Publication Publication Date Title
JP2008034525A (ja) 超電導磁石装置および磁気共鳴イメージング装置
JP5534713B2 (ja) 超電導マグネット
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
JP2007000254A (ja) Mri用超電導電磁石装置
JP2008029441A (ja) 超伝導磁石装置および磁気共鳴イメージング装置
JPH10225447A (ja) 平面型磁気共鳴イメージング・マグネット
US9864022B2 (en) Superconducting magnet device and magnetic resonance imaging device
US6150912A (en) Open architecture superconducting magnet helium vessel structure
US9711267B2 (en) Support structure for cylindrical superconducting coil structure
JP3587844B1 (ja) 超伝導磁石装置及びそれを用いた磁気共鳴イメージング装置
US8989827B2 (en) Superconducting magnet
US10317013B2 (en) Dynamic boil-off reduction with improved cryogenic vessel
JP2006038446A (ja) 遮蔽された蓄熱材を備える磁石システム
JP7404517B2 (ja) コイル支持体
JP2016049159A (ja) 超電導磁石および磁気共鳴イメージング装置
JP2008130947A (ja) 超電導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP2008028146A (ja) 超電導磁石用熱シールド、超電導磁石装置および磁気共鳴イメージング装置
JP2004529692A (ja) 埋込み形磁界成形コイルを有する開放型磁石
JP2005144132A (ja) 超伝導磁石装置及びそれを用いた磁気共鳴イメージング装置
JP2007189082A (ja) 超電導電磁石装置
WO2013150951A1 (ja) 超電導電磁石および磁気共鳴イメージング装置
JP2006326177A (ja) Mri用超電導磁石装置
JP2006305033A (ja) 磁気共鳴イメージング装置
JP2002359111A (ja) 水平方向磁場発生用超電導マグネット
JP2014175599A (ja) 超電導コイル