JP2005282972A - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
JP2005282972A
JP2005282972A JP2004098836A JP2004098836A JP2005282972A JP 2005282972 A JP2005282972 A JP 2005282972A JP 2004098836 A JP2004098836 A JP 2004098836A JP 2004098836 A JP2004098836 A JP 2004098836A JP 2005282972 A JP2005282972 A JP 2005282972A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
compressor
liquid
means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004098836A
Other languages
Japanese (ja)
Other versions
JP4403300B2 (en
Inventor
Yasuhiro Onishi
Hideshi Uesugi
秀史 上杉
泰寛 大西
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP2004098836A priority Critical patent/JP4403300B2/en
Publication of JP2005282972A publication Critical patent/JP2005282972A/en
Application granted granted Critical
Publication of JP4403300B2 publication Critical patent/JP4403300B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plant or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements, e.g. for transferring liquid from evaporator to boiler

Abstract

PROBLEM TO BE SOLVED: To control discharge gas temperature to a preset temperature regardless of the operation state.
SOLUTION: This refrigerator comprises a compressor 10, a condenser 12, an expansion valve 14, an evaporator 16, sensors 24, 27, 28 for detecting the temperature and pressure of refrigerant sucked by the compressor 10 and the pressure of gas refrigerant discharged from the compressor 10, respectively, a liquid injection means having an injection flow channel 20 and a flow rate adjusting valve 22 comprising the injection flow channel 20, and a control means 26 for controlling liquid injection quantity. The control means 26 estimates the temperature of the gas refrigerant discharged from the compressor 10 on the basis of the respective detection values of the sensors 24, 27, 28 and outputs a command for controlling injection quantity of liquid refrigerant to the flow rate adjusting valve 22 on the basis of the estimated temperature.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍装置に係り、特に、圧縮機に液冷媒を注入して圧縮機の吐出冷媒の温度を制御する技術に関する。 The present invention relates to a refrigeration apparatus, in particular, to a technique for controlling the temperature of the refrigerant discharged from the compressor by injecting liquid refrigerant compressor.

冷蔵庫や冷凍庫などに利用される冷凍装置は、冷媒を圧縮機により圧縮し、圧縮された冷媒を凝縮器により凝縮し、凝縮された冷媒を減圧手段により減圧し、減圧された冷媒を蒸発させて例えば冷蔵庫内の空気を冷却する。 Refrigeration system utilized, such as a refrigerator or freezer, the refrigerant is compressed by a compressor, the compressed refrigerant is condensed by a condenser, the condensed refrigerant is depressurized by the pressure reducing means, by evaporating the decompressed refrigerant for example to cool air in the refrigerator.

このような冷凍装置においては、冷媒の劣化や冷媒に含まれる冷凍機油の粘性の低下を回避するために、圧縮機から吐出されるガス冷媒の温度(以下、吐出ガス温度という。)を設定温度以下に抑える必要がある。 In such a refrigeration system, in order to avoid a decrease in viscosity of the refrigerating machine oil contained in deterioration or refrigerant in the refrigerant, the temperature of the gas refrigerant discharged from the compressor (hereinafter, referred to as the discharge gas temperature.) The set temperature it is necessary to suppress the following. そのため、例えば、吐出ガス温度を吐出ガス温度センサにより検出し、その検出温度が設定温度以上のときに、液インジェクション手段により圧縮機内の圧縮工程中の冷媒に液冷媒を注入することが行われている(例えば、特許文献1)。 Therefore, for example, the discharge gas temperature detected by the discharge gas temperature sensor, when the detected temperature is equal to or higher than the set temperature, it is practiced to inject the liquid refrigerant to the refrigerant in the process of compression compressor by liquid injection means are (for example, Patent Document 1).

特開平9−159288号公報 JP-9-159288 discloses

ところで、圧縮機に吸入される冷媒の圧力が低く、冷媒の密度が小さいため、圧縮機から吐出されるガス冷媒の熱容量は小さい。 Incidentally, the pressure of the refrigerant sucked into the compressor is low, the density of the refrigerant is small, the heat capacity of the gas refrigerant discharged from the compressor is small. このため、例えば圧縮機の起動時などの非定常状態においては、吐出されたガス冷媒は、温度センサに到達する前に配管などに接触することで熱が奪われて温度が低下する。 Therefore, in the non-steady state such as the compressor starts up, the discharged gas refrigerant, heat is deprived by contacting in a pipe or the like before reaching the temperature sensor temperature decreases. その結果、配管などの温度が定常状態に上昇するまで、温度センサによる検出温度と実際の吐出ガス温度との間に温度差が生じることになる。 As a result, until the temperature of the piping rises to a steady state, so that the temperature difference between the actual discharge gas temperature and the temperature detected by the temperature sensor occurs.

しかし、特許文献1などの冷凍装置のように、吐出ガス温度センサの検出値に基づいて、圧縮機に液冷媒を注入する制御の場合、その制御の開始に遅れが生じることがあり、吐出ガス温度が一時的に設定温度を超える場合がある。 However, as in the refrigeration apparatus of Patent Document 1, based on the detection value of the discharge gas temperature sensor, if the control for injecting the liquid refrigerant to the compressor, it may delay the start of the control occurs, discharge gas in some cases the temperature exceeds the temporarily set temperature.

本発明の課題は、運転状態にかかわらず、吐出ガス温度を設定温度に制御することにある。 An object of the present invention, regardless of the operating condition is to control the discharge gas temperature to the set temperature.

上記課題を解決するため、本発明の冷凍装置は、冷媒を吸引して圧縮する圧縮機と、圧縮機から吐出される冷媒を凝縮する凝縮器と、凝縮した冷媒を減圧する減圧手段と、減圧された冷媒を蒸発させる蒸発器と、圧縮機に液冷媒を注入する液インジェクション手段と、圧縮機により吸引される冷媒の温度及び圧力と圧縮機から吐出される冷媒の圧力をそれぞれ検出するセンサと、センサの各検出値に基づいて液インジェクション手段の液冷媒の注入量を制御する制御手段とを備え、制御手段は、センサの各検出値に基づいて圧縮機から吐出されるガス冷媒の温度を推定し、その推定温度に基づいて液冷媒の注入量を制御する指令を液インジェクション手段に出力することを特徴とする。 To solve the above problems, the refrigeration apparatus of the present invention includes a compressor for compressing by sucking refrigerant, a condenser for condensing refrigerant discharged from the compressor, and decompression means for decompressing the condensed refrigerant, vacuum an evaporator for evaporating the refrigerant, a liquid injection means for injecting a liquid refrigerant to the compressor, a sensor for detecting the respective pressure of the refrigerant discharged from the temperature and pressure of the refrigerant sucked by the compressor and the compressor , and control means for controlling the injection amount of the liquid refrigerant in the liquid injection means based on the detection value of the sensor, the control means, the temperature of the gas refrigerant discharged from the compressor based on the detected values ​​of the sensor It estimated, and outputs the liquid injection means a command for controlling the injection amount of the liquid refrigerant based on the estimated temperature.

すなわち、圧縮機に入力されるエネルギと圧縮機から出力されるエネルギの収支は等しいことから、圧縮機から吐出されるガス冷媒の温度(吐出ガス温度)については、圧縮機により吸引される冷媒の温度(吸入温度)及び圧力(吸入圧力)と、圧縮機から吐出されるガス冷媒の圧力(吐出圧力)から求めることができる。 That is, since the balance of the energy output from the energy and the compressor input to the compressor is equal, the temperature of the gas refrigerant discharged from the compressor (discharge gas temperature), the refrigerant sucked by the compressor temperature (suction temperature) and pressure (suction pressure) can be determined from the pressure of the gas refrigerant discharged from the compressor (discharge pressure).

ここで、吸入温度、吸入圧力および吐出圧力は、冷凍負荷が比較的急に変動する非定常状態においても、センサによる各検出値は実際の値とほぼ同じであることから、吸入温度及び吸入圧力、吐出圧力に基づいて吐出ガス温度を的確に推定演算することができる。 Here, the suction temperature, suction pressure and discharge pressure, even in the non-steady state refrigeration load varies relatively rapidly, since the value detected by the sensor is substantially the same as the actual value, the suction temperature and suction pressure it can accurately estimate calculating the discharge gas temperature on the basis of the discharge pressure. また、推定した吐出ガス温度に基づき液冷媒の注入量を算出することにより、適正な液冷媒量を算出することができる。 Further, by calculating the amount of injected based liquid refrigerant to a discharge gas temperature estimated, it is possible to calculate an appropriate liquid refrigerant amount. したがって、推定した吐出ガス温度が設定温度を超えているときに、液冷媒の注入量を制御することにより、非定常状態においても的確な量の液冷媒を注入することができる。 Therefore, when the discharge gas temperature estimated exceeds the set temperature, by controlling the injection amount of the liquid refrigerant can be in a non-steady state to inject the correct amount of liquid refrigerant.

この場合において、冷凍負荷が安定に維持された定常状態においては、センサにより検出された吐出ガス温度は、実際の温度とほぼ同じになることから、定常状態のときには、センサの検出値に基づいて、圧縮機に液冷媒を注入する制御を行うことが望ましい。 In this case, in a steady state in which the refrigerating load is maintained stably, the discharge gas temperature detected by the sensor, since it is substantially the same as the actual temperature, when a steady state, based on the detected value of the sensor , it is desirable to perform control for injecting the liquid refrigerant to the compressor. 具体的には、圧縮機から吐出されるガス冷媒の温度を検出する温度センサを配設し、温度センサの検出値と推定温度との偏差が設定値よりも小さいときは、温度センサの検出値に基づいて液冷媒の注入量を制御し、偏差が設定値以上のときには、推定温度に基づいて液冷媒の注入量を制御することができる。 Specifically, arranged a temperature sensor for detecting the temperature of the gas refrigerant discharged from the compressor, when the deviation of the detected value of the temperature sensor and the estimated temperature is lower than the set value, the detection value of the temperature sensor controls injection amount of the liquid refrigerant based on, when the deviation is larger than a predetermined value, it is possible to control the injection amount of the liquid refrigerant based on the estimated temperature.

本発明によれば、運転状態にかかわらず、吐出ガス温度を設定温度に制御することができる。 According to the present invention, regardless of the operating conditions, it is possible to control the discharge gas temperature to the set temperature.

(第1の実施形態)本発明を適用した冷凍装置の第1の実施形態について図1及び図2を用いて説明する。 It will be described with reference to FIGS. 1 and 2 (First Embodiment) The first embodiment of the applied refrigeration system of the present invention. 図1は、本実施形態の冷凍装置の系統図である。 Figure 1 is a system diagram of a refrigeration apparatus of the present embodiment. なお、本実施形態では、本発明の冷凍装置を冷蔵庫に利用した例を説明するが、冷凍庫やエアコンなどにも適用することができる。 In this embodiment, an example will be described using the refrigeration system of the present invention in the refrigerator, it may be applied to such freezers and air conditioners.

図1に示すように、冷蔵庫に利用される冷凍装置は、冷媒を吸引して圧縮するスクロール圧縮機(以下、圧縮機という。)10と、圧縮機10から吐出されるガス冷媒を凝縮して液化する凝縮器12と、凝縮器12により液化された冷媒を減圧する減圧手段である膨張弁14と、膨張弁14により減圧された冷媒を蒸発させる蒸発器16などから構成されている。 As shown in FIG. 1, the refrigeration system utilized in a refrigerator, a scroll compressor for compressing by sucking refrigerant (hereinafter, referred to as the compressor.) And 10, to condense the gas refrigerant discharged from the compressor 10 a condenser 12 for liquefying, an expansion valve 14 liquefied refrigerant is decompression means for decompressing the condenser 12, and a like evaporator 16 for evaporating the decompressed refrigerant by the expansion valve 14. また、凝縮器12と蒸発器16とを膨張弁14を介して接続する冷媒配管18が配設されている。 The refrigerant pipe 18 is provided for connecting the condenser 12 and the evaporator 16 via the expansion valve 14. なお、圧縮機10はスクロール型のほか様々な形態のものを用いてもよい。 Incidentally, the compressor 10 may also be used as other various forms of scroll type.

圧縮機10の吸引側に、圧縮機10により吸引される冷媒の温度(以下、吸入温度という。)を検出する吸入温度センサ24と、圧縮機10により吸引される冷媒の圧力(以下、吸入圧力という。)を検出する吸入圧力センサ27が設けられている。 The suction side of the compressor 10, the temperature of the refrigerant sucked by the compressor 10 and the suction temperature sensor 24 for detecting a (hereinafter, referred to. Suction temperature), the pressure of the refrigerant sucked by the compressor 10 (hereinafter, suction pressure called.) suction pressure sensor 27 for detecting are provided. また、圧縮機10の吐出側には、圧縮機10から吐出されるガス冷媒の圧力(以下、吐出圧力という。)を検出する吐出圧力センサ28が配設されている。 Further, the discharge side of the compressor 10, the pressure of the gas refrigerant discharged from the compressor 10 discharge pressure sensor 28 for detecting is arranged (hereinafter, referred to. Discharge pressure).

圧縮機10に液冷媒を注入する液インジェクション手段として液インジェクション回路が設けられている。 Liquid injection circuit is provided as a liquid injection means for injecting a liquid refrigerant to the compressor 10. 液インジェクション回路は、冷媒配管18から分岐し、圧縮機10の中間圧力部に接続するインジェクション配管20と、インジェクション配管20に配設された流量調整手段である流量調整弁22などから構成されている。 Liquid injection circuit, branched from the refrigerant pipe 18, the injection pipe 20 connected to the intermediate pressure portion of the compressor 10, and a like flow control valve 22 which is a flow rate adjusting means provided in the injection pipe 20 . 中間圧力部とは、圧縮工程中の冷媒が存在する部分であり、その部分にインジェクション配管20を介して液冷媒が注入される。 The intermediate pressure portion is a portion where the refrigerant in the compression process is present, the liquid refrigerant is injected through the injection pipe 20 in that portion. なお、流量調整手段として、複数の固定流量調整器(例えば、キャピラリーチューブ)の切り替えや、段階的に開度を調整可能な電磁弁などを用いてもよい。 Incidentally, as a flow rate adjusting means, a plurality of fixed flow regulator (e.g., a capillary tube) and switching of the stepwise or the like may be used adjustable solenoid valve opening. そして、吸入温度センサ24、吸入圧力センサ27、吐出圧力センサ28から出力される各検出値に応じ、流量調整弁22に指令を出力する制御手段としての制御装置26を備えている。 The suction temperature sensor 24, the intake pressure sensor 27, corresponding to the respective detected values ​​output from the discharge pressure sensor 28, and a control device 26 as control means for outputting a command to the flow rate adjusting valve 22.

このように冷凍サイクルを形成する冷凍装置の基本動作について説明する。 The basic operation of the refrigeration apparatus for forming such a refrigeration cycle will be described. 圧縮機10に吸引された冷媒は、圧縮されて吐出される。 The refrigerant sucked into the compressor 10 is discharged is compressed. 吐出されたガス冷媒は、凝縮器12で例えば大気と熱交換することにより凝縮される。 The discharged gas refrigerant is condensed by a condenser 12, for example air and heat exchange. 凝縮した液冷媒は、冷媒配管18を介して膨張弁14に導かれて減圧される。 Condensed liquid refrigerant is decompressed is guided to the expansion valve 14 through the refrigerant pipe 18. 減圧された冷媒は、蒸発器16で2次冷媒(例えば、空気)により蒸発される。 Decompressed refrigerant is evaporated by the secondary refrigerant in the evaporator 16 (e.g., air). 蒸発した冷媒は、圧縮機10に戻される。 The evaporated refrigerant is returned to the compressor 10. 蒸発器16で冷媒により冷却された2次冷媒は、冷蔵庫内に供給される。 Secondary refrigerant cooled by the refrigerant in the evaporator 16 is supplied to the refrigerator. なお、冷凍庫内を冷却する動作について説明したが、四方切換弁により冷媒の流れを逆向きにすることで熱負荷を暖める場合も基本的に同様である。 Although described operation to cool the inside of the freezer, it is also basically the same case to heat the thermal load by the flow of the refrigerant in the opposite direction by the four-way switching valve.

ここで、本発明の圧縮機10に液冷媒を注入する制御について圧縮機10の起動時を例として図2を用いて説明する。 Here it will be described with reference to FIG. 2 as an example at the start of the compressor 10 for controlling the compressor 10 injects the liquid refrigerant of the present invention. 図2は、圧縮機10に液冷媒を注入する制御を示すフローチャートである。 Figure 2 is a flow chart showing control in the compressor 10 to inject the liquid refrigerant. なお、図2に示す制御プログラムは、制御装置26に実装される。 The control program shown in FIG. 2 is implemented in the controller 26.

図2に示すように、まず、各センサの検出値が取り込まれる(S102)。 As shown in FIG. 2, first, the detection value of each sensor is captured (S102). 具体的には、吸入温度センサ24により検出された吸入温度T と、吸入圧力センサ27により検出された吸入圧力P と、吐出圧力センサ28により検出された吐出圧力P が取り込まれる。 Specifically, the suction temperatures T 1 detected by the suction temperature sensor 24, and the suction pressure P 1 detected by the suction pressure sensor 27, the discharge pressure P 2 detected is captured by the discharge pressure sensor 28. 次に、取り込まれた吸入温度T 、吸入圧力P 、吐出圧力P に基づいて、吐出ガス温度T が推定演算される(S104)。 Then, the suction temperature T 1 of the captured, suction pressure P 1, on the basis of the discharge pressure P 2, the discharge gas temperature T 2 is estimated and calculated (S104). ここで、推定された吐出ガス温度T が設定温度T と比較される(S106)。 Here, the discharge gas temperature T 2 which is estimated is compared with the set temperature T 0 (S106). なお、設定温度T は、冷媒の劣化や冷媒に含まれる冷凍機油の粘性が低下しないように予め設定されたものであり、例えば90℃から110℃までの温度が設定される。 Incidentally, the set temperature T 0 is for the viscosity of the refrigerating machine oil contained in deterioration or refrigerant of the refrigerant is set in advance so as not to drop, for example, temperatures of from 90 ° C. to 110 ° C. is set.

S106の処理において、吐出ガス温度T が設定温度T 以上であるときは、吐出ガス温度T を設定温度T よりも下げる必要があると判断され、吐出ガス温度T と設定温度T の温度差に基づいて、液冷媒の注入量である液インジェクション量Q(kg/秒)が算出される(S108)。 In the process of S106, when the discharge gas temperature T 2 is the set temperature T 0 or more, it is determined that the discharge gas temperature T 2 is necessary to lower than the set temperature T 0, the discharge gas temperature T 2 and the set temperature T based on the temperature difference 0, the liquid injection quantity Q is the injection amount of the liquid refrigerant (kg / s) is calculated (S108). 算出された液インジェクション量Q(kg/秒)に対応した指令が、流量制御弁22に出力される(S110)。 Command corresponding to the calculated liquid injection amount Q (kg / s) is output to the flow control valve 22 (S110). 入力された指令に応じて、流量制御弁22が所定開度に調整されることにより、冷媒配管18から液冷媒が圧縮機10の中間圧力部に注入される。 Depending on the input instruction, by the flow control valve 22 is adjusted to a predetermined opening degree, the liquid refrigerant is injected to the intermediate pressure portion of the compressor 10 from the refrigerant pipe 18. なお、S106の処理において、吐出ガス温度T が設定温度T よりも小さいときには、吐出ガス温度T と設定温度T の偏差に基づき液インジェクション量Q(kg/秒)を減少するようにしてもよい(S107)。 In the process of S106, when the discharge gas temperature T 2 is smaller than the set temperature T 0 is, so as to reduce the discharge gas temperature T 2 and the set temperature T based on 0 deviation of fluid injection amount Q (kg / sec) which may be (S107).

吐出ガス温度T を推定する原理を説明するために、圧縮機10のエネルギ収支に着目する。 To illustrate the principle of estimating the discharge gas temperature T 2, which focuses on energy balance of the compressor 10. すなわち、圧縮機10に入力される入力エネルギと、圧縮機10から出力される出力エネルギとは等しいから、エネルギ収支は、例えば数1式の等式で表される。 That is, the input energy to be input to the compressor 10, since equal to the output energy output from the compressor 10, the energy balance is expressed, for example equation (1) equation. したがって、S104の処理においては、数1式からわかるように、吐出ガス温度T 以外は、実測可能なもの、あるいは圧縮機10の仕様により予め定められるものであるため、数1式に基づいて吐出ガス温度T を求めることができる。 Therefore, in the process of S104, as understood from equation (1), except the discharge gas temperature T 2 is capable measured, or for those that are predetermined by the specification of the compressor 10, based on equation (1) it can be obtained the discharge gas temperature T 2.
(数1式) (Equation (1))
<吸入ガスのエンタルピー>×<冷媒循環量(kg/秒)>+<圧縮に要したエネルギ>−<吐出ガスエンタルピー>×<冷媒循環量(kg/秒)>=<液インジェクションで注入した液冷媒のエンタルピー>×<液インジェクション量Q(kg/秒)> × <refrigerant circulation amount (kg / s)> <enthalpy of the intake gas> + <energy required to compress> - <discharged gas enthalpy> × <refrigerant circulation amount (kg / s)> = <liquid injected by the liquid injection enthalpy of the refrigerant> × <liquid injection amount Q (kg / s)>

なお、数1式の各パラメータは、以下のように求められる。 Each parameter of the equation (1) is obtained as follows.
<吸入ガスのエンタルピー>:吸入温度T 、吸入圧力P 、冷媒の物性から求められる。 <Enthalpy of intake gas>: suction temperature T 1, the suction pressure P 1, is determined from the physical properties of the refrigerant. 具体的には、冷媒の物性(例えば、R410などの冷媒種類)によって定まる例えばモリエル線図に、吸入温度T 、吸入圧力P を適用することで求められる。 Specifically, the physical properties of the refrigerant (for example, refrigerant type, such as R410) to determined e.g. Mollier diagram by suction temperature T 1, is determined by applying a suction pressure P 1. モリエル線図は、冷凍サイクルをエンタルピーと圧力との関係で示したものである。 Mollier diagram shows the refrigeration cycle in relation to the enthalpy and pressure.
<冷媒循環量(kg/秒)>:圧縮機10の吸入ガス体積(m /秒)、体積効率(%)、吸入ガス密度(kg/m )から求められる。 <Refrigerant circulation amount (kg / s)>: suction gas volume of the compressor 10 (m 3 / sec), volumetric efficiency (%) is calculated from the suction gas density (kg / m 3). ここで、吸入ガス密度は、吸入温度T 、吸入圧力P 、吐出圧力P 、冷媒の物性などから算出される。 Here, the suction gas density, suction temperature T 1, the suction pressure P 1, the discharge pressure P 2, is calculated from the physical properties of the refrigerant. なお、体積効率は、圧縮機10に実際に吸込まれる冷媒体積が漏れなどに起因して変動する指標であり、圧縮機10の仕様により定められる。 The volume efficiency is actually refrigerant volume sucked into the compressor 10 is an index that varies due like leakage is determined by the specifications of the compressor 10.
<圧縮に要したエネルギ>:圧縮機10の全断熱圧縮効率(%)、吸入温度T 、吸入圧力P 、吐出圧力P から求められる。 <Energy required for compression>: overall adiabatic compression efficiency of the compressor 10 (%), suction temperature T 1, the suction pressure P 1, is determined from the discharge pressure P 2. なお、全断熱圧縮効率(%)は圧縮機10の仕様により定められる。 Note that the overall adiabatic compression efficiency (%) is determined by the specifications of the compressor 10. また、演算により求めることに代えて、圧縮機10に入力された電力を測定器により測定してもよい。 Further, instead of obtaining by calculation, the power input to the compressor 10 may be measured by the measuring instrument.
<吐出ガスのエンタルピー>:吸入圧力P 、吐出ガス温度T で定められる。 <Enthalpy of the discharged gas>: suction pressure P 1, defined by the discharge gas temperature T 2. S104の処理では、吐出ガス温度T が推定演算される値となる。 In the process of S104 is a value in which the discharge gas temperature T 2 is estimated and calculated.
<液インジェクションで注入した液冷媒のエンタルピー>:圧縮機10に注入する液冷媒の温度、冷媒の物性から求められる。 <Enthalpy of the liquid refrigerant injected by the liquid injection>: temperature of the liquid refrigerant injected into the compressor 10 is determined from the physical properties of the refrigerant. ここで、注入される液冷媒の温度は、吐出圧力P から求めることができるし、温度センサにより検出してもよい。 Here, the temperature of the injected liquid refrigerant to can be determined from the discharge pressure P 2, may be detected by the temperature sensor.
<液インジェクション量Q(kg/秒)>:圧縮機10の起動時では、液インジェクション量Qは、ゼロに初期化されている。 <Liquid injection amount Q (kg / s)>: the startup of the compressor 10, liquid injection amount Q is initialized to zero. ただし、冷凍装置の運転中においては、S110の処理により算出された直近の液インジェクション量Q(kg/秒)を適用することができる。 However, during operation of the refrigerating apparatus can be applied to recent liquid injection amount computed by the processing of S110 Q (kg / sec).

本実施形態によれば、吸入温度T 、吸入圧力P 、吐出圧力P は、圧縮機10の起動時などの非定常状態においてもセンサの検出値と実際の値がほぼ同じになることから、吸入温度T 、吸入圧力P 、吐出圧力P に基づいて実際の吐出ガス温度T を推定(予測)することができる。 According to this embodiment, the suction temperature T 1, the suction pressure P 1, the discharge pressure P 2 is the actual value and the detection value of the sensor even in non-steady state such as at the start of the compressor 10 becomes substantially the same from can inhale the temperature T 1, the suction pressure P 1, estimate the actual discharge gas temperature T 2 on the basis of the discharge pressure P 2 (predicted). したがって、推定した吐出ガス温度T が設定温度T を超えているときに、液インジェクション量Qを制御することにより、非定常状態においても的確に液冷媒を注入することができる。 Therefore, when the discharge gas temperature T 2 estimated exceeds the set temperature T 0, by controlling the liquid injection quantity Q, can be accurately inject the liquid refrigerant in the unsteady state. また、推定した吐出ガス温度T に基づき液インジェクション量Qを算出することにより、適正な液冷媒量を圧縮機10に注入することができる。 Further, by calculating the basis solution injection amount Q in the discharge gas temperature T 2 was estimated, it is possible to inject a proper liquid refrigerant amount to the compressor 10.

すなわち、本実施形態では、予測した吐出ガス温度に基づき液インジェクション量Q(kg/秒)を制御する予測制御が行われる。 That is, in this embodiment, the prediction control for controlling the predicted discharge gas temperature on the basis of fluid injection amount Q (kg / s) is performed. これにより、吐出ガスがセンサなどの計測部に到達するまでの過程で触れた部品(例えば、配管)により熱を奪われて温度が低下するときでも、吐出ガス温度の的確な制御が可能となるから、冷媒ガスの過熱による冷媒や冷凍機油の劣化が防止される。 Thus, parts that discharge gas mentioned in process until it reaches the measuring section such as a sensor (e.g., piping) is deprived of heat by even when the temperature decreases, it is possible to accurate control of the discharge gas temperature from deterioration of the refrigerant and the refrigerating machine oil due to overheating of the refrigerant gas is prevented. したがって、圧縮機10のしゅう動部の潤滑性が確保されるため、圧縮機10の焼きつきなどを抑制できる。 Thus, since the lubricity of the sliding portion of the compressor 10 is ensured, it can be suppressed, such as seizure of the compressor 10. また、温度センサ自体の検出遅れによる影響も受けない。 In addition, not influenced by the detection delay of the temperature sensor itself.

ここで、冷凍装置の運転中に吐出ガス温度T を推定し、その推定温度に基づいて液インジェクション量Q(kg/秒)を制御することに代えて、冷凍装置の運転前に、吸入温度T 、吸入圧力P 、吐出圧力P を徐々に可変させたときの吐出ガス温度T を予め実測し、その実測値をデータテーブルとして制御装置26のメモリなどに記憶することもできる。 Here, the discharge gas temperature T 2 during the operation of the refrigeration system is estimated, instead of controlling the liquid injection amount Q (kg / sec) on the basis of the estimated temperature, prior to the operation of the refrigeration system, the suction temperature T 1, the suction pressure P 1, the discharge gas temperature T 2 previously measured when the discharge pressure P 2 was gradually variable, may also be stored in a memory of the control device 26 and the measured value as a data table. そして、冷凍装置の運転中では、検出された吸入温度T 、吸入圧力P 、吐出圧力P をデータテーブルに照合することにより、吐出ガス温度T を予測して液インジェクション量Q(kg/秒)を制御すればよい。 Then, during operation of the refrigeration apparatus, the suction temperatures T 1 is detected, the suction pressure P 1, by matching the discharge pressure P 2 in the data table, and predicts the discharge gas temperature T 2 the liquid injection amount Q (kg / sec) may be controlled.

また、本実施形態のほかに、温度センサを圧縮機10内の圧縮工程直後に配設することで制御遅延を低減することが考えられるが、耐圧容器内にあるため、その部分に温度センサを配設するには構造が煩雑になったり、シール性が低下して圧縮機10の信頼性が悪くなったりするおそれがある。 In addition to the present embodiment, it is conceivable to reduce the control delay by arranging directly after step compression in the compressor 10 the temperature sensor, since in the pressure vessel, the temperature sensor to that part or become complicated structure to be disposed, the seal resistance may be or become poor reliability of the compressor 10 decreases. この点、本実施形態によれば、温度センサを配設しなくても、圧縮機10から吐出されるガス冷媒を予測することができる。 In this respect, according to the present embodiment, even without providing the temperature sensor, it is possible to predict the gas refrigerant discharged from the compressor 10.

また、本実施形態では、冷媒としてR410(R32:50%/R125:50%重量比)を用いた例を説明したが、様々な冷媒を用いることができる。 Further, in this embodiment, R410 as a refrigerant has been described an example using a (R32:: 50% / R125 50% by weight), it is possible to use various refrigerants. ただし、R410Aは、例えばR22、R12などの塩素原子を含む冷媒に比べて潤滑性がそれほど高くなく、また、R404A(R125:44%/R143a:52%/R134a:4%重量比)などの冷媒に比べて吐出ガス温度が高くなり易いという特性を有する。 However, R410A, for example without the very high lubricity as compared with the refrigerant containing chlorine atoms, such as R22, R12, also, R404A (R125: 44% / R143a: 52% / R134a: 4% by weight) refrigerant such as It has the property that easily discharged gas temperature becomes higher than that. したがって、R410Aを使用する冷凍装置に適用することにより、本発明の効果を一層得ることができる。 Therefore, by applying a refrigeration apparatus using R410A, it is possible to further obtain the effect of the present invention.

(第2の実施形態)本発明を適用した冷凍装置の第2の実施形態について図3を用いて説明する。 It will be described with reference to FIG. 3 (Second Embodiment) A second embodiment of the applied refrigeration system of the present invention. 図3は、本実施形態の冷凍装置の系統図である。 Figure 3 is a system diagram of a refrigeration apparatus of the present embodiment. 本実施形態が第1の実施形態と異なる点は、定常状態と非定常状態を判定し、判定結果に基づいて液インジェクション量の制御を切り替えることにある。 This embodiment differs from the first embodiment, to determine the steady-state and non-steady state is to be based on the judgment result switch control of liquid injection volume.

図3に示すように、図1の冷凍装置の圧縮機10の吐出側に吐出温度センサ30が配設される。 As shown in FIG. 3, the discharge temperature sensor 30 on the discharge side of the compressor 10 of the refrigerating apparatus of FIG. 1 is disposed. 本実施形態では、吐出ガス温度T の検出値が制御装置26に入力される。 In the present embodiment, the detection value of the discharge gas temperature T 3 is input to the control unit 26. また、第1の実施形態と同様に、吐出ガス温度T が制御装置26により推定される。 As in the first embodiment, the discharge gas temperature T 2 is estimated by the control unit 26. そして、吐出ガス温度T と吐出ガス温度T の温度差が求められる。 Then, the temperature difference between discharge gas temperature T 3 discharge gas temperature T 2 is determined. 求められた温度差が予め設定された値よりも小さいときは、冷凍装置が定常状態にあると判断される。 When the temperature difference determined is less than the preset value, the refrigeration system is determined to be in a steady state. したがって、吐出温度センサ30により検出された吐出ガス温度T に基づいて、液インジェクション量Q(kg/秒)が制御される。 Therefore, based on the discharge gas temperature T 3 detected by the discharge temperature sensor 30, the liquid injection quantity Q (kg / s) is controlled. なお、定常状態とは、冷凍装置が安定に稼動している状態であり、例えば、吐出ガスの温度と、吐出ガスと接触する配管などの温度がほぼ同じ状態である。 Note that the steady state is a state in which the refrigerating apparatus is operating in a stable, for example, the temperature of the discharge gas, the temperature of piping in contact with the discharge gas is approximately the same state.

一方、吐出ガス温度T と吐出ガス温度T の温度差が、設定値以上のときには、冷凍装置が非定常状態にあると判断される。 On the other hand, the temperature difference between discharge gas temperature T 3 discharge gas temperature T 2 is, when the set value or more, the refrigeration system is determined to be in the non-steady state. したがって、第1の実施形態で示したように、吸入温度T 、吸入圧力P 、吐出圧力P に基づいて実際の吐出ガス温度T が推定される。 Accordingly, as shown in the first embodiment, the suction temperature T 1, the suction pressure P 1, the actual discharge gas temperature T 2 on the basis of the discharge pressure P 2 is estimated. 推定された吐出ガス温度T に基づいて、液インジェクション量Q(kg/秒)が制御される。 Based on the discharge gas temperature T 2 which is estimated, the liquid injection quantity Q (kg / s) is controlled.

すなわち、冷凍装置が定常状態のときは、検出値である吐出ガス温度T が、吐出ガス温度T よりも実際の吐出ガス温度に近くなることが多いことから、吐出ガス温度T に基づく制御が優先して行われる。 That is, when the refrigeration system is in steady state, the discharge gas temperature T 3 is a detection value, since it is often closer to the actual discharge gas temperature than the discharge gas temperature T 2, based on the discharge gas temperature T 3 control is performed with priority. 一方、冷凍装置が非定常状態にあるときには、推定値である吐出ガス温度T が、吐出ガス温度T よりも実際の吐出ガス温度に近くなることから、第1の実施形態に示した予測制御が優先して行われる。 On the other hand, the refrigeration apparatus when in a non-steady state, the discharge gas temperature T 2 which is an estimate, since it is close to the actual discharge gas temperature than the discharge gas temperature T 3, shown in the first embodiment the prediction control is performed with priority.

本実施形態によれば、冷凍装置が定常状態から非定常状態に、また非定常状態から定常状態に繰り返して状態遷移するときでも、圧縮機10に適正量の液冷媒を的確に注入することができるから、吐出ガス温度が設定温度T を越えることを一層抑制することができる。 According to this embodiment, the non-steady-state refrigeration system from a steady state, also even when the state transition is repeated from unsteady state to the steady state, be accurately inject a proper amount of liquid refrigerant to the compressor 10 since it, to be discharged gas temperature exceeds the set temperature T 0 can be further suppressed.

以上、第1及び第2の実施形態に基づいて本発明を説明したが、これらに限られるものではない。 Having described the present invention based on the first and second embodiments, it is not limited thereto. 例えば、非定常状態として圧縮機10の起動時を例に説明したが、冷蔵庫のケースが開閉されたときにも本発明が適用される。 For example, although the startup of the compressor 10 as a non-steady state has been described as an example, the present invention is applied even when the refrigerator case is opened and closed. 要するに、冷凍負荷が比較的急に変動して圧縮機10に吸引される冷媒の圧力や温度が変動するときに本発明を適用すればよい。 In short, the present invention may be applied when the pressure and temperature of the refrigerant the refrigeration load is relatively suddenly attracted to change to the compressor 10 is varied.

また、冷凍装置に圧縮機10を複数配設する場合や、冷凍装置を複数配設するマルチシステムの形態に構成される場合、冷凍負荷に応じて各圧縮機の発停が繰り返されたり、冷凍装置の稼動数が増減して循環冷媒量が急に変動したりするから、本発明を適用することにより、吐出ガス温度が設定温度T を越えることを一層抑制することができる。 Further, and when a plurality located compressor 10 in the refrigeration device, when configured in the form of a multi-system for arranging a plurality of refrigeration apparatus, or start-stop of the compressors is repeated in accordance with the refrigeration load, refrigeration since the amount of the circulating refrigerant number of operative increases or decreases of the device or changes rapidly, by applying the present invention, that the discharge gas temperature exceeds the set temperature T 0 can be further suppressed.

本発明を適用した第1の実施形態の冷凍装置の系統図である。 It is a system diagram of a refrigeration apparatus of the first embodiment according to the present invention. 圧縮機に液冷媒を注入する制御を示すフローチャートである。 Is a flowchart showing the control for injecting the liquid refrigerant to the compressor. 本発明を適用した第2の実施形態の冷凍装置の系統図である。 It is a system diagram of a refrigeration apparatus of the second embodiment according to the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

10 圧縮機12 凝縮器14 膨張弁16 蒸発器18 冷媒配管20 インジェクション配管22 流量制御弁24 吸入温度センサ26 制御装置27 吸入圧力センサ28 吐出圧力センサ30 吐出温度センサ 10 compressor 12 condenser 14 expansion valve 16 evaporator 18 refrigerant pipe 20 injection pipe 22 a flow control valve 24 suction temperature sensor 26 control device 27 the suction pressure sensor 28 the discharge pressure sensor 30 discharge temperature sensor

Claims (4)

  1. 冷媒を吸引して圧縮する圧縮機と、該圧縮機から吐出される冷媒を凝縮する凝縮器と、凝縮した冷媒を減圧する減圧手段と、減圧された冷媒を蒸発させる蒸発器と、前記圧縮機に液冷媒を注入する液インジェクション手段と、前記圧縮機により吸引される冷媒の温度及び圧力と前記圧縮機から吐出される冷媒の圧力をそれぞれ検出するセンサと、該センサの各検出値に基づいて前記液インジェクション手段の前記液冷媒の注入量を制御する制御手段とを備え、該制御手段は、前記センサの各検出値に基づいて前記圧縮機から吐出されるガス冷媒の温度を推定し、該推定温度に基づいて前記液冷媒の注入量を制御する指令を前記液インジェクション手段に出力することを特徴とする冷凍装置。 A compressor for compressing by sucking refrigerant, a condenser for condensing refrigerant discharged from the compressor, and decompression means for decompressing the condensed refrigerant, an evaporator for evaporating the decompressed refrigerant, the compressor to a liquid injection means for injecting the liquid refrigerant, a sensor for detecting the pressure of the refrigerant, respectively discharged from the compressor and the temperature and pressure of the refrigerant sucked by the compressor, based on the detection value of the sensor and control means for controlling the injection amount of the liquid refrigerant in the liquid injection means, control means, the temperature of the gas refrigerant discharged from the compressor is estimated based on the detection value of the sensor, the refrigeration system and outputs to the liquid injection means a command for controlling the injection amount of the liquid refrigerant based on the estimated temperature.
  2. 前記制御手段は、前記推定温度と設定温度を比較する手段と、前記推定温度が前記設定温度よりも高いときに、前記推定温度に基づいて前記液冷媒の注入量を算出する手段を有することを特徴とする請求項1に記載の冷凍装置。 Wherein said control means includes means for comparing the estimated temperature with the set temperature, when the estimated temperature is higher than the set temperature, in that it comprises means for calculating the injection amount of the liquid refrigerant based on the estimated temperature the refrigerating device according to claim 1, wherein.
  3. 前記液インジェクション手段は、前記液冷媒が通流するインジェクション流路と、該インジェクション流路に配設された流量調整手段とを有し、前記流量調整手段は、前記制御部から出力される指令に応じて前記液冷媒の前記注入量を可変することを特徴とする請求項1又は2に記載の冷凍装置。 The liquid injection means includes a injection flow passage in which the liquid refrigerant flows, and a flow rate adjusting means disposed in said injection passage, said flow rate adjusting means, the command output from the control unit depending on the refrigeration apparatus according to claim 1 or 2, characterized in that varying the injection amount of the liquid refrigerant.
  4. 前記圧縮機から吐出されるガス冷媒の温度を検出する温度センサを配設し、前記制御手段は、前記温度センサの検出値と前記推定温度との偏差が設定値よりも小さいときは、前記温度センサの検出値に基づいて前記液冷媒の注入量を制御し、前記偏差が設定値以上のときには、前記推定温度に基づいて前記液冷媒の注入量を制御することを特徴とする請求項1乃至3のいずれかに記載の冷凍装置。 Disposed a temperature sensor for detecting the temperature of the gas refrigerant discharged from the compressor, wherein, when the deviation of the detected value of the temperature sensor and the estimated temperature is lower than the set value, the temperature based on the detected value of the sensor to control the injection amount of the liquid refrigerant, when the deviation is larger than the predetermined value, to claim 1, characterized in that to control the injection amount of the liquid refrigerant based on the estimated temperature the refrigerating device according to any one of the three.
JP2004098836A 2004-03-30 2004-03-30 Refrigeration equipment Expired - Fee Related JP4403300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098836A JP4403300B2 (en) 2004-03-30 2004-03-30 Refrigeration equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004098836A JP4403300B2 (en) 2004-03-30 2004-03-30 Refrigeration equipment
US11/082,788 US20050217292A1 (en) 2004-03-30 2005-03-18 Refrigeration system
CN 200510062548 CN100339664C (en) 2004-03-30 2005-03-29 Cooling System

Publications (2)

Publication Number Publication Date
JP2005282972A true JP2005282972A (en) 2005-10-13
JP4403300B2 JP4403300B2 (en) 2010-01-27

Family

ID=35049677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098836A Expired - Fee Related JP4403300B2 (en) 2004-03-30 2004-03-30 Refrigeration equipment

Country Status (3)

Country Link
US (1) US20050217292A1 (en)
JP (1) JP4403300B2 (en)
CN (1) CN100339664C (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072760A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Reftigeration cycle device
JP2008057920A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Refrigerating device
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigerating device
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
WO2009048579A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calibrating parameters for a refrigeration system with a variable speed compressor
WO2009048577A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calculating parameters for a refrigeration system with a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8042347B2 (en) 2007-05-28 2011-10-25 Denso Corporation Compressor inlet pressure estimation apparatus for refrigeration cycle system
WO2011135630A1 (en) * 2010-04-30 2011-11-03 ダイキン工業株式会社 Heat pump system
WO2012104892A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2012104891A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2012104890A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2013001572A1 (en) 2011-06-29 2013-01-03 三菱電機株式会社 Air-conditioning device
US8434316B2 (en) 2007-05-28 2013-05-07 Denso Corporation Compressor inlet pressure estimation apparatus for refrigeration cycle system
WO2013069351A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
WO2013069044A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
KR101329752B1 (en) 2007-12-26 2013-11-20 엘지전자 주식회사 Air conditioning system
WO2014129473A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014129472A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014141375A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
WO2014141374A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
WO2014141373A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
JP2014211254A (en) * 2013-04-18 2014-11-13 日立アプライアンス株式会社 Refrigerator
JP2014231975A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Refrigeration cycle device
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
WO2015140950A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Air conditioner
JP2016121812A (en) * 2014-12-24 2016-07-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle system
US10208751B2 (en) 2014-11-20 2019-02-19 Mitsubishi Electric Corporation Scroll compressor having injection ports provided in outer circumferential surface between opening ends of communication paths and inlet ports for injecting liquid refrigerant in direction toward the inlet ports

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975328B2 (en) * 2006-01-25 2012-07-11 サンデン株式会社 Electric compressor
KR101340725B1 (en) * 2006-10-17 2013-12-12 엘지전자 주식회사 Water cooling type air conditioner
KR101402158B1 (en) * 2008-01-28 2014-06-27 엘지전자 주식회사 Air conditioning system
JP5058143B2 (en) * 2008-12-22 2012-10-24 株式会社日立産機システム Oil-free scroll compressor
JP5191969B2 (en) * 2009-09-30 2013-05-08 三菱重工コンプレッサ株式会社 Gas processing equipment
SG171566A1 (en) * 2009-12-01 2011-06-29 Hitachi Plant Technologies Ltd Cooling method and cooling system of electronic device
JP5398571B2 (en) * 2010-02-15 2014-01-29 三菱重工業株式会社 Air conditioning apparatus
CN102606481A (en) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 Anti-overheating device for rotary compressor
CN102278806A (en) * 2011-05-26 2011-12-14 王玉龙 An air conditioner refrigerant pressure detecting means with the
KR20130112627A (en) * 2012-04-04 2013-10-14 동부대우전자 주식회사 Abnormal detecting apparatus and method of cooling cycle for refrigerator
CN103375408A (en) * 2012-04-16 2013-10-30 丹佛斯(天津)有限公司 Temperature control device and method for compressor, compressor components and refrigerating system
CN104296435B (en) * 2013-07-19 2016-08-24 艾默生环境优化技术(苏州)有限公司 Refrigeration system and control method of the refrigeration system
CN103471302B (en) * 2013-08-29 2016-06-29 合肥天鹅制冷科技有限公司 One kind of wide temperature liquid cooling liquid supply source
CN104728091A (en) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 Exhaust temperature control method and device of compressor
KR20150146278A (en) * 2014-06-23 2015-12-31 주식회사 진성이앤지 Radiation member
US9964348B2 (en) 2015-09-16 2018-05-08 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
US9982919B2 (en) 2015-09-16 2018-05-29 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
WO2018102380A1 (en) * 2016-11-30 2018-06-07 DC Engineering, P.C. Method and system for improving refrigeration system efficiency

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2209101A (en) * 1938-05-05 1940-07-23 Honeywell Regulator Co Refrigeration system
JP2618501B2 (en) * 1989-10-30 1997-06-11 株式会社日立製作所 Low temperature for a scroll-type refrigeration apparatus
JP3965717B2 (en) * 1997-03-19 2007-08-29 株式会社日立製作所 Refrigeration equipment and refrigeration
WO2000023752A1 (en) * 1998-10-19 2000-04-27 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2001050598A (en) * 2001-02-21 2001-02-23 Mitsubishi Heavy Ind Ltd Autonomous regulating valve and compression type refrigerator having the same
JP4582473B2 (en) * 2001-07-16 2010-11-17 Smc株式会社 Constant temperature liquid circulating device
DE10138255B4 (en) * 2001-08-03 2012-06-06 Gea Grasso Gmbh Arrangement of cascade refrigeration system
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
KR100421390B1 (en) * 2001-11-20 2004-03-09 엘지전자 주식회사 Turbo compressor cooling structure
US6615598B1 (en) * 2002-03-26 2003-09-09 Copeland Corporation Scroll machine with liquid injection
US6595024B1 (en) * 2002-06-25 2003-07-22 Carrier Corporation Expressor capacity control
JP4330369B2 (en) * 2002-09-17 2009-09-16 株式会社神戸製鋼所 Screw refrigeration equipment

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072760A1 (en) * 2005-12-19 2007-06-28 Matsushita Electric Industrial Co., Ltd. Reftigeration cycle device
JP2008057920A (en) * 2006-09-01 2008-03-13 Sanyo Electric Co Ltd Refrigerating device
JP2008076017A (en) * 2006-09-25 2008-04-03 Daikin Ind Ltd Refrigerating device
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
US8042347B2 (en) 2007-05-28 2011-10-25 Denso Corporation Compressor inlet pressure estimation apparatus for refrigeration cycle system
US8434316B2 (en) 2007-05-28 2013-05-07 Denso Corporation Compressor inlet pressure estimation apparatus for refrigeration cycle system
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
WO2009048577A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calculating parameters for a refrigeration system with a variable speed compressor
WO2009048579A3 (en) * 2007-10-08 2009-08-06 Emerson Climate Technologies System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8448459B2 (en) 2007-10-08 2013-05-28 Emerson Climate Technologies, Inc. System and method for evaluating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
KR101329752B1 (en) 2007-12-26 2013-11-20 엘지전자 주식회사 Air conditioning system
JP5475874B2 (en) * 2010-04-30 2014-04-16 ダイキン工業株式会社 Heat pump system
WO2011135630A1 (en) * 2010-04-30 2011-11-03 ダイキン工業株式会社 Heat pump system
US9599378B2 (en) 2011-01-31 2017-03-21 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012104892A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
US9618241B2 (en) 2011-01-31 2017-04-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012104891A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
WO2012104890A1 (en) 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
US9671119B2 (en) 2011-01-31 2017-06-06 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103238034A (en) * 2011-01-31 2013-08-07 三菱电机株式会社 Air-conditioning device
US9638447B2 (en) 2011-06-29 2017-05-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013001572A1 (en) 2011-06-29 2013-01-03 三菱電機株式会社 Air-conditioning device
AU2011380810B2 (en) * 2011-11-07 2015-04-16 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013069351A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
US9759460B2 (en) 2011-11-07 2017-09-12 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013069043A1 (en) * 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
WO2013069044A1 (en) 2011-11-07 2013-05-16 三菱電機株式会社 Air-conditioning apparatus
US9797610B2 (en) 2011-11-07 2017-10-24 Mitsubishi Electric Corporation Air-conditioning apparatus with regulation of injection flow rate
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device
US10107533B2 (en) 2013-02-19 2018-10-23 Mitsubishi Electric Corporation Air-conditioning apparatus with subcooling heat exchanger
WO2014129473A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
US9857088B2 (en) 2013-02-19 2018-01-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014129472A1 (en) 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
WO2014141373A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
WO2014141375A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
US10168068B2 (en) 2013-03-12 2019-01-01 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014141374A1 (en) 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
US9869501B2 (en) 2013-03-12 2018-01-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US10088205B2 (en) 2013-03-12 2018-10-02 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014211254A (en) * 2013-04-18 2014-11-13 日立アプライアンス株式会社 Refrigerator
JP2014231975A (en) * 2013-05-30 2014-12-11 三菱電機株式会社 Refrigeration cycle device
WO2015140950A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Air conditioner
US10208751B2 (en) 2014-11-20 2019-02-19 Mitsubishi Electric Corporation Scroll compressor having injection ports provided in outer circumferential surface between opening ends of communication paths and inlet ports for injecting liquid refrigerant in direction toward the inlet ports
JP2016121812A (en) * 2014-12-24 2016-07-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle system

Also Published As

Publication number Publication date
CN1677016A (en) 2005-10-05
CN100339664C (en) 2007-09-26
JP4403300B2 (en) 2010-01-27
US20050217292A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5042058B2 (en) Outdoor unit and heat pump water heater for heat pump type hot water supply
KR100854206B1 (en) Freezer and air conditioner
EP1225400A1 (en) Refrigerating device
US7856836B2 (en) Refrigerating air conditioning system
CN1232778C (en) Device and method for controlling running of air conditioner
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
JP5197004B2 (en) Thermal control method and system
US7690211B2 (en) Refrigerating apparatus
CN1181303C (en) Refrigerator
CN1204369C (en) Defrosting apparatus of air conditioner and method thereof
JP5169295B2 (en) Refrigeration equipment
CN1645017A (en) Apparatus and method for controlling the super-heating degree in a heat pump system
US8353173B2 (en) Refrigerating cycle apparatus and operation control method therefor
JP3719246B2 (en) Refrigerant amount detection method of a refrigeration apparatus and refrigeration systems
Jensen et al. Optimal operation of simple refrigeration cycles: Part I: Degrees of freedom and optimality of sub-cooling
Cho et al. Influence of liquid refrigerant injection on the performance of an inverter-driven scroll compressor
CN101040153A (en) CO2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
CN101213410B (en) Refrigeration device
JP4906894B2 (en) The outdoor unit of the heat pump device and the heat pump apparatus
EP2647927A2 (en) Refrigeration cycle apparatus
JP2008267787A5 (en)
US9551512B2 (en) Air conditioning system
CN1324278C (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
JP2008032336A (en) Two-stage expansion refrigeration apparatus
CN100339664C (en) Cooling System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees