JP2008030097A - High-pressure diffusion welding equipment - Google Patents

High-pressure diffusion welding equipment Download PDF

Info

Publication number
JP2008030097A
JP2008030097A JP2006207276A JP2006207276A JP2008030097A JP 2008030097 A JP2008030097 A JP 2008030097A JP 2006207276 A JP2006207276 A JP 2006207276A JP 2006207276 A JP2006207276 A JP 2006207276A JP 2008030097 A JP2008030097 A JP 2008030097A
Authority
JP
Japan
Prior art keywords
joining
joining members
members
bonding
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006207276A
Other languages
Japanese (ja)
Inventor
Kenji Ueno
健治 上野
Masayuki Ishikawa
政幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2006207276A priority Critical patent/JP2008030097A/en
Publication of JP2008030097A publication Critical patent/JP2008030097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make diffusion welding possible in a high-pressure state for a plurality of joining members simultaneously. <P>SOLUTION: The high-pressure diffusion welding equipment uses equipment having an electric power source 7 for generating a pulsed current or an AC current and a vacuum furnace or an atmospheric furnace with a mechanism for pressurizing joining members 10, 11 by means of an air or hydraulic cylinder 14 or the like. A heating element is installed on the outer periphery of the joining members and, using its radiation heat and heat transfer, diffusion welding is performed while the joining members 10, 11 are pressurized without making an electric current flow directly in the joining members. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、接合部材を拡散接合する拡散接合に関するものである。       The present invention relates to diffusion bonding in which bonding members are diffusion bonded.

現在、マイクロリアクターと呼ばれる卓上型化学反応機が精密化学合成の分野で注目を集めている。マイクロリアクターは、反応流路を何枚かの薄板からなる接合部材を積層することで形成されている。従来の拡散接合方法としては、固相拡散接合法が用いられ、その代表的な方法として特許3548509号に示されるような真空中で接合部材を当接して加圧しつつ直流のパルス電流を流す第一工程を行い、その後拡散熱処理の第二工程を行うことで接合部材を一個ずつ作る方法がとられてきた。   Currently, desktop chemical reactors called microreactors are attracting attention in the field of fine chemical synthesis. The microreactor is formed by laminating a joining member composed of several thin plates in a reaction channel. As a conventional diffusion bonding method, a solid phase diffusion bonding method is used. As a typical method, a DC pulse current is passed while a bonding member is abutted and pressurized in a vacuum as shown in Japanese Patent No. 3548509. A method has been adopted in which one step is performed, and then a second step of diffusion heat treatment is performed, thereby making the joining members one by one.

この従来のパルス直流電流による通電接合を図7に示す。上下の電極1,2から直接、接合部材10,11に電気が流れるように構成されており、パルス直流電流や交流電流により接合部材の界面が接触抵抗で発熱し、その発生するジュール熱で接合部材10,11の接合界面を固相拡散接合させていた。   FIG. 7 shows the current-carrying joining by this conventional pulse direct current. It is configured such that electricity flows directly from the upper and lower electrodes 1 and 2 to the joining members 10 and 11, and the interface of the joining member generates heat due to contact resistance due to pulsed direct current or alternating current, and is joined by the generated Joule heat. The bonding interface between the members 10 and 11 was solid phase diffusion bonded.

また複数の接合部材を同時に接合する拡散方法としては、特開平7−75882に示されるように、錘で加圧して加熱する真空雰囲気での第一工程と、大気中での第二工程の二段階方法が示されている。   Further, as a diffusion method for simultaneously joining a plurality of joining members, there are two methods, a first step in a vacuum atmosphere in which pressure is applied and heated by a weight, and a second step in the air, as disclosed in JP-A-7-75882. A step method is shown.

従来の方法の特許3548509号に示されているパルス直流電流を使って接合部材を固相拡散接合する方法では、多数の接合部材を一度に処理しようと電極間に並列に部材を配置すると、ある一箇所の部材に電流が偏り異常昇温を引き起こし、接合部材が熔けてしまう危険性がある。そこで複数の接合部材を一度に処理するためには、パルス直流電流を各接合部材に等しく流れるようにするために各接合部材を直列に配置する必要がある。しかしながら接合部材を直列に配置するには一つの炉では限界があり、生産性が低い。また、複数の炉を準備するには、設備にかかる費用が莫大になる。   In the method of solid phase diffusion bonding of bonding members using pulsed direct current shown in Japanese Patent No. 3548509 of the conventional method, there is a case where members are arranged in parallel between electrodes so as to process a large number of bonding members at a time. There is a risk that current is biased in one member, causing an abnormal temperature rise, and the joining member melts. Therefore, in order to process a plurality of joining members at once, it is necessary to arrange the joining members in series so that a pulsed direct current flows equally to each joining member. However, in order to arrange the joining members in series, there is a limit in one furnace, and productivity is low. Moreover, in order to prepare several furnaces, the expense concerning an installation becomes huge.

次に特開平7−75882に示される方法では、接合部材に錘を置いて加圧するので複数の接合部材を一度に処理できるが、錘の重さに限界があるので接合部材の部品精度が精密でなければ接合面に浮きが発生し、接合不良が発生する。
特許3548509号 特開平7−75882
Next, in the method disclosed in Japanese Patent Application Laid-Open No. 7-75882, a weight is placed on the joining member and pressurized, so that a plurality of joining members can be processed at one time. Otherwise, floating occurs on the joint surface, resulting in joint failure.
Japanese Patent No. 3548509 JP-A-7-75882

そこで、本発明の課題は、複数の接合部材を同時に拡散接合することができる新規な拡散接合装置を提供することにある。   Then, the subject of this invention is providing the novel diffusion bonding apparatus which can carry out the diffusion bonding of several joining members simultaneously.

上記課題を解決するため、複数の接合部材を同時に接合するには、真空または、不活性雰囲気中で接合部材を加圧する機構を備えた拡散接合装置によって接合部材を加圧すると共に電流で発熱する構造体を使い、複数の接合部材を加熱して拡散接合を行う。   In order to solve the above-mentioned problem, in order to join a plurality of joining members simultaneously, a structure that pressurizes the joining members and generates heat by an electric current by a diffusion joining apparatus having a mechanism for pressurizing the joining members in a vacuum or an inert atmosphere. A body is used to perform diffusion bonding by heating a plurality of bonding members.

この拡散接合装置では、加圧機構を備えているため、従来の錘では実現不可能な荷重を接合部材にかけることが出来るので接合部材間の浮きの発生がほとんど無くなり、接合不良の発生がほとんど無くなる。   Since this diffusion bonding device is equipped with a pressure mechanism, it is possible to apply a load to the bonding member that is impossible to achieve with conventional weights, so there is almost no floating between the bonding members and almost no defective bonding occurs. Disappear.

また、装置の加圧機構にて、錘では実現できない高加圧力を発生させることができるので、接合部材の元素の相互拡散を加熱とともに著しく進行させることが出来る。   Further, since the pressurizing mechanism of the apparatus can generate a high pressurizing force that cannot be realized by the weight, the mutual diffusion of the elements of the joining member can be remarkably advanced together with the heating.

次に、個々の接合部材は、絶縁物質で電流が遮断されているので、複数の接合部材は、発熱体の輻射熱又は伝熱で加熱されるため、一つの接合部材だけに電流が流れることによる異常昇温を引き起こすことなく複数個の接合部材が接合に要する温度までほぼ均一に加熱されて接合体の多数個製造が可能となる。   Next, since the current is interrupted by the insulating material in each bonding member, the plurality of bonding members are heated by the radiant heat or heat transfer of the heating element, so that the current flows through only one bonding member. A plurality of joined members are heated almost uniformly to the temperature required for joining without causing abnormal temperature rise, and a large number of joined bodies can be manufactured.

請求項2で発熱体と電極との接続構造に弾性機構を取り入れることで、接合部材が加熱されて膨張していくときに加圧機構を押し広げて電極と発熱体との間が離れ電流が遮断されるという危険性を防ぎ、接合部材が接合に必要な温度まで充分加熱されることを可能ならしめる。   By incorporating an elastic mechanism into the connection structure between the heating element and the electrode according to claim 2, when the joining member is heated and expands, the pressing mechanism is expanded and the current between the electrode and the heating element is separated. The risk of being blocked is prevented, and the joining member can be sufficiently heated to the temperature required for joining.

請求項3で複数個の接合部材に加圧力が均等にかかるように各接合部材には弾性機構の台が用意され、一つの加圧機構で複数個の接合部材を均一に加圧出来るようにする。   According to the third aspect of the present invention, an elastic mechanism base is prepared for each joining member so that the pressure is uniformly applied to the plurality of joining members, so that the plurality of joining members can be uniformly pressurized by one pressurizing mechanism. To do.

本発明では、高加圧のもとで拡散接合に必要な所望の温度まで接合部材に電流を流さずに加熱できるので同時に複数の接合部材を接合することが出来る。   In the present invention, heating can be performed without passing an electric current through the bonding member up to a desired temperature required for diffusion bonding under high pressure, so that a plurality of bonding members can be bonded simultaneously.

また、本装置の発熱体は、接合部材に応じた大きさの加熱構造をとることが出来るので、発熱体が炉に固定されている場合と異なり、さまざまな大きさの接合部材に対して適切な加熱構造を都度、選定できる。それゆえ接合部材の材質による適正な接合条件が得やすくなるので接合品の信頼性が向上し、かつ拡散接合に要する時間の無駄が無く、生産効率をあげることが出来る。   In addition, since the heating element of this device can have a heating structure of a size corresponding to the joining member, it is suitable for joining members of various sizes, unlike when the heating element is fixed to the furnace. Can be selected each time. Therefore, since it becomes easy to obtain appropriate joining conditions depending on the material of the joining member, the reliability of the joined product is improved, and there is no waste of time required for diffusion joining, and the production efficiency can be increased.

不活性雰囲気中で接合部材を加圧する機構を備えた拡散接合装置で接合部材を加圧し、電流で発熱する構造体で複数の接合部材を加熱して拡散接合を行う。発熱体と電極とは、弾性機構で電気的に繋がれており接合部材の熱膨張を吸収するようになっている。   The bonding member is pressurized by a diffusion bonding apparatus having a mechanism for pressing the bonding member in an inert atmosphere, and a plurality of bonding members are heated by a structure that generates heat by current to perform diffusion bonding. The heating element and the electrode are electrically connected by an elastic mechanism so as to absorb the thermal expansion of the joining member.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本発明の装置の全体図を示す。高加圧拡散接合装置は、電源7と真空炉または、雰囲気炉8、シリンダー14から構成されている。電源7は、直流のパルス直流電流または交流電流を発生させることが出来る。電流15が電源7から真空炉または雰囲気炉8に上部電極1と下部電極2を通じて供給される。パルス直流電流の場合は、パルス比を可変できるようになっており、交流電流の場合は、周波数が可変できるようになっている。電流条件は、接合部材に応じて適宜選ぶことが出来る。   FIG. 1 shows an overall view of the apparatus of the present invention. The high pressure diffusion bonding apparatus includes a power source 7 and a vacuum furnace or atmosphere furnace 8 and a cylinder 14. The power source 7 can generate a direct current pulse direct current or an alternating current. A current 15 is supplied from the power source 7 to the vacuum furnace or the atmospheric furnace 8 through the upper electrode 1 and the lower electrode 2. In the case of pulsed direct current, the pulse ratio can be varied, and in the case of alternating current, the frequency can be varied. The current condition can be appropriately selected according to the joining member.

真空炉または雰囲気炉8は、上下の電極1,2を備えており、いずれかの電極は、エアーまたは油圧で駆動できるシリンダー14で接合部材10,11を加圧出来る構造になっている。   The vacuum furnace or atmosphere furnace 8 includes upper and lower electrodes 1 and 2, and either electrode has a structure in which the joining members 10 and 11 can be pressurized by a cylinder 14 that can be driven by air or hydraulic pressure.

上下の電極1,2と真空炉または雰囲気炉8とは、オーリングで密閉されており、炉内の真空または不活性ガス雰囲気を維持できるようになっている。   The upper and lower electrodes 1 and 2 and the vacuum furnace or atmosphere furnace 8 are hermetically sealed with an O-ring so that a vacuum or an inert gas atmosphere in the furnace can be maintained.

接合部材10,11は、上下の電極1,2間に設置され少なくとも上または下側には、電流を遮断するための絶縁体12が配置される。   The joining members 10 and 11 are installed between the upper and lower electrodes 1 and 2, and an insulator 12 for interrupting current is disposed at least above or below.

また上下の電極1,2間には、発熱体9が接合部材10,11を取り巻くように設置されている。発熱体9とカーボンダイ3または4との間には、弾性を有するカーボンフェルト13が配置され、この弾性機構を通じて電流が流れるようになっている。   Further, a heating element 9 is installed between the upper and lower electrodes 1 and 2 so as to surround the joining members 10 and 11. An elastic carbon felt 13 is disposed between the heating element 9 and the carbon die 3 or 4 so that an electric current flows through this elastic mechanism.

この装置において、エアーまたは油圧で接合部材10,11及び絶縁体12を加圧するとともに、炉内を真空または不活性ガス雰囲気にして電源7からパルス直流電流または交流電流を流す。   In this apparatus, the joining members 10 and 11 and the insulator 12 are pressurized with air or hydraulic pressure, and a pulse direct current or alternating current is supplied from the power source 7 while the furnace is evacuated or in an inert gas atmosphere.

パルス直流電流や交流電流で発熱体9が熱を発生し接合部材10,11を加熱する。接合部材は、発熱体の輻射熱と上下のカーボンダイ3,4,5,6から伝わる伝熱で加熱され所望の拡散接合温度まで維持される。   The heating element 9 generates heat by the pulse direct current or the alternating current and heats the joining members 10 and 11. The joining member is heated by the radiant heat of the heating element and the heat transferred from the upper and lower carbon dies 3, 4, 5, 6 and is maintained up to a desired diffusion joining temperature.

接合部材10,11が所望の温度に達した後は、その温度で必要時間保持され、その後、電流を切り、取り出し可能な温度まで冷却する。接合体の冷却の時間短縮のために不活性ガスを炉内に注入することも可能である。   After the joining members 10 and 11 reach the desired temperature, the temperature is maintained for a required time at that temperature, and then the current is turned off and cooled to a temperature at which the joining members 10 and 11 can be taken out. It is also possible to inject an inert gas into the furnace in order to shorten the time for cooling the joined body.

図2に本発明の発熱部位の構造図を示す。上下の電極1,2間には、カーボン素材で構成された発熱体9が接合部材であるSUS316ブロック10とSUS316薄板11の周囲に配置されている。発熱体9の上下には、カーボンフェルト13,131が挟み込まれていて発熱体9と上下のカーボンダイ31,401との間に隙間があっても電気的につなげることができるようになっている。   FIG. 2 shows a structural diagram of the heat generating portion of the present invention. Between the upper and lower electrodes 1 and 2, a heating element 9 made of a carbon material is disposed around the SUS316 block 10 and the SUS316 thin plate 11 which are joining members. Carbon felts 13 and 131 are sandwiched between the upper and lower portions of the heating element 9 so that they can be electrically connected even if there is a gap between the heating element 9 and the upper and lower carbon dies 31 and 401. .

このカーボンフェルト13,131の弾性で、接合部材10,11が加熱されて膨張し上下の電極1,2間を広げるように挙動しても電極から発熱体への電流供給が途切れることは無く、所望の温度まで接合部材10,11を加熱し続けることが可能となる。   Due to the elasticity of the carbon felts 13 and 131, even if the bonding members 10 and 11 are heated to expand and behave so as to widen the upper and lower electrodes 1 and 2, the current supply from the electrodes to the heating element is not interrupted. It becomes possible to continue heating the joining members 10 and 11 to a desired temperature.

この接合装置には、直流のパルス直流電流を最大10,000Aまで発生させることの出来る電源7が付属している。   This joining apparatus is provided with a power source 7 capable of generating a direct current pulse direct current up to 10,000A.

接合部材10,11の上部には、絶縁体である石英板12が配置されており、上下の電極1,2が短絡することはなく、発熱体9からの輻射熱と伝熱だけで接合部材10,11が加熱される。絶縁体としては、石英板に限らずアルミナ板やジルコニウム板でもかまわない。   A quartz plate 12, which is an insulator, is disposed above the joining members 10 and 11, so that the upper and lower electrodes 1 and 2 are not short-circuited, and only the radiant heat and heat transfer from the heating element 9 are used. 11 are heated. The insulator is not limited to a quartz plate but may be an alumina plate or a zirconium plate.

接合部材11は、SUS316の厚さ0.5mmの薄板であり、接合部材10は、SUS316の横60mm、縦30mm、高さ20mmのブロックである。これらの接合部材の接合面は、平行度を2マイクロメータ以下とし表面粗さを0.2マイクロメータ以下の鏡面仕上げとした。   The joining member 11 is a thin plate of SUS316 having a thickness of 0.5 mm, and the joining member 10 is a block of SUS316 having a width of 60 mm, a length of 30 mm, and a height of 20 mm. The joining surfaces of these joining members were mirror finished with a parallelism of 2 micrometers or less and a surface roughness of 0.2 micrometers or less.

接合部材への加圧構造は、カーボンダイ5がカーボンシート16を挟んで構成されており接合部材の寸法精度に加圧がならう構造になっている。これにより、接合部材が拡散接合の高温状態になった時に寸法変化を起こしてもカーボンシート16が変形し、加圧分布が変わるのを防ぐことができる。また、下側のカーボンダイ構成でもカーボンダイ4と401の間にカーボンシートを挟むようにしてもかまわない。   The pressurizing structure for the joining member is configured such that the carbon die 5 is sandwiched between the carbon sheets 16 so that pressurization can be applied to the dimensional accuracy of the joining member. Thereby, even if it causes a dimensional change when the joining member is in a high temperature state of diffusion joining, the carbon sheet 16 can be prevented from being deformed and the pressure distribution being changed. Further, the carbon sheet may be sandwiched between the carbon dies 4 and 401 even in the lower carbon die configuration.

図3に発熱体の構成部品の上面図aと側面図bを示す。発熱体は、カーボン素材で作られており、発熱構成部品は、切欠き91を有する半円柱形状である。この図3の部品を2個向かい合わせて外套となるように組み上げて発熱体とする。   FIG. 3 shows a top view a and a side view b of the components of the heating element. The heating element is made of a carbon material, and the heating component has a semi-cylindrical shape having a notch 91. The two parts shown in FIG. 3 are assembled so as to be a mantle facing each other to form a heating element.

組みあがりの図を図4に示す。発熱体は、構成部品19,20を切欠き91,910が向かい合うように組合わせる。この組立により切欠き91,910で中央部に四角の窓92が形成される。この四角の窓92の目的は、拡散接合時の接合部材の挙動を観察するためである。 A diagram of the assembly is shown in FIG. The heating element combines the component parts 19 and 20 so that the notches 91 and 910 face each other. By this assembly, a rectangular window 92 is formed at the center by the notches 91 and 910. The purpose of the square window 92 is to observe the behavior of the joining member during diffusion joining.

図5に接合部材が複数個のときの接合方法を示す。   FIG. 5 shows a joining method when there are a plurality of joining members.

接合部材10,11を複数個用意し同時に接合する場合、接合部材を配置する下側のカーボンダイに接合部材に応じた複数個の穴を開けたカーボンダイ601を用意し、各穴にカーボンシート161を複数枚重ねて配置する。   When a plurality of joining members 10 and 11 are prepared and joined at the same time, a carbon die 601 having a plurality of holes corresponding to the joining member is prepared in a lower carbon die on which the joining members are arranged, and a carbon sheet is provided in each hole. Plural pieces of 161 are arranged.

次にその穴の大きさに合わせた円柱状のカーボンダイ17を各穴に入れ、その各カーボンダイ17の上に接合部材10,11をそれぞれ配置する。   Next, a cylindrical carbon die 17 matching the size of the hole is placed in each hole, and the joining members 10 and 11 are disposed on the carbon die 17, respectively.

接合部材10,11と電極1,2とを絶縁するために石英板12を配置して、上下の電極1,2をシリンダーを使い加圧して接合部材に圧力をかけ、電流15を流す。その電流15で外周の発熱体9を発熱させ輻射熱と伝熱で複数個の接合部材を所望の温度まで加熱する。   In order to insulate the joining members 10 and 11 and the electrodes 1 and 2, a quartz plate 12 is arranged, and the upper and lower electrodes 1 and 2 are pressurized using a cylinder to apply pressure to the joining member, and a current 15 flows. The current 15 heats the outer heating element 9 to heat the plurality of joining members to a desired temperature by radiant heat and heat transfer.

尚、電気絶縁のために使われる絶縁板の材質は、石英に限らずアルミナでもジルコニウムでも所望の加熱温度に耐えられる絶縁材料であれば限定されるものではない。   The material of the insulating plate used for electrical insulation is not limited to quartz, and any material that can withstand a desired heating temperature, such as alumina or zirconium, is not limited.

図6に接合部材が複数個のときの他の接合方法を示す。   FIG. 6 shows another joining method when there are a plurality of joining members.

発熱体を外周に配置するだけではなく中心部にカーボンダイ18を配置し、発熱箇所を増やす。カーボンダイ18には、発熱体9と同じくカーボンフェルト162を上下に配置してある。電流15は、外周の発熱体9と中心部のカーボンダイ18にわかれて流れ、それぞれが発熱する。   In addition to arranging the heating element on the outer periphery, a carbon die 18 is arranged in the center to increase the number of heating points. In the carbon die 18, the carbon felt 162 is arranged up and down like the heating element 9. The current 15 flows between the outer heating element 9 and the central carbon die 18, and each generates heat.

発熱体をこのような構成にすると発熱箇所が増え、輻射熱と伝熱で拡散接合の温度まで安定した加熱状況を作り出すことが可能になる。   When the heating element has such a configuration, the number of heat generation points increases, and it becomes possible to create a stable heating state up to the temperature of diffusion bonding by radiant heat and heat transfer.

図2の構成で接合部材10,11を加圧、加熱して拡散接合をさせたときの温度並びに圧力条件は、以下のようであった。
・真空度 6.1Pa
・温度 1,030度(摂氏)
・圧力 10MPa
・時間 室温から1,030度(摂氏)まで20分で昇温
1,030度(摂氏)保持2分 その後自然冷却
The temperature and pressure conditions when the joining members 10 and 11 were pressurized and heated to perform diffusion joining in the configuration of FIG. 2 were as follows.
・ Degree of vacuum 6.1Pa
・ Temperature 1,030 degrees Celsius
・ Pressure 10MPa
・ Time from room temperature to 1,030 degrees Celsius in 20 minutes
1,030 degree (Celsius) holding 2 minutes, then natural cooling

また、この接合体を上記条件で接合した後、真空炉で拡散熱処理も追加で施したがその条件は、以下のようにした。
・真空度 0.5Pa
・温度 1,030度(摂氏)1時間
・戻し 250度(摂氏)2時間
Moreover, after this joined body was joined under the above conditions, a diffusion heat treatment was additionally performed in a vacuum furnace. The conditions were as follows.
・ Degree of vacuum 0.5Pa
・ Temperature 1,030 degrees (Celsius) 1 hour ・ Return 250 degrees (Celsius) 2 hours

これらの接合条件で拡散接合した接合体は、互いに強固に接合されており剥離することは出来なかった。   The joined bodies that were diffusion-bonded under these joining conditions were firmly joined to each other and could not be peeled off.

高加圧機構と発熱構造体で構成された装置を用いることで、多数の接合部材を生産性良く、一度に拡散接合することが出来る。   By using an apparatus composed of a high pressure mechanism and a heat generating structure, a large number of bonding members can be diffusion bonded at a time with high productivity.

また、一体としての加工が困難な部材もいくつかの部品に分けて加工し、本発明の方法で接合することで一体として仕上げることが可能となる。   Further, a member that is difficult to process as an integral part can be processed by dividing it into several parts and joined together by the method of the present invention, so that it can be finished as an integral part.

本発明の装置の全体図Overall view of the device of the present invention 本発明の発熱部位の構造図Structural diagram of the heat generating part of the present invention 発熱体の構成部品Heating element components 発熱体の組立図Assembly drawing of heating element 本発明の接合部材が複数個のときの装置の構成図Configuration diagram of apparatus when there are a plurality of joining members of the present invention 本発明の接合部材が複数個のときの他の構成図Another block diagram when there are a plurality of joining members of the present invention 従来のパルス直流電流による通電接合の構成図Configuration diagram of current-carrying junction using pulsed direct current

符号の説明Explanation of symbols

1 上部電極
2 下部電極
3 カーボンダイ
4 カーボンダイ
5 カーボンダイ
6 カーボンダイ
7 電源
8 真空炉または雰囲気炉
9 発熱体
10 接合部材
11 接合部材
12 絶縁体
13 カーボンフェルト
14 シリンダー
15 電流

DESCRIPTION OF SYMBOLS 1 Upper electrode 2 Lower electrode 3 Carbon die 4 Carbon die 5 Carbon die 6 Carbon die 7 Power source 8 Vacuum furnace or atmosphere furnace 9 Heating element 10 Joining member 11 Joining member 12 Insulator 13 Carbon felt 14 Cylinder 15 Current

Claims (3)

真空または、不活性雰囲気中で接合部材を加圧する加圧機構を備え、上記接合部材を拡散接合する拡散接合装置において、前記加圧機構が電極となり直流または交流電流を流すことで発熱する構造体で前記接合部材を加熱し、前記接合部材には絶縁物質で電流が流れないようにしたことを特徴とする高加圧拡散接合装置。   In a diffusion bonding apparatus that includes a pressure mechanism that pressurizes a bonding member in a vacuum or in an inert atmosphere, and in which the pressure bonding mechanism serves as an electrode, the pressure mechanism serves as an electrode and generates heat when a direct current or an alternating current flows. The high pressure diffusion bonding apparatus according to claim 1, wherein the bonding member is heated to prevent an electric current from flowing through the bonding member with an insulating material. 前記構造体は、電流で発熱する部材により構成なされていて、前記電極からの電流供給機構に弾性を有する構造で構成されている請求項1記載の高加圧拡散接合装置。   The high pressure diffusion bonding apparatus according to claim 1, wherein the structure is configured by a member that generates heat by electric current, and has a structure in which a current supply mechanism from the electrode has elasticity. 前記加圧機構は、各接合部材への加圧力を均等になされるよう弾性機構が設けられる請求項1記載の高加圧拡散接合装置。

The high pressure diffusion bonding apparatus according to claim 1, wherein the pressurizing mechanism is provided with an elastic mechanism so that the pressure applied to each bonding member is made uniform.

JP2006207276A 2006-07-30 2006-07-30 High-pressure diffusion welding equipment Pending JP2008030097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207276A JP2008030097A (en) 2006-07-30 2006-07-30 High-pressure diffusion welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207276A JP2008030097A (en) 2006-07-30 2006-07-30 High-pressure diffusion welding equipment

Publications (1)

Publication Number Publication Date
JP2008030097A true JP2008030097A (en) 2008-02-14

Family

ID=39120048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207276A Pending JP2008030097A (en) 2006-07-30 2006-07-30 High-pressure diffusion welding equipment

Country Status (1)

Country Link
JP (1) JP2008030097A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006068A (en) * 2010-06-28 2012-01-12 Eco−A株式会社 Device and method for electric diffusion joining
CN102699520A (en) * 2012-06-21 2012-10-03 江苏科技大学 Low-temperature rapid diffusion welding device and method based on pulse current auxiliary heating
WO2013065175A1 (en) * 2011-11-04 2013-05-10 Eco-A株式会社 Current diffusion bonding apparatus and current diffusion boding method
US20130141197A1 (en) * 2011-06-24 2013-06-06 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US20130141194A1 (en) * 2011-06-24 2013-06-06 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
JP2014128815A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Diffused junction jig and diffused junction method
JP2016178111A (en) * 2015-03-18 2016-10-06 昭和電線ケーブルシステム株式会社 Current lead
KR101842335B1 (en) * 2016-02-12 2018-03-26 두산중공업 주식회사 Vacuum diffusion inosculating apparatus and method
KR101887151B1 (en) * 2017-04-18 2018-08-09 한국생산기술연구원 Diffusion bonding apparatus
CN110328443A (en) * 2019-06-24 2019-10-15 北京航星机器制造有限公司 A kind of pulse current auxiliary aluminium alloy large area diffusion connecting mechanism and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594788A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Diffusion bonding device
JP2001117081A (en) * 1999-10-18 2001-04-27 Ibiden Co Ltd Heating device of substrate for liquid crystal display panel
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594788A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Diffusion bonding device
JP2001117081A (en) * 1999-10-18 2001-04-27 Ibiden Co Ltd Heating device of substrate for liquid crystal display panel
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006068A (en) * 2010-06-28 2012-01-12 Eco−A株式会社 Device and method for electric diffusion joining
US20130141197A1 (en) * 2011-06-24 2013-06-06 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
US20130141194A1 (en) * 2011-06-24 2013-06-06 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
WO2013065175A1 (en) * 2011-11-04 2013-05-10 Eco-A株式会社 Current diffusion bonding apparatus and current diffusion boding method
US9669488B2 (en) 2011-11-04 2017-06-06 Eco-A Co., Ltd. Current diffusion bonding apparatus and current diffusion bonding method
CN102699520A (en) * 2012-06-21 2012-10-03 江苏科技大学 Low-temperature rapid diffusion welding device and method based on pulse current auxiliary heating
JP2014128815A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Diffused junction jig and diffused junction method
JP2016178111A (en) * 2015-03-18 2016-10-06 昭和電線ケーブルシステム株式会社 Current lead
KR101842335B1 (en) * 2016-02-12 2018-03-26 두산중공업 주식회사 Vacuum diffusion inosculating apparatus and method
KR101887151B1 (en) * 2017-04-18 2018-08-09 한국생산기술연구원 Diffusion bonding apparatus
CN110328443A (en) * 2019-06-24 2019-10-15 北京航星机器制造有限公司 A kind of pulse current auxiliary aluminium alloy large area diffusion connecting mechanism and method

Similar Documents

Publication Publication Date Title
JP2008030097A (en) High-pressure diffusion welding equipment
JP6517835B2 (en) Fuel cell stack configuration
JP5541341B2 (en) Wafer bonding equipment
CA2754081C (en) Method for producing thermoelectric module
JP2009087703A (en) Heating element for induction heating device, and package for divided heating element
JP2016183097A (en) Ozone generator
TWI241275B (en) Ozonizer
TWI259828B (en) Ozonizer
US8283194B2 (en) Method for applying layers onto thermoelectric materials
TW200541378A (en) Heating device
JP6475054B2 (en) Components for semiconductor manufacturing equipment
JP6392233B2 (en) Heater assembly
KR102024680B1 (en) Sintering apparatus for selectively applyung electric current
TWI774482B (en) Wafer stage
JP3506199B2 (en) Thermoelectric converter
JP5251677B2 (en) Circuit board bonding jig and circuit board manufacturing method
KR102037368B1 (en) Diffusion bonding apparatus and Diffusion bonding method
JP2004319944A (en) Cylindrical multilayer thermoelectric transducer
JP2006134644A (en) Assembling method of fuel cell
JP2009019236A (en) Water-vapor electrolysis cell unit
KR101906975B1 (en) Method for manufacturing thermoelectric conversion element, and thermoelectric conversion element
JP4124667B2 (en) Hybrid pressurized energizing electrode for energizing pressure sintering machine
KR102272200B1 (en) Contact heating apparatus and method for hot stamping
EP3442039B9 (en) Thermoelectric conversion module
JP2009131902A (en) Joining device for substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A02