JP2008031540A - Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability - Google Patents

Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability Download PDF

Info

Publication number
JP2008031540A
JP2008031540A JP2006208290A JP2006208290A JP2008031540A JP 2008031540 A JP2008031540 A JP 2008031540A JP 2006208290 A JP2006208290 A JP 2006208290A JP 2006208290 A JP2006208290 A JP 2006208290A JP 2008031540 A JP2008031540 A JP 2008031540A
Authority
JP
Japan
Prior art keywords
steel material
ballast tank
corrosion resistance
corrosion
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208290A
Other languages
Japanese (ja)
Other versions
JP4668141B2 (en
Inventor
Shinji Sakashita
真司 阪下
Akihiko Tatsumi
明彦 巽
Hiroki Imamura
弘樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006208290A priority Critical patent/JP4668141B2/en
Priority to CN2008101729051A priority patent/CN101413085B/en
Priority to KR1020070032897A priority patent/KR100994606B1/en
Publication of JP2008031540A publication Critical patent/JP2008031540A/en
Priority to KR1020080102361A priority patent/KR100992289B1/en
Priority to KR1020090076712A priority patent/KR20090098775A/en
Priority to KR1020090076710A priority patent/KR20090098774A/en
Application granted granted Critical
Publication of JP4668141B2 publication Critical patent/JP4668141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material having superior corrosion resistance for a ballast tank, which contributes to the reduction of an economic loss such as a maintenance cost of a ship and an extension of a period in a dock (time loss), and further to the enhancement of the safety of the ship, and to provide a ship having the ballast tank made from the steel material. <P>SOLUTION: The steel material having superior corrosion resistance for a ballast tank comprises 0.01 to 0.30% (which means wt.%, hereinafter the same) C, 0.01 to 2.0% Si, 0.01 to 2.0% Mn, 0.01% or less P, 0.0005 to 0.005% or less S, 0.005 to 0.10% Al, 0.1 to 1.0% Cu, 0.01 to 1.0% Ni, 0.01 to 0.5% Cr, and the balance Fe with unavoidable impurities; and has a structure which is mainly formed of ferrite, includes bainite and martensite of less than 30% by an area rate, and includes sulfide-based inclusions with an average particle diameter of 0.5 to 10 μm. The ship has the ballast tank made from the above steel material for the ballast tank. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、船舶の安定性向上のため船舶に付加されるバラストタンクに用いられる耐食性に優れた鋼材(特に厚鋼板)およびこれにより構成された耐久性に優れたバラストタンクを有する船舶に関するものである。   TECHNICAL FIELD The present invention relates to a steel material (particularly a thick steel plate) having excellent corrosion resistance used for a ballast tank added to a ship for improving the stability of the ship, and a ship having a ballast tank having excellent durability constituted thereby. is there.

船舶のバラストタンクは、積荷状態などの変化に応じて海水の注入と排出を行うため、用いられる鋼材は海水の浸漬状態と塩分を含む湿潤大気の繰り返しという極めて厳しい腐食環境にさらされる。バラストタンクの腐食損傷は穴あきによる沈没、原油や化学物質などの積荷の海洋流出など重大な事故を招くため、鋼材には何らかの防食手段を施す必要がある。バラストタンクには、一般的には重防食塗装が施され、さらに安全性・信頼性向上の観点から流電陽極法などの電気防食法が併用される場合が多い。   Since the ship's ballast tank injects and discharges seawater in response to changes in the state of cargo, the steel used is exposed to extremely harsh corrosive environments of seawater immersion and repeated humid atmosphere containing salt. Corrosion damage to the ballast tank leads to serious accidents such as sinking due to perforations, and ocean spillage of cargo such as crude oil and chemicals, so it is necessary to provide some anticorrosion measures to the steel. Ballast tanks are generally coated with heavy anti-corrosion coating, and from the viewpoint of improving safety and reliability, an anti-corrosion method such as a galvanic anode method is often used in combination.

タールエポキシ樹脂塗料に代表される塗装による防食法を用いることによって、ある程度の鋼材腐食は抑制できる。しかしながら、環境遮断性は防食塗膜でも完全ではなく、水分、塩分および酸素などの腐食を引き起こす化学物質は塗膜を浸透していずれは鋼材腐食が起こる。防食塗膜の下で鋼材腐食が起こると、腐食生成物の膨張圧によって防食塗膜に膨れが発生し、塗膜を破壊して鋼材露出に至り、防食作用はなくなる。また、現実的には塗膜には欠陥が存在する可能性が高く、船舶建造時における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことがある。また、鋼材のエッジ部や施工不良部など防食塗料の膜厚が極度に薄い部分が形成される場合も少なくない。このような鋼材露出部は局部的にかつ集中的に鋼材が腐食してしまうし、塗膜が薄い部分では海水は早期に浸透し塗膜下での腐食が発生する。また、電気防食法は、バラストタンク内に海水が注入されている期間(空荷時)には非常に有効な防食方法であるが、海水がない場合(積荷時)では電気化学反応に必要な電解質水溶液がないため電気防食効果は作用しない。さらに、バラストタンク内に海水が注入されていても、上甲板裏などの海水が接触していない空間部分では当然電気防食効果は作用しない。   By using an anticorrosion method such as tar epoxy resin coating, corrosion of the steel material can be suppressed to some extent. However, the environmental barrier properties are not perfect even with the anticorrosion coating, and chemical substances that cause corrosion such as moisture, salt and oxygen penetrate the coating and eventually cause corrosion of the steel material. When steel material corrosion occurs under the anticorrosion coating, the anticorrosion coating swells due to the expansion pressure of the corrosion product, destroys the coating and leads to exposure of the steel, and the anticorrosion action is lost. Further, in reality, there is a high possibility that the coating film has a defect, and the coating film may be damaged by a collision or the like at the time of ship construction, so that the base steel material may be exposed. In addition, there are not a few cases where extremely thin portions of the anticorrosion coating film are formed, such as edge portions of steel materials and poorly constructed portions. In such an exposed steel part, the steel material corrodes locally and intensively, and seawater permeates at an early stage where the coating film is thin, causing corrosion under the coating film. In addition, the anti-corrosion method is a very effective anti-corrosion method during the period when seawater is injected into the ballast tank (when empty), but it is necessary for the electrochemical reaction when there is no seawater (when loading). Since there is no electrolyte aqueous solution, the anticorrosive effect does not work. Furthermore, even if seawater is injected into the ballast tank, the anticorrosion effect does not naturally act in a space portion where seawater is not in contact, such as the upper deck.

さらに、バラストタンク内は日光の上甲板への照射により高温であるが、船体は海水によって冷却されているため、タンク内の防食塗膜には温度差勾配が付与されている。防食塗膜に温度差勾配が付与されると、温度差による浸透圧によって水分は塗膜を通じて鋼材まで侵入しやすくなっており、塗膜下の腐食は促進されるため、通常大気環境に比べるとバラストタンク内は防食塗膜にとって厳しい環境となっている。   Furthermore, although the inside of the ballast tank is hot due to irradiation of the upper deck of sunlight, since the hull is cooled by seawater, a temperature difference gradient is given to the anticorrosion coating film in the tank. When a temperature difference gradient is applied to the anti-corrosion coating, moisture easily penetrates into the steel through the coating due to the osmotic pressure due to the temperature difference, and corrosion under the coating is promoted. The ballast tank is a harsh environment for anticorrosion coatings.

以上のように、現行一般的に用いられる防食方法では、船舶就航後比較的に直ぐに塗装手直しやドッグでの定期検査・補修時の塗料塗替えが必要であり、メンテナンス費用およびドッグ期間延長(タイムロス)などの経済的損失が発生している。   As described above, the currently commonly used anticorrosion methods require repainting and repainting at the time of regular inspection and repair with dogs relatively soon after the ship enters service. Maintenance costs and extended dog periods (time loss) ) And other economic losses.

上記技術の他、化学成分の調整などによって鋼材自体の耐食性を向上させた耐食鋼材も提案されている(例えば特許文献1)。また、化学成分調整とジンクリッチプライマーとの併用により耐食性を高めた鋼材も提案されている(例えば特許文献2)。さらに、耐食鋼材と樹脂被覆を組み合わせた耐久性向上技術も提案されている(例えば特許文献3)。しかしながら、これらの技術による耐食性向上は十分なものとはいえず、上記経済損失の低減への寄与は小さく、さらに効果的な防食方法が要求されている。
特開2000−17381号公報 特開2005−171332号公報 特開平7−34196号公報
In addition to the above technique, a corrosion-resistant steel material in which the corrosion resistance of the steel material itself is improved by adjusting chemical components has been proposed (for example, Patent Document 1). In addition, a steel material having improved corrosion resistance by using a chemical component adjustment and a zinc rich primer has been proposed (for example, Patent Document 2). Furthermore, the durability improvement technique which combined corrosion-resistant steel materials and resin coating is also proposed (for example, patent document 3). However, the improvement in corrosion resistance by these techniques cannot be said to be sufficient, and the contribution to the reduction of the economic loss is small, and more effective anticorrosion methods are required.
Japanese Patent Laid-Open No. 2000-17371 JP 2005-171332 A Japanese Patent Laid-Open No. 7-34196

本発明は上記のような事情に着目してなされたものであって、その目的は、船舶のメンテナンス費用およびドッグ期間延長(タイムロス)などの経済的損失の低減とさらには船舶安全性向上に寄与するバラストタンク用鋼材およびバラストタンクを提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to contribute to the reduction of economic loss such as ship maintenance cost and dog period extension (time loss) and further improvement of ship safety. An object of the present invention is to provide a steel material for a ballast tank and a ballast tank.

また、本発明は、電気防食が作用しない(バラスト時にも海水に浸らない)上甲板裏側、積荷のヒーティング部やエンジンの近傍など高温で腐食環境として厳しい部位で耐久性向上に有効なバラストタンク用鋼およびバラストタンクを提供するものである。   In addition, the present invention provides a ballast tank that is effective in improving durability in a severe part as a corrosive environment at high temperatures such as the back side of the upper deck where the anticorrosion does not act (does not soak in seawater during ballasting), the heating part of the load and the vicinity of the engine. Steel and ballast tanks are provided.

請求項1に係る本発明は、
C :0.01〜0.30%(質量%の意味、以下同じ)、
Si:0.01〜2.0%、
Mn:0.01〜2.0%、
P :0.01%以下、
S :0.0005〜0.005%以下、
Al:0.005〜0.10%、
Cu:0.1〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜0.5%、
を含有し、残部がFeおよび不可避的不純物からなり、フェライトを主体とし、面積率でベイナイトおよび/またはマルテンサイトが30%未満(0を含む)である組織を有し、硫化物系介在物の平均粒径が0.5〜10μmであることを特徴とする耐食性に優れたバラストタンク用鋼材である。
The present invention according to claim 1
C: 0.01 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 2.0%,
Mn: 0.01 to 2.0%,
P: 0.01% or less,
S: 0.0005 to 0.005% or less,
Al: 0.005 to 0.10%,
Cu: 0.1 to 1.0%
Ni: 0.01 to 1.0%,
Cr: 0.01 to 0.5%
The balance is composed of Fe and inevitable impurities, has a structure mainly composed of ferrite, and has an area ratio of bainite and / or martensite of less than 30% (including 0). A steel material for ballast tanks having excellent corrosion resistance, characterized in that the average particle size is 0.5 to 10 μm.

また、請求項2に係る本発明は、
さらに、
Mg:0.0001〜0.005%、
Ca:0.0001〜0.005%、
Sr:0.0001〜0.005%、
よりなる群から選ばれる1種または2種以上を含有する請求項1記載の耐食性に優れたバラストタンク用鋼材である。
The present invention according to claim 2
further,
Mg: 0.0001 to 0.005%,
Ca: 0.0001 to 0.005%,
Sr: 0.0001 to 0.005%,
2. The steel material for ballast tanks having excellent corrosion resistance according to claim 1, comprising one or more selected from the group consisting of:

また、請求項3に係る本発明は、
さらに、
Co:0.005〜0.20%、
Ti:0.005〜0.20%、
Zr:0.005〜0.20%、
よりなる群から選ばれる1種または2種以上を含有する請求項1または2に記載の耐食性に優れたバラストタンク用鋼材である。
Further, the present invention according to claim 3 provides
further,
Co: 0.005 to 0.20%,
Ti: 0.005 to 0.20%,
Zr: 0.005 to 0.20%,
The steel material for ballast tanks having excellent corrosion resistance according to claim 1 or 2, which contains one or more selected from the group consisting of:

また、請求項4に係る本発明は、
さらに、
B:0.0001〜0.010%、
V:0.01〜0.50%、
Nb:0.003〜0.50%、
よりなる群から選ばれる1種または2種以上を含有する請求項1〜3のいずれかに記載の耐食性に優れたバラストタンク用鋼材である。
The present invention according to claim 4 provides
further,
B: 0.0001 to 0.010%,
V: 0.01 to 0.50%,
Nb: 0.003 to 0.50%,
It is a steel material for ballast tanks excellent in corrosion resistance in any one of Claims 1-3 containing 1 type, or 2 or more types chosen from the group which consists of.

また、請求項5に係る本発明は、
防食塗膜を直接鋼材表面に形成した請求項1〜4のいずれかに記載の耐食性に優れたバラストタンク用鋼材である。
The present invention according to claim 5
The steel material for a ballast tank excellent in corrosion resistance according to any one of claims 1 to 4, wherein the anticorrosion coating film is directly formed on the surface of the steel material.

請求項6に係る本発明は、上記請求項1〜5のいずれかに記載のバラストタンク用鋼材により構成されたバラストタンクを有する船舶である。   The present invention according to claim 6 is a ship having a ballast tank constituted by the steel material for ballast tank according to any one of claims 1 to 5.

本発明者らは鋭意研究を重ねた結果、C、Si、Mn、Al等の基本成分に加えてCu、Niなどの添加元素を適切に調整し、組織および介在物の状態を最適化することに加えて、さらに当該鋼材に直接防食塗料を塗装することによって、前記課題を解決できることを見出した。   As a result of intensive research, the present inventors have appropriately adjusted additive elements such as Cu and Ni in addition to basic components such as C, Si, Mn, and Al to optimize the state of the structure and inclusions. In addition to the above, it has been found that the above-described problems can be solved by directly applying an anticorrosion paint to the steel material.

上述のように、防食塗膜の劣化は、水分、塩分および酸素などの腐食を引き起こす化学物質が塗膜中を浸透して、塗膜下で鋼材腐食が起こることから始まる。バラストタンク環境において本発明鋼材を用いることによって、防食塗膜の下で起こる鋼材腐食は有効に抑制できるため、従来鋼に比べ腐食生成物の膨張圧が小さくなって防食塗膜の膨れが発生し難くなり、防食塗膜の延命がもたらされる。加えて、防食塗膜にピンホールなどの欠陥や傷が存在して鋼材が露出している場合にも、本発明鋼材は露出部の腐食進展速度が小さいため、鋼板の穴あきなどの甚大な腐食損傷に至りにくい。以下に本発明鋼材の成分範囲の限定理由などについて説明する。
C:0.01〜0.30%
Cは、材料の強度確保のために必要な元素である。石油類タンクの構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.30%を超えて過剰に含有させると靱性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.30%とした。なお、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
Si:0.01〜2.0%
Siは脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると溶接性が劣化する。なお、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上とするのが良い。また、Si含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
Mn:0.01〜2.0%
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。なお、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
P :0.01%以下
Pは0.02%以上の添加によって耐海水性を向上させる元素である。しかし、Pは靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。本発明は、靭性や溶接性を重視してPの耐海水性向上効果は使わないものであり、Pの許容される上限を0.01%までとした。
S :0.0005〜0.005%
Sも靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。Sの許容される上限は0.01%までであり、これを超えるとバラストタンク用鋼材としての溶接性を確保できない。従って、Sは0.01%以下とした。
Al:0.005〜0.10%
AlもSi、Mnと同様に脱酸および強度確保のために必要であり、0.005%に満たないと脱酸に効果がない。しかし、0.10%を超えて添加すると溶接性を害するため、Al添加量の範囲は0.005〜0.10%とした。なお、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.080%であり、より好ましくは0.090%以下とするのが良い。
Cu:0.01〜1.0%
Cuは耐食性向上に有効な元素である。Cuは防食塗膜下で発生する腐食反応を抑制する作用を有しており、塗装の薄膜部分などで発生しやすい塗膜下腐食による塗膜膨れを抑制する効果を有する元素である。また、塗膜欠陥部において、鋼材が腐食を受けた場合に生成錆を緻密化する作用も有しており、塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。これらの効果を発揮させるためには、いずれも0.01%以上含有させることが必要であるが、過剰に含有させると溶接性や熱間加工性が劣化することから、1.0%以下とする必要がある。Cuを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は0.90%である。
Ni:0.01〜1.0%
Niは耐食性向上に有効である。NiもCuと同様に防食塗膜下で発生する腐食反応を抑制する作用を有しており、塗装の薄膜部分などで発生しやすい塗膜下腐食による塗膜膨れを抑制する効果を有する元素である。また、塗膜欠陥部において、鋼材が腐食を受けた場合に生成錆を緻密化する作用も有しており、塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。また、Niは、Cu添加による赤熱脆性を防止するのに必要な元素である。こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかしながら、添加量が過剰になると溶接性や熱間加工性が劣化することから、1.0%以下とすることが好ましい。これらの元素を含有させるときのより好ましい下限は0.05%であり、より好ましい上限は0.90%である。
Cr:0.01〜0.5%
Crは耐食性向上に有効な元素である。Crは防食塗膜下でのプライマー消耗を抑制する作用を有しており、さらに塗膜傷部の腐食進展を抑制する効果を発現するのに有効な元素である。また、適量のCrは靭性を向上させるのに有効であり、バラストタンク素材として必要な機械特性を得るためにも必要な元素である。これらの効果を発揮させるためには、0.01%以上含有させることが必要であるが、過剰に含有させると溶接性や熱間加工性が劣化することから、0.5%以下とする必要がある。Crを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は0.45%である。
As described above, the deterioration of the anticorrosion coating film starts when chemical substances that cause corrosion, such as moisture, salt, and oxygen, penetrate into the coating film and cause corrosion of steel under the coating film. By using the steel material of the present invention in a ballast tank environment, corrosion of the steel material that occurs under the anticorrosion coating can be effectively suppressed, so that the expansion pressure of the corrosion product is reduced compared to conventional steel, and the anticorrosion coating swells. It becomes difficult and prolongs the life of the anticorrosion coating. In addition, even when defects and scratches such as pinholes are present in the anticorrosion coating film and the steel material is exposed, the steel material of the present invention has a small corrosion progress rate at the exposed portion, so that the steel plate is perforated. Less likely to cause corrosion damage. The reasons for limiting the component range of the steel of the present invention will be described below.
C: 0.01 to 0.30%
C is an element necessary for ensuring the strength of the material. In order to obtain the minimum strength as a structural member of the petroleum tank, that is, about 400 MPa (depending on the thickness of the steel material used), it is necessary to contain 0.01% or more. However, if the content exceeds 0.30%, the toughness deteriorates. For these reasons, the C content range was set to 0.01 to 0.30%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.28%, More preferably, it is good to set it as 0.26% or less.
Si: 0.01 to 2.0%
Si is a necessary element for deoxidation and securing strength, and the minimum strength as a structural member cannot be secured unless it is less than 0.01%. However, if the content exceeds 2.0%, the weldability deteriorates. In addition, the minimum with preferable Si content is 0.02%, More preferably, it is good to set it as 0.05% or more. Moreover, the upper limit with preferable Si content is 1.80%, It is good to set it as 1.60% or less more preferably.
Mn: 0.01 to 2.0%
Mn is also necessary for deoxidation and securing strength in the same manner as Si, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.05%, It is good to set it as 0.10% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.80%, More preferably, it is good to set it as 1.60% or less.
P: 0.01% or less P is an element that improves seawater resistance by addition of 0.02% or more. However, P is an element that deteriorates toughness and weldability, and the content is preferably suppressed as much as possible. In the present invention, emphasis is placed on toughness and weldability, and the effect of improving the seawater resistance of P is not used, and the allowable upper limit of P is set to 0.01%.
S: 0.0005 to 0.005%
S is an element that deteriorates toughness and weldability, and the content is preferably suppressed as much as possible. The allowable upper limit of S is up to 0.01%, and if it exceeds this, weldability as a steel material for ballast tanks cannot be ensured. Therefore, S is set to 0.01% or less.
Al: 0.005-0.10%
Al is also necessary for deoxidation and securing of strength in the same manner as Si and Mn, and if less than 0.005%, there is no effect on deoxidation. However, if added over 0.10%, the weldability is impaired, so the range of the amount of Al added is set to 0.005 to 0.10%. In addition, the minimum with preferable Al content is 0.010%, It is good to set it as 0.015% or more more preferably. Moreover, the upper limit with preferable Al content is 0.080%, It is good to set it as 0.090% or less more preferably.
Cu: 0.01 to 1.0%
Cu is an element effective for improving corrosion resistance. Cu has an action of suppressing the corrosion reaction occurring under the anticorrosion coating film, and is an element having the effect of suppressing the swelling of the coating film due to the undercoat corrosion that easily occurs in the thin film portion of the coating. In addition, it has an effect of densifying the generated rust when the steel material is corroded in the coating film defect part, and is an effective element for expressing the effect of suppressing the corrosion progress of the coating film scratched part. . In order to exert these effects, it is necessary to contain 0.01% or more in any case, but if contained excessively, weldability and hot workability deteriorate, so 1.0% or less. There is a need to. The more preferable lower limit when Cu is contained is 0.05%, and the more preferable upper limit is 0.90%.
Ni: 0.01 to 1.0%
Ni is effective in improving corrosion resistance. Ni, like Cu, has the effect of suppressing the corrosion reaction that occurs under the anticorrosion coating, and is an element that has the effect of suppressing the swelling of the coating due to the undercoat corrosion that tends to occur in the thin film portion of the coating. is there. In addition, it has an effect of densifying the generated rust when the steel material is corroded in the coating film defect part, and is an effective element for expressing the effect of suppressing the corrosion progress of the coating film scratched part. . Ni is an element necessary to prevent red heat brittleness due to Cu addition. In order to exhibit such an effect, it is preferable to make it contain 0.01% or more. However, if the added amount is excessive, weldability and hot workability deteriorate, so 1.0% or less is preferable. The more preferable lower limit when these elements are contained is 0.05%, and the more preferable upper limit is 0.90%.
Cr: 0.01 to 0.5%
Cr is an element effective for improving corrosion resistance. Cr has an action of suppressing primer consumption under the anticorrosion coating film, and is an element effective for exhibiting an effect of suppressing corrosion progress of the coating film scratch. Further, an appropriate amount of Cr is effective for improving toughness, and is an element necessary for obtaining mechanical properties necessary as a ballast tank material. In order to exhibit these effects, it is necessary to contain 0.01% or more, but if it is contained excessively, weldability and hot workability deteriorate, so 0.5% or less is necessary. There is. The more preferable lower limit when Cr is contained is 0.05%, and the more preferable upper limit is 0.45%.

また、本発明の原油タンク底板用鋼材には、上記成分の他、必要によって、(1)Mg:0.0001〜0.005%%、Ca:0.0001〜0.005%、Sr:0.0001〜0.005%よりなる群から選ばれる1種以上、(2)Co:0.005〜0.20%、Ti:0.005〜0.20%、Zr:0.005〜0.20%、よりなる群から選ばれる1種以上、(3)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて鋼材の特性がさらに改善されることになる。
Ca:0.0001〜0.005%
Caは耐食性向上に有効な元素である。塗膜/鋼材界面においては、外部への水素イオン拡散が起こりにくいため、鋼材腐食によって溶解したFeイオンの加水分解によるpH低下が起こって、塗膜下腐食がさらに加速される。CaはこうしたpH低下を緩和する作用を有しており、pH低下による腐食促進を抑制する効果を発揮して、塗膜膨れを抑制するのに効果的である。こうした作用は、Caを0.0001%以上含有させることによって有効に発揮される。しかしながら、0.005%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。より好ましい下限は0.0005%であり、より好ましい上限は0.004%である。
Mg:0.0001〜0.005%
Mgは耐食性向上に有効な元素である。MgはCaと同様に、pH低下を緩和する作用を有しており、pH低下による腐食促進を抑制する効果を発揮して、塗膜膨れを抑制するのに効果的である。こうした作用は0.0001%以上含有させることによって有効に発揮され、Coが共存する場合に特に有効である。しかしながら、0.005%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。Mgのより好ましい下限は0.0005%であり、より好ましい上限は0.004%である。
Sr:0.001〜0.005%
Srは耐食性向上に有効な元素である。SrはCaやMgと同様に、pH低下を緩和する作用を有しており、pH低下による腐食促進を抑制する効果を発揮して、塗膜膨れを抑制するのに効果的である。こうした作用は0.0001%以上含有させることによって有効に発揮される。しかしながら、0.005%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。Srのより好ましい下限は0.0005%であり、より好ましい上限は0.004%である。
Co:0.005〜0.20%
Coは耐食性向上に有効な元素である。Coは、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるためには0.005%以上含有させることが好ましい。しかしながら、添加量が過剰になると溶接性や熱間加工性が劣化することから、0.2%以下とすることが好ましい。これらの元素を含有させるときのより好ましい下限は0.02%であり、より好ましい上限は0.8%である。
Ti:0.005〜0.20%
Tiは耐食性向上に有効な元素である。Tiは、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるためには0.005%以上含有させることが好ましい。しかしながら、添加量が過剰になると溶接性や熱間加工性が劣化することから、0.20%以下とすることが好ましい。Tiを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.15%である。
Zr:0.005〜0.20%
Zrは耐食性向上に有効な元素である。Zrは、Tiと同様に、塩化物腐食環境において生成する錆びを緻密化する作用を有しており、塗膜傷部における腐食進展を抑制する元素である。こうした効果を発揮させるためには0.005%以上含有させることが好ましい。しかしながら、添加量が過剰になると溶接性や熱間加工性が劣化することから、0.20%以下とすることが好ましい。Zrを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.15%である。
B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上
B、VおよびNbは、いずれも機械特性の向上に有効な元素である。このうちBは、0.0001%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.010%を超えて過剰に勧誘させると母材靭性が劣化するため好ましくない。Vは、0.01%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになるので好ましくない。Nbは、0.003%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになる。なお、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.02%、Nbについては0.005%である。またより好ましい上限はBについては0.0090%、Vについては0.45%、Nbについては0.45%である。
In addition to the above components, the steel material for a crude oil tank bottom plate of the present invention may include (1) Mg: 0.0001 to 0.005%%, Ca: 0.0001 to 0.005%, Sr: 0 if necessary. One or more selected from the group consisting of 0.0001 to 0.005%, (2) Co: 0.005 to 0.20%, Ti: 0.005 to 0.20%, Zr: 0.005 to 0.005. 20% or more selected from the group consisting of: (3) B: 0.0001 to 0.010%, V: 0.01 to 0.50% and Nb: 0.003 to 0.50% It is also effective to contain one or more selected from the group, etc., and the characteristics of the steel material will be further improved according to the type of component to be contained.
Ca: 0.0001 to 0.005%
Ca is an element effective for improving corrosion resistance. Since diffusion of hydrogen ions to the outside hardly occurs at the coating film / steel material interface, the pH decreases due to the hydrolysis of Fe ions dissolved by the steel material corrosion, and the corrosion under the coating film is further accelerated. Ca has an action of mitigating such a decrease in pH, exhibits an effect of suppressing corrosion promotion due to a decrease in pH, and is effective in suppressing swelling of the coating film. Such an effect is effectively exhibited by containing 0.0001% or more of Ca. However, if over 0.005% is contained, workability and weldability are deteriorated. A more preferred lower limit is 0.0005%, and a more preferred upper limit is 0.004%.
Mg: 0.0001 to 0.005%
Mg is an effective element for improving corrosion resistance. Mg, like Ca, has an action of mitigating pH reduction, exhibits an effect of suppressing corrosion promotion due to pH reduction, and is effective in suppressing swelling of the coating film. Such an effect is effectively exhibited by containing 0.0001% or more, and is particularly effective when Co is present. However, if over 0.005% is contained, workability and weldability are deteriorated. A more preferable lower limit of Mg is 0.0005%, and a more preferable upper limit is 0.004%.
Sr: 0.001 to 0.005%
Sr is an element effective for improving corrosion resistance. Sr, like Ca and Mg, has an action of mitigating pH reduction, exhibits an effect of suppressing corrosion promotion due to pH reduction, and is effective in suppressing film swelling. Such an effect is effectively exhibited by containing 0.0001% or more. However, if over 0.005% is contained, workability and weldability are deteriorated. A more preferable lower limit of Sr is 0.0005%, and a more preferable upper limit is 0.004%.
Co: 0.005 to 0.20%
Co is an element effective for improving corrosion resistance. Co has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion at the scratches on the coating film. In order to exhibit such an effect, it is preferable to contain 0.005% or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so 0.2% or less is preferable. The more preferable lower limit when these elements are contained is 0.02%, and the more preferable upper limit is 0.8%.
Ti: 0.005 to 0.20%
Ti is an element effective for improving corrosion resistance. Ti has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses the progress of corrosion at the scratches on the coating film. In order to exhibit such an effect, it is preferable to contain 0.005% or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so 0.20% or less is preferable. The more preferable lower limit when Ti is contained is 0.008%, and the more preferable upper limit is 0.15%.
Zr: 0.005 to 0.20%
Zr is an element effective for improving corrosion resistance. Zr, like Ti, has an action of densifying rust generated in a chloride corrosive environment, and is an element that suppresses corrosion progress in the scratches on the coating film. In order to exhibit such an effect, it is preferable to contain 0.005% or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so 0.20% or less is preferable. A more preferable lower limit when containing Zr is 0.008%, and a more preferable upper limit is 0.15%.
One or more selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50% and Nb: 0.003 to 0.50% B, V and Nb are all It is an effective element for improving mechanical properties. Of these, B is contained in an amount of 0.0001% or more, which improves the hardenability and is effective in improving the strength. However, excessively soliciting exceeding 0.010% deteriorates the base material toughness, which is not preferable. . V is effective for improving the strength by containing 0.01% or more, but if it exceeds 0.50%, it is not preferable because it causes toughness deterioration of the steel material. Nb is effective for improving the strength by containing 0.003% or more, but if it exceeds 0.50% and it is contained excessively, the toughness of the steel will be deteriorated. The more preferable lower limit of these elements is 0.0003% for B, 0.02% for V, and 0.005% for Nb. The more preferable upper limit is 0.0090% for B, 0.45% for V, and 0.45% for Nb.

本発明のバラストタンク用鋼材の成分は上記の通りであり、残部は鉄および不可避的不純物からなるものである。不可避不純物元素としては、例えば、O、N、H、Mo、W、などが挙げられ、0.1%を超えないものとすることが好ましく、0.01%を超えないことがさらに推奨される。
組織
本発明鋼材の組織は、溶接性や加工性に優れるフェライトを主体(面積率で全体50%以上)のとすることが好ましい。また、フェライトは塩化物による応力腐食割れに対する感受性が小さいため、海水という塩化物環境での構造部材として有利な点である。本発明鋼材はフェライトを主体として、その他、ベイナイトおよび/またはマルテンサイトの面積率を制御することが必要である。なお、本発明鋼材はこれらフェライト、ベイナイトおよびマルテンサイト以外の組織、例えばパーライトなどをその構成の一部として含む場合も許容される。
The components of the steel material for ballast tanks of the present invention are as described above, and the balance consists of iron and inevitable impurities. Inevitable impurity elements include, for example, O, N, H, Mo, W, etc., preferably not exceeding 0.1%, and more preferably not exceeding 0.01%. .
Structure It is preferable that the structure of the steel material of the present invention is mainly composed of ferrite excellent in weldability and workability (total area ratio is 50% or more). Moreover, since ferrite is less sensitive to stress corrosion cracking due to chloride, it is advantageous as a structural member in a chloride environment called seawater. The steel of the present invention is mainly composed of ferrite, and in addition, it is necessary to control the area ratio of bainite and / or martensite. The steel material of the present invention is allowed even when it contains a structure other than ferrite, bainite and martensite, such as pearlite, as a part of its structure.

ベイナイトおよびマルテンサイトは鋼材の強度や靭性を向上させるために有効な組織である。しかしながら、フェライト中にベイナイトおよび/またはマルテンサイトが必要以上に存在すると、防食塗膜下においてベイナイトおよび/またはマルテンサイト部の腐食が促進されて、塗装耐食性を低下させる。このような耐食性低下を防止するためには、ベイナイト+マルテンサイトの面積率を30%未満(ベイナイト、マルテンサイトのいずれか一方、または双方が0の場合を含む)とすることが推奨される。   Bainite and martensite are effective structures for improving the strength and toughness of steel materials. However, if bainite and / or martensite is present more than necessary in the ferrite, corrosion of the bainite and / or martensite portion is promoted under the anticorrosive coating, and coating corrosion resistance is lowered. In order to prevent such a decrease in corrosion resistance, it is recommended that the area ratio of bainite + martensite be less than 30% (including the case where either bainite, martensite, or both are 0).

本発明において組織の面積率は、鋼材の厚みが6mm以上の場合は、表面より深さ3mmの部位において、鋼材の厚みが6mm未満の場合は、鋼材の厚みの1/2の部位において、原則400倍の観察倍率、および150μm×200μm以上の観察視野にて光学顕微鏡で観察し、任意の30視野で得られた面積率の平均値を採用する。なお深さの基準となる表面とは、圧延で力を加えられた鋼材の面をいう。
硫化物系介在物
非金属介在物としては、硫化物系、酸化物系、窒化物系あるいは炭化物系などの介在物が鋼材中に存在する。この中で、MnSなどの硫化物系介在物は腐食の起点となることから、バラストタンク用鋼材として耐食性の観点で最も有害な介在物である。硫化物系介在物のサイズと数の制御を図った場合に、サイズを大きくして数を少なくすると、それを起点とする顕著な局部腐食が発生して早期に穴あきなどに繋がる。逆にサイズを小さくして数を多くすると、防食塗膜下での腐食起点が多くなって防食塗膜の膨れ発生を促進する。製鋼工程において適切な脱硫装置を用いて硫化物系介在物を低減することに加えて、その大きさを調整することによって、上記の悪影響を極小化することができること見出した。具体的には、硫化物系介在物の平均粒径(円相当径)を0.5〜10μmとすることによってその有害性を極小化できる。
In the present invention, the area ratio of the structure is, in principle, in a portion having a depth of 3 mm from the surface when the thickness of the steel material is 6 mm or more, and in a half of the thickness of the steel material when the thickness of the steel material is less than 6 mm. Observation with an optical microscope at an observation magnification of 400 times and an observation visual field of 150 μm × 200 μm or more, and an average value of area ratios obtained in arbitrary 30 visual fields is adopted. In addition, the surface used as the reference | standard of a depth means the surface of steel materials with which force was applied by rolling.
Sulfide inclusions As non-metallic inclusions, inclusions such as sulfides, oxides, nitrides or carbides are present in the steel. Of these, sulfide inclusions such as MnS are the starting point of corrosion, and are the most harmful inclusions from the viewpoint of corrosion resistance as steel materials for ballast tanks. When the size and number of sulfide inclusions are controlled, if the size is increased and the number is decreased, significant local corrosion occurs starting from that and leads to early drilling. On the other hand, when the size is reduced and the number is increased, the number of corrosion starting points under the anticorrosion coating film increases, and the occurrence of swelling of the anticorrosion coating film is promoted. In addition to reducing sulfide inclusions using a suitable desulfurization apparatus in the steelmaking process, it has been found that the adverse effects described above can be minimized by adjusting the size of the inclusions. Specifically, the harmfulness can be minimized by setting the average particle diameter (equivalent circle diameter) of the sulfide inclusions to 0.5 to 10 μm.

本発明で規定の硫化物系介在物は、例えば、二次精錬時において、上述の成分範囲に調整することに加えて、さらに、Mn/(S+Mg+Ca+Sr)の比が10以上、700未満となるように成分調整を行いながら、Arなどの不活性ガスによるバブリングを施して、溶鋼を十分に撹拌することによって得ることができる。Mnは硫化物系介在物の核生成を抑制する作用を有しており、S、Mg、Ca、Srは逆に当該介在物の生成を促進する作用を有している。このため、Mn/(S+Mg+Ca+Sr)の比が硫化物系介在物の大きさと関係しており、当該比が大きいと硫化物系介在物の核生成が抑制されて生成した介在物は粗大化する傾向にある。このように、当該比を調整することによって硫化物系介在物の平均粒径を制御することができる。   In the sulfide inclusions defined in the present invention, for example, in the secondary refining, in addition to adjusting to the above component range, the ratio of Mn / (S + Mg + Ca + Sr) is more than 10 and less than 700. It is possible to obtain the molten steel by sufficiently stirring the molten steel by bubbling with an inert gas such as Ar while adjusting the components. Mn has an action of suppressing nucleation of sulfide inclusions, and S, Mg, Ca, and Sr have an action of promoting the formation of the inclusions. For this reason, the ratio of Mn / (S + Mg + Ca + Sr) is related to the size of sulfide inclusions. If the ratio is large, the nucleation of sulfide inclusions is suppressed and the generated inclusions tend to be coarse. It is in. Thus, the average particle diameter of sulfide inclusions can be controlled by adjusting the ratio.

本発明において硫化物系介在物の平均粒径は、鋼材の厚みが6mm以上の場合は、表面より深さ3mmの部位において、鋼材の厚みが6mm未満の場合は、鋼材の厚みの1/2の部位において、任意の30個の硫化物系介在物の円相当径を測定して、得られた平均値を採用する。硫化物系介在物の円相当径の測定は、鏡面研磨したサンプルを1000〜5000倍程度の適切な倍率において走査型電子顕微鏡(SEM)で観察して、画像解析などを行うことによって求めることができる。   In the present invention, the average particle size of the sulfide inclusions is ½ of the thickness of the steel material when the steel material thickness is 6 mm or more and the steel material thickness is less than 6 mm at a portion 3 mm deep from the surface. In this part, the equivalent circle diameter of 30 arbitrary sulfide inclusions is measured, and the obtained average value is adopted. The equivalent circle diameter of sulfide inclusions can be measured by observing a mirror-polished sample with a scanning electron microscope (SEM) at an appropriate magnification of about 1000 to 5000 times and performing image analysis or the like. it can.

本発明でいう硫化物系介在物とは、図1に例示するように、EDXスペクトルにおいて、S、O、NおよびCに相当するピークの強度を比較して、Sのピーク強度が最も大きいものを硫化物系介在物と称する。平均粒径測定のためのSEM観察時にEDX分析を行って、硫化物系介在物を確認することができる。
製造方法
本発明の鋼材は、例えば以下の方法により、製造することができる。転炉または電気炉から取鍋に出鋼した溶鋼に対して、RH真空脱ガス装置を用いて、成分調整・温度調整を含む二次精錬を行う。硫化物系介在物の制御のため、二次精錬時にはArなどの不活性ガスによるバブリングを施して、溶鋼を十分に撹拌する必要がある。その後、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とする。なお脱酸形式としては、機械特性や溶接性の観点でキルド鋼を用いることが好ましく、さらに好ましくはAlキルド鋼が推奨される。
As exemplified in FIG. 1, the sulfide inclusion in the present invention has the highest peak intensity of S in the EDX spectrum by comparing the intensity of peaks corresponding to S, O, N and C. Is referred to as sulfide inclusions. EDX analysis can be performed during SEM observation for average particle size measurement to confirm sulfide inclusions.
Manufacturing method The steel material of this invention can be manufactured, for example with the following method. Secondary refining, including component adjustment and temperature adjustment, is performed on molten steel that has been discharged from a converter or electric furnace to a ladle using an RH vacuum degasser. In order to control sulfide inclusions, it is necessary to sufficiently stir the molten steel by bubbling with an inert gas such as Ar during secondary refining. Then, it is made into a steel ingot by a normal casting method such as a continuous casting method or an ingot-making method. As a deoxidation type, it is preferable to use killed steel from the viewpoint of mechanical properties and weldability, and Al killed steel is more preferable.

次いで得られた鋼塊を、1100〜1200℃の温度域に加熱した後、熱間圧延を行って、所望の寸法形状にすることが好ましい。このとき熱間圧延終了温度を、700〜850℃に制御し、熱間圧延終了後から500℃までの冷却速度を0.1〜15℃/秒の範囲に制御することによって、所定の組織が得られる。
防食塗料
製鉄所より出荷されてから防食塗料を塗布するまでの期間には、通常は、鋼材の発錆を防止する目的でジンクリッチプライマーなどのプライマーが塗布される。防食塗料の塗布前には、塗装に悪影響を及ぼすプライマー欠陥部に生じた錆びや油分などの除去を目的に、ワイヤブラシやサンドペパーなどによる被塗装面の浄化を行うのが一般的である。本発明のバラストタンク用鋼材は、エポキシ樹脂系の防食塗料の塗装前に上記のプライマーおよび残存している黒皮(ミルスケール)を除去して、塗料を鋼材に直接塗布することにより、耐食性向上に有効な合金元素が直接的に腐食反応に作用するため、より一層の塗装耐食性向上効果が得られる。プライマーなどを除去する方法としては、サンドブラスト、ショットブラスト、研削などの方法を作業性などを考慮して適宜選択することが可能である。
Subsequently, after heating the obtained steel ingot to a temperature range of 1100 to 1200 ° C., it is preferable to perform hot rolling to obtain a desired size and shape. At this time, the hot rolling end temperature is controlled to 700 to 850 ° C., and the cooling rate from the end of hot rolling to 500 ° C. is controlled in the range of 0.1 to 15 ° C./second, whereby the predetermined structure is can get.
Anticorrosion paint During the period from shipping from steelworks to application of anticorrosion paint, a primer such as zinc rich primer is usually applied for the purpose of preventing rusting of the steel material. Before applying the anticorrosion paint, the surface to be painted is generally cleaned with a wire brush or sand pepper for the purpose of removing rust, oil, etc. generated in the defective primer portion which adversely affects the coating. The steel material for ballast tank of the present invention improves the corrosion resistance by removing the primer and the remaining black skin (mill scale) before applying the epoxy resin-based anticorrosion paint and applying the paint directly to the steel material. Since the alloy element effective for the above acts directly on the corrosion reaction, a further effect of improving the coating corrosion resistance can be obtained. As a method for removing the primer and the like, a method such as sand blasting, shot blasting, and grinding can be appropriately selected in consideration of workability and the like.

本発明のバラストタンク用鋼材に塗布する防食塗料としては、タールエポキシ樹脂系塗料や変性エポキシ樹脂塗料などのエポキシ樹脂系塗料が好ましいが、その作用効果から明らかなようにウレタン樹脂系やアクリル樹脂系などの塗料を用いた場合にも塗膜の延命効果が発現される。   As the anticorrosion paint to be applied to the steel material for ballast tank of the present invention, an epoxy resin paint such as a tar epoxy resin paint or a modified epoxy resin paint is preferable, but a urethane resin system or an acrylic resin system is apparent from its effect. Even when paints such as these are used, the effect of extending the life of the coating film is exhibited.

また、電気防食(流電陽極法、外部電源法)などの他の防食方法の作用効果を害することはなく、それと併用することも可能である。   In addition, the effects of other anticorrosion methods such as cathodic protection (galvanic anode method, external power supply method) are not harmed, and it is possible to use them together.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。
(実施例)
[供試材の作製]
転炉より出鋼した溶鋼に対して、RH真空脱ガス装置を用いて、Arガスによるバブリングを施して、溶鋼を撹拌しながら表1に示す組成に成分調整を行い、連続鋳造法により鋼塊とした。脱酸形式はAlキルド鋼である。得られた鋼塊を1150℃に加熱した後、熱間圧延を行って、厚さ19mmの鋼板を作製した。このとき熱間圧延終了温度および熱間圧延終了後から500℃までの冷却速度は表2に示す通りである。得られた鋼材のベイナイト+マルテンサイト(B+M)の面積率および硫化物系介在物の平均粒径も表2に示す通りである。なお、同鋼材の残部の組織は全て、フェライト(F)を主体(面積率で50%以上)として、一部はその他パーライト(P)を含むものである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
(Example)
[Production of test materials]
The molten steel produced from the converter is subjected to bubbling with Ar gas using an RH vacuum degassing device, and the components are adjusted to the composition shown in Table 1 while stirring the molten steel. It was. The deoxidizing form is Al killed steel. The obtained steel ingot was heated to 1150 ° C., and then hot rolled to produce a steel plate having a thickness of 19 mm. At this time, the hot rolling end temperature and the cooling rate from the end of hot rolling to 500 ° C. are as shown in Table 2. Table 2 also shows the area ratio of bainite + martensite (B + M) of the obtained steel material and the average particle size of sulfide inclusions. In addition, all the structures of the remainder of the steel material are mainly composed of ferrite (F) (area ratio of 50% or more), and part thereof includes other pearlite (P).

Figure 2008031540
Figure 2008031540

Figure 2008031540
Figure 2008031540

得られた鋼板より、100×100×10(mm)の大きさの試験片を切り出した。試験片全面を湿式回転研磨機(研磨紙;#600)で研磨仕上げし、水洗およびアセトン洗浄の後、ジンクリッチプライマーを平均膜厚が15μm(±3μm)となるように塗布し、24時間以上デシケータ内で乾燥させた。次に、表2に示す通り、前処理を行って各種防食塗料をエアレススプレーで塗布した。なお、塗装の前処理として施したブラシがけは、被塗装面のゴミ・ほこりなどを除去するための処理である。また、サンドブラストはジンクリッチプライマーがすべて消失するまで行った。   A test piece having a size of 100 × 100 × 10 (mm) was cut out from the obtained steel plate. The entire surface of the test piece is polished with a wet rotary polishing machine (abrasive paper; # 600), washed with water and acetone, then coated with a zinc rich primer so that the average film thickness is 15 μm (± 3 μm), and more than 24 hours. Dry in a desiccator. Next, as shown in Table 2, pretreatment was performed and various anticorrosive paints were applied by airless spray. Note that brushing applied as a pre-treatment for painting is a treatment for removing dust, dust, and the like on the surface to be painted. Moreover, sandblasting was performed until all zinc rich primers disappeared.

こうして得られた試験片Aの外観形状は図2に示す通りである。試験には、防食塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、長さ:100mm、幅:約0.5mmの素地まで達するカット疵1本を試験面側(腐食試験時の高温側)にカッターナイフで形成した試験片B(図3)も用いた。
[腐食試験方法]
バラストタンク内を模擬したラボ評価試験方法は以下の通りである。試験液の人工海水を満たした試験槽内に試験片AおよびBを垂直に設置して、試験片の試験面側の温度を40℃に、その裏面を10℃に調整し、防食塗膜に温度差勾配を付与した。なお、カット傷付き試験片Bはカット傷が高温側になるように試験片を設置した。図4に示すように試験片全体を水没させた状態(空荷のバラスト状態を模擬)で2週間保持し、その後、人工海水を排水して図5に示すように試験片を水面上に露出させた状態(積荷状態を模擬)を1週間保持した。なお、図5の状態では、試験槽内の試験片より下部には人工海水を残存させて、気相部の温度差によって試験片の温度差勾配は維持した。温度差勾配を付与した場合には、温度の高い側から低い側へ塗膜の水分浸透が促進される。従って、塗膜下腐食が顕著となる高温側(40℃)を試験面(評価面)とした。評価試験では、図4および図5の状態を繰り返して、合計24週間(168日)まで継続した。試験に供した試験片の個数はA、Bとも夫々5個ずつである
試験片Aでは、塗膜/鋼材界面での腐食生成物の膨張圧による塗膜膨れが発生するまで時間を測定し、耐塗膨れ性を評価した。塗膜膨れ発生までの時間は、1日1回の目視による外観観察を行って、各々供試した5個の試験片の内のいずれかに塗膜膨れが認められるまでの時間とした。
The appearance of the test piece A thus obtained is as shown in FIG. In the test, in order to examine the degree of corrosion progress when the base steel material is exposed due to scratches on the anticorrosion coating film, a cut surface that reaches the base of length: 100 mm and width: about 0.5 mm is tested. Test piece B (FIG. 3) formed with a cutter knife on the side (high temperature side during the corrosion test) was also used.
[Corrosion test method]
The laboratory evaluation test method simulating the inside of the ballast tank is as follows. Test pieces A and B are installed vertically in a test tank filled with artificial seawater of the test solution, the temperature on the test side of the test piece is adjusted to 40 ° C., and the back side is adjusted to 10 ° C. A temperature difference gradient was applied. In addition, the test piece B with the cut flaw was placed so that the cut flaw was on the high temperature side. As shown in FIG. 4, the whole test piece is submerged in water (simulating an empty ballast state) for 2 weeks, and then the artificial seawater is drained to expose the test piece on the water surface as shown in FIG. The held state (simulated load state) was held for one week. In the state of FIG. 5, artificial seawater was left below the test piece in the test tank, and the temperature difference gradient of the test piece was maintained by the temperature difference in the gas phase. When a temperature difference gradient is applied, moisture penetration of the coating film is promoted from the higher temperature side to the lower temperature side. Accordingly, the high temperature side (40 ° C.) at which corrosion under the coating film becomes significant was taken as the test surface (evaluation surface). In the evaluation test, the states of FIGS. 4 and 5 were repeated and continued for a total of 24 weeks (168 days). The number of test pieces subjected to the test is 5 for each of A and B. In test piece A, the time until the coating film swells due to the expansion pressure of the corrosion product at the coating film / steel material interface is measured. The blister resistance was evaluated. The time until the occurrence of the swelling of the coating film was observed until the appearance of the swelling of the coating film was observed in any one of the five test pieces tested by visual observation once a day.

試験片Bでは、試験終了後(24週間経過後)に防食塗膜の膨れ幅(カット傷に垂直方向に膨れた幅)をノギスで測定し、各々供試した5個の試験片の内の最大値(最大膨れ幅)により塗膜傷部耐食性を評価した。
[腐食試験結果]
腐食試験結果は表3に示す通りである。通常の防食塗膜として標準的な250μmの変性エポキシ樹脂塗膜を形成したNo.1は耐塗膜膨れ性(△)および塗膜傷部耐食性(×)の両者とも劣り、防食塗膜が薄くなった部分を想定したNo.1は両者とも×で非常に劣る。No.3およびNo.4は、それぞれCu含有量およびCr含有量が規定値に満たないため、塗装耐食性改善が不十分であり、バラストタンク用鋼材としては不適である。また、No.5およびNo.6は、各添加元素の成分範囲は規定値を満たすが、それぞれベイナイト+マルテンサイトの面積率および硫化物系介在物の平均粒径が規定を満たさないため、塗装耐食性改善がやや不十分であり、バラストタンク用鋼材としては満足できるものではない。
For test piece B, the swelling width of the anticorrosion coating film (width swollen in the direction perpendicular to the cut wound) was measured with a caliper after completion of the test (after 24 weeks), and each of the five test pieces tested The coating film scratch resistance was evaluated by the maximum value (maximum swollen width).
[Corrosion test results]
The results of the corrosion test are shown in Table 3. As a normal anticorrosive coating film, a standard 250 μm modified epoxy resin coating film was formed. No. 1 was inferior in both the swelling resistance of coating film (Δ) and the scratch resistance of the coating film (×), and No. 1 which assumed the part where the anticorrosion coating film became thin. 1 is very inferior in both cases. No. 3 and no. No. 4 has a Cu content and a Cr content that are less than the specified values, respectively, so that the coating corrosion resistance is insufficiently improved and is not suitable as a steel material for ballast tanks. No. 5 and no. Although the component range of each additive element satisfies the specified value, the area ratio of bainite + martensite and the average particle size of sulfide inclusions do not satisfy the specifications, so the coating corrosion resistance improvement is slightly insufficient. As a steel material for ballast tanks, it is not satisfactory.

これに対して、本発明の成分範囲に制御したもの(No.7〜27)はいずれも、耐食性は○以上のレベルに向上しているのが明らかである。特に、ショッププライマーを除去して防食塗料を直接鋼材に塗布したもの(No.8、No.12、No.19、No.26)は、ショッププライマー残存のもの(No.7、No.11、No.18、No.25)に比べて耐食性向上効果が高いことがわかる。また、塗装耐食性の向上効果は防食塗装が変性エポキシ樹脂およびタールエポキシ樹脂の両者において認められ、膜厚も50および250μmのいずれの膜厚においても認められる。   On the other hand, it is clear that the corrosion resistance of all those controlled to the component range of the present invention (Nos. 7 to 27) is improved to a level of ◯ or higher. In particular, the products (No. 8, No. 12, No. 19, No. 26) in which the shop primer was removed and the anticorrosion paint was directly applied to the steel material were those with the remaining shop primer (No. 7, No. 11, It can be seen that the effect of improving the corrosion resistance is higher than those of No. 18 and No. 25). Further, the effect of improving the coating corrosion resistance is observed in both the modified epoxy resin and the tar epoxy resin, and the film thickness is also observed at any film thickness of 50 and 250 μm.

Figure 2008031540
Figure 2008031540

以上のように、本発明鋼材は塗装耐食性優れており、塗膜膨れから始まる塗膜劣化を遅延させて、塗膜欠陥や傷部などの鋼材露出部からの腐食進展を抑制させることができ、バラストタンク用鋼材として好ましいことがわかる。従って、本発明鋼材により構成されたバラストタンクは優れた耐久性を具備するものであることも容易に判明する。   As described above, the steel material of the present invention has excellent coating corrosion resistance, delays coating film deterioration starting from coating film swelling, and can suppress the corrosion progress from exposed steel parts such as coating film defects and scratches, It turns out that it is preferable as a steel material for ballast tanks. Therefore, it is easily found that the ballast tank made of the steel material of the present invention has excellent durability.

本発明にいう硫化物系介在物の一例を示すもので、上の図はそのSEM写真、したの図は上の図の矢印部のEDXスペクトルである。An example of the sulfide inclusions referred to in the present invention is shown, the upper figure is the SEM photograph, and the figure is the EDX spectrum of the arrow part in the upper figure. 実施例に用いられた試験片Aの概観形状を示す平面図である。It is a top view which shows the general-view shape of the test piece A used for the Example. 実施例に用いられた試験片B(カット疵を形成したもの)の概観形状を示す平面図である。It is a top view which shows the general-view shape of the test piece B (what formed the cut collar) used for the Example. 実施例に用いられた腐食試験方法を説明するもので、試験液としての人口海水を高位に維持し、これに試験片をその全体が水没した状態で設置した様子を示す図である。It is a figure which demonstrates the corrosion test method used for the Example, and shows a mode that the artificial seawater as a test liquid is maintained high, and the test piece was installed in the state which the whole was submerged to this. 実施例に用いられた腐食試験方法を説明するもので、試験液としての人口海水を低位に維持し、これに試験片を水面上に露出した状態で設置した様子を示す図である。It is a figure which demonstrates the corrosion test method used for the Example, and shows a mode that the artificial seawater as a test liquid is maintained low, and it has installed in the state which exposed the test piece on the water surface to this.

Claims (6)

C :0.01〜0.30%(質量%の意味、以下同じ)、
Si:0.01〜2.0%、
Mn:0.01〜2.0%、
P :0.01%以下、
S :0.0005〜0.005%以下、
Al:0.005〜0.10%、
Cu:0.1〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜0.5%、
を含有し、残部がFeおよび不可避的不純物からなり、フェライトを主体とし、面積率でベイナイトおよび/またはマルテンサイトが30%未満(0を含む)である組織を有し、硫化物系介在物の平均粒径が0.5〜10μmであることを特徴とする耐食性に優れたバラストタンク用鋼材。
C: 0.01 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 2.0%,
Mn: 0.01 to 2.0%,
P: 0.01% or less,
S: 0.0005 to 0.005% or less,
Al: 0.005 to 0.10%,
Cu: 0.1 to 1.0%
Ni: 0.01 to 1.0%,
Cr: 0.01 to 0.5%
The balance is composed of Fe and inevitable impurities, has a structure mainly composed of ferrite, and has an area ratio of bainite and / or martensite of less than 30% (including 0). A steel material for ballast tanks excellent in corrosion resistance, characterized by having an average particle size of 0.5 to 10 μm.
さらに、
Mg:0.0001〜0.005%、
Ca:0.0001〜0.005%、
Sr:0.0001〜0.005%、
よりなる群から選ばれる1種または2種以上を含有する請求項1記載の耐食性に優れたバラストタンク用鋼材。
further,
Mg: 0.0001 to 0.005%,
Ca: 0.0001 to 0.005%,
Sr: 0.0001 to 0.005%,
The steel material for ballast tanks having excellent corrosion resistance according to claim 1, comprising one or more selected from the group consisting of:
さらに、
Co:0.005〜0.20%、
Ti:0.005〜0.20%、
Zr:0.005〜0.20%、
よりなる群から選ばれる1種または2種以上を含有する請求項1または2に記載の耐食性に優れたバラストタンク用鋼材。
further,
Co: 0.005 to 0.20%,
Ti: 0.005 to 0.20%,
Zr: 0.005 to 0.20%,
The steel material for ballast tanks having excellent corrosion resistance according to claim 1 or 2, comprising one or more selected from the group consisting of:
さらに、
B:0.0001〜0.010%、
V:0.01〜0.50%、
Nb:0.003〜0.50%、
よりなる群から選ばれる1種または2種以上を含有する請求項1〜3のいずれかに記載の耐食性に優れたバラストタンク用鋼材。
further,
B: 0.0001 to 0.010%,
V: 0.01 to 0.50%,
Nb: 0.003 to 0.50%,
The steel material for ballast tanks excellent in corrosion resistance according to any one of claims 1 to 3, comprising one or more selected from the group consisting of:
防食塗膜を直接鋼材表面に形成した請求項1〜4のいずれかに記載の耐食性に優れたバラストタンク用鋼材。 The steel material for ballast tanks excellent in corrosion resistance in any one of Claims 1-4 which formed the anti-corrosion coating film directly on the steel material surface. 請求項1〜5のいずれかに記載のバラストタンク用鋼材により構成されたバラストタンクを有する船舶。 The ship which has a ballast tank comprised with the steel material for ballast tanks in any one of Claims 1-5.
JP2006208290A 2006-04-04 2006-07-31 Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability Expired - Fee Related JP4668141B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006208290A JP4668141B2 (en) 2006-07-31 2006-07-31 Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
CN2008101729051A CN101413085B (en) 2006-04-04 2007-04-02 Steel with excellent corrosion resistance for shipping
KR1020070032897A KR100994606B1 (en) 2006-04-04 2007-04-03 Steel for ship having excellent corrosion resistance
KR1020080102361A KR100992289B1 (en) 2006-04-04 2008-10-20 Steel for ship having excellent corrosion resistance
KR1020090076712A KR20090098775A (en) 2006-04-04 2009-08-19 Double hull fuel tanker
KR1020090076710A KR20090098774A (en) 2006-04-04 2009-08-19 Steel for ballast tank having excellent corrosion resistance, and ship having ballast tank made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208290A JP4668141B2 (en) 2006-07-31 2006-07-31 Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability

Publications (2)

Publication Number Publication Date
JP2008031540A true JP2008031540A (en) 2008-02-14
JP4668141B2 JP4668141B2 (en) 2011-04-13

Family

ID=39121284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208290A Expired - Fee Related JP4668141B2 (en) 2006-04-04 2006-07-31 Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability

Country Status (1)

Country Link
JP (1) JP4668141B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2009220163A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Continuously cast slab of steel whose solidification structure has equiaxed dendrite, and continuous casting method therefor
JP2010018846A (en) * 2008-07-10 2010-01-28 Kobe Steel Ltd Steel material for ballast tank, ballast tank, and ship
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
JP2010126765A (en) * 2008-11-27 2010-06-10 Kobe Steel Ltd Steel for ship
JP2010138454A (en) * 2008-12-11 2010-06-24 Kobe Steel Ltd Coated steel for ballast tank having excellent coating film blister resistance, ballast tank using the same, and vessel
JP2010285673A (en) * 2009-06-15 2010-12-24 Jfe Steel Corp Steel for ship excellent in coating film-blistering resistance
JP2012153920A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Corrosion resistant steel product for upper structure of ship
JP2017150003A (en) * 2016-02-22 2017-08-31 新日鐵住金株式会社 Corrosion resistant steel material for ballast tank
EP4074859A4 (en) * 2019-12-09 2023-11-01 Posco Structural steel plate having excellent seawater resistance, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267182A (en) * 1994-02-14 1995-10-17 Sumitomo Metal Ind Ltd Corrosion preventing method for ballast tank
JP2000017381A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Corrosion resistant steel for shipbuilding
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone
JP2005021981A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Welded joint excellent in corrosion resistance
JP2006124796A (en) * 2004-10-29 2006-05-18 Kobe Steel Ltd Corrosion resistant coated steel
JP2007277615A (en) * 2006-04-04 2007-10-25 Kobe Steel Ltd Steel material for vessel having excellent corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267182A (en) * 1994-02-14 1995-10-17 Sumitomo Metal Ind Ltd Corrosion preventing method for ballast tank
JP2000017381A (en) * 1998-07-03 2000-01-18 Nippon Steel Corp Corrosion resistant steel for shipbuilding
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone
JP2005021981A (en) * 2003-02-26 2005-01-27 Nippon Steel Corp Welded joint excellent in corrosion resistance
JP2006124796A (en) * 2004-10-29 2006-05-18 Kobe Steel Ltd Corrosion resistant coated steel
JP2007277615A (en) * 2006-04-04 2007-10-25 Kobe Steel Ltd Steel material for vessel having excellent corrosion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144204A (en) * 2006-12-07 2008-06-26 Nippon Steel Corp Rust-proofing steel plate for ship's ballast tank to be protected in electric corrosion, and rust-proofing method for ship's ballast tank
JP2009220163A (en) * 2008-03-18 2009-10-01 Sumitomo Metal Ind Ltd Continuously cast slab of steel whose solidification structure has equiaxed dendrite, and continuous casting method therefor
JP2010018846A (en) * 2008-07-10 2010-01-28 Kobe Steel Ltd Steel material for ballast tank, ballast tank, and ship
JP2010100872A (en) * 2008-10-21 2010-05-06 Kobe Steel Ltd Steel used for vessel storing mineral
JP2010126765A (en) * 2008-11-27 2010-06-10 Kobe Steel Ltd Steel for ship
JP2010138454A (en) * 2008-12-11 2010-06-24 Kobe Steel Ltd Coated steel for ballast tank having excellent coating film blister resistance, ballast tank using the same, and vessel
JP2010285673A (en) * 2009-06-15 2010-12-24 Jfe Steel Corp Steel for ship excellent in coating film-blistering resistance
JP2012153920A (en) * 2011-01-24 2012-08-16 Kobe Steel Ltd Corrosion resistant steel product for upper structure of ship
JP2017150003A (en) * 2016-02-22 2017-08-31 新日鐵住金株式会社 Corrosion resistant steel material for ballast tank
EP4074859A4 (en) * 2019-12-09 2023-11-01 Posco Structural steel plate having excellent seawater resistance, and method for manufacturing same

Also Published As

Publication number Publication date
JP4668141B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4668141B2 (en) Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
KR101772812B1 (en) Steel material and method for producing the same
JP5447310B2 (en) Steel for ballast tank
JP2010216005A (en) Corrosion-resistant steel material for crude oil tanker
KR100992289B1 (en) Steel for ship having excellent corrosion resistance
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP2007270196A (en) Steel material for cargo oil tank
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP5265944B2 (en) Marine steel with excellent corrosion resistance
JP4579837B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP2007069265A (en) Welded joint and welded structure excellent in corrosion resistance
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4659626B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4763468B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP5185712B2 (en) Steel for ballast tanks, ballast tanks and ships
JP2008007860A (en) Steel member for vessel having excellent crevice corrosion resistance in humid air atmosphere
JP2006118002A (en) Steel material for oil tank
JP5284769B2 (en) Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker
JP5143707B2 (en) Marine steel
JP4579838B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees