JP2008032305A - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
JP2008032305A
JP2008032305A JP2006205550A JP2006205550A JP2008032305A JP 2008032305 A JP2008032305 A JP 2008032305A JP 2006205550 A JP2006205550 A JP 2006205550A JP 2006205550 A JP2006205550 A JP 2006205550A JP 2008032305 A JP2008032305 A JP 2008032305A
Authority
JP
Japan
Prior art keywords
compressor
liquid injection
compressors
injection amount
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006205550A
Other languages
Japanese (ja)
Inventor
Yasuhiro Onishi
大西泰寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006205550A priority Critical patent/JP2008032305A/en
Publication of JP2008032305A publication Critical patent/JP2008032305A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly control a gas temperature in a compression chamber by properly supplying the liquid injection quantity at a good timing in starting the other stopped compressor in such a state that at least one compressor is operated. <P>SOLUTION: The plural compressors 1a, 1b having liquid injection circuits are loaded in a refrigeration apparatus. When the stopped compressor 1b is started while operating one compressor 1a, a liquid injection flow rate control valve 5b is controlled to an opening to be the same as that of a flow rate control valve 5a corresponding to the compressor 1a, so that the initial liquid injection quantity in starting the compressor 1b becomes the same as the liquid injection quantity of the compressor 1a already operated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数台の圧縮機と、凝縮器を出た液冷媒の一部を前記圧縮機の圧縮過程の圧縮室(中間圧力部)に注入して圧縮室内ガス温度を制御する液インジェクション回路とを備える冷凍装置に関し、特に前記圧縮機としてスクロール圧縮機を使用した場合に好適なものである。   The present invention relates to a plurality of compressors and a liquid injection circuit for controlling a gas temperature in the compression chamber by injecting a part of the liquid refrigerant exiting the condenser into a compression chamber (intermediate pressure portion) in the compression process of the compressor. Is particularly suitable when a scroll compressor is used as the compressor.

例えばスクロール圧縮機における圧縮室内のガス温度の異常上昇は、冷媒や含まれる冷凍機油そのものの劣化を早めるだけでなく、圧縮室を構成する部材の潤滑不良や熱変形による異常磨耗、焼き付き等が発生し、信頼性に大きな影響を与える。従って、圧縮室内のガス温度を常時適正に制御することは圧縮機の信頼性向上のために重要である。このため、スクロール圧縮機では、圧縮室内ガスを冷却するために圧縮行程中のガス中に液冷媒を注入して冷却する液インジェクション方式を採用しているものがある。   For example, an abnormal rise in the gas temperature in the compression chamber of a scroll compressor not only accelerates the deterioration of the refrigerant and the refrigeration oil contained in the compressor, but also causes abnormal wear and seizure due to poor lubrication and thermal deformation of the components that make up the compression chamber. And greatly affects reliability. Therefore, it is important to always properly control the gas temperature in the compression chamber in order to improve the reliability of the compressor. For this reason, some scroll compressors employ a liquid injection method in which a liquid refrigerant is injected into a gas during a compression stroke to cool the compression chamber gas.

しかし、液インジェクション方式を採用したスクロール圧縮機において、過度に液冷媒を注入すると潤滑油内へ冷媒が大量に溶け込むことになり、潤滑油の粘度低下により潤滑不良が発生したり、液圧縮による吐出弁の破損等が発生するという課題があった。従って、この液インジェクション量を適正に制御し、圧縮室内ガス温度を適正に保つことが機器の信頼性を保つ上で重要である。   However, in a scroll compressor that employs a liquid injection method, excessive injection of liquid refrigerant will cause a large amount of refrigerant to melt into the lubricating oil, resulting in poor lubrication due to a decrease in the viscosity of the lubricating oil, and discharge due to liquid compression. There was a problem that the valve was damaged. Therefore, it is important for maintaining the reliability of the equipment to appropriately control the liquid injection amount and keep the gas temperature in the compression chamber properly.

圧縮機における液インジェクション量の制御は、一般に圧縮室からの吐出ガス温度を検知し、その温度に応じて液インジェクション量を制御することで圧縮室内ガス温度を適正な温度になるようにしているものが知られている。   The control of the liquid injection amount in the compressor generally detects the temperature of the gas discharged from the compression chamber and controls the liquid injection amount in accordance with the temperature so that the gas temperature in the compression chamber becomes an appropriate temperature. It has been known.

しかし、蒸発温度が−30℃以下で蒸発圧力(即ち圧縮機吸入圧力)が低い時には、圧力比が高くなるため圧縮室内ガス温度は高くなるが吸入するガスの密度は低く、ガスの質量流量は小さくなるので吐出されるガス温度は高いものの熱容量は小さく、吐出される過程で周辺の部品に熱を奪われ温度が低下しやすい。このため、圧縮機起動時などに急に温度が高くなったとき、圧縮室内のガスの温度は高いにもかかわらず、圧縮室から吐出されたガスは、温度検知センサ部に到達するまでの途中経路の部品に熱が奪われて温度が下がり、センサが検知する温度と実際の圧縮室内の温度との差が大きくなる。吐出ガスから熱を奪った部品の温度は次第に上昇し、圧縮室からの吐出ガス温度が温度センサ部で検知される温度とほぼ同じ値に近づくまでに時間がかかり、圧縮室内ガス温度の制御に遅れが生じ、圧縮室内ガス温度が異常上昇するという問題がある。   However, when the evaporation temperature is −30 ° C. or lower and the evaporation pressure (ie, the compressor suction pressure) is low, the pressure ratio is high, so the gas temperature in the compression chamber is high, but the density of the sucked gas is low, and the mass flow rate of the gas is Since the temperature of the discharged gas is high, the heat capacity is small, and the peripheral components are deprived of heat in the process of being discharged, and the temperature tends to decrease. For this reason, when the temperature suddenly rises at the time of starting the compressor, the gas discharged from the compression chamber is in the middle of reaching the temperature detection sensor section even though the temperature of the gas in the compression chamber is high. Heat is taken away by the components of the path, and the temperature decreases, and the difference between the temperature detected by the sensor and the actual temperature in the compression chamber increases. The temperature of the parts that have deprived heat from the discharge gas gradually increases, and it takes time for the discharge gas temperature from the compression chamber to approach the same value as the temperature detected by the temperature sensor. There is a problem that a delay occurs and the gas temperature in the compression chamber rises abnormally.

このため、特許文献1に記載のように、圧縮機吸入圧力の変化により液インジェクション量を制御したり、特許文献2に記載のように、検知した吐出ガス温度の変化量の増加により液インジェクション量の制御量を増大させて圧縮室内ガス温度の変化に追従させようとするものがあった。   For this reason, as described in Patent Document 1, the liquid injection amount is controlled by changing the compressor suction pressure, or as described in Patent Document 2, the liquid injection amount is increased by increasing the detected change amount of the discharge gas temperature. In some cases, the control amount is increased to follow the change in the gas temperature in the compression chamber.

特開平8−313074号公報JP-A-8-313074 特開平8−200847号公報Japanese Patent Laid-Open No. 8-200247 特開2005−282972号公報JP 2005-282972 A

圧縮機を1台だけ備える冷凍装置においては、圧縮機が停止し、再び起動する時は停止中の高圧側圧力は通常運転中の圧力より低く、また停止中の低圧側圧力も通常運転中の圧力より高く、運転開始後徐々に運転中の圧力に近づくため、ガスの圧縮比は比較的小さいところから運転を開始でき、このため急に吐出ガス温度が上昇することは少ない。しかし、複数台の圧縮機を備える冷凍装置の場合、1台が稼動中で、2台目以降の圧縮機を起動する場合には、既に1台目の圧縮機が運転中であるため、高圧側圧力は高くなっており、また低圧側圧力も低くなっている。このため、直ちに高い圧力比で運転を開始するため、圧縮室内のガス温度は急激に高くなる。従って、圧縮室から吐出されたガス温度を検知して液インジェクション量を調整していく従来の方法では制御遅れが大きくなり、一時的に圧縮室内ガス温度が異常に高くなるという課題があった。   In a refrigeration system having only one compressor, when the compressor is stopped and restarted, the high pressure side pressure during the stop is lower than the pressure during the normal operation, and the low pressure side pressure during the stop is also during the normal operation. Since the pressure is higher than the pressure and gradually approaches the pressure during operation after starting operation, the operation can be started from a place where the gas compression ratio is relatively small. Therefore, the discharge gas temperature is unlikely to rise suddenly. However, in the case of a refrigeration apparatus including a plurality of compressors, when one unit is in operation and the second and subsequent compressors are started, the first compressor is already in operation. The side pressure is high and the low pressure side pressure is also low. For this reason, since the operation is immediately started at a high pressure ratio, the gas temperature in the compression chamber rapidly increases. Therefore, in the conventional method of detecting the gas temperature discharged from the compression chamber and adjusting the liquid injection amount, there is a problem that the control delay becomes large and the gas temperature in the compression chamber temporarily becomes abnormally high.

このため、1台が稼動中で2台目以降の圧縮機を起動する場合には、過不足のない適正な液インジェクション量を予め把握し流量制御することが重要である。   For this reason, when one unit is in operation and the second and subsequent compressors are started, it is important to grasp in advance an appropriate liquid injection amount without excess or deficiency and to control the flow rate.

しかし、広範囲の蒸発温度で運転される冷凍装置においては、適正な液インジェクション量に大きな差があり、予めその適正量を設定することは困難であり、その時々の運転に合わせた液インジェクション量の制御が必要である。   However, in a refrigeration system operated in a wide range of evaporation temperatures, there is a large difference in the appropriate liquid injection amount, and it is difficult to set the appropriate amount in advance. Control is needed.

そこで、特許文献3に記載のように、吸入圧力、吐出圧力、吸入温度から液インジェクション量を推測し、その量を予め流す方法もあるが、それぞれの圧力や温度を計測する手段を備えることが必要であり、またその推測方法も複雑なものとなる。   Therefore, as described in Patent Document 3, there is a method in which the liquid injection amount is estimated from the suction pressure, the discharge pressure, and the suction temperature, and the amount is flowed in advance. However, there is a means for measuring each pressure and temperature. It is necessary and the estimation method becomes complicated.

本発明の目的は、簡便な制御で、少なくとも1台の圧縮機が稼動中に他の停止中の圧縮機を起動させる際、適正な液インジェクション量をタイミング良く供給できるようにして、圧縮機の圧縮室内ガス温度を適正に制御することができる冷凍装置を得ることにある。   An object of the present invention is to provide an appropriate amount of liquid injection in a timely manner when starting another stopped compressor while at least one compressor is in operation with simple control. The object is to obtain a refrigeration apparatus capable of appropriately controlling the gas temperature in the compression chamber.

上記目的を達成するため、本発明は、複数の圧縮機と、これら複数の圧縮機から吐出された冷媒ガスを凝縮させる凝縮器と、該凝縮器を出た液冷媒を膨張させる膨張弁と、この膨張弁を出た液冷媒を気化させる蒸発器とを順次閉回路により接続し、かつ前記凝縮器を出た液冷媒の一部を前記圧縮機の圧縮過程の圧縮室に注入する液インジェクション回路と、該液インジェクション回路に設けられ液インジェクション量を制御する流量制御手段と、前記複数の圧縮機の運転台数を制御する制御装置とを備える冷凍装置において、前記複数の圧縮機のうち少なくとも1台が運転中に残りの圧縮機の少なくとも1台を起動する場合、当該起動する圧縮機の起動初期にその圧縮機に流す液インジェクション量を、既に運転中の圧縮機への液インジェクション量と近い流量に制御することを特徴とするものである。   To achieve the above object, the present invention provides a plurality of compressors, a condenser that condenses the refrigerant gas discharged from the plurality of compressors, and an expansion valve that expands the liquid refrigerant that has exited the condenser, A liquid injection circuit that sequentially connects a vaporizer that vaporizes the liquid refrigerant that has exited the expansion valve by a closed circuit, and injects a part of the liquid refrigerant that has exited the condenser into a compression chamber in the compression process of the compressor. And at least one of the plurality of compressors in a refrigeration apparatus comprising: a flow control means for controlling a liquid injection amount provided in the liquid injection circuit; and a control device for controlling the number of operating compressors. When at least one of the remaining compressors is started during operation, the amount of liquid injection that flows to the compressor at the initial start of the compressor to be started is set to the liquid injection to the already operating compressor. It is characterized in that to control the tio emission amount and close the flow.

ここで、前記圧縮機としては液インジェクションをするのに好適なスクロール圧縮機を採用するのが良い。また、前記液インジェクション回路に設けられる液インジェクション量を制御する流量制御手段は、キャピラリチューブと電磁弁を組み合せた流路を複数並列に設けることにより構成するようにするか、或いは流量調整可能な膨張弁で構成することができる。   Here, as the compressor, it is preferable to employ a scroll compressor suitable for liquid injection. Further, the flow rate control means for controlling the liquid injection amount provided in the liquid injection circuit may be configured by providing a plurality of flow paths in combination of capillary tubes and electromagnetic valves in parallel, or an expansion capable of adjusting the flow rate. It can consist of valves.

なお、1台の圧縮機が運転中に残りの圧縮機の少なくとも1台を起動する場合、当該起動する圧縮機の起動初期にその圧縮機に流す液インジェクション量は、当該圧縮機の起動から一定時間経過するまでは、当該圧縮機からの吐出ガス温度が予め決めた一定値を超えない限り前記初期液インジェクション流量を維持するように制御し、前記一定値を超えた場合、吐出ガス温度により液インジェクション量を制御するようにすると良い。   When one compressor starts up at least one of the remaining compressors during operation, the amount of liquid injection that flows to the compressor at the start of the startup of the compressor is constant from the start of the compressor. Until the time elapses, control is performed so as to maintain the initial liquid injection flow rate unless the discharge gas temperature from the compressor exceeds a predetermined constant value. It is preferable to control the injection amount.

また、前記圧縮機が3台以上搭載され、2台以上の圧縮機が既に運転中の場合、次に起動する圧縮機に対する液インジェクション量の初期制御は、起動中の圧縮機の中で液インジェクション量の最も多い圧縮機を選定し、その液インジェクション量と同じ流量にするか、或いは起動中の圧縮機の中の任意の1台の液インジェクション量と同じ流量にすると良い。   In addition, when three or more compressors are mounted and two or more compressors are already in operation, the initial control of the liquid injection amount for the compressor to be started next is liquid injection in the starting compressor. The compressor having the largest amount may be selected, and the flow rate may be the same as the liquid injection amount, or may be the same flow rate as any one liquid injection amount in the activated compressor.

1台以上の圧縮機が運転中に次に起動する圧縮機は、その起動直後は既に運転している圧縮機の運転状況とほぼ同じとなるので、当該起動する圧縮機に対する初期液インジェクション量の適正値は、既に運転中の圧縮機の液インジェクション量と同じになる。そこで、本発明は、次に起動する圧縮機の起動初期の液インジェクション量を、吐出ガス温度の状態と関係なく、既に運転している圧縮機に流している液インジェクション量と略同じになるように制御するものである。   The compressor that is started next while one or more compressors are in operation is almost the same as the operating state of the compressor that is already in operation immediately after the start, so that the initial liquid injection amount for the compressor to be started is The appropriate value is the same as the liquid injection amount of the compressor already in operation. Therefore, according to the present invention, the liquid injection amount at the initial start of the compressor to be started next is substantially the same as the liquid injection amount flowing to the compressor that is already in operation regardless of the state of the discharge gas temperature. To control.

本発明によれば、複数の圧縮機を備える冷凍装置において、前記複数の圧縮機のうち少なくとも1台が運転中に残りの圧縮機の少なくとも1台を起動する場合、当該起動する圧縮機の起動初期にその圧縮機に流す液インジェクション量を、既に運転中の圧縮機への液インジェクション量と近い流量に制御するように構成しているので、起動する圧縮機に適正な液インジェクション量を起動初期から供給することができ、液インジェクション量の制御に遅れが発生するのを防止でき、圧縮室内ガス温度を適正に制御することができる。従って、冷媒ガス温度の異常上昇による冷媒や冷凍機油の劣化を防止でき、また潤滑油の劣化による焼き付きも防止できるから、圧縮機の信頼性向上を図れる効果が得られる。   According to the present invention, in a refrigerating apparatus including a plurality of compressors, when at least one of the plurality of compressors starts at least one of the remaining compressors during operation, the start of the compressor to be started Since the liquid injection amount that flows to the compressor in the initial stage is controlled to a flow rate that is close to the liquid injection amount to the compressor that is already in operation, the appropriate liquid injection amount for the compressor to be started Therefore, it is possible to prevent a delay in controlling the liquid injection amount, and to appropriately control the gas temperature in the compression chamber. Accordingly, it is possible to prevent the deterioration of the refrigerant and the refrigerating machine oil due to the abnormal increase in the refrigerant gas temperature, and it is possible to prevent the seizure due to the deterioration of the lubricating oil, thereby obtaining the effect of improving the reliability of the compressor.

以下、本発明の具体的実施例を図面に基づき説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1に本発明の冷凍装置の一実施例を示す。この図1は2台のスクロール圧縮機を搭載したスクロール冷凍装置の冷凍サイクル構成図を示している。1a,1bはそれぞれスクロール圧縮機、2は凝縮器、3は膨張弁、4は蒸発器で、これらの機器は冷媒配管で順次接続され冷凍サイクルの冷媒主回路(第1回路)8を構成している。冷媒としてはR404A(重量比でR125が44%、R143aが52%、R134aが4%のHFC系冷媒)、R410A(重量比でR32が50%、R125が50%のHFC系冷媒)、或いはR22等が使用される。スクロール圧縮機1a,1bから吐出された冷媒は凝縮器2で冷却・液化されるが、この凝縮器2の下流側の第1回路8から液インジェクション回路(第2回路)7が分岐され、この液インジェクション回路7は2つの冷媒配管7a,7bに分岐され、一方の冷媒配管7aは圧縮機1aの圧縮過程の中間圧力部に、他方の冷媒配管7bは圧縮機1bの圧縮過程の中間圧力部にそれぞれ接続されている。また、冷媒配管7a,7bにはそれぞれ液インジェクション流量制御弁(液インジェクションの流量制御手段)5a又は5bが設けられ、これらの流量制御弁5a,5bは例えば電子膨張弁で構成されて液インジェクション制御装置9により制御される。液インジェクション制御装置9は各圧縮機からの吐出ガス温度を吐出ガス温度センサ10a,10bで検知し、それぞれの圧縮機から吐出される吐出ガス温度が適正な温度(例えば90℃)になるように流量制御弁5a,5bの開度を制御し、液インジェクション量を調節している。   FIG. 1 shows an embodiment of the refrigeration apparatus of the present invention. FIG. 1 shows a refrigeration cycle configuration diagram of a scroll refrigeration apparatus equipped with two scroll compressors. Numerals 1a and 1b are scroll compressors, 2 is a condenser, 3 is an expansion valve, 4 is an evaporator, and these devices are sequentially connected by refrigerant piping to form a refrigerant main circuit (first circuit) 8 of the refrigeration cycle. ing. As a refrigerant, R404A (an HFC refrigerant in which R125 is 44% by weight, R143a is 52%, and R134a is 4%), R410A (an HFC refrigerant in which R32 is 50% and R125 is 50% by weight), or R22 Etc. are used. The refrigerant discharged from the scroll compressors 1a and 1b is cooled and liquefied by the condenser 2, and a liquid injection circuit (second circuit) 7 is branched from the first circuit 8 on the downstream side of the condenser 2. The liquid injection circuit 7 is branched into two refrigerant pipes 7a and 7b. One refrigerant pipe 7a is an intermediate pressure part in the compression process of the compressor 1a, and the other refrigerant pipe 7b is an intermediate pressure part in the compression process of the compressor 1b. Are connected to each. The refrigerant pipes 7a and 7b are provided with liquid injection flow control valves (liquid injection flow control means) 5a or 5b, respectively. These flow control valves 5a and 5b are composed of, for example, electronic expansion valves to control liquid injection. It is controlled by the device 9. The liquid injection control device 9 detects the discharge gas temperature from each compressor with the discharge gas temperature sensors 10a and 10b, and the discharge gas temperature discharged from each compressor becomes an appropriate temperature (for example, 90 ° C.). The liquid injection amount is adjusted by controlling the opening degree of the flow rate control valves 5a and 5b.

第1回路8を流れる冷媒は膨張弁3を経て蒸発器4を冷却した後、圧縮機1の吸入口へ導入される。第2回路7へ分岐された冷媒は、液インジェクション流量制御弁5により流量調整されてスクロール圧縮機1の圧縮過程の中間圧力部(圧縮室)に注入(液インジェクション)され、圧縮行程にある冷媒を冷却する。なお、スクロール圧縮機を3台以上搭載したスクロール冷凍装置の場合には、圧縮機の台数に応じて前記液インジェクション回路7で分岐する冷媒配管を追加すれば良い。   The refrigerant flowing through the first circuit 8 cools the evaporator 4 through the expansion valve 3 and is then introduced into the suction port of the compressor 1. The refrigerant branched to the second circuit 7 is adjusted in flow rate by the liquid injection flow control valve 5 and injected (liquid injection) into the intermediate pressure part (compression chamber) in the compression process of the scroll compressor 1, and is in the compression stroke. Cool down. In the case of a scroll refrigeration apparatus equipped with three or more scroll compressors, a refrigerant pipe branched by the liquid injection circuit 7 may be added according to the number of compressors.

1台目のスクロール圧縮機1aを起動後、制御装置9は吐出ガス温度センサー10aで検知された吐出ガス温度に応じて流量制御弁5aを制御し、吐出ガス温度が適正な温度になるように液インジェクション量を調節する。この液インジェクション量は、現在運転中の圧縮機における高圧側圧力、低圧側圧力、吸入ガス温度、周囲温度などさまざまな要因がある中で最適に制御された値であり、この値は、1台目の圧縮機が運転中に次に起動される圧縮機での起動時における液インジェクション量として最適な値でもある。従って、本実施例はこの知見に基づき為されている。   After starting the first scroll compressor 1a, the control device 9 controls the flow rate control valve 5a according to the discharge gas temperature detected by the discharge gas temperature sensor 10a so that the discharge gas temperature becomes an appropriate temperature. Adjust the liquid injection volume. This liquid injection amount is a value that is optimally controlled among various factors such as the high pressure side pressure, the low pressure side pressure, the suction gas temperature, and the ambient temperature in the compressor currently in operation. It is also an optimum value as the liquid injection amount at the time of starting with the compressor that is started next during the operation of the eye compressor. Therefore, the present embodiment is made based on this finding.

従来の冷凍装置では、2台目の圧縮機が起動する時には、1台目を起動するのと同様に中間的な液インジェクション量を初期流量として流し、圧縮室から吐出されたガス温度が液インジェクション増量の設定値(例えば90℃)以上になれば液インジェクション量を増加させ、液インジェクション減量の設定値(例えば60℃)以下になれば液インジェクション量を低減させる制御をしていた。このため、制御遅れが発生し、圧縮室内ガス温度が異常過熱する虞があった。   In the conventional refrigeration system, when the second compressor is started, an intermediate liquid injection amount is made to flow as an initial flow rate in the same manner as when the first compressor is started, and the temperature of the gas discharged from the compression chamber is liquid injection. Control is performed to increase the liquid injection amount when the increase value is equal to or higher than the set value (for example, 90 ° C.), and to decrease the liquid injection amount when the value is equal to or less than the set value for liquid injection decrease (for example, 60 ° C.). For this reason, there is a possibility that control delay occurs and the gas temperature in the compression chamber abnormally overheats.

これに対し本実施例では、上記知見に基づき、図3の制御フロー図に示すように流量制御弁5bを制御する。1台目の圧縮機1aが起動中に2台目の圧縮機1bを起動する場合(ステップ11)、この圧縮機1bの初期液インジェクション流量を、この圧縮機1bが起動する直前の1台目圧縮機1aでの液インジェクション量と同じ流量とする(ステップ12)。吐出ガス温度が液インジェクション減量の設定値(例えば60℃)以下であっても、起動後の温度上昇を見込み、初期流量を一定時間(本実施例では3分間)は前記初期液インジェクション流量を維持するように制御する(ステップ13)。但し、検出された吐出ガス温度が90℃以上になったとき(ステップ14)には、液インジェクション量が不足していると考えられるので、この場合にはステップ15に進み、通常の吐出ガス温度による液インジェクション制御を行うので、液インジェクション量は増加されることになる。   On the other hand, in this embodiment, based on the above knowledge, the flow rate control valve 5b is controlled as shown in the control flow diagram of FIG. When the second compressor 1b is activated while the first compressor 1a is activated (step 11), the initial liquid injection flow rate of the compressor 1b is set to the first unit just before the compressor 1b is activated. The flow rate is the same as the liquid injection amount in the compressor 1a (step 12). Even if the discharge gas temperature is less than the set value for liquid injection reduction (for example, 60 ° C.), the initial flow rate is maintained at the initial liquid injection flow rate for a certain period of time (3 minutes in the present embodiment) in anticipation of temperature rise after startup Control is performed (step 13). However, when the detected discharge gas temperature becomes 90 ° C. or higher (step 14), it is considered that the liquid injection amount is insufficient. In this case, the process proceeds to step 15, and the normal discharge gas temperature is reached. Since the liquid injection control is performed, the amount of liquid injection is increased.

なお、3台以上の圧縮機が搭載されたスクロール冷凍機において、2台以上の圧縮機が既に運転中の場合、次に起動する圧縮機に対する液インジェクション量の初期制御は、起動中の圧縮機の中で液インジェクション量の最も多い圧縮機を選定し、その液インジェクション量と同じ流量に制御すると良い。或いは、複数台の圧縮機のうち代表となる1台を予め決めておき、その圧縮機の液インジェクション量を、次に起動する圧縮機の液インジェクション量とするように制御することもでき、この場合には制御をより簡単にできる。   In a scroll refrigerator equipped with three or more compressors, when two or more compressors are already in operation, the initial control of the liquid injection amount for the next compressor to be started is Among them, it is preferable to select a compressor having the largest liquid injection amount and control the flow rate to be the same as the liquid injection amount. Alternatively, a representative one of a plurality of compressors can be determined in advance, and the liquid injection amount of the compressor can be controlled to be the liquid injection amount of the compressor to be started next. In some cases, control can be made easier.

図2は本発明の他の実施例を示すものである。図1の実施例では液インジェクション量の制御を電子膨張弁などの流量制御弁で構成したが、この実施例では電磁弁6a,6b,6c,6dとキャピラリチューブ6A,6B,6C,6Dとの組み合わせとし、各圧縮機1a,1bに対しそれぞれ4段階で液インジェクション量を制御できるようにした例を説明する。即ち、各圧縮機に対する2本のキャピラリ6Aと6B、6Cと6Dのサイズを異なるものとし、例えば第1のキャピラリチューブ6Aと6Cからの液インジェクション流量を1としたとき、第2のキャピラリチューブ6Bと6Dからの液インジェクション流量は2となるように選定している。これら各圧縮機に対しそれぞれ2本のキャピラリチューブ6Aと6B、6Cと6Dと、これらに接続された第1の電磁弁6aと6c、及び第2の電磁弁6bと6dの開閉により、次のように4ステップの液インジェクション流量制御をする。
第1ステップ:液インジェクション量0(全電磁弁6a,6b,6c、6d閉)
第2ステップ:液インジェクション量1(電磁弁6a,6c開、電磁弁6b,6d閉)
第3ステップ:液インジェクション量2(電磁弁6a,6c閉、電磁弁6b,6d開)
第4ステップ:液インジェクション量3(全電磁弁6a,6b,6c、6d開)
1台目の圧縮機1aを起動する時の初期液インジェクション量は第1電磁弁6aのみ開とした第2ステップとし、圧縮機1aの吐出ガス温度が予め定めた値の90℃以上に上昇したとき、第3ステップ(第2電磁弁6bを開、第1電磁弁を閉)に移行する。
FIG. 2 shows another embodiment of the present invention. In the embodiment of FIG. 1, the liquid injection amount is controlled by a flow control valve such as an electronic expansion valve, but in this embodiment, the electromagnetic valves 6a, 6b, 6c, 6d and the capillary tubes 6A, 6B, 6C, 6D are controlled. A description will be given of an example in which the liquid injection amount can be controlled in four stages for each of the compressors 1a and 1b. That is, when the sizes of the two capillaries 6A and 6B and 6C and 6D for each compressor are different, for example, when the liquid injection flow rate from the first capillary tubes 6A and 6C is 1, the second capillary tube 6B The liquid injection flow rate from 6D is selected to be 2. For each of these compressors, two capillary tubes 6A and 6B, 6C and 6D, first electromagnetic valves 6a and 6c connected thereto, and second electromagnetic valves 6b and 6d are opened and closed to Thus, the liquid injection flow rate control of 4 steps is performed.
First step: Liquid injection amount 0 (all solenoid valves 6a, 6b, 6c, 6d closed)
Second step: Liquid injection amount 1 (solenoid valves 6a, 6c open, solenoid valves 6b, 6d closed)
Third step: Liquid injection amount 2 (solenoid valves 6a, 6c closed, solenoid valves 6b, 6d opened)
Fourth step: Liquid injection amount 3 (all solenoid valves 6a, 6b, 6c, 6d open)
The initial liquid injection amount when starting the first compressor 1a is the second step in which only the first electromagnetic valve 6a is opened, and the discharge gas temperature of the compressor 1a has risen to a predetermined value of 90 ° C. or higher. Time, the process proceeds to the third step (the second electromagnetic valve 6b is opened and the first electromagnetic valve is closed).

本実施例では、圧縮機1aの運転中に2台目の圧縮機1bを起動する場合、運転中の1台目圧縮機1aの液インジェクション量、即ち第1電磁弁6a、第2電磁弁6bの開閉状態と同じになるように、次に起動する圧縮機1bに対応する第1電磁弁6cと第2電磁弁6dを開閉した状態にして圧縮機1bを起動する。   In this embodiment, when the second compressor 1b is started during the operation of the compressor 1a, the liquid injection amount of the first compressor 1a during operation, that is, the first electromagnetic valve 6a and the second electromagnetic valve 6b. The first electromagnetic valve 6c and the second electromagnetic valve 6d corresponding to the compressor 1b to be started next are opened and closed so that the compressor 1b is started.

これにより、冷凍サイクルが運転されている状態で停止中の圧縮機1bを起動する場合でも、その起動する圧縮機1bには起動初期から適正な液インジェクション量が供給されるため、圧縮機における圧縮室内ガス温度を制御遅れなく適正な温度に制御できる。   Thus, even when the stopped compressor 1b is started in a state where the refrigeration cycle is operated, an appropriate liquid injection amount is supplied to the started compressor 1b from the start of the compressor 1b. The indoor gas temperature can be controlled to an appropriate temperature without control delay.

図2の実施例では圧縮機を2台搭載したスクロール冷凍機で説明したが、圧縮機を3台以上搭載したスクロール冷凍装置としても図1の実施例で説明した場合と同様に適用できる。即ち、既に2台以上の圧縮機を運転中に次の圧縮機を起動する場合、最も液インジェクション量の多い圧縮機への液インジェクション量と同量になるように、或いは予め定めた圧縮機への液インジェクション量と同量になるように、次に起動する圧縮機への初期液インジェクション量を制御すれば良い。   In the embodiment shown in FIG. 2, the scroll refrigerator having two compressors is described. However, the present invention can be applied to a scroll refrigerator having three or more compressors in the same manner as in the embodiment shown in FIG. That is, when starting the next compressor while two or more compressors are already in operation, the amount of liquid injection into the compressor having the largest liquid injection amount is set to the same amount or to a predetermined compressor. What is necessary is just to control the initial amount of liquid injection to the compressor to start next so that it may become the same amount as this liquid injection amount.

本発明の冷凍装置の一実施例を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows one Example of the freezing apparatus of this invention. 本発明の冷凍装置の他の実施例を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows the other Example of the freezing apparatus of this invention. 本実施例における液インジェクション量制御の一例を示す制御フロー図。The control flowchart which shows an example of the liquid injection amount control in a present Example.

符号の説明Explanation of symbols

1a,1b…スクロール圧縮機、2…凝縮器、3…膨張弁、4…蒸発器、5a,5b…液インジェクション流量制御弁(流量制御手段)、6a,6b,6c,6d…電磁弁、6A,6B,6C,6D…キャピラリチューブ(流量制御手段)、7…液インジェクション回路(第2回路)、8…冷媒主回路(第1回路)、9…液インジェクション制御装置、10a,10b…吐出ガス温度センサ。
DESCRIPTION OF SYMBOLS 1a, 1b ... Scroll compressor, 2 ... Condenser, 3 ... Expansion valve, 4 ... Evaporator, 5a, 5b ... Liquid injection flow control valve (flow control means), 6a, 6b, 6c, 6d ... Solenoid valve, 6A , 6B, 6C, 6D ... capillary tube (flow rate control means), 7 ... liquid injection circuit (second circuit), 8 ... refrigerant main circuit (first circuit), 9 ... liquid injection control device, 10a, 10b ... discharge gas Temperature sensor.

Claims (7)

複数の圧縮機と、これら複数の圧縮機から吐出された冷媒ガスを凝縮させる凝縮器と、該凝縮器を出た液冷媒を膨張させる膨張弁と、この膨張弁を出た液冷媒を気化させる蒸発器とを順次閉回路により接続し、かつ前記凝縮器を出た液冷媒の一部を前記圧縮機の圧縮過程の圧縮室に注入する液インジェクション回路と、該液インジェクション回路に設けられ液インジェクション量を制御する流量制御手段と、前記複数の圧縮機の運転台数を制御する制御装置とを備える冷凍装置において、
前記複数の圧縮機のうち少なくとも1台が運転中に残りの圧縮機の少なくとも1台を起動する場合、当該起動する圧縮機の起動初期にその圧縮機に流す液インジェクション量を、既に運転中の圧縮機への液インジェクション量と近い流量に制御することを特徴とする冷凍装置。
A plurality of compressors, a condenser that condenses the refrigerant gas discharged from the plurality of compressors, an expansion valve that expands the liquid refrigerant that exits the condenser, and a liquid refrigerant that exits the expansion valve is vaporized A liquid injection circuit that sequentially connects the evaporator with a closed circuit and injects a part of the liquid refrigerant that has exited the condenser into a compression chamber in the compression process of the compressor; and a liquid injection provided in the liquid injection circuit In a refrigeration apparatus comprising flow control means for controlling the amount and a control device for controlling the number of operating compressors,
When at least one of the plurality of compressors is activated and at least one of the remaining compressors is activated, the liquid injection amount to be supplied to the compressor at the initial activation of the activated compressor is already in operation. A refrigeration apparatus controlled to a flow rate close to the amount of liquid injection into the compressor.
請求項1において、前記圧縮機はスクロール圧縮機であることを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the compressor is a scroll compressor. 請求項1又は2において、前記液インジェクション回路に設けられる液インジェクション量を制御する流量制御手段は、キャピラリチューブと電磁弁を組み合せた流路を複数並列に設けることにより構成されていることを特徴とする冷凍装置。   3. The flow rate control means for controlling a liquid injection amount provided in the liquid injection circuit according to claim 1 or 2, wherein a plurality of flow paths combining capillary tubes and electromagnetic valves are provided in parallel. Refrigeration equipment. 請求項1又は2において、前記液インジェクション回路に設けられる液インジェクション量を制御する流量制御手段は、流量調整可能な膨張弁であることを特徴とする冷凍装置。   3. The refrigeration apparatus according to claim 1, wherein the flow rate control means for controlling a liquid injection amount provided in the liquid injection circuit is an expansion valve capable of adjusting a flow rate. 請求項1〜4の何れかにおいて、少なくとも1台の圧縮機が運転中に残りの圧縮機の少なくとも1台を起動する場合、当該起動する圧縮機の起動初期にその圧縮機に流す液インジェクション量は、当該圧縮機の起動から一定時間経過するまでは、当該圧縮機からの吐出ガス温度が予め決めた一定値を超えない限り前記初期液インジェクション流量を維持するように制御し、前記一定値を超えた場合、吐出ガス温度により液インジェクション量を制御することを特徴とする冷凍装置。   In any one of Claims 1-4, when at least 1 compressor starts at least 1 of the remaining compressors in operation | movement, the liquid injection amount which flows into the compressor at the initial stage of starting of the said compressor to start Is controlled so as to maintain the initial liquid injection flow rate until the discharge gas temperature from the compressor does not exceed a predetermined constant value until a predetermined time has elapsed since the start of the compressor. When it exceeds, the refrigeration apparatus characterized by controlling the liquid injection amount by the discharge gas temperature. 請求項1〜5の何れかにおいて、前記圧縮機は3台以上搭載され、2台以上の圧縮機が既に運転中の場合、次に起動する圧縮機に対する液インジェクション量の初期制御は、起動中の圧縮機の中で液インジェクション量の最も多い圧縮機を選定し、その液インジェクション量と同じ流量にすることを特徴とする冷凍装置。   In any one of Claims 1-5, when the said compressor is mounted three or more and two or more compressors are already driving | running, the initial control of the liquid injection amount with respect to the compressor to start next is starting. A compressor having the largest liquid injection amount is selected from among the compressors, and the flow rate is the same as the liquid injection amount. 請求項1〜5の何れかにおいて、前記圧縮機は3台以上搭載され、2台以上の圧縮機が既に運転中の場合、次に起動する圧縮機に対する液インジェクション量の初期制御は、起動中の圧縮機の中の任意の1台の液インジェクション量と同じ流量にすることを特徴とする冷凍装置。
In any one of Claims 1-5, when the said compressor is mounted three or more and two or more compressors are already driving | running, the initial control of the liquid injection amount with respect to the compressor to start next is starting. The refrigeration apparatus is characterized in that the flow rate is the same as the liquid injection amount of any one of the compressors.
JP2006205550A 2006-07-28 2006-07-28 Refrigeration apparatus Withdrawn JP2008032305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205550A JP2008032305A (en) 2006-07-28 2006-07-28 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205550A JP2008032305A (en) 2006-07-28 2006-07-28 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
JP2008032305A true JP2008032305A (en) 2008-02-14

Family

ID=39121924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205550A Withdrawn JP2008032305A (en) 2006-07-28 2006-07-28 Refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP2008032305A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107693A1 (en) * 2008-02-29 2009-09-03 ダイキン工業株式会社 Air conditioner and refrigerant amount determining method
JP2010121849A (en) * 2008-11-19 2010-06-03 Daikin Ind Ltd Refrigerating device
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
JP2012184873A (en) * 2011-03-04 2012-09-27 Mitsubishi Electric Corp Refrigeration apparatus
KR101249898B1 (en) * 2011-01-21 2013-04-09 엘지전자 주식회사 Heat pump
JP2021004699A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Refrigeration machine unit for transportation and refrigerator vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107693A1 (en) * 2008-02-29 2009-09-03 ダイキン工業株式会社 Air conditioner and refrigerant amount determining method
JP2009210149A (en) * 2008-02-29 2009-09-17 Daikin Ind Ltd Air conditioner and refrigerant amount determining method
US9459032B2 (en) 2008-02-29 2016-10-04 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
JP2010121849A (en) * 2008-11-19 2010-06-03 Daikin Ind Ltd Refrigerating device
JP2011179783A (en) * 2010-03-03 2011-09-15 Hitachi Appliances Inc Refrigerating device
KR101249898B1 (en) * 2011-01-21 2013-04-09 엘지전자 주식회사 Heat pump
US9091464B2 (en) 2011-01-21 2015-07-28 Lg Electronics Inc. Air conditioner
JP2012184873A (en) * 2011-03-04 2012-09-27 Mitsubishi Electric Corp Refrigeration apparatus
JP2021004699A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Refrigeration machine unit for transportation and refrigerator vehicle
JP7328023B2 (en) 2019-06-26 2023-08-16 三菱重工サーマルシステムズ株式会社 refrigerated vehicle

Similar Documents

Publication Publication Date Title
US7690211B2 (en) Refrigerating apparatus
JP4596426B2 (en) Heat source equipment
JP3988779B2 (en) Refrigeration equipment
JP3864989B1 (en) Refrigeration equipment
JP2005282972A (en) Freezer
JP2008032305A (en) Refrigeration apparatus
JP2004156858A (en) Refrigerating cycle device and control method thereof
JP2018200145A (en) Control device, air conditioner, and control method
JP2009139041A (en) Air conditioner
JP2010255859A (en) Refrigerating device
JP2013024538A (en) Refrigeration unit
JP2009144967A (en) Refrigerating device
JP5521924B2 (en) Container refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JPWO2003083380A1 (en) Refrigeration equipment
JP2006038386A (en) Cooling device
JP3317222B2 (en) Refrigeration equipment
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
JP4859203B2 (en) Refrigeration apparatus and operation control method thereof
JP2008057922A (en) Refrigerating device
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
JP2007147274A (en) Refrigerating device
JP2014190545A (en) Freezer
JP6267483B2 (en) Refrigerator unit and refrigeration equipment
KR20080048818A (en) Refrigerator and control method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006