JP2008027849A - Seal member - Google Patents

Seal member Download PDF

Info

Publication number
JP2008027849A
JP2008027849A JP2006202078A JP2006202078A JP2008027849A JP 2008027849 A JP2008027849 A JP 2008027849A JP 2006202078 A JP2006202078 A JP 2006202078A JP 2006202078 A JP2006202078 A JP 2006202078A JP 2008027849 A JP2008027849 A JP 2008027849A
Authority
JP
Japan
Prior art keywords
electrode terminal
battery
plate
lid
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202078A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Tomoyasu Takeuchi
友康 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006202078A priority Critical patent/JP2008027849A/en
Publication of JP2008027849A publication Critical patent/JP2008027849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal member capable of securing a high sealing property. <P>SOLUTION: This seal member is used for a sealing plate for a battery case having a lid plate forming a part of the battery case, an electrode terminal, and the seal member arranged between the lid plate and the electrode terminal. The seal member is formed of an unreinforced polyphenylene sulfide resin bonded to at least either of the electrode terminal and the lid plate by chemical bonding, and is characterized in that the crystallinity of the resin is not smaller than 35%. The seal member has a high sealing property (high adhesive strength, durability and water permeability resistance). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シール部材に関し、詳しくは、電池において金属よりなる電池容器と電極端子との間をシールするシール部材に関する。   The present invention relates to a seal member, and more particularly to a seal member that seals between a battery container made of metal and an electrode terminal in a battery.

近年、自動車等の車両を駆動するための車載電源として、大容量・高出カでエネルギー密度の高いリチウム電池が注目されている。   2. Description of the Related Art In recent years, lithium batteries with large capacity, high output, and high energy density have attracted attention as in-vehicle power sources for driving vehicles such as automobiles.

このようなリチウム電池としては、金属箔等よりなる集電部材の表面にLiNiO2等の活物質を主成分とする固体電極を形成した正極及び負極がセパレータを介して対向配置された電極体に非水電解液を含浸させて有底容器に収容し、金属蓋体で密閉したものが知られている。 As such a lithium battery, an electrode body in which a positive electrode and a negative electrode in which a solid electrode mainly composed of an active material such as LiNiO 2 is formed on the surface of a current collecting member made of a metal foil or the like is arranged to face each other through a separator is used. A non-aqueous electrolyte impregnated and accommodated in a bottomed container and sealed with a metal lid is known.

しかしながら、リチウム電池などの非水電解質電池は、電池容器の内部に水分が侵入すると、電池性能が低下するという問題があった。詳しくは、非水電解質電池の容器内部に水分が存在すると、水分と非水電解質とが反応してフッ酸を生成する。生成したフッ酸が電極を浸食し、電池容量や電池寿命などの性能を低下させていた。   However, a non-aqueous electrolyte battery such as a lithium battery has a problem in that battery performance deteriorates when moisture enters the inside of the battery container. Specifically, when moisture is present inside the container of the nonaqueous electrolyte battery, the moisture and the nonaqueous electrolyte react to generate hydrofluoric acid. The generated hydrofluoric acid eroded the electrode, reducing the performance such as battery capacity and battery life.

このため、リチウム電池においては、外部からの水分の侵入を抑えるために電池容器の内部と外部のシール性を十分に保持する必要があった。従来のリチウム電池においては、蓋体と蓋体を貫通して電池内部から外部へ突き出た電極端子の隙間のシールとしてO−リングを用いたシール機構が一般的に知られている。   For this reason, in a lithium battery, in order to suppress the penetration | invasion of the water | moisture content from the outside, it was necessary to fully maintain the sealing performance of the inside and outside of a battery container. In a conventional lithium battery, a sealing mechanism using an O-ring is generally known as a seal for a gap between electrode bodies protruding from the inside of the battery through the lid and the lid.

しかし、O−リングによるシール機構は部品点数が増加することによるコスト増大が課題となっていた。   However, the O-ring sealing mechanism has a problem of cost increase due to an increase in the number of parts.

この課題を解決するために、樹脂製の絶縁密閉部材を電池上蓋と電極端子に接着することで電池内部と外部のシール性を保つシール構造が知られている。例えば、特許文献1には、トリアジンチオール類またはシランカップリング剤からなる被覆層が形成された内周側に貫通孔を備える金属製部材と、貫通孔に挿通された1対の電極端子を金型に組み付け、蓋体と電極端子との聞に樹脂をインサート成形することにより、蓋体と電極端子とを絶縁密封部材を介して強固に接着し、一体的に成形した電池蓋体が記載されている。この蓋体は、有底筒状の容器の開口部に超音波溶接で閉蓋する。   In order to solve this problem, a sealing structure is known in which an insulating sealing member made of resin is bonded to a battery upper lid and an electrode terminal to maintain a sealing property between the inside and outside of the battery. For example, in Patent Document 1, a metal member having a through hole on the inner peripheral side on which a coating layer made of triazine thiols or a silane coupling agent is formed, and a pair of electrode terminals inserted through the through hole are made of gold. A battery lid body is described in which the lid body and the electrode terminal are firmly bonded to each other through an insulating sealing member by inserting a resin in the space between the lid body and the electrode terminal. ing. This lid is closed by ultrasonic welding at the opening of the bottomed cylindrical container.

しかしながら、リチウム電池に薄肉の蓋体を用いると、リチウム電池が膨張あるいは収縮を生じたときに、樹脂と金属の接着部の界面に応カが集中し、接着部に剥離力が生じ、シール部が破壊してシール性が低下するという問題があった。このリチウム電池の膨張あるいは収縮は、繰り返し充放電によるガス発生や、温度変化による電池内部ガスの熱膨張あるいは熱収縮等により生じる。   However, if a thin lid is used for the lithium battery, when the lithium battery expands or contracts, the stress is concentrated at the interface between the resin and metal bonding portion, and a peeling force is generated at the bonding portion. However, there was a problem that the sealing performance deteriorates due to destruction. The expansion or contraction of the lithium battery is caused by gas generation due to repeated charge / discharge, thermal expansion or contraction of the gas inside the battery due to temperature change, and the like.

また、リチウム電池がO−リングを用いたシール機構であるときでも、リチウム電池の膨張あるいは収縮による応力の集中により、シール性が低下する問題は発生していた。
特開2002−237436号公報
Further, even when the lithium battery has a sealing mechanism using an O-ring, there has been a problem that the sealing performance is deteriorated due to concentration of stress due to expansion or contraction of the lithium battery.
JP 2002-237436 A

本発明は上記実状に鑑みてなされたものであり、蓋体と電極端子とをシール部材でシールする電池容器用封口板であって、膨張や収縮が生じても高いシール性(高い接着強度や耐久性)を確保できるシール部材を提供することを課題とする。   The present invention has been made in view of the above circumstances, and is a battery container sealing plate that seals a lid and an electrode terminal with a sealing member, and has high sealing properties (high adhesive strength and It is an object to provide a sealing member that can ensure durability.

上記課題を解決するために本発明者らは検討を重ねた結果、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have made studies, and as a result, have come to make the present invention.

本発明のシール部材は、電池容器の一部を形成しかつ貫通孔が開口した金属よりなる蓋板と、貫通孔を貫通した金属よりなる電極端子と、蓋板と電極端子との間に配置されるシール部材と、を有する電池容器用封口板に用いられるシール部材であって、シール部材は、電極端子および蓋板の少なくとも一方と化学結合により結合している非強化型のポリフェニレンサルファイド樹脂であり、樹脂の結晶化度が35%以上であることを特徴とする。   The sealing member of the present invention is arranged between a lid plate made of metal that forms a part of the battery container and has a through hole, an electrode terminal made of metal that penetrates the through hole, and the lid plate and the electrode terminal. A sealing member used for a sealing plate for a battery container having a non-reinforced polyphenylene sulfide resin bonded to at least one of an electrode terminal and a lid plate by a chemical bond. And the crystallinity of the resin is 35% or more.

本発明のシール部材は、結晶化度が35%以上である結晶性高分子のポリフェニレンサルファイド樹脂により形成されたことで、シール部材が高い強度と耐透水性をもつようになった。つまり、本発明のシール部材は、高いシール性(高い接着強度や耐久性および耐透水性)をもつシール部材である。   The seal member of the present invention is made of a crystalline polymer polyphenylene sulfide resin having a crystallinity of 35% or more, so that the seal member has high strength and water permeability. That is, the seal member of the present invention is a seal member having high sealing properties (high adhesive strength, durability, and water permeability).

本発明のシール部材は、電池容器の一部を形成しかつ貫通孔が開口した金属よりなる蓋板と、貫通孔を貫通した金属よりなる電極端子と、蓋板と電極端子との間にもうけられ、蓋板および電極端子を化学結合により接合したシール部材と、を有する電池容器用封口板に用いられるシール部材である。   The sealing member of the present invention is provided between a lid plate made of metal that forms a part of a battery container and has a through hole, an electrode terminal made of metal that penetrates the through hole, and the lid plate and the electrode terminal. The sealing member is used for a battery container sealing plate having a sealing member in which a lid plate and an electrode terminal are joined by chemical bonding.

蓋板は、電池容器の一部を形成しかつ貫通孔が開口した部材である。ここで、本発明における蓋板とは、電池容器用の一部を形成しかつ貫通孔を備えていればよく、電池容器が有底筒状の部材とこの部材の開口部を塞ぐ部材とからなるときに、貫通孔が開口していれば開口部を塞ぐ部材だけでなく有底筒状の部材であってもよい。本発明の電池用器用封口板は、有底筒状の部材の開口部を塞ぐ部材であることがより好ましい。蓋板を構成する材質については耐透水性が高いことから金属が用いられる。蓋板を構成する金属としては、たとえば、アルミニウム、鉄、ステンレス等の金属をあげることができる。   The lid plate is a member that forms a part of the battery container and has a through hole. Here, the lid plate according to the present invention only needs to form a part for the battery container and be provided with a through hole. The battery container includes a bottomed cylindrical member and a member that closes the opening of the member. In this case, if the through hole is open, it may be a bottomed cylindrical member as well as a member that closes the opening. The sealing plate for battery devices of the present invention is more preferably a member that closes the opening of the bottomed cylindrical member. As the material constituting the lid plate, metal is used because of its high water permeability resistance. As a metal which comprises a cover plate, metals, such as aluminum, iron, stainless steel, can be mention | raise | lifted, for example.

また、蓋板に開口した貫通孔の開口部の形状についても、電極端子が貫通可能な形状であれば特に限定されるものではない。貫通孔における電極端子の外周形状に略一致する形状であることが好ましい。たとえば、電極端子の断面形状が円柱形状であるときには貫通孔は円形であることが好ましく、電極端子が板状であるときには貫通孔は方形状もしくは長円形状であることが好ましい。   Further, the shape of the opening of the through hole opened in the cover plate is not particularly limited as long as the electrode terminal can be penetrated. It is preferable that the shape substantially coincides with the outer peripheral shape of the electrode terminal in the through hole. For example, the through-hole is preferably circular when the cross-sectional shape of the electrode terminal is cylindrical, and the through-hole is preferably square or oval when the electrode terminal is plate-shaped.

電極端子は、貫通孔を貫通して配置される部材である。電極端子は、電池容器に収納された電力を貯蔵・放出する電極体において発生した電力を電池容器の外部に取り出すためにもうけられる部材である。電極端子は、従来から知られた電極端子を用いることができる。つまり、電極端子は、棒状あるいは板状に形成された金属とすることができる。   The electrode terminal is a member disposed through the through hole. The electrode terminal is a member provided to take out the electric power generated in the electrode body that stores and discharges the electric power stored in the battery container to the outside of the battery container. As the electrode terminal, a conventionally known electrode terminal can be used. That is, the electrode terminal can be a metal formed in a rod shape or a plate shape.

シール部材は、蓋板と電極端子との間に配置された部材である。つまり、シール部材は、蓋板と電極端子との間のシール性を確保する。また、シール部材は、蓋板と電極端子とを電気的に絶縁する。   The seal member is a member disposed between the lid plate and the electrode terminal. That is, the sealing member ensures the sealing performance between the lid plate and the electrode terminal. The seal member electrically insulates the lid plate and the electrode terminal.

本発明のシール部材は、結晶性高分子であって結晶化度が35%以上である非強化型のポリフェニレンサルファイド樹脂よりなる。結晶性高分子とは、分子鎖が規則正しく配列された状態(結晶領域)の量の比率(結晶化度)が高い高分子である。一般に、シール部材を構成する結晶性高分子の結晶化度が低くなると、分子鎖がランダムになり、透水性が上昇する(耐透水性が低下する)とともに引張強さが低下する(シール部材の強度が低下する)。本発明のシール部材は、シール部材を構成する樹脂の結晶化度が35%以上となることで、シール性と耐透水性とがすぐれたシール部材となった。つまり、結晶化度が35%未満では、シール部材の耐透水性が低下し、かつシール部材自体の強度も低下するためシール性が低下する。本発明のシール部材において、ポリフェニレンサルファイド樹脂の結晶化度は、35〜60%であることがより好ましい。ポリフェニレンサルファイド樹脂固有の結晶化度の上限は約65%であるが、結晶化度が60%を超えると脆性が増し電池内圧の増減や環境温度の変化による繰返しストレスに対しシール部材の強度が低下する。   The seal member of the present invention is made of a non-reinforced polyphenylene sulfide resin which is a crystalline polymer and has a crystallinity of 35% or more. The crystalline polymer is a polymer having a high ratio (crystallinity) of the amount (crystal region) in which molecular chains are regularly arranged (crystal region). In general, when the crystallinity of the crystalline polymer constituting the seal member decreases, the molecular chain becomes random, the water permeability increases (water permeability resistance decreases) and the tensile strength decreases (of the seal member). Strength decreases). The sealing member of the present invention is a sealing member having excellent sealing properties and water permeability resistance, because the crystallinity of the resin constituting the sealing member is 35% or more. That is, when the crystallinity is less than 35%, the water permeability of the seal member is lowered, and the strength of the seal member itself is also lowered, so that the sealing performance is lowered. In the sealing member of the present invention, the crystallinity of the polyphenylene sulfide resin is more preferably 35 to 60%. The upper limit of the degree of crystallinity inherent to polyphenylene sulfide resin is about 65%, but if the degree of crystallinity exceeds 60%, the brittleness increases and the strength of the seal member decreases against repeated stress due to increase / decrease in battery internal pressure or environmental temperature change. To do.

本発明のシール部材は、その内部に繊維状などの強化材(フィラー)を有していてもよい。しかし、一般的に使用可能な強化材であるガラスは、特に、非水電解液電池の電解液と反応を生じやすいため、強化材を含まない(非強化型)のシール材であることが好ましい。すなわち、結晶性高分子は、非強化型のポリフェニレンサルファイドであることが好ましい。   The sealing member of the present invention may have a reinforcing material (filler) such as a fiber inside. However, since glass that is a generally usable reinforcing material is likely to react with the electrolyte of a nonaqueous electrolyte battery, it is preferably a sealing material that does not contain a reinforcing material (non-reinforced type). . That is, the crystalline polymer is preferably non-reinforced polyphenylene sulfide.

電極端子と蓋板とを成形型内に配置する工程と、成形型内に結晶性高分子であるポリフェニレンサルファイド樹脂を充填して電極端子と蓋板の間に結晶性高分子を配置する工程と、結晶性高分子の再結晶化温度以上の温度で熱処理する工程と、を施してなることが好ましい。熱処理を施したことで、結晶性高分子の結晶化度を所望の範囲とすることができるとともに、成形時に内部に残留した応力をこの熱処理により解消することができる。   Placing the electrode terminal and the cover plate in the mold, filling the mold with polyphenylene sulfide resin, which is a crystalline polymer, and placing the crystalline polymer between the electrode terminal and the cover plate; It is preferable to perform a heat treatment at a temperature higher than the recrystallization temperature of the conductive polymer. By performing the heat treatment, the crystallinity of the crystalline polymer can be set within a desired range, and stress remaining inside during molding can be eliminated by this heat treatment.

結晶性高分子を配置する工程は、成形型内に結晶性高分子を充填する工程であり、この工程が施された結晶性高分子は、溶融状態から急冷されているため結晶化度が低い。なお、成形型内に結晶性高分子を充填する方法については、特に限定されるものではなく、たとえば、射出成形をあげることができる。   The step of disposing the crystalline polymer is a step of filling the molding die with the crystalline polymer, and the crystalline polymer subjected to this step has a low degree of crystallinity because it is rapidly cooled from the molten state. . The method for filling the mold with the crystalline polymer is not particularly limited, and examples thereof include injection molding.

熱処理する工程は、再結晶化温度以上に加熱した後に再結晶化温度よりも低い温度(室温等)に冷却(放冷、徐冷)することとなる。つまり、再結晶化温度以上に加熱した後に再結晶化温度以下に冷却され、この冷却により結晶性高分子であるポリフェニレンサルファイド樹脂が結晶化し、結晶化度が向上する。   In the heat treatment step, after heating above the recrystallization temperature, cooling (cooling, slow cooling) to a temperature lower than the recrystallization temperature (such as room temperature) is performed. That is, after heating to the recrystallization temperature or higher, it is cooled to the recrystallization temperature or lower, and by this cooling, the polyphenylene sulfide resin that is a crystalline polymer is crystallized to improve the crystallinity.

熱処理する工程において結晶性高分子を加熱する温度は、結晶性高分子の再結晶化温度以上であればよく、結晶化温度の1.05倍以上の温度であることがより好ましい。加熱温度が高くなりすぎると、分解や溶融が生じてシール部材の形状が変化してシール性が確保できなくなる。加熱温度は結晶性高分子の溶融温度以下の温度であることが好ましく、溶融温度の0.70倍以下の温度であることがより好ましい。   The temperature at which the crystalline polymer is heated in the heat treatment step may be at least the recrystallization temperature of the crystalline polymer, and more preferably at least 1.05 times the crystallization temperature. If the heating temperature is too high, decomposition and melting occur, the shape of the sealing member changes, and sealing performance cannot be ensured. The heating temperature is preferably a temperature not higher than the melting temperature of the crystalline polymer, and more preferably not higher than 0.70 times the melting temperature.

すなわち、熱処理は、結晶性高分子の再結晶化温度をTc、溶融温度をTmとしたときに、1.05×Tc〜0.7×Tmの温度で0.5時間以上保持する加熱処理であることが好ましい。   That is, the heat treatment is a heat treatment in which the recrystallization temperature of the crystalline polymer is Tc and the melting temperature is Tm, and the temperature is maintained at 1.05 × Tc to 0.7 × Tm for 0.5 hours or more. Preferably there is.

非結晶性高分子が、非強化型のポリフェニレンサルファイドであるときには、熱処理は130〜200℃で0.5時間以上保持する処理であることが好ましい。   When the amorphous polymer is non-reinforced polyphenylene sulfide, the heat treatment is preferably a treatment of holding at 130 to 200 ° C. for 0.5 hours or more.

本発明において、電極端子および蓋板の少なくとも一方とシール部材は化学結合により接合していることが好ましい。シール部材が電極端子および蓋板の少なくとも一方と一体となることで、シール部材と蓋板および/または電極端子とのすき間が存在しなくなり、よりシール性が向上する。ここで、一体とは、シール部材と電極端子および蓋板の少なくとも一方との界面において両部材が化学結合を形成した状態を示す。   In the present invention, it is preferable that at least one of the electrode terminal and the cover plate and the sealing member are bonded by chemical bonding. Since the seal member is integrated with at least one of the electrode terminal and the cover plate, there is no gap between the seal member and the cover plate and / or the electrode terminal, and the sealing performance is further improved. Here, the term “integral” refers to a state in which both members form a chemical bond at the interface between the seal member and at least one of the electrode terminal and the cover plate.

蓋板とシール部材および/または電極端子とシール部材を一体とする方法については特に限定されるものではない。たとえば、金属の蓋板および電極端子にトリアジンチオール類またはシランカップリング剤で表面処理を施し、その後、蓋体と電極端子との間に樹脂をインサート成形することでシール部材と電極端子および蓋板とが一体化できる。   The method for integrating the cover plate and the seal member and / or the electrode terminal and the seal member is not particularly limited. For example, a metal lid plate and electrode terminals are subjected to surface treatment with triazine thiols or a silane coupling agent, and then a resin is insert-molded between the lid body and the electrode terminals, so that the sealing member, the electrode terminals, and the lid plate Can be integrated.

本発明のシール部材は、非水電解液電池のシール部材として用いることが好ましい。つまり、本発明のシール部材は、シール部材と電極端子および蓋体との密封性にすぐれたシール部材であり、非水電解液電池に適用することで、シール性にすぐれた電池となっている。   The sealing member of the present invention is preferably used as a sealing member for a non-aqueous electrolyte battery. That is, the sealing member of the present invention is a sealing member with excellent sealing performance between the sealing member, the electrode terminal and the lid, and is a battery with excellent sealing performance when applied to a non-aqueous electrolyte battery. .

非水電解液電池は、上記したシール部材以外は従来公知の非水電解液電池と同様な構成とすることができる。つまり、正極と負極とをもつ電極体を非水電解液とともに電池容器に密封した構成とすることができる。   The non-aqueous electrolyte battery can have the same configuration as a conventionally known non-aqueous electrolyte battery except for the sealing member described above. That is, an electrode body having a positive electrode and a negative electrode can be sealed in a battery container together with a non-aqueous electrolyte.

非水電解液電池は、特に、リチウム電池であることが好ましい。また、このリチウム電池は、一次電池でも二次電池でもよいが、二次電池において特にその効果が発揮される。   The nonaqueous electrolyte battery is particularly preferably a lithium battery. The lithium battery may be a primary battery or a secondary battery, but the effect is particularly exerted in a secondary battery.

リチウム電池は、リチウムを吸蔵、放出可能な正極および負極と、電解質塩を非水溶媒に溶解させてなる非水電解液とを有する。   A lithium battery includes a positive electrode and a negative electrode that can occlude and release lithium, and a nonaqueous electrolytic solution obtained by dissolving an electrolyte salt in a nonaqueous solvent.

正極は、リチウムイオンを充電時には放出し、かつ放電時には吸蔵することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、正極活物質、導電材および結着材を混合して得られた合材が集電体に塗布されてなるものを用いることが好ましい。   The positive electrode is not particularly limited in its material configuration as long as it can release lithium ions during charging and occlude during discharge, and may be a known material. In particular, it is preferable to use a material obtained by applying a mixture obtained by mixing a positive electrode active material, a conductive material, and a binder to a current collector.

正極活物質には、その活物質の種類で特に限定されるものではなく、公知の活物質を用いることができる。たとえば、TiS2、TiS3、MoS3、FeS2、Li(1-x)MnO2、Li(1-x)Mn24、Li(1-x)CoO2、Li(1-x)NiO2、V25等の化合物をあげることができる。ここで、xは0〜1を示す。また、これらの化合物の混合物を正極活物質として用いてもよい。さらに、Li1-xMn2+x4、LiNi1-xCox2などのようにLiMn24、LiNiO2の遷移金属元素の一部を少なくとも1種類以上の他の遷移金属元素あるいはLiで置き換えたものを正極活物質としてもよい。 The positive electrode active material is not particularly limited by the type of the active material, and a known active material can be used. For example, TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li (1-x) MnO 2 , Li (1-x) Mn 2 O 4 , Li (1-x) CoO 2 , Li (1-x) NiO 2 , compounds such as V 2 O 5 can be mentioned. Here, x shows 0-1. Moreover, you may use the mixture of these compounds as a positive electrode active material. Further, at least one or more other transition metal elements such as LiMn 2 O 4 and LiNiO 2 such as Li 1-x Mn 2 + x O 4 and LiNi 1-x Co x O 2 are used. Or what was replaced by Li is good also as a positive electrode active material.

正極活物質としては、LiMn24、LiCoO2、LiNiO2等のリチウムおよび遷移金属の複合酸化物がより好ましい。すなわち、電子とリチウムイオンの拡散性能に優れるなど活物質としての性能に優れているため、高い充放電効率と良好なサイクル特性とを有する電池が得られる。 As the positive electrode active material, lithium and transition metal composite oxides such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 are more preferable. That is, since it has excellent performance as an active material such as excellent diffusion performance of electrons and lithium ions, a battery having high charge / discharge efficiency and good cycle characteristics can be obtained.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、たとえば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン、ポリテトラフルオロエチレン(PTFE)等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, an organic binder or an inorganic binder can be used, and examples thereof include compounds such as polyvinylidene fluoride (PVDF), polyvinylidene chloride, and polytetrafluoroethylene (PTFE). Can do.

導電剤は、正極の電気伝導性を確保する作用を有する。導電剤としては、たとえば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質の1種または2種以上の混合したものをあげることができる。   The conductive agent has an action of ensuring the electrical conductivity of the positive electrode. Examples of the conductive agent include one or a mixture of two or more carbon materials such as carbon black, acetylene black, and graphite.

また、正極の集電体としては、たとえば、アルミニウム、ステンレスなどの金属を網、パンチドメタル、フォームメタルや板状に加工した箔などを用いることができる。   As the positive electrode current collector, for example, a metal such as aluminum or stainless steel that is processed into a net, a punched metal, a foam metal, or a plate can be used.

負極は、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、負極活物質および結着剤を混合して得られた合材が集電体に塗布されてなるものを用いることが好ましい。   The negative electrode is not particularly limited in its material configuration as long as lithium ions can be occluded during charging and released during discharging, and those having a known material configuration can be used. In particular, it is preferable to use a material obtained by applying a mixture obtained by mixing a negative electrode active material and a binder to a current collector.

負極活物質としては、特に限定されるものではなく、公知の活物質を用いることができる。たとえば、結晶性の高い天然黒鉛や人造黒鉛などの炭素材料、金属リチウムやリチウム合金、スズ化合物などの金属材料、導電性ポリマーなどをあげることができる。   The negative electrode active material is not particularly limited, and a known active material can be used. For example, carbon materials such as highly crystalline natural graphite and artificial graphite, metal materials such as metallic lithium, lithium alloys, and tin compounds, conductive polymers, and the like can be given.

結着剤は、活物質粒子をつなぎ止める作用を有する。結着剤としては、有機系結着剤や、無機系結着剤を用いることができ、たとえば、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン、ポリテトラフルオロエチレン(PTFE)等の化合物をあげることができる。   The binder has an action of holding the active material particles. As the binder, an organic binder or an inorganic binder can be used, and examples thereof include compounds such as polyvinylidene fluoride (PVDF), polyvinylidene chloride, and polytetrafluoroethylene (PTFE). Can do.

負極の集電体としては、たとえば、銅、ニッケルなどを網、パンチドメタル、フォームメタルや板状に加工した箔などを用いることができる。   As the current collector for the negative electrode, for example, a foil obtained by processing copper, nickel or the like into a net, punched metal, foam metal, or plate shape can be used.

非水電解液は、通常のリチウム二次電池に用いられる電解液であればよく、電解質塩と非水溶媒とから構成される。   The non-aqueous electrolyte may be an electrolyte used for a normal lithium secondary battery, and is composed of an electrolyte salt and a non-aqueous solvent.

電解質塩としては、たとえば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCl、LiBr、LiCF3SO3、LiN(CF3 SO22、LiC(CF3SO23、LiI、LiAlCl4、NaClO4、NaBF4、Nal等をあげることができ、特に、LiPF6、LiBF4、LiClO4、LiAsF6などの無機リチウム塩、LiN(SO2x2x+1)(SO2y2y+1)で表される有機リチウム塩をあげることができる。ここで、xおよびyは1〜4の整数を表し、また、x+yは3〜8である。有機リチウム塩としては、具体的には、LiN(SO2 CF3)(SO225)、LiN(SO2CF3)(SO237)、LiN(SO2CF3)(SO249)、LiN(SO225)(SO225)、LiN(SO225)(SO237)、LiN(SO225)(SO249)等があげられる。なかでも、LiN(SO2CF3 )(SO249)、LiN(SO225)(SO225)などを電解質に使用すると、電気特性に優れるので好ましい。 Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCl, LiBr, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiI, LiAlCl 4. , NaClO 4, NaBF 4, Nal, etc. can be mentioned, in particular, LiPF 6, LiBF 4, LiClO 4, LiAsF inorganic lithium salt such as 6, LiN (SO 2 C x F 2x + 1) (SO 2 C y An organic lithium salt represented by F 2y + 1 ) can be mentioned. Here, x and y represent an integer of 1 to 4, and x + y is 3 to 8. Specifically, as the organic lithium salt, LiN (SO 2 CF 3 ) (SO 2 C 2 F 5 ), LiN (SO 2 CF 3 ) (SO 2 C 3 F 7 ), LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiN (SO 2 C 2 F 5 ) (SO 2 C 2 F 5 ), LiN (SO 2 C 2 F 5 ) (SO 2 C 3 F 7 ), LiN (SO 2 C 2 F 5 ) (SO 2 C 4 F 9 ) and the like. Among them, it is preferable to use LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiN (SO 2 C 2 F 5 ) (SO 2 C 2 F 5 ) or the like as an electrolyte because it has excellent electrical characteristics.

電解質塩が溶解する有機溶媒としては、通常のリチウム二次電池の非水電解液に用いられる有機溶媒であれば特に限定されず、例えば、カーボネート化合物、ラクトン化合物、エーテル化合物、スルホラン化合物、ジオキソラン化合物、ケトン化合物、ニトリル化合物、ハロゲン化炭化水素化合物等をあげることができる。詳しくは、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネート等のカーボネート類、γ−ブチルラクトン等のラクトン類、ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサンなどのエーテル類、スルホラン、3−メチルスルホラン等のスルホラン類、1,3−ジオキソラン等のジオキソラン類、4−メチル−2−ペンタノン等のケトン類、アセトニトリル、ピロピオニトリル、バレロニトリル、ベンソニトリル等のニトリル類、1,2−ジクロロエタン等のハロゲン化炭化水素類、その他のメチルフォルメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド等をあげることができる。さらに、これらの混合物であってもよい。   The organic solvent in which the electrolyte salt dissolves is not particularly limited as long as it is an organic solvent used in a non-aqueous electrolyte of a normal lithium secondary battery. For example, a carbonate compound, a lactone compound, an ether compound, a sulfolane compound, a dioxolane compound , Ketone compounds, nitrile compounds, halogenated hydrocarbon compounds and the like. Specifically, carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate, vinylene carbonate, lactones such as γ-butyl lactone, Ethers such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, sulfolanes such as sulfolane and 3-methylsulfolane, dioxolanes such as 1,3-dioxolane, 4-methyl-2- Ketones such as pentanone, nitriles such as acetonitrile, pyropionitrile, valeronitrile, benzonitrile, 1,2-di Halogenated hydrocarbons such as Roroetan, other methyl formate, dimethylformamide, diethylformamide, and dimethyl sulfoxide and the like. Furthermore, a mixture thereof may be used.

これらの有機溶媒のうち、特に、カーボネート類からなる群より選ばれた一種以上の非水溶媒が、電解質の溶解性、誘電率および粘度において優れているので、好ましい。   Among these organic solvents, one or more nonaqueous solvents selected from the group consisting of carbonates are particularly preferable because they are excellent in electrolyte solubility, dielectric constant, and viscosity.

さらに、本発明の電池容器用封口板において、その形状も特に限定されるものではなく、たとえば、正極および負極がシート状に形成され、シート状のセパレータを介した状態で巻回された巻回型電極体を収納する略円筒型や、巻回型電極体を扁平化した形状の扁平形状巻回型電極体を収納する角型でをあげることができる。   Further, in the battery container sealing plate of the present invention, the shape is not particularly limited, for example, a winding in which the positive electrode and the negative electrode are formed in a sheet shape and wound in a state via a sheet-shaped separator. For example, it is possible to use a substantially cylindrical shape that accommodates the mold electrode body or a square shape that accommodates the flat wound electrode body having a flattened shape.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例としてリチウム電池用封口板を製造した。   As an example of the present invention, a sealing plate for a lithium battery was produced.

(実施例)
本実施例のリチウム電池用封口板1は、蓋体2、正極端子3、負極端子4、絶縁密閉部材5をもつ。実施例1のリチウム電池用封口板1を図1〜3に示した。
(Example)
The sealing plate 1 for a lithium battery of this embodiment has a lid body 2, a positive electrode terminal 3, a negative electrode terminal 4, and an insulating sealing member 5. The sealing board 1 for lithium batteries of Example 1 was shown in FIGS.

蓋体2は、長さ100mm×巾20mm×厚さ0.8mmであり、長手方向の両端部の近傍に4mm×10mmの貫通穴20,20が二つ開口したアルミニウム製の平板状の部材である。そして、蓋体2は、貫通穴20,20の開口部から2mmの位置に、巾1mm×厚さ1mmの凸状のアルミニウム製のリブ21が形成されている。つまり、貫通孔20,20の外周部には、内周面が8mm×14mmのリブが貫通孔20,20と同軸状態で形成されている。このリブ21は、あらかじめアルミニウムで環状の部材を製造し、蓋体2に溶接で一体に接合して形成された。   The lid body 2 is a flat plate member made of aluminum having a length of 100 mm × width of 20 mm × thickness of 0.8 mm and having two through holes 20 and 20 of 4 mm × 10 mm opened in the vicinity of both ends in the longitudinal direction. is there. The lid 2 is formed with convex aluminum ribs 21 having a width of 1 mm and a thickness of 1 mm at a position 2 mm from the openings of the through holes 20 and 20. That is, ribs having an inner peripheral surface of 8 mm × 14 mm are formed coaxially with the through holes 20 and 20 on the outer peripheral portions of the through holes 20 and 20. The rib 21 was formed by previously manufacturing an annular member with aluminum and integrally joining the lid body 2 by welding.

正極端子3は、アルミニウム製の平板状の部材であり、負極端子4は、銅製の平板状の部材である。   The positive electrode terminal 3 is a flat plate member made of aluminum, and the negative electrode terminal 4 is a flat plate member made of copper.

絶縁密閉部材5(シール部材に相当)は、蓋体2と正極端子3の間、蓋体2と負極端子4との間にもうけられ、蓋体2と正極端子3および蓋体2と負極端子4のそれぞれを一体としている。また、絶縁密閉部材5は、蓋体2のリブ21,21の内部に形成されている。つまり、リブ21は、絶縁密閉部材5の外周部に形成されている。   An insulating sealing member 5 (corresponding to a seal member) is provided between the lid 2 and the positive terminal 3 and between the lid 2 and the negative terminal 4. The lid 2 and the positive terminal 3, the lid 2 and the negative terminal Each of 4 is united. The insulating sealing member 5 is formed inside the ribs 21 and 21 of the lid 2. That is, the rib 21 is formed on the outer peripheral portion of the insulating sealing member 5.

そして、本実施例のリチウム電池用封口板1は、以下の方法により製造された。   And the sealing board 1 for lithium batteries of a present Example was manufactured with the following method.

まず、蓋体2、正極端子3、負極端子4に対し、電解質物質を必要に応じて含む多官能性トリアジンジチオール誘導体の水または有機溶剤を電解液として、蓋体2,正極端子3および負極端子4を陽極とし、また白金,チタン,カーボン,アルミニウムやステンレス板を陰極として、サイクリック法,定電流法,定電位法,パルス定電位法,パルス定電流法等の電気化学的表面処理法によって多官能性トリアジンジチオール誘導体を分子配向した状態で1次結合させながら蓋体2、正極端子3、負極端子4の表面に接着反応性の高い被膜を生成した。この方法は従来公知の方法であり、たとえば、特開平10−237047に開示されている。   First, with respect to the lid body 2, the positive electrode terminal 3, and the negative electrode terminal 4, the lid body 2, the positive electrode terminal 3 and the negative electrode terminal are obtained by using water or an organic solvent of a polyfunctional triazine dithiol derivative containing an electrolyte substance as necessary as an electrolytic solution. 4 as an anode and platinum, titanium, carbon, aluminum or stainless steel plate as a cathode, by electrochemical surface treatment methods such as cyclic method, constant current method, constant potential method, pulse constant potential method, pulse constant current method, etc. While the polyfunctional triazine dithiol derivative was primarily bonded in a molecularly oriented state, a film having high adhesion reactivity was generated on the surfaces of the lid body 2, the positive electrode terminal 3, and the negative electrode terminal 4. This method is a conventionally known method, and is disclosed, for example, in JP-A-10-237047.

被膜を生成した後に、蓋体2,正極端子3および負極端子4を130℃の金型内に配置した。このとき、蓋体2,正極端子3および負極端子4は、蓋体2の各貫通穴20,20に正極端子3および負極端子4が蓋体2と接触しない状態で、貫通した状態で配置された。そして、約300℃で溶融状態としたポリフェニレンサルファイド組成物を金型内に充填し、冷却固化させた。ここで、ポリフェニレンサルファイド組成物の再結晶化温度は約120℃であり、溶融温度は約280℃である。また、ポリフェニレンサルファイド組成物は、強化材を含んでいない非強化型である。   After producing the coating, the lid 2, the positive terminal 3 and the negative terminal 4 were placed in a 130 ° C. mold. At this time, the lid body 2, the positive electrode terminal 3, and the negative electrode terminal 4 are arranged in a through state with the positive electrode terminal 3 and the negative electrode terminal 4 not contacting the lid body 2 in the respective through holes 20, 20 of the lid body 2. It was. Then, the polyphenylene sulfide composition melted at about 300 ° C. was filled into the mold and cooled and solidified. Here, the recrystallization temperature of the polyphenylene sulfide composition is about 120 ° C., and the melting temperature is about 280 ° C. The polyphenylene sulfide composition is a non-reinforced type that does not contain a reinforcing material.

その後、電極端子2,4が蓋体2に絶縁密閉部材5で接合された封口板に130℃の温度で1時間加熱する熱処理を施した。   Thereafter, the sealing plate in which the electrode terminals 2 and 4 were joined to the lid 2 with the insulating sealing member 5 was subjected to a heat treatment for heating at a temperature of 130 ° C. for 1 hour.

これにより、蓋体2、電極端子3,4の表面の皮膜と化学結合した絶縁密閉部材5が形成されたリチウム電池用封口板1が製造された。   Thereby, the sealing plate 1 for lithium batteries in which the insulating sealing member 5 chemically bonded to the cover 2 and the coating on the surface of the electrode terminals 3 and 4 was formed was manufactured.

製造されたリチウム電池用封口板1の絶縁密閉部材5の結晶化度を測定したところ、35%であった。結晶化度の測定は、示差熱測定装置を用いて昇温中、樹脂の再結晶による発熱ピークを検知することにより求められる。   The crystallinity of the insulating sealing member 5 of the manufactured lithium battery sealing plate 1 was measured and found to be 35%. The measurement of crystallinity is obtained by detecting an exothermic peak due to resin recrystallization during temperature rise using a differential calorimeter.

(比較例1)
最後の熱処理を加えない以外は、実施例と同様にして製造したリチウム電池用封口板である。
(Comparative Example 1)
This is a sealing plate for a lithium battery produced in the same manner as in the Examples except that the final heat treatment was not applied.

本比較例の絶縁密閉部材5の結晶化度を、実施例の時と同様にして測定したところ、20%であった。   When the degree of crystallinity of the insulating sealing member 5 of this comparative example was measured in the same manner as in the example, it was 20%.

(比較例2)
最後の熱処理が100℃で1時間の熱処理である以外は、実施例と同様にして製造したリチウム電池用封口板である。
(Comparative Example 2)
A sealing plate for a lithium battery produced in the same manner as in the example except that the last heat treatment is a heat treatment at 100 ° C. for 1 hour.

本比較例の絶縁密閉部材5の結晶化度を、実施例の時と同様にして測定したところ、26%であった。   The crystallinity of the insulating sealing member 5 of this comparative example was measured in the same manner as in the example and found to be 26%.

(評価)
実施例および比較例1〜2の電池蓋体1に対して、正極端子3および負極端子4の引き抜き試験を行い接合強度を測定した。測定結果を表1に示した。なお、引き抜きでの接合強度は電極端子部と密閉部材間の接合部が破損に至るまでの最大強度値を指し、測定時の応力歪曲線における最大強度を用いた。
(Evaluation)
With respect to the battery lid 1 of Examples and Comparative Examples 1 and 2, a pullout test of the positive electrode terminal 3 and the negative electrode terminal 4 was performed to measure the bonding strength. The measurement results are shown in Table 1. In addition, the joint strength in the drawing refers to the maximum strength value until the joint between the electrode terminal portion and the sealing member is damaged, and the maximum strength in the stress strain curve at the time of measurement is used.

また、アルミニウムよりなる槽状の容器に電解液を満たし、その後、実施例および比較例1〜2の電池蓋体1で封缶した。電池蓋体1での封缶は、溶接によりなされた。そして、65℃95%RH環境下に放置した後に内部の電解液中の水分率増加量をカールフィッシャー法により測定し、24時間あたりの透水率を求めた。結果を表1にあわせて示した。   Moreover, the electrolyte solution was filled in the tank-shaped container which consists of aluminum, and it sealed by the battery cover body 1 of the Example and Comparative Examples 1-2 after that. The battery can 1 was sealed by welding. Then, after being left in an environment of 65 ° C. and 95% RH, the amount of increase in the water content in the internal electrolyte was measured by the Karl Fischer method to determine the water permeability per 24 hours. The results are shown in Table 1.

Figure 2008027849
Figure 2008027849

表1に示したように、実施例の電池蓋体1は、35MPaと高い引き抜き強度(接合強度)を有している。この強度は、実質的な樹脂の強度に近い値であり、かなり高い値である。また、実施例の電池蓋体1は、24時間あたりの透水率も0.45g/m2とかなり低い値となっている。つまり、実施例の電池蓋体1の絶縁密閉部材5は、シール性および耐透水性にすぐれていることがわかる。 As shown in Table 1, the battery lid 1 of the example has a high pulling strength (bonding strength) of 35 MPa. This strength is a value close to the strength of a substantial resin and is a considerably high value. Further, the battery lid 1 of the example also has a water permeability per 24 hours of 0.45 g / m 2 which is a considerably low value. That is, it can be seen that the insulating sealing member 5 of the battery lid 1 of the example is excellent in sealing properties and water permeability resistance.

これに対し、比較例1および2の電池蓋体は、引き抜き強度が低く、かつ24時間あたりの透水率が高くなっていた。つまり、各比較例の電池蓋体の絶縁密閉部材5は、シール性および耐透水性が低いことがわかる。   On the other hand, the battery lids of Comparative Examples 1 and 2 had low pullout strength and high water permeability per 24 hours. That is, it can be seen that the insulating sealing member 5 of the battery lid of each comparative example has low sealing properties and water resistance.

上記した実施例の電池蓋体1は、例えば、以下に示したリチウム二次電池を形成できる。   The battery lid 1 of the above-described embodiment can form, for example, the lithium secondary battery shown below.

リチウム二次電池は、帯状の正極板70と負極板71と両極板70,71間に介在するセパレ−タ72とが巻回された状態で扁平形状に形成された偏平巻回型電極体7と、偏平巻回型電極体7に接合された正極端子3および負極端子4と、偏平巻回型電極体7を内部に収納する槽状の容器本体6と、電解液と、を有する。   The lithium secondary battery has a flat wound electrode body 7 formed in a flat shape in a state where a belt-like positive electrode plate 70, a negative electrode plate 71, and a separator 72 interposed between the two electrode plates 70 and 71 are wound. And the positive electrode terminal 3 and the negative electrode terminal 4 joined to the flat wound electrode body 7, a tank-shaped container body 6 that houses the flat wound electrode body 7, and an electrolytic solution.

正極板70は、帯状のアルミニウムシートからなる正極集電体の両面に正極活物質層が形成されるとともに、正極集電体の幅方向の一方の端部側に正極活物質層が形成されていない辺縁部を有する。正極活物質はLiNiO2が用いられた。 The positive electrode plate 70 has a positive electrode active material layer formed on both surfaces of a positive electrode current collector made of a strip-shaped aluminum sheet, and a positive electrode active material layer formed on one end side in the width direction of the positive electrode current collector. Has no edge. LiNiO 2 was used as the positive electrode active material.

負極板71は、帯状の銅のシートからなる負極集電体の両面に負極活物質層711が形成されるとともに、負極集電体の幅方向の一方の端部側に負極活物質層が形成されていない辺縁部を有する。負極活物質には、カーボンが用いられた。   The negative electrode plate 71 has a negative electrode active material layer 711 formed on both sides of a negative electrode current collector made of a strip-shaped copper sheet, and a negative electrode active material layer formed on one end side in the width direction of the negative electrode current collector. It has a marginal edge. Carbon was used for the negative electrode active material.

セパレ−タ72は、帯状に形成されたポリエチレンまたはポリプロピレンにより形成されている。セパレ−タ72は、両極板70,71の電極活物質層が形成された領域よりも帯の幅が長く、かつ長さも両極板70,71よりも長く形成されている。   The separator 72 is made of polyethylene or polypropylene formed in a band shape. The separator 72 is formed to have a longer band width than the region where the electrode active material layers of the bipolar plates 70 and 71 are formed, and also longer than the bipolar plates 70 and 71.

偏平巻回型電極体7は、正極板70および負極板71の辺縁部が互いに軸方向の反対方向にセパレータ72から突出し、正極側突出端部700と負極側突出端部710を形成している。各突出端部700,710は、各辺縁部が積層した状態で互いに接合されて形成されている。そして、正極側突出端部700は正極端子3と、負極側突出端部710は負極端子4と溶接により接合された。各突出端部700,710は、巻回軸の端面が電極端子3,4の筐体内部側の端部であって互いに対向した表面に接合された。   In the flat wound electrode body 7, the edge portions of the positive electrode plate 70 and the negative electrode plate 71 protrude from the separator 72 in directions opposite to each other in the axial direction to form a positive electrode side protruding end portion 700 and a negative electrode side protruding end portion 710. Yes. The protruding end portions 700 and 710 are formed to be joined to each other in a state where the edge portions are stacked. The positive electrode side protruding end portion 700 was joined to the positive electrode terminal 3 and the negative electrode side protruding end portion 710 was joined to the negative electrode terminal 4 by welding. The projecting end portions 700 and 710 are joined to surfaces facing each other, with the end surfaces of the winding shafts being the end portions of the electrode terminals 3 and 4 on the housing inner side.

電解液には、エチレンカーボネートとジエチレンカーボネートが3:7の割合で混合した混合溶媒にLiPF6を1mol添加した溶液が用いられた。 As the electrolytic solution, a solution in which 1 mol of LiPF 6 was added to a mixed solvent in which ethylene carbonate and diethylene carbonate were mixed at a ratio of 3: 7 was used.

リチウム二次電池は、正極板70および負極板71をセパレータ72を介して巻回させた偏平巻回型電極体7を形成した後に、この偏平巻回型電極体7の各突出端部700,710に正極端子3および負極端子4を溶接した後に、アルミニウムよりなる容器本体6内に電解液とともに挿入して、容器本体6とリチウム電池用封口板1とを溶接して密封することで製造された。製造されたリチウム電池を図4に示した。   In the lithium secondary battery, after forming the flat wound electrode body 7 in which the positive electrode plate 70 and the negative electrode plate 71 are wound through the separator 72, the protruding end portions 700 of the flat wound electrode body 7 are formed. After the positive electrode terminal 3 and the negative electrode terminal 4 are welded to 710, they are inserted into the container body 6 made of aluminum together with the electrolytic solution, and the container body 6 and the lithium battery sealing plate 1 are welded and sealed. It was. The manufactured lithium battery is shown in FIG.

実施例のリチウム電池用封口板を示した図である。It is the figure which showed the sealing board for lithium batteries of the Example. 実施例のリチウム電池用封口板の蓋板を示した図である。It is the figure which showed the cover plate of the sealing board for lithium batteries of an Example. 実施例のリチウム電池用封口板の断面図である。It is sectional drawing of the sealing board for lithium batteries of an Example. 実施例のリチウム電池用封口板を用いたリチウム電池の構成を示した図である。It is the figure which showed the structure of the lithium battery using the sealing board for lithium batteries of an Example.

符号の説明Explanation of symbols

1:リチウム電池用封口板
2:蓋体 20:貫通孔
21:リブ
3:正極端子
4:負極端子
5:絶縁密閉部材
6:容器本体
7:電極体 70:正極板
71:負極板 72:セパレータ
1: Lithium battery sealing plate 2: Lid 20: Through hole 21: Rib 3: Positive electrode terminal 4: Negative electrode terminal 5: Insulating sealing member 6: Container body 7: Electrode body 70: Positive electrode plate 71: Negative electrode plate 72: Separator

Claims (3)

電池容器の一部を形成しかつ貫通孔が開口した金属よりなる蓋板と、
該貫通孔を貫通した金属よりなる電極端子と、
該蓋板と該電極端子との間に配置されるシール部材と、
を有する電池容器用封口板に用いられるシール部材であって、
該シール部材は、該電極端子および該蓋板の少なくとも一方と化学結合により結合している非強化型のポリフェニレンサルファイド樹脂であり、該樹脂の結晶化度が35%以上であることを特徴とするシール部材。
A cover plate made of metal that forms part of the battery container and has a through hole;
An electrode terminal made of metal penetrating the through hole;
A sealing member disposed between the lid plate and the electrode terminal;
A sealing member used for a battery container sealing plate having
The sealing member is a non-reinforced polyphenylene sulfide resin bonded to at least one of the electrode terminal and the lid plate by a chemical bond, and the crystallinity of the resin is 35% or more. Seal member.
前記電極端子と前記蓋板とを成形型内に配置する工程と、
該成形型内に前記結晶性高分子を充填して該電極端子と該蓋板の間に該樹脂を配置成形する工程と、
該樹脂の再結晶化温度以上の温度で熱処理する工程と、
を施してなる請求項1記載のシール部材。
Placing the electrode terminal and the lid plate in a mold;
Filling the crystalline polymer in the mold and placing and molding the resin between the electrode terminal and the cover plate;
Heat treatment at a temperature equal to or higher than the recrystallization temperature of the resin;
The sealing member according to claim 1, wherein
前記熱処理は、前記結晶性高分子の再結晶化温度をTc、溶融温度をTmとしたときに、1.05×Tc〜0.7×Tmの温度である請求項2記載のシール部材。   The sealing member according to claim 2, wherein the heat treatment is performed at a temperature of 1.05 × Tc to 0.7 × Tm, where Tc is a recrystallization temperature of the crystalline polymer and Tm is a melting temperature.
JP2006202078A 2006-07-25 2006-07-25 Seal member Pending JP2008027849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202078A JP2008027849A (en) 2006-07-25 2006-07-25 Seal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202078A JP2008027849A (en) 2006-07-25 2006-07-25 Seal member

Publications (1)

Publication Number Publication Date
JP2008027849A true JP2008027849A (en) 2008-02-07

Family

ID=39118258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202078A Pending JP2008027849A (en) 2006-07-25 2006-07-25 Seal member

Country Status (1)

Country Link
JP (1) JP2008027849A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060393A (en) * 2008-09-02 2010-03-18 Horiba Ltd Dissolved oxygen sensor
JP2010153167A (en) * 2008-12-25 2010-07-08 Panasonic Corp Flat type nonaqueous electrolyte battery
JP2011018628A (en) * 2009-07-09 2011-01-27 Mutsuki Denki Kk Sealing plate with metal terminal
JP2013197016A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery and battery pack
WO2014002847A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Battery sealing member
JP2016001580A (en) * 2014-06-12 2016-01-07 三井化学株式会社 Manufacturing method of secondary battery and secondary battery
CN113517514A (en) * 2021-04-22 2021-10-19 远景动力技术(江苏)有限公司 Directional exhaust battery module
EP3920316A4 (en) * 2019-11-15 2022-06-08 Contemporary Amperex Technology Co., Limited Secondary battery, battery module and device
CN114725594A (en) * 2020-12-28 2022-07-08 泰星能源解决方案有限公司 Lid and sealed battery
CN115347289A (en) * 2021-05-13 2022-11-15 荣盛盟固利新能源科技有限公司 Battery cover plate and power battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566373A (en) * 1979-06-28 1981-01-22 Hitachi Maxell Ltd Manufacturing method of alkaline cell
JPH06150894A (en) * 1992-11-02 1994-05-31 Nippon Petrochem Co Ltd Battery
JPH1097852A (en) * 1996-09-21 1998-04-14 Kureha Chem Ind Co Ltd Closure and manufacture thereof
JPH10241651A (en) * 1996-12-25 1998-09-11 Matsushita Electric Ind Co Ltd Rectangular non-aqueous electrolytic solution battery and manufacture of opening-sealing plate of the same
JP2000011072A (en) * 1998-06-25 2000-01-14 Mitsubishi Electric Corp Method for generating data printing program
JP2000156210A (en) * 1998-11-18 2000-06-06 Toray Ind Inc Gasket for battery and its manufacture
JP2001001445A (en) * 1999-06-24 2001-01-09 Toa Denka:Kk Composite of conductive object and resin, and production thereof
JP2002237436A (en) * 2001-02-08 2002-08-23 Honda Motor Co Ltd Lid of electrical double-layer capacitor case
JP2004006117A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Battery
JP2004303739A (en) * 1996-12-25 2004-10-28 Matsushita Electric Ind Co Ltd Rectangular non-aqueous electrolyte battery
JP2005235596A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2008027823A (en) * 2006-07-25 2008-02-07 Denso Corp Sealing plate for battery container, method for manufacturing it, and nonaqueous electrolyte cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566373A (en) * 1979-06-28 1981-01-22 Hitachi Maxell Ltd Manufacturing method of alkaline cell
JPH06150894A (en) * 1992-11-02 1994-05-31 Nippon Petrochem Co Ltd Battery
JPH1097852A (en) * 1996-09-21 1998-04-14 Kureha Chem Ind Co Ltd Closure and manufacture thereof
JPH10241651A (en) * 1996-12-25 1998-09-11 Matsushita Electric Ind Co Ltd Rectangular non-aqueous electrolytic solution battery and manufacture of opening-sealing plate of the same
JP2004303739A (en) * 1996-12-25 2004-10-28 Matsushita Electric Ind Co Ltd Rectangular non-aqueous electrolyte battery
JP2000011072A (en) * 1998-06-25 2000-01-14 Mitsubishi Electric Corp Method for generating data printing program
JP2000156210A (en) * 1998-11-18 2000-06-06 Toray Ind Inc Gasket for battery and its manufacture
JP2001001445A (en) * 1999-06-24 2001-01-09 Toa Denka:Kk Composite of conductive object and resin, and production thereof
JP2002237436A (en) * 2001-02-08 2002-08-23 Honda Motor Co Ltd Lid of electrical double-layer capacitor case
JP2004006117A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Battery
JP2005235596A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2008027823A (en) * 2006-07-25 2008-02-07 Denso Corp Sealing plate for battery container, method for manufacturing it, and nonaqueous electrolyte cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012068144; 東レPPS樹脂 "トレリナ"の技術資料(射出成形) , 200407, p.2,p.19 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060393A (en) * 2008-09-02 2010-03-18 Horiba Ltd Dissolved oxygen sensor
JP2010153167A (en) * 2008-12-25 2010-07-08 Panasonic Corp Flat type nonaqueous electrolyte battery
JP2011018628A (en) * 2009-07-09 2011-01-27 Mutsuki Denki Kk Sealing plate with metal terminal
JP2013197016A (en) * 2012-03-22 2013-09-30 Toshiba Corp Battery and battery pack
KR101686726B1 (en) 2012-06-25 2016-12-14 도요타지도샤가부시키가이샤 Battery
JP2014029839A (en) * 2012-06-25 2014-02-13 Toyota Motor Corp Sealing member for battery
KR20150023437A (en) * 2012-06-25 2015-03-05 도요타지도샤가부시키가이샤 Battery sealing member
WO2014002847A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Battery sealing member
JP2016001580A (en) * 2014-06-12 2016-01-07 三井化学株式会社 Manufacturing method of secondary battery and secondary battery
EP3920316A4 (en) * 2019-11-15 2022-06-08 Contemporary Amperex Technology Co., Limited Secondary battery, battery module and device
JP2023501440A (en) * 2019-11-15 2023-01-18 寧徳時代新能源科技股▲分▼有限公司 Secondary battery, battery module and device
JP7416934B2 (en) 2019-11-15 2024-01-17 寧徳時代新能源科技股▲分▼有限公司 Secondary batteries, battery modules and devices
US11894568B2 (en) 2019-11-15 2024-02-06 Contemporary Amperex Technology Co., Limited Secondary battery, battery column, and apparatus
CN114725594A (en) * 2020-12-28 2022-07-08 泰星能源解决方案有限公司 Lid and sealed battery
CN113517514A (en) * 2021-04-22 2021-10-19 远景动力技术(江苏)有限公司 Directional exhaust battery module
CN115347289A (en) * 2021-05-13 2022-11-15 荣盛盟固利新能源科技有限公司 Battery cover plate and power battery

Similar Documents

Publication Publication Date Title
JP2007179803A (en) Sealing plate for battery case and nonaqueous electrolyte battery
JP2008027849A (en) Seal member
JP4918997B2 (en) Nonaqueous electrolyte secondary battery
JP3141021B1 (en) Battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP4506792B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery using the same
CN103797607B (en) Cylinder battery
JP4862211B2 (en) Sealed secondary battery
JP2009129553A (en) Battery
JPWO2016113863A1 (en) Nonaqueous electrolyte battery and battery pack
JP2008103294A (en) Flat type battery
JP2008041504A (en) Nonaqueous electrolyte battery
KR102145492B1 (en) Battery System with Improved Rate Characteristic and Method for Generating Battery System
KR101925982B1 (en) Pouch type secondary battery and method of making the same
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP5897271B2 (en) Nonaqueous electrolyte secondary battery
KR101936074B1 (en) Battery Cell Comprising Electrolyte-Containing Member for Supplying Electrolyte
JP2002025535A (en) Battery
JP2013045556A (en) Secondary battery system
JP2005347222A (en) Electrolyte liquid and battery
JP2004055154A (en) Sealing structure and method for layer-built battery
JP2004139749A (en) Secondary battery, outer packaging material, and laminated film
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2004186117A (en) Sealed type rechargeable battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130725