JP2006124796A - Corrosion resistant coated steel - Google Patents

Corrosion resistant coated steel Download PDF

Info

Publication number
JP2006124796A
JP2006124796A JP2004316533A JP2004316533A JP2006124796A JP 2006124796 A JP2006124796 A JP 2006124796A JP 2004316533 A JP2004316533 A JP 2004316533A JP 2004316533 A JP2004316533 A JP 2004316533A JP 2006124796 A JP2006124796 A JP 2006124796A
Authority
JP
Japan
Prior art keywords
steel material
corrosion
less
zinc
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004316533A
Other languages
Japanese (ja)
Other versions
JP4291765B2 (en
Inventor
Fumio Yuse
文雄 湯瀬
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004316533A priority Critical patent/JP4291765B2/en
Publication of JP2006124796A publication Critical patent/JP2006124796A/en
Application granted granted Critical
Publication of JP4291765B2 publication Critical patent/JP4291765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion resistant coated steel exhibiting excellent corrosion resistance when used under a severe open air environment, maintaining corrosion resistance over a long period even when widely applied to a bridge or the like, and capable of elongating the cycle of recoating. <P>SOLUTION: The corrosion resistant coated steel is obtained by forming a film comprising ≥50 wt.% zinc and having an average film thickness of ≥10 μm on the surface of a steel comprising, by weight, ≤0.20% C, 0.03 to 1.0% Si, ≤2.5% Mn, 0.05 to 3.0% Cu, 0.05 to 6.0% Ni, ≤0.02% S, ≤0.02% P, ≤0.20% Cr, 0.03 to 1.0% Ti and 0.0001 to 0.01% Ca, and satisfying Ti/P>2.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、橋梁、船舶、海洋構造物その他苛酷な環境下における耐候性が要求される用途向けの鋼材であって、外気に対し高度の耐食性を付与するための被覆を形成した鋼材に関する。   The present invention relates to a steel material for bridges, ships, offshore structures, and other applications that require weather resistance in harsh environments, and to a steel material having a coating for imparting a high degree of corrosion resistance to the outside air.

厳しい外気環境下で使用して容易に防錆できる各種鋼材には、裸使用が可能な耐候性鋼と塗装した鋼材とがある。ところが、1993年3月3月に旧建設省が耐候性鋼の適用方針「耐候性鋼の橋梁への適用に関する共同研究報告書」を公表し、とくに海岸地帯での耐候性鋼の裸使用が規制されるようになってからは、無塗装鋼材は事実上使用できなくなった。このため、多塩環境下向けの鋼材には、フタル酸樹脂、塩化ゴムやタールエポキシ樹脂等を重ね塗りする必要があり、しかも10年程度の比較的短期間内に塗り替えの必要もあって、工数および費用の点に問題がある。   Various steel materials that can be easily rust-proof when used in a harsh outdoor environment include a weather-resistant steel that can be used barely and a coated steel material. However, in March 1993, the former Ministry of Construction published a policy on the application of weathering steel, “Joint Research Report on the Application of Weathering Steel to Bridges”. After being regulated, unpainted steel was virtually unusable. For this reason, it is necessary to recoat phthalic acid resin, chlorinated rubber, tar epoxy resin, etc. on steel materials for multi-salt environments, and it is also necessary to repaint within a relatively short period of about 10 years, There are problems with man-hours and costs.

このような問題に対して、鋼材の材質面および塗料の成分面からそれぞれ研究が行なわれ、二三の発明も公開されている。
特開平10−330881号公報 特開2002−129282号公報 特開2002‐332537号公報 特許文献1と2は、いずれも鋼材成分の改良を主眼としてその耐候性を向上した発明であり、同3は鋼材の成分と塗料の配合との両面から工夫を加えている。しかし、これらの発明は、最近の過酷ともいえる環境下に使用した場合、その耐候性あるいは耐食性には、なお不十分さを残している。すなわち、特許文献1の塗装用鋼材は、クロムフリーにしてCu、Ni、TiさらにはCaも配合することにより、耐候性を向上させている。特許文献2の塗装鋼材は、同様の鋼成分の調整を図った上で、塗装面を工夫して耐食性を向上しようとしている。また、特許文献3の塗装鋼材は、鋼材にAlを添加する一方で、塗料中の亜鉛を75%以上も増量することで、防食性を向上させている。
With respect to such problems, research has been carried out from the material side of steel materials and the component side of paints, and a few inventions have been published.
JP-A-10-330881 JP 2002-129282 A Japanese Patent Application Laid-Open No. 2002-332537 Patent Documents 1 and 2 are both inventions that have improved the weather resistance with a focus on improving the components of steel materials, and the third method is based on both the components of steel materials and the formulation of paints. ing. However, these inventions still have insufficient weather resistance or corrosion resistance when used in a recent severe environment. In other words, the coating steel material of Patent Document 1 is made chromium-free and improves weather resistance by blending Cu, Ni, Ti, and further Ca. The coated steel material of Patent Document 2 attempts to improve the corrosion resistance by devising the painted surface after adjusting the same steel components. Moreover, while the coated steel material of patent document 3 is adding Al to steel materials, the corrosion resistance is improved by increasing zinc in a coating material 75% or more.

上記特許文献に開示された塗装鋼材は、外気環境下で使用した場合、一応の防食性ないし耐食性を示すが、ますます苛酷さを増す自然環境と製造、使用、保守等の面からの厳しい条件に対しては必ずしも満足できない余地を残している。すなわち、この種塗装鋼材は、苛酷な環境下に置かれたとき、塗膜欠陥部、キズ部、コバ部のほか、塗膜の薄い部分等の局所で腐食が進行するのが大きな問題となる。これらの腐食を抑制して塗り替え周期の長期化を図ることが大きな課題となっている。   The coated steel materials disclosed in the above-mentioned patent documents show temporary anticorrosion or corrosion resistance when used in the open air environment, but the increasingly severe natural environment and severe conditions from the viewpoint of manufacturing, use, maintenance, etc. There is always room for satisfaction. That is, when this kind of coated steel material is placed in a harsh environment, it is a major problem that corrosion progresses locally such as coating film defects, scratches, edges, and thin parts of the coating film. . It has become a big subject to suppress such corrosion and to prolong the repainting cycle.

本発明は、従って、この課題を解決するために、鋼の組成および被膜成分の双方から改良することにより、技術・経済性両面から満足できる改良された耐食性被覆鋼材を提供しようとするものである。   Therefore, in order to solve this problem, the present invention seeks to provide an improved corrosion-resistant coated steel material that is satisfactory from both technical and economic aspects by improving both the composition of the steel and the coating components. .

本発明は、上記課題を解決するために、
(1)C:0.20%以下、Si:0.01〜1.0%、Mn:2.5%以下、Cu:0.05〜3.0%、Ni:0.005〜6.0%、S:0.02%以下、P:0.2%以下、Cr:0.20%以下、Ca:0.0001〜0.01%未満およびTi:0.03〜1.0%をを含有し、かつTi/P>20.であって、残部鉄および不可避の不純物からなる鋼材の表面に、有機または無機樹脂を主成分とし、50%以上の亜鉛を含有する被膜を、平均膜厚が10μm以上となるように形成したことを特徴とする耐食性被覆鋼材、
(2)上記(1)に記載された鋼材であって、Cr:0.10%以下である耐食性被覆鋼材、
(3)上記(1)または(2)に記載された鋼材であって、Ca:0.005%以下である耐食性被覆鋼材、
(4)上記(1)〜(3)のいずれかに記載された鋼材であって、Al:0.05〜0.50%を追加的に含有する耐食性被覆鋼材、
(5)上記(1)〜(4)のいずれかに記載された鋼材であって、La:0.0001〜0.05%およびCe:0.0001〜0.05%の1種または2種を追加的に含有する耐食性被覆鋼材、
(6)上記(1)〜(5)のいずれかに記載された鋼材であって、Nb≦0.10%、V≦0.10%、Zr≦0.05%、Mo≦0.25%、Mg≦0.010%、REM≦0.010%のうち1種以上を追加的に含有する耐食性被覆鋼材、
(7)亜鉛50〜90%および亜鉛より電気化学的に卑な金属の金属塩を含有する被膜を形成した上記(1)〜(6)のいずれかに記載された耐食性被覆鋼材、
(8)金属塩がりん酸マグネシウムまたはポリりん酸アルミニウムである上記(7)に記載された耐食性被覆鋼材、
(9)金属塩の平均粒径が1μm以下である上記(7)または(8)に記載された耐食性被覆鋼材、
(10)鋼材の表面に、有機または無機樹脂を主成分とし、50%以上の亜鉛および飽和水溶液のpH値が10.5以上の周期律表IIA族金属
の酸化物または水酸化物の1種以上を含有する被膜を形成した上記(1)〜(9)のいずれかに記載された耐食性被覆鋼材、
(11)IIA金属系酸化物または水酸化物として、酸化カルシウム、酸
化マグネシウムまたは水酸化カルシウムの1種以上を含有する被膜を形成した上記(10)に記載された耐食性被覆鋼材である。
In order to solve the above problems, the present invention
(1) C: 0.20% or less, Si: 0.01 to 1.0%, Mn: 2.5% or less, Cu: 0.05 to 3.0%, Ni: 0.005 to 6.0 %, S: 0.02% or less, P: 0.2% or less, Cr: 0.20% or less, Ca: 0.0001 to less than 0.01% and Ti: 0.03 to 1.0% And Ti / P> 20. In addition, on the surface of the steel material composed of the remaining iron and inevitable impurities, a coating containing an organic or inorganic resin as a main component and containing 50% or more of zinc was formed so that the average film thickness was 10 μm or more. Corrosion resistant coated steel material, characterized by
(2) The steel material described in (1) above, wherein Cr: 0.10% or less corrosion-resistant coated steel material,
(3) The steel material described in the above (1) or (2), wherein Ca: 0.005% or less, corrosion-resistant coated steel material,
(4) The steel material according to any one of the above (1) to (3), which additionally contains Al: 0.05 to 0.50%,
(5) The steel material described in any one of (1) to (4) above, wherein La: 0.0001-0.05% and Ce: 0.0001-0.05% Corrosion-resistant coated steel material additionally containing,
(6) The steel material described in any one of (1) to (5) above, wherein Nb ≦ 0.10%, V ≦ 0.10%, Zr ≦ 0.05%, Mo ≦ 0.25% , Mg ≦ 0.010%, REM ≦ 0.010%, additionally containing one or more types of corrosion-resistant coated steel materials,
(7) The corrosion-resistant coated steel material according to any one of the above (1) to (6), wherein a coating containing 50 to 90% of zinc and a metal salt of an electrochemically base metal than zinc is formed,
(8) The corrosion-resistant coated steel material according to (7), wherein the metal salt is magnesium phosphate or aluminum polyphosphate,
(9) The corrosion-resistant coated steel described in (7) or (8) above, wherein the average particle size of the metal salt is 1 μm or less,
(10) One type of Group IIA metal oxides or hydroxides on the surface of a steel material, the main component of which is an organic or inorganic resin, 50% or more of zinc and a saturated aqueous solution having a pH value of 10.5 or more A corrosion-resistant coated steel material according to any one of (1) to (9), wherein a coating film containing the above is formed;
(11) The corrosion-resistant coated steel material according to (10), wherein a coating containing one or more of calcium oxide, magnesium oxide, or calcium hydroxide is formed as the IIA metal-based oxide or hydroxide.

本発明は、特定組成の鋼材と亜鉛含有塗料との組み合わせにより、苛酷な環境条件下において、鉄錆の緻密化効果による保護性鉄錆を確保する同時に、亜鉛錆の緻密化によって環境遮断効果を強化し、被覆鋼材の耐食性を確実に向上する。そして、被覆鋼材の防食性が長期間にわたって維持できるので、建築物、構造物、産業機械等に広く使用して外気に曝されても塗り替え周期が長くでき、保守の手数、費用等の効果がきわめて大きい。   The present invention ensures a protective iron rust due to the iron rust densification effect under severe environmental conditions by combining a steel material with a specific composition and a zinc-containing paint, and at the same time has an environmental barrier effect due to the zinc rust densification. Strengthen and reliably improve the corrosion resistance of the coated steel. And since the corrosion resistance of the coated steel material can be maintained over a long period of time, it can be used for a wide range of buildings, structures, industrial machines, etc., and the repainting cycle can be extended even when exposed to the outside air. Very large.

本発明の耐食性被覆鋼材は、既述したように、母材鋼および被覆の各成分組成にそれぞれ特徴があり、両者が相乗的に耐食性を向上する。まず、鋼材のよき成分組成につき説明する。   As described above, the corrosion-resistant coated steel material of the present invention is characterized by the respective component compositions of the base steel and the coating, and both improve the corrosion resistance synergistically. First, the good component composition of the steel material will be described.

本発明の基礎となる鋼材は、通常含まれるC、Si、Mn、Cu、Ni、S、PおよびCrに加えて、Ti:0.03〜1.0%をTi/P>2.0となるように添加し、さらにCa:0.0001〜0.01%を添加する。この成分組成の鋼材は、50%以上多量配合の亜鉛含有塗料とあいまって、被覆鋼材の耐食性を著しく改善する。   In addition to C, Si, Mn, Cu, Ni, S, P, and Cr that are usually included, the steel material that is the basis of the present invention includes Ti: 0.03 to 1.0% and Ti / P> 2.0. Add Ca: 0.0001 to 0.01%. A steel material having this component composition, combined with a zinc-containing paint containing a large amount of 50% or more, significantly improves the corrosion resistance of the coated steel material.

本鋼材は、鋼強度確保のためにC:0.20%以下を必要とするが、溶接性および耐食性からは0.15%以下が望ましい。また、鋼の安定錆の生成を促進して耐食性の向上を促進するために、固溶強化元素としてSi:0.01〜1.0%を添加するが、これはよい溶接性を保証する限度である。また、Mn:2.5%以下の添加は、鋼強度確保のためであるが、加工性や靭性の低下およびMnS生成による耐食性劣化の点から2.5%を限度とした。また、生成錆を緻密化して安定錆の生成を促進するために、Cu:0.05〜3.0%を必須添加するが、S:0.02%以下の存在とのかねあいで、3.0%まで許容できる。また、鋼の耐食性を向上する効果を期待し、かつ、Cuの併添で懸念される熱間脆性を抑制するために、Ni:0.05〜6.0%をも必須添加するが、S:0.02%以下の存在とのかねあいで、6.0%まで許容できる。なお、鉄分および亜鉛の腐食の点から、Cr:0.20%以下、できれば0.01%以下が望ましい。   This steel material requires C: 0.20% or less for securing steel strength, but 0.15% or less is desirable from the viewpoint of weldability and corrosion resistance. Moreover, in order to promote the formation of stable rust of steel and promote the improvement of corrosion resistance, Si: 0.01 to 1.0% is added as a solid solution strengthening element, but this is a limit to guarantee good weldability. It is. Further, the addition of Mn: 2.5% or less is for securing the steel strength, but the limit was set to 2.5% from the viewpoints of deterioration of workability and toughness and deterioration of corrosion resistance due to MnS formation. Further, in order to densify the generated rust and promote the formation of stable rust, Cu: 0.05 to 3.0% is essential added, but in the presence of S: 0.02% or less, 3. Acceptable up to 0%. Further, in order to expect the effect of improving the corrosion resistance of the steel and to suppress the hot brittleness which is feared by the co-addition of Cu, Ni: 0.05 to 6.0% is also essentially added. : Acceptable up to 6.0% in the presence of 0.02% or less. In view of corrosion of iron and zinc, Cr: 0.20% or less, preferably 0.01% or less is desirable.

また、生成錆の緻密化による安定錆層の生成促進ならびにすぐれた耐食性および鋼の清浄化を期待して、Ti:0.03〜1.0%を添加するが、同様に安定錆層の形成に寄与するPとの競合関係から、Ti/P>2.0を付加的条件とした。この比率以下になると、亜鉛錆の緻密化が不十分となり、環境遮断効果がされないし、また溶接性も悪化することになるからである。   In addition, Ti: 0.03 to 1.0% is added in the hope of promoting the formation of a stable rust layer by densification of the generated rust, excellent corrosion resistance, and steel cleaning. From the competitive relationship with P that contributes to Ti / P> 2.0, an additional condition was set. If the ratio is less than this ratio, the zinc rust is not sufficiently densified, the environmental barrier effect is not achieved, and the weldability is also deteriorated.

さらに、鋼中にCa0.0001〜0.01%未満、望ましくは0.005%以下を存在させる。これは、防食膜下の腐食進行過程でCaが微量溶解してアルカリ性を呈し、いわゆるアノード溶解先端部の溶液pH緩衝効果をあらわし、被覆の欠陥部での隙間腐食を抑制するためである。   Furthermore, Ca 0.0001 to less than 0.01%, desirably 0.005% or less is present in the steel. This is because a small amount of Ca dissolves in the progress of corrosion under the anticorrosion film and exhibits alkalinity, and exhibits a solution pH buffering effect at the so-called anodic dissolution tip, and suppresses crevice corrosion at a defective portion of the coating.

さらに、鋼中にAl:0.05〜0.50%を追添すると、Cr量の抑制を補って、生成錆を緻密化し安定錆層の生成を促進し、ことにTiとの複合添加はより効果的である。ただし、鋼材の熔接性を劣化しないために上限を0.50%とする。   Furthermore, when Al: 0.05 to 0.50% is added to the steel, the suppression of the Cr amount is supplemented, the generated rust is densified and the formation of a stable rust layer is promoted, and in particular, the combined addition with Ti is More effective. However, the upper limit is made 0.50% in order not to deteriorate the weldability of the steel material.

また、本発明では、Caに加えて、それと同効のLaまたはCe:0.0001〜0.05%を添加してもよく、製鋼上はCaより都合がよい。 さらに、本発明は、Nb≦0.10%、V≦0.10%、Zr≦0.05%、Mo≦0.25%,Mg≦0.010%、REM≦0.010%の1種以上を併添してよい。これらは、目的鋼材に要求される他の性質や機能を鋼に付与するためであって、上記範囲での添加は本発明の期待効果を低減することはない。   Moreover, in this invention, in addition to Ca, La or Ce: 0.0001-0.05% of the same effect may be added, and it is more convenient than Ca on steelmaking. Furthermore, the present invention provides one type of Nb ≦ 0.10%, V ≦ 0.10%, Zr ≦ 0.05%, Mo ≦ 0.25%, Mg ≦ 0.010%, and REM ≦ 0.010%. The above may be accompanied. These are for imparting other properties and functions required for the objective steel material to the steel, and the addition in the above range does not reduce the expected effect of the present invention.

つぎに、本発明における被覆について説明する。無機有機いずれの樹脂塗料を用いてよいが、50%以上の亜鉛を含有する塗料を使用することが条件である。 有機系としては、エポキシ、ウレタン、ポリエステル樹脂等に、着色顔料として、べんがら、オーカー、チタン白、チタンイエロー、酸化クロムグリーン、フタロシアニンブルー、フタロシアニングリーン等を配合する。また体質顔料として、タルク、マイカ、シリカ、炭酸カルシウム、硫酸バリウム等を配合してよい。また、チキソ剤や分散剤等の添加剤を配合してよいし、塗装時に溶剤を用いることも任意である。無機系としては、アルキルシリケート樹脂、たとえばエチルシリケート樹脂塗料がよい。   Next, the coating in the present invention will be described. Any inorganic and organic resin coatings may be used, provided that a coating containing 50% or more of zinc is used. As an organic system, brown, ocher, titanium white, titanium yellow, chrome oxide green, phthalocyanine blue, phthalocyanine green, etc. are blended as coloring pigments in epoxy, urethane, polyester resin and the like. As extender pigments, talc, mica, silica, calcium carbonate, barium sulfate and the like may be blended. In addition, additives such as thixotropic agents and dispersants may be blended, and it is optional to use a solvent during coating. As the inorganic system, an alkyl silicate resin, for example, an ethyl silicate resin paint is preferable.

これらの樹脂系主成分に50%以上の亜鉛を添加することにより、鋼材成分と相俟って被膜の耐食性が確実に向上する。(図1)は以上の機能を模式的に表わしたもので、ステップ1は、被覆1に含まれる亜鉛が鋼材2に対し、電気化学的犠牲保護作用のために溶解3する状況を示している。さらに鋼中Caの存在は、アルカリ化により鉄ばかりではなく亜鉛の腐食をも抑制して両者の寿命を延長する効果がある。つぎに、亜鉛の腐食生成物4である亜鉛錆の大気保護作用がステップ2であって、鋼材の耐食性を維持する。本発明は、鋼中にTiを上述の量範囲で添加することによって、亜鉛錆を緻密化して生ずる亜鉛腐食生成物が欠陥部を効果的に修復する。   By adding 50% or more of zinc to these resin-based main components, the corrosion resistance of the coating is surely improved in combination with the steel component. FIG. 1 schematically shows the above functions. Step 1 shows a situation in which zinc contained in the coating 1 is dissolved 3 in the steel material 2 for electrochemical sacrificial protection. . Further, the presence of Ca in the steel has an effect of suppressing the corrosion of not only iron but also zinc by alkalizing and extending the life of both. Next, the atmosphere protection action of zinc rust, which is the corrosion product 4 of zinc, is step 2, and the corrosion resistance of the steel material is maintained. In the present invention, by adding Ti in steel in the above-mentioned amount range, a zinc corrosion product formed by densifying zinc rust effectively repairs a defective portion.

本発明は、鋼中のCu、Ni、Tiの含有量を上述のように制御することにより、外気中の塩素イオンの存在下等で顕著に見られる鉄錆、とくにβ錆のような鉄の腐食生成物の緻密化を促進して耐食性を向上する。さらに、この緻密な腐食生成物4は、ステップ3が示すように、上記亜鉛錆内に生ずるであろう隙間を埋めるようにして沈殿5して被覆の欠陥部を修復し、被覆鋼材の耐食性向上に寄与する。   In the present invention, by controlling the contents of Cu, Ni, and Ti in steel as described above, iron rust that is noticeable in the presence of chlorine ions in the outside air, particularly iron such as β rust, can be obtained. Improves corrosion resistance by promoting densification of corrosion products. Further, as shown in step 3, this dense corrosion product 4 is precipitated 5 so as to fill the gaps that will occur in the zinc rust, thereby repairing the coating defects and improving the corrosion resistance of the coated steel material. Contribute to.

なお、亜鉛が50%以下では、既述した鉄に対する電気化学的犠牲保護作用、すなわち防食膜下での腐食抑制が不十分になり、疵部分の孔食抑制効果が期待できない。しかし、亜鉛の配合量が90%を超えて95%にもなると、樹脂バインダーが不足して、造膜性、被膜付着性が低下する。また、亜鉛含有被覆の厚さは10μm以上が必要であって、これより薄いと、被覆下での腐食抑制が不十分で疵部の孔食が十分に阻止できない。   If the zinc content is 50% or less, the above-described electrochemical sacrificial protective action against iron, that is, corrosion inhibition under the anticorrosion film becomes insufficient, and the pitting corrosion inhibiting effect on the heel portion cannot be expected. However, when the blending amount of zinc exceeds 90% and reaches 95%, the resin binder is insufficient, and the film forming property and the film adhesion are deteriorated. Further, the thickness of the zinc-containing coating needs to be 10 μm or more, and if it is thinner than this, the corrosion suppression under the coating is insufficient and the pitting corrosion of the heel portion cannot be sufficiently prevented.

さらに本発明は、50〜90%の亜鉛とともに、亜鉛より電気化学的に卑である金属の金属塩、たとえばりん酸亜鉛、りん酸マグネシウムあるいはりんモリブデン酸アルミニウム等を配合する場合もある。これらの塩類が被膜内に亜鉛と共存すると、それらはpHを上げて亜鉛の溶出イオン化による酸性化に抵抗し、亜鉛イオンは水酸化亜鉛や塩基性塩化亜鉛等に変化して不溶化する。このようにして、亜鉛の溶出が抑制されると、結果的には被覆鋼板の耐食性および耐久性が一段とよくなる。なお、これらの塩類化合物は、平均粒径が1μm以下の微粒子が好ましく、また配合量は亜鉛量とのかねあいで0.1〜30%がよい。   Further, in the present invention, a metal salt that is electrochemically lower than zinc, such as zinc phosphate, magnesium phosphate or aluminum phosphomolybdate, may be blended together with 50 to 90% zinc. When these salts coexist with zinc in the coating, they raise the pH and resist acidification by elution ionization of zinc, and the zinc ions are insolubilized by changing to zinc hydroxide, basic zinc chloride or the like. Thus, if zinc elution is suppressed, as a result, the corrosion resistance and durability of the coated steel sheet are further improved. These salt compounds are preferably fine particles having an average particle size of 1 μm or less, and the blending amount is preferably 0.1 to 30% in view of the amount of zinc.

上述のように、多量の亜鉛を含有する被膜内で亜鉛が溶出するのは、亜鉛の犠牲陽極化によるもので、その結果、下式の加水分解反応により、pHを低下する。   As described above, the elution of zinc in the coating containing a large amount of zinc is due to sacrificial anodization of zinc, and as a result, the pH is lowered by the hydrolysis reaction of the following formula.

Zn→Zn2++2e-
Zn2++H2O⇔ZnOH++H+
pHが低下した状態では亜鉛の溶解が継続しやすいが、被膜中に上記金属塩を加えておくと、下記下式のように、亜鉛イオンによる酸性化が抑制され、亜鉛イオンは水酸化亜鉛あるいは塩基性塩化亜鉛等となって不溶化する。
Zn → Zn 2+ + 2e
Zn 2+ + H 2 O⇔ZnOH + + H +
Although dissolution of zinc tends to continue in a state where the pH is lowered, addition of the above metal salt to the coating suppresses acidification by zinc ions as shown in the following formula. It becomes insolubilized as basic zinc chloride.

ZnOH++H++2OH-→Zn(OH)2+H2O
このようにして被膜の耐食性を向上する。
ZnOH + + H + + 2OH → Zn (OH) 2 + H 2 O
In this way, the corrosion resistance of the coating is improved.

同様の目的で、本発明は、50%以上の亜鉛を含有する被膜に、飽和水溶液のpH値が10.5以上を示す周期律表IIA族金属の酸化物また
は水酸化物1種または2種以上を配合する場合がある。たとえば酸化カルシウム・マグネシウムあるいは水酸化カルシウム等がよい。この化合物を追加的に添加しておくと、その飽和水溶液がアルカリ側に高められ、その結果亜鉛の溶出が抑制されることになる。なお、この化合物の粒度は、10μm以下にして比表面積を大きくし、上記した被膜内の酸性化をより有効に抑制しやすくする。
For the same purpose, the present invention provides one or two oxides or hydroxides of Group IIA metal of the periodic table in which a saturated aqueous solution has a pH value of 10.5 or more in a film containing 50% or more of zinc. The above may be blended. For example, calcium oxide / magnesium or calcium hydroxide is preferable. If this compound is additionally added, the saturated aqueous solution is increased to the alkali side, and as a result, elution of zinc is suppressed. The particle size of this compound is 10 μm or less to increase the specific surface area, thereby making it easier to effectively suppress acidification in the coating film.

また、上記IIA系金属の酸化物・水酸化物は、既述した亜鉛よりも卑な金属の塩類化合物とともに使用すると、相乗効果が期待できる。   Further, when the above-mentioned IIA-based metal oxide / hydroxide is used together with a salt compound of a metal that is less basic than zinc as described above, a synergistic effect can be expected.

(実施例)
本発明の実施鋼および比較鋼の成分組成を表1に、これらの鋼材に被膜を形成するための塗料の種類および塗装明細を表2および3に、そして被覆鋼材の耐食性試験の結果を表4にそれぞれ示す。
(Example)
Table 1 shows the component compositions of the steels according to the present invention and comparative steels, Tables 2 and 3 show coating types and coating specifications for forming coatings on these steels, and Table 4 shows the results of the corrosion resistance test of the coated steels. Respectively.

まず、表1の各鋼材を常法にて溶製して試験材に加工し、ショットブラストによる脱スケール処理後、スプレーにより(表2、3)の各種塗装を施した。ついで、各塗装試験材の表面にカッターナイフで素地に達する疵をつけて、人工的な被膜欠陥とした。   First, each steel material in Table 1 was melted by a conventional method and processed into a test material. After descaling by shot blasting, various coatings (Tables 2 and 3) were applied by spraying. Next, the surface of each coating test material was creased with a cutter knife to reach the substrate, and an artificial film defect was made.

つぎに、これら試験材のエッジ部を別の塗料でシールし、被膜のつきまわりによる膜厚の多少により、耐食性の評価に影響を与えないように処理したのち、評価テストを実施した。   Next, the edge portions of these test materials were sealed with another paint, and the evaluation test was carried out after processing so that the corrosion resistance evaluation was not affected by the thickness of the coating.

まず、被膜の腐食テストは、つぎの4過程を1〜4の順にておこなう合計6時間1サイクルとし、これを1日あたり4サイクル反復し、6か月間継続した。   First, the coating corrosion test was performed for the following four steps in the order of 1 to 4 for a total of 6 hours and 1 cycle, which was repeated 4 cycles per day and continued for 6 months.

1.塩水噴霧
5%NaCl水溶液、30±2℃、0.5時間
2.湿潤
95±3%RH、30±2℃、1.5時間
3.熱風乾燥
20%RH、50±2℃、2時間
4.温風乾燥
20%RH、30±2℃、2時間
6か月経過後、被膜欠陥からのふくれ幅を測定して評価した。 すなわち、表1の比較鋼Aに(表2)アの鉛系錆止(亜鉛なし)を塗装した試験片の腐食量を基準の100とし、各腐食量を下記4種に分類して評価した。
1. Salt spray
5% NaCl aqueous solution, 30 ± 2 ° C., 0.5 hours 2. Wet
95 ± 3% RH, 30 ± 2 ° C, 1.5 hours 3. Hot air drying
20% RH, 50 ± 2 ° C, 2 hours 4. Drying with warm air
20% RH, 30 ± 2 ° C., 2 hours After 6 months, the blister width from the film defect was measured and evaluated. That is, the corrosion amount of a test piece obtained by coating the comparative steel A in Table 1 with (Table 2) lead-based rust inhibitor (without zinc) was set to 100, and each corrosion amount was classified into the following four types and evaluated. .

◎70%未満、 ○80%未満、 △90%未満、 ×90%以上
なお、表2のアの「鉛系錆止」は亜鉛なし、また同表イ〜エは本発明の亜鉛を多量に配合した例である。また、同表オの「新ジンク」は、亜鉛およびそれよりも卑な金属の塩類化合物を併添した処方ならびにさらにIIA系金属の酸化物・水酸化物をも配合した例であって、表3に内訳を示す。
◎ <70%, ○ <80%, △ <90%, × 90% or more
In Table 2, “Lead-based rust prevention” is zinc-free, and Tables A to D are examples in which a large amount of zinc of the present invention is blended. In addition, “New Zinc” in Table O is an example in which zinc and a base metal salt compound are combined, and also an IIA metal oxide / hydroxide is blended. 3 shows the breakdown.

表4の試験1〜5は、鋼成分および被膜配合のいずれも本発明の規定条件外の比較材で、試験結果はすべて不良である。試験6〜12は、本発明の条件内の母材鋼に鉛系塗料アを塗装したもので、試験結果は△で満足できない。これらに対して、試験片18〜27は、85%もの亜鉛を配合した被膜で、試験結果はよい。さらに、試験片28〜35は、亜鉛および金属塩を併添した被膜で、耐食性はさらによい。また、試験片36以下は、亜鉛、金属塩ならびにIIA金属系酸化物・水酸化物の三者を共添した被膜で、もっとも耐食性が優れていることがわかる。   Tests 1 to 5 in Table 4 are comparative materials outside the specified conditions of the present invention for both the steel component and the coating composition, and the test results are all poor. In Tests 6 to 12, the base steel within the conditions of the present invention was coated with a lead-based paint, and the test results were unsatisfactory with Δ. On the other hand, the test pieces 18-27 are the film | membrane which mix | blended 85% zinc, and a test result is good. Furthermore, the test pieces 28 to 35 are films in which zinc and a metal salt are added together, and the corrosion resistance is even better. In addition, the test piece 36 and below are coatings in which zinc, metal salt, and IIA metal oxide / hydroxide are co-added, and it is understood that the corrosion resistance is most excellent.

Figure 2006124796
Figure 2006124796

Figure 2006124796
Figure 2006124796

Figure 2006124796
Figure 2006124796

Figure 2006124796
Figure 2006124796

本発明の高耐食性塗装鋼材における塗膜層から鋼界面部分にかけての腐食現象を模式的に表わした断面図である。It is sectional drawing which represented typically the corrosion phenomenon from the coating-film layer to the steel interface part in the highly corrosion-resistant coating steel material of this invention.

符号の説明Explanation of symbols

1:被膜 2:鋼材
3:亜鉛溶解 4:亜鉛腐食生成物
5:鉄腐食生成物
1: Coating 2: Steel material 3: Zinc dissolution 4: Zinc corrosion product 5: Iron corrosion product

Claims (11)

C:0.20%以下(重量%を表わし、以下同じ。)、Si:0.01〜1.0%、Mn:2.5%以下、Cu:0.05〜3.0%、Ni:0.05〜6.0%、S:0.02%以下、P:0.2%以下、Cr:0.20%以下、Ca:0.0001〜0.01%未満およびTi:0.03〜1.0%を含有し、かつTi/P>2.0であって、残部が鉄および不可避の不純物からなる鋼材の表面に、有機または無機樹脂を主成分とし、50%以上の亜鉛を含有する被膜を、平均膜厚が10μm以上となるように形成したことを特徴とする耐食性被覆鋼材。   C: 0.20% or less (representing weight%, the same shall apply hereinafter), Si: 0.01 to 1.0%, Mn: 2.5% or less, Cu: 0.05 to 3.0%, Ni: 0.05 to 6.0%, S: 0.02% or less, P: 0.2% or less, Cr: 0.20% or less, Ca: 0.0001 to less than 0.01%, and Ti: 0.03 On the surface of a steel material containing ~ 1.0% and Ti / P> 2.0, the balance being iron and inevitable impurities, the main component is an organic or inorganic resin, and 50% or more of zinc A corrosion-resistant coated steel material, wherein the coating film is formed so as to have an average film thickness of 10 μm or more. 請求項1に記載された鋼材であって、Cr:0.10%以下であることを特徴とする耐食性被覆鋼材。   The steel material according to claim 1, wherein Cr: 0.10% or less. 請求項1または2に記載された鋼材であって、Ca:0.005%以下であることを特徴とする耐食性被覆鋼材。   The steel material according to claim 1 or 2, wherein Ca: 0.005% or less. 請求項1〜3のいずれかに記載された鋼材であって、Al:0.005〜0.50%を追加的に含有することを特徴とする耐食性被覆鋼材。   The steel material according to any one of claims 1 to 3, further comprising Al: 0.005 to 0.50%. 請求項1〜4のいずれかに記載された鋼材であって、La:0.0001〜0.05%およびCe:0.0001〜0.05%の1種または2種を追加的に含有することを特徴とする耐食性被覆鋼材。   The steel material according to any one of claims 1 to 4, further comprising one or two of La: 0.0001 to 0.05% and Ce: 0.0001 to 0.05%. Corrosion-resistant coated steel material. 請求項1〜5のいずれかに記載された鋼材であって、Nb≦0.10%、V≦0.10%、Zr≦0.05%、Mo≦0.25%、Mg≦0.010%およびREM≦0.010%の1種以上を追加的に含有することを特徴とする耐食性被覆鋼材。   The steel material according to any one of claims 1 to 5, wherein Nb≤0.10%, V≤0.10%, Zr≤0.05%, Mo≤0.25%, Mg≤0.010. % And REM ≦ 0.010% are additionally contained. 50〜90%の亜鉛を含有し、さらに亜鉛より電気化学的に卑な金属の金属塩を含有する被膜を形成したことを特徴とする請求項1〜6のいずれかに記載された耐食性被覆鋼材。   The corrosion-resistant coated steel material according to any one of claims 1 to 6, wherein a coating film containing 50 to 90% zinc and further containing a metal salt of a metal that is electrochemically less basic than zinc is formed. . 金属塩がりん酸マグネシウムまたはポリりん酸アルミニウムであることを特徴とする請求項7に記載された耐食性被覆鋼材。   The corrosion-resistant coated steel material according to claim 7, wherein the metal salt is magnesium phosphate or aluminum polyphosphate. 金属塩の平均粒径が1μm以下であることを特徴とする請求項7または8のいずれかに記載された耐食性被覆鋼板。   9. The corrosion-resistant coated steel sheet according to claim 7, wherein the metal salt has an average particle diameter of 1 μm or less. 鋼材の表面に、有機または無機樹脂を主成分とし、50%以上の亜鉛および飽和水溶液のpH値が10.5以上の周期律表IIA族金属の酸化物または水酸化物の1種以上を含有する被膜を形成したことを特徴とする請求項1〜9のいずれかに記載された耐食性被覆鋼材。   The surface of the steel material contains organic or inorganic resin as a main component, and contains 50% or more of zinc and one or more of Group IIA metal oxides or hydroxides having a pH value of 10.5 or more of saturated aqueous solution. A corrosion-resistant coated steel material according to any one of claims 1 to 9, wherein a coating film is formed. IIA金属系酸化物または水酸化物として、酸化カルシウム、水酸化カルシウムまたは酸化マグネシウムの1種以上を含有する被膜を形成したことを特徴とする請求項10に記載された耐食性被覆鋼材。 11. The corrosion-resistant coated steel material according to claim 10, wherein a coating containing at least one of calcium oxide, calcium hydroxide, or magnesium oxide is formed as the IIA metal-based oxide or hydroxide.
JP2004316533A 2004-10-29 2004-10-29 Corrosion resistant coated steel Active JP4291765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316533A JP4291765B2 (en) 2004-10-29 2004-10-29 Corrosion resistant coated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316533A JP4291765B2 (en) 2004-10-29 2004-10-29 Corrosion resistant coated steel

Publications (2)

Publication Number Publication Date
JP2006124796A true JP2006124796A (en) 2006-05-18
JP4291765B2 JP4291765B2 (en) 2009-07-08

Family

ID=36719815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316533A Active JP4291765B2 (en) 2004-10-29 2004-10-29 Corrosion resistant coated steel

Country Status (1)

Country Link
JP (1) JP4291765B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031540A (en) * 2006-07-31 2008-02-14 Kobe Steel Ltd Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
JP2010138454A (en) * 2008-12-11 2010-06-24 Kobe Steel Ltd Coated steel for ballast tank having excellent coating film blister resistance, ballast tank using the same, and vessel
JP2010150582A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Steel for crude oil tank ceiling having excellent corrosion resistance, crude oil tank and upper deck of crude oil tanker
JP2017150004A (en) * 2016-02-22 2017-08-31 新日鐵住金株式会社 Weather resistant coated steel material and corrosion prevention method of weather resistant coated steel material
WO2022003906A1 (en) * 2020-07-02 2022-01-06 日本電信電話株式会社 Coating material
CN113913687A (en) * 2021-09-07 2022-01-11 材谷金带(佛山)金属复合材料有限公司 Low-carbon high-strength seawater corrosion resistant steel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302244A (en) * 1995-04-28 1996-11-19 Nippon Steel Corp Inorganic-based rust preventing coating composition
JPH10330881A (en) * 1997-03-31 1998-12-15 Kobe Steel Ltd Coated steel product excellent in durability
JPH1171632A (en) * 1997-06-24 1999-03-16 Kobe Steel Ltd Steel excellent in bare weatherability and weldability
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302244A (en) * 1995-04-28 1996-11-19 Nippon Steel Corp Inorganic-based rust preventing coating composition
JPH10330881A (en) * 1997-03-31 1998-12-15 Kobe Steel Ltd Coated steel product excellent in durability
JPH1171632A (en) * 1997-06-24 1999-03-16 Kobe Steel Ltd Steel excellent in bare weatherability and weldability
JP2003171732A (en) * 2001-12-06 2003-06-20 Kobe Steel Ltd Corrosion resistant steel sheet having excellent coating corrosion resistance and pitting corrosion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031540A (en) * 2006-07-31 2008-02-14 Kobe Steel Ltd Steel material having superior corrosion resistance for ballast tank, and ballast tank having superior durability
JP4668141B2 (en) * 2006-07-31 2011-04-13 株式会社神戸製鋼所 Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
JP2010138454A (en) * 2008-12-11 2010-06-24 Kobe Steel Ltd Coated steel for ballast tank having excellent coating film blister resistance, ballast tank using the same, and vessel
KR101178341B1 (en) * 2008-12-11 2012-08-29 가부시키가이샤 고베 세이코쇼 Coating steel for ballast tank in excellent coating film swelling resistance, and ballast tank and ship using the same
JP2010150582A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Steel for crude oil tank ceiling having excellent corrosion resistance, crude oil tank and upper deck of crude oil tanker
JP2017150004A (en) * 2016-02-22 2017-08-31 新日鐵住金株式会社 Weather resistant coated steel material and corrosion prevention method of weather resistant coated steel material
WO2022003906A1 (en) * 2020-07-02 2022-01-06 日本電信電話株式会社 Coating material
JP7452653B2 (en) 2020-07-02 2024-03-19 日本電信電話株式会社 paint
CN113913687A (en) * 2021-09-07 2022-01-11 材谷金带(佛山)金属复合材料有限公司 Low-carbon high-strength seawater corrosion resistant steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4291765B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
KR101786358B1 (en) Solution composition for surface treating of steel sheet, zinc-based metal plated steel sheet using the same, and manufacturing method of the same
KR101622681B1 (en) Aluminum-zinc plated steel sheet and method for producing the same
JP4291765B2 (en) Corrosion resistant coated steel
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
KR101746431B1 (en) Process for Anti-corrosive Coating of Steel Construction Using Organic Zinc-Rich Anti-rust Primer and Ceramic-urethane Coating Materials
JP2016040350A (en) Substrate coating composition for repair
JP5555131B2 (en) Anticorrosion paint for steel, anticorrosion method and anticorrosion repair method using anticorrosion paint for steel
JP2011219791A (en) Coated plated steel material for concrete structure
JP2009113389A (en) Precoated steel sheet
JP5262369B2 (en) Steel structure coated with Al alloy and its anticorrosion coating method
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
JP6592344B2 (en) Thick film type inorganic zinc rich paint coating composition using Sn ion
JP4937960B2 (en) Weatherproof steel
KR101452573B1 (en) Surface treated steel
JP2006124797A (en) Coating corrosion resistant and pitting corrosion resistant coated steel sheet
JP4343570B2 (en) Steel base material and base material adjustment method
WO2022130494A1 (en) Coating material
JP3840409B2 (en) Corrosion-resistant steel sheet with excellent paint corrosion resistance and perforated corrosion resistance
JP6601259B2 (en) Weatherproof coated steel material and anticorrosion method for weatherable steel material
JP3932779B2 (en) Surface-treated steel and coating film forming method
JP6701792B2 (en) Painted corrosion resistant steel and anticorrosion method for corrosion resistant steel
JP6253966B2 (en) Coating composition for metal tube and metal tube formed by applying the same
JP3030482B2 (en) Anticorrosion paint composition
JP4392079B2 (en) Painted metal plate with excellent anti-corrosion paint and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5