JP2010153167A - Flat type nonaqueous electrolyte battery - Google Patents

Flat type nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010153167A
JP2010153167A JP2008329320A JP2008329320A JP2010153167A JP 2010153167 A JP2010153167 A JP 2010153167A JP 2008329320 A JP2008329320 A JP 2008329320A JP 2008329320 A JP2008329320 A JP 2008329320A JP 2010153167 A JP2010153167 A JP 2010153167A
Authority
JP
Japan
Prior art keywords
battery
gasket
nonaqueous electrolyte
flat type
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008329320A
Other languages
Japanese (ja)
Inventor
Kanji Kawakami
幹児 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008329320A priority Critical patent/JP2010153167A/en
Publication of JP2010153167A publication Critical patent/JP2010153167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat type nonaqueous electrolyte battery suppressing deterioration of battery characteristics caused by moisture infiltrating from the outside under humid environments by improving its sealing performance, and having excellent reliability for a long period of time. <P>SOLUTION: In this flat type nonaqueous electrolyte battery, a generating element constituted of a positive electrode and a negative electrode disposed face to face through a separator is housed in a battery case together with a nonaqueous electrolyte, the opening part of the battery case is sealed by a sealing part through a gasket, and a resin material made up by tetra-fluoroethylen-perfluoroalkyl vinyl ether copolymer having crystallinity of 25-45% is used for the gasket. Thereby, air tightness is improved to suppress infiltration of moisture from the outside, and the battery has high reliability without causing deterioration of air tightness due to surface peeling of the gasket 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平型非水電解液電池の長期信頼性の向上、さらに詳しくは多湿保存における電池の信頼性に優れた扁平型非水電解液電池に関するものである。   The present invention relates to an improvement in long-term reliability of a flat type non-aqueous electrolyte battery, and more particularly to a flat type non-aqueous electrolyte battery excellent in battery reliability in humid storage.

近年、携帯電話やPDAといった個人用情報端末のコードレス化やポータブル化が急速に進み、さらなる小型・軽量化に対する要求の拡大に伴い、高エネルギー密度を有する非水電解液電池の要望が高まっている。このような状況の中、大きさ・実装性・コストなどの面から偏平型(ボタン型、コイン型、扁平角型)の非水電解液電池の市場は広がり、その用途も多岐にわたっている。   In recent years, cordless and portable personal information terminals such as mobile phones and PDAs have rapidly become more and more demanded for non-aqueous electrolyte batteries having high energy density as demand for further downsizing and weight reduction increases. . Under such circumstances, the market of flat type (button type, coin type, flat rectangular type) non-aqueous electrolyte batteries is widened in terms of size, mountability, cost, etc., and its applications are diverse.

従来、扁平型非水電解液電池のガスケット材料としては耐薬品性、弾力性、耐クリープ性に優れ、且つ成型性が良く、射出成型で作製しやすい安価なポリプロピレン(PP)等の汎用樹脂が広く用いられている。   Conventionally, as a gasket material for a flat type non-aqueous electrolyte battery, a general-purpose resin such as inexpensive polypropylene (PP) that is excellent in chemical resistance, elasticity, creep resistance, good moldability, and easy to produce by injection molding is used. Widely used.

一方、メモリーバックアップ用電源に用いられる扁平型非水電解液電池には、リフローはんだ溶接による回路基板への自動実装が要求されるものが多いため、高温仕様のガスケット材が要求され、ポリフェニレンサルファイド(PPS)やフッ素系樹脂などの耐熱性のエンジニアリングプラスチックが用いられている。   On the other hand, flat non-aqueous electrolyte batteries used for memory backup power supplies often require automatic mounting on a circuit board by reflow soldering, so high-temperature gasket materials are required, and polyphenylene sulfide ( Heat-resistant engineering plastics such as PPS) and fluorine-based resins are used.

また、機器の主電源用途に用いられる扁平型非水電解液電池には長期間にわたる高い信頼性が求められ、実使用では高温環境下だけではなく、多湿環境下で使用されることもあるため、湿度に対する対策を講じることも重要である。しかし、扁平型非水電解液電池は、水溶液電池とは異なり水分に対して非常に弱い面を持っており、外部からの水分浸入により電池特性が早期に劣化してしまうという課題をもっている。そのため、透湿性の低い四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)や四フッ化エチレン−エチレン共重合体(ETFE)などのフッ素系樹脂をガスケット材料に用い、外部からの水分浸入を防ぐ方法が検討されている(例えば特許文献1)。特にPFA樹脂はフッ素含有量が多く、透湿性が非常に低いため注目されている。
特開2006−147159号公報
In addition, flat type nonaqueous electrolyte batteries used for main power supply of equipment are required to have high reliability over a long period of time. In actual use, they may be used not only in high-temperature environments but also in humid environments. It is also important to take measures against humidity. However, unlike the aqueous battery, the flat type non-aqueous electrolyte battery has a very weak surface against moisture, and has a problem that the battery characteristics are deteriorated at an early stage due to moisture intrusion from the outside. For this reason, fluorine resin such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) or tetrafluoroethylene-ethylene copolymer (ETFE) with low moisture permeability is used as the gasket material, so that moisture can enter from the outside. A method for preventing this problem has been studied (for example, Patent Document 1). In particular, PFA resins have been attracting attention because of their high fluorine content and very low moisture permeability.
JP 2006-147159 A

しかし、このPFA樹脂を扁平型非水電解液電池のガスケット材に用いた場合、扁平型非水電解液電池の封口部がカシメ封口であるため、カシメ時の圧力によってガスケット表面が剥離し、ガスケットと封口板またはガスケットと電池ケースの隙間から水分浸入が起こり電池の信頼性が確保できないという課題を抱えていた。これは、フッ素樹脂の分子を構成するフッ素原子同士の原子間力が弱いために、少しの圧力が加わるだけで分子同士が乖離してしまい、表面層として剥離してしまうためであると考えられる。   However, when this PFA resin is used as a gasket material for a flat type non-aqueous electrolyte battery, the sealing part of the flat type non-aqueous electrolyte battery is a caulking seal. In addition, there is a problem that moisture permeates through the gap between the sealing plate or gasket and the battery case, and the reliability of the battery cannot be secured. This is considered to be because the atomic force between the fluorine atoms constituting the molecule of the fluororesin is weak, so that the molecules are separated from each other with a slight pressure, and peel off as a surface layer. .

このように、PFA樹脂をガスケット材に用いた扁平型非水電解液電池において、多湿環境下での保存に対し高い信頼性を維持しつつ、且つガスケットの表面剥離による機密性の低下を防ぐことは、この種の電池の実用電池としての需要を高める上で非常に重要な課題である。   In this way, in flat type non-aqueous electrolyte batteries using PFA resin as a gasket material, maintaining high reliability for storage in a humid environment and preventing deterioration of confidentiality due to surface peeling of the gasket Is a very important issue in increasing the demand of this type of battery as a practical battery.

本発明はこれら課題を解決し、高い信頼性を持つ扁平型非水電解液電池を提供すること
を目的とする。
An object of the present invention is to solve these problems and provide a flat non-aqueous electrolyte battery having high reliability.

上記課題を解決するために本発明の扁平型非水電解液電池は、電池ケース内に、セパレータを介して対向配置した正極と負極および非水電解液からなる発電要素を収納し、封口板、ガスケットおよび電池ケースで密封封口した扁平型非水電解液電池において、前記ガスケットとして結晶化度が25%以上45%以下の四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体で構成したものを用いたことを特徴とするものである。   In order to solve the above problems, the flat type nonaqueous electrolyte battery of the present invention accommodates a power generation element composed of a positive electrode, a negative electrode, and a nonaqueous electrolyte solution disposed in a battery case so as to face each other through a separator, In a flat type nonaqueous electrolyte battery hermetically sealed with a gasket and a battery case, the gasket is composed of a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having a crystallinity of 25% to 45%. It is characterized by this.

本発明により、扁平型非水電解液電池の機密性を高め、多湿環境下での外部からの水分浸入による電池特性劣化を大きく抑制し、高い信頼性を持つ扁平型非水電解液電池が提供できる。   According to the present invention, there is provided a flat non-aqueous electrolyte battery having high reliability by improving the confidentiality of the flat non-aqueous electrolyte battery, greatly suppressing deterioration of battery characteristics due to moisture ingress from the outside in a humid environment. it can.

本発明の扁平型非水電解液電池は、電池ケース内に、セパレータを介して対向配置した正極と負極および非水電解液からなる発電要素を収納し、封口板、ガスケットおよび電池ケースで密封封口した扁平型非水電解液電池において、前記ガスケットとして結晶化度が25%以上45%以下の四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体で構成したものを用いたことを特徴とする。   The flat type nonaqueous electrolyte battery of the present invention accommodates a power generation element composed of a positive electrode, a negative electrode, and a nonaqueous electrolyte disposed opposite to each other with a separator in a battery case, and is sealed with a sealing plate, a gasket, and a battery case. In the flat type nonaqueous electrolyte battery, the gasket is made of a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having a crystallinity of 25% to 45%.

種々の検討の結果、結晶化度が25%以上45%以下であるPFA樹脂を用いることで、封口時の表面剥離による機密性の低下を招くことなく、多湿環境下での水分浸入を大きく抑制した信頼性の高い扁平型非水電解液電池が提供できることを見出した。   As a result of various studies, the use of PFA resin having a crystallinity of 25% or more and 45% or less greatly suppresses moisture ingress in a humid environment without causing a decrease in confidentiality due to surface peeling during sealing. It has been found that a flat non-aqueous electrolyte battery with high reliability can be provided.

結晶化度を25%以上と高くすることで、分子鎖間の隙間を無くし、樹脂内を透過する水分量を大きく抑制することができる。さらに結晶化度を高めることで透湿度の低減には効果的であるが、結晶化度が45%以上と高くなるとさらに分子鎖が互いに平行に規則正しく配列することになり、分子間力がフッ素原子同士の原子間力に依存する割合が高くなり、封口時の表面剥離を引き起こしてしまうことによる。   By increasing the crystallinity to 25% or more, gaps between molecular chains can be eliminated, and the amount of water that permeates through the resin can be greatly suppressed. Further increasing the crystallinity is effective in reducing moisture permeability, but when the crystallinity is increased to 45% or higher, the molecular chains are regularly arranged in parallel to each other, and the intermolecular force is increased by fluorine atoms. This is because the ratio depending on the interatomic force increases, causing surface peeling at the time of sealing.

以下、本発明に係わる扁平型非水電解液電池の一例を図を用いて詳細に説明する。   Hereinafter, an example of a flat type nonaqueous electrolyte battery according to the present invention will be described in detail with reference to the drawings.

図1は、本発明の扁平型非水電解液電池の断面図である。正極1と負極2、セパレータ3及び非水電解液からなる発電要素を、集電体7を介して正極端子を兼ねる電池ケース4、負極端子を兼ねる封口板5、及び電池ケース4と封口板5を絶縁するガスケット6により収納、封止された扁平型非水電解液電池において、前記ガスケット6として結晶化度が25%以上45%以下のPFA樹脂からなることを特徴とするものである。   FIG. 1 is a cross-sectional view of a flat type nonaqueous electrolyte battery of the present invention. A battery case 4 that also serves as a positive electrode terminal via a current collector 7, a sealing plate 5 that also serves as a negative electrode terminal, and a battery case 4 and a sealing plate 5 that are made of a positive electrode 1 and a negative electrode 2, a separator 3, and a non-aqueous electrolyte. In the flat type non-aqueous electrolyte battery housed and sealed by the gasket 6 that insulates, the gasket 6 is made of a PFA resin having a crystallinity of 25% or more and 45% or less.

上記正極1はペレット状に成型した電極であり、正極活物質としては、特に限定されないが、リチウムイオンを受け入れることが可能なリチウム含有遷移金属酸化物などが挙げられる。具体的には、例えば二酸化マンガン、五酸化バナジウム、三酸化モリブデン、リチウムマンガン複合酸化物などの3V級の活物質、または、リチウムを含有するコバルト酸リチウム、ニッケル酸リチウム、スピネル型のマンガン酸リチウムなどの4V級活物質が挙げられる。これらの酸化物にマグネシウムやアルミニウムなどが添加されているのも好ましい。但し、可逆なリチウムを含有しない二酸化マンガン、五酸化バナジウム、三酸化モリブデン、リチウムマンガン複合酸化物などを正極に用いる場合にのみ、電池を構成する際に負極2にリチウムを化学的又は電気化学的に挿入する必要がある。   The positive electrode 1 is an electrode molded into a pellet shape, and the positive electrode active material is not particularly limited, and examples thereof include a lithium-containing transition metal oxide that can accept lithium ions. Specifically, for example, a 3V class active material such as manganese dioxide, vanadium pentoxide, molybdenum trioxide, lithium manganese composite oxide, or lithium cobaltate, lithium nickelate, spinel type lithium manganate containing lithium 4V class active material, such as these. It is also preferable that magnesium or aluminum is added to these oxides. However, only when manganese dioxide, vanadium pentoxide, molybdenum trioxide, lithium manganese composite oxide, etc. that do not contain reversible lithium are used for the positive electrode, lithium is chemically or electrochemically used for the negative electrode 2 when the battery is constructed. Need to be inserted into.

上記負極2もペレット状に成型した電極であり、負極活物質としては、特に限定されな
いが、リチウムイオンを電気化学的に吸蔵および放出することが可能な物質や金属リチウムなどが挙げられる。リチウムイオンを電気化学的に吸蔵および放出することが可能な物質として、例えばLiTi12、SiO、SnO、Nb、WO等の金属酸化物や、黒鉛やコークス等の炭素材料、もしくはリチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金などが挙げられる。
The negative electrode 2 is also an electrode formed into a pellet shape, and the negative electrode active material is not particularly limited, and examples thereof include a material capable of electrochemically inserting and extracting lithium ions and metallic lithium. Examples of substances capable of electrochemically inserting and extracting lithium ions include metal oxides such as Li 4 Ti 5 O 12 , SiO, SnO, Nb 2 O 5 , and WO 2 , and carbon such as graphite and coke. Examples of the material include lithium alloys such as lithium-aluminum alloy, lithium-lead alloy, and lithium-tin alloy.

セパレータ3には、従来から用いられているポリエチレンやポリプロピレン、またはセルロース、ポリフェニレンサルファイドをはじめとするエンジニアリングプラスチックなどを用いるのが好ましい。   For the separator 3, it is preferable to use conventionally used polyethylene, polypropylene, engineering plastics such as cellulose and polyphenylene sulfide.

非水電解液を構成する溶質としては、LiPF、LiBF、LiClO、LiCFSO、LiAsF、LiN(CFSO、LiN(CSOなどの単体あるいは複数成分を混合して使用することができる。また、非水電解液を構成する溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、γ−ブチロラクトンなどの単体または複数成分を使用することができるが、これに限定されるものではない。 Solutes constituting the non-aqueous electrolyte include simple substances such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2. Alternatively, a plurality of components can be mixed and used. In addition, as a solvent constituting the nonaqueous electrolytic solution, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, γ-butyrolactone, or the like Multiple components can be used, but are not limited thereto.

集電体7は導電性カーボン塗料を電池ケース4及び封口板5の内面に塗布したものである。   The current collector 7 is obtained by applying a conductive carbon paint to the inner surfaces of the battery case 4 and the sealing plate 5.

以下、本発明の実施例を図面および表を参照しながら、さらに具体的に説明する。
(実施例1)
正極1は、LiCoOに導電剤としてカーボンブラック、および結着剤としてフッ素樹脂粉末を質量比で90:5:5の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、200℃中で24時間乾燥したものを用いた。
Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings and tables.
Example 1
The positive electrode 1 is obtained by mixing LiCoO 2 with carbon black as a conductive agent and fluororesin powder as a binder in a mass ratio of 90: 5: 5, and forming into a pellet shape having a diameter of 10 mm and a thickness of 0.5 mm. What was dried at 200 ° C. for 24 hours was used.

負極2はチタン酸リチウム(LiTi12)に、カーボンブラック及びフッ素樹脂粉末を質量比93:5:2の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、120℃で24時間加熱処理したものを用いた。 After the negative electrode 2 was mixed with lithium titanate (Li 4 Ti 5 O 12 ) in a mass ratio of 93: 5: 2, carbon black and fluororesin powder were molded into a pellet having a diameter of 10 mm and a thickness of 0.5 mm. What was heat-treated at 120 ° C. for 24 hours was used.

セパレータ3はポリプロピレン製不織布を用い、また、電池ケース4、封口板5にはステンレス鋼を用いた。   The separator 3 is made of polypropylene nonwoven fabric, and the battery case 4 and the sealing plate 5 are made of stainless steel.

ガスケット6には結晶化度が30.5%であるPFA樹脂を用い、ガスケット6の表面に封止剤材料としブチルゴムを溶解させたトルエン溶剤をガスケット6の表面に塗布した後、60℃雰囲気下で1時間乾燥し溶剤を除去することでガスケット6の表面に封止剤層を形成したものを用いた。   A PFA resin having a crystallinity of 30.5% is used for the gasket 6, and a toluene solvent in which butyl rubber is dissolved as a sealant material is applied to the surface of the gasket 6. 1 was used for drying for 1 hour and removing the solvent to form a sealant layer on the surface of the gasket 6.

集電体7は、導電性カーボン塗料を電池ケース4及び封口板5の内面に塗布した後、塗膜の水分を除去するために電池ケースを150℃で6時間乾燥したものを用いた。また、非水電解液としてはエチレンカーボネートとメチルエチルカーボネ−トを体積比1:3の割合で混合した溶媒に、溶質としてLiPFを1mol/lの割合で溶解したものを用いて作成した図1に示す構造の扁平型非水電解液電池を電池A1とした。 The current collector 7 was obtained by applying a conductive carbon paint to the inner surfaces of the battery case 4 and the sealing plate 5 and then drying the battery case at 150 ° C. for 6 hours in order to remove moisture from the coating film. The non-aqueous electrolyte was prepared using a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 3, and LiPF 6 was dissolved as a solute at a ratio of 1 mol / l. A flat nonaqueous electrolyte battery having the structure shown in FIG. 1 was designated as battery A1.

また、ガスケット材料の結晶化度を(表1)のように変化させた以外は電池A1と同様にして作製した扁平型非水電解液電池を電池A2〜A3、B1〜B4とした。これらの電池はいずれも直径16mm、厚さ1.6mmである。   Moreover, flat type nonaqueous electrolyte batteries produced in the same manner as the battery A1 except that the crystallinity of the gasket material was changed as shown in Table 1 were designated as batteries A2 to A3 and B1 to B4. All of these batteries have a diameter of 16 mm and a thickness of 1.6 mm.

これらの扁平型非水電解液電池について、組み立て後、2.6Vの定電圧で24時間充電(保護抵抗50Ω)を行った。さらに、これらの電池について70℃90%の高温多湿環境下で30日間保存した後の放電容量を確認した。放電容量は2kΩの定抵抗放電を2.0Vに至るまで行い、このときの容量を算出した。これらの結果を(表1)に示す。   About these flat type non-aqueous electrolyte batteries, after assembling, charging was performed at a constant voltage of 2.6 V for 24 hours (protection resistance 50Ω). Further, the discharge capacity of these batteries after storage for 30 days in a high temperature and high humidity environment of 70 ° C. and 90% was confirmed. The discharge capacity was a constant resistance discharge of 2 kΩ up to 2.0 V, and the capacity at this time was calculated. These results are shown in (Table 1).

なお、結晶化度はX解回折装置(スペクトリス社製)を用いて、X線回折法により測定した。X線回折により観測されたピークを結晶質成分によるピーク面積(Ic)と非晶質成分によるピーク面積(Ia)に分離し、結晶化度(%)=100×Ic/(Ic+Ia)で表したものである。   The crystallinity was measured by an X-ray diffraction method using an X-resolution diffractometer (Spectris). The peak observed by X-ray diffraction was separated into a peak area (Ic) due to the crystalline component and a peak area (Ia) due to the amorphous component, and expressed as crystallinity (%) = 100 × Ic / (Ic + Ia). Is.

Figure 2010153167
Figure 2010153167

(表1)の結果から分かるように、結晶化度が25%以上45%以下であるPFA樹脂を用いた電池A1〜A3は十分な放電容量が得られている。一方、結晶化度が25%未満である電池B1とB2、および結晶化度が45%より大きい電池B3とB4では放電容量の大きな劣化が見られた。これらB1〜B4の電池は試験後、電池内部から浸入水分によると思われる水素ガスの発生が確認され、これが放電容量の劣化の原因であると推測された。さらに分解調査した結果、B3とB4の電池ではガスケットの表面の剥離が観測され、これが機密性の低下を招き、電池内部への水分浸入の原因となったと考えられる。   As can be seen from the results of (Table 1), the batteries A1 to A3 using the PFA resin having a crystallinity of 25% or more and 45% or less have a sufficient discharge capacity. On the other hand, the batteries B1 and B2 having a crystallinity of less than 25% and the batteries B3 and B4 having a crystallinity of more than 45% showed a large deterioration in discharge capacity. After the test, these B1 to B4 batteries were confirmed to generate hydrogen gas from the inside of the battery, which seems to be due to intrusion moisture, and this was assumed to be the cause of the deterioration of the discharge capacity. As a result of further disassembling investigation, peeling of the gasket surface was observed in the B3 and B4 batteries, which resulted in a decrease in confidentiality, which was considered to cause moisture intrusion into the battery.

これらの結果より、電池A1〜A3は電池B1〜B4に比べ、高温多湿という苛酷な環境下での長期間の保存に対して、高い結晶化度によって水分浸入を抑制しつつ、ガスケットの表面剥離による機密性の低下を招くことなく、高い信頼性を実現できることが分かる。   From these results, the batteries A1 to A3 have a surface detachment of the gasket while suppressing moisture intrusion due to high crystallinity for long-term storage in a severe environment of high temperature and high humidity compared to the batteries B1 to B4. It can be seen that high reliability can be realized without degrading the confidentiality due to.

本発明の扁平型非水電解液電池は、電子機器等の主電源またはバックアップ用電源として有用である。   The flat non-aqueous electrolyte battery of the present invention is useful as a main power source or backup power source for electronic devices and the like.

本発明の一実施の形態における扁平型非水電解液電池の断面図Sectional drawing of the flat type nonaqueous electrolyte battery in one embodiment of this invention

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池ケース
5 封口板
6 ガスケット
7 集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Sealing plate 6 Gasket 7 Current collector

Claims (1)

電池ケース内に、セパレータを介して対向配置した正極と負極および非水電解液からなる発電要素を収納し、封口板、ガスケットおよび電池ケースで密封封口した扁平型非水電解液電池において、前記ガスケットとして結晶化度が25%以上45%以下の四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体で構成したものを用いたことを特徴とする扁平型非水電解液電池。 In a flat nonaqueous electrolyte battery in which a power generation element composed of a positive electrode, a negative electrode, and a nonaqueous electrolyte solution, which are arranged to face each other via a separator, is housed in a battery case, and is sealed with a sealing plate, a gasket, and a battery case, the gasket A flat non-aqueous electrolyte battery comprising a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having a crystallinity of 25% to 45%.
JP2008329320A 2008-12-25 2008-12-25 Flat type nonaqueous electrolyte battery Pending JP2010153167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008329320A JP2010153167A (en) 2008-12-25 2008-12-25 Flat type nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008329320A JP2010153167A (en) 2008-12-25 2008-12-25 Flat type nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010153167A true JP2010153167A (en) 2010-07-08

Family

ID=42572044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008329320A Pending JP2010153167A (en) 2008-12-25 2008-12-25 Flat type nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010153167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002847A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Battery sealing member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236952A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Alkaline battery
JP2003520863A (en) * 1998-08-06 2003-07-08 オムリドン テクノロジーズ エルエルシー Melt processable poly (tetrafluoroethylene)
JP2005248167A (en) * 2004-02-04 2005-09-15 Nok Corp Polytetrafluoroethylene resin sealing member and manufacturing method therefor
JP2006147159A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2007034798A1 (en) * 2005-09-21 2007-03-29 Matsushita Electric Industrial Co., Ltd. Flat organic electrolyte secondary battery
JP2008027849A (en) * 2006-07-25 2008-02-07 Denso Corp Seal member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236952A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Alkaline battery
JP2003520863A (en) * 1998-08-06 2003-07-08 オムリドン テクノロジーズ エルエルシー Melt processable poly (tetrafluoroethylene)
JP2005248167A (en) * 2004-02-04 2005-09-15 Nok Corp Polytetrafluoroethylene resin sealing member and manufacturing method therefor
JP2006147159A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2007034798A1 (en) * 2005-09-21 2007-03-29 Matsushita Electric Industrial Co., Ltd. Flat organic electrolyte secondary battery
JP2008027849A (en) * 2006-07-25 2008-02-07 Denso Corp Seal member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002847A1 (en) * 2012-06-25 2014-01-03 トヨタ自動車株式会社 Battery sealing member
US9461279B2 (en) 2012-06-25 2016-10-04 Toyota Jidosha Kabushiki Kaisha Battery

Similar Documents

Publication Publication Date Title
JP4363436B2 (en) Secondary battery
US20060222955A1 (en) Battery
EP3067955B1 (en) Nonaqueous electrolyte secondary battery
CN102754250B (en) Coin-shaped lithium secondary battery
US20080152998A1 (en) Secondary battery
JP5407469B2 (en) Organic electrolyte battery
JP5589720B2 (en) Non-aqueous electrolyte secondary battery
JP2012190731A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
WO2007034798A1 (en) Flat organic electrolyte secondary battery
WO2014050056A1 (en) Nonaqueous electrolytic battery
JP2010056079A (en) Flat nonaqueous electrolyte secondary battery
JP2012124026A (en) Nonaqueous electrolyte secondary battery
JP2011071003A (en) Flat type nonaqueous electrolyte secondary battery
JP2004355977A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2001126684A (en) Non-aqueous electrolyte battery
JP2009146800A (en) Flat nonaqueous electrolyte secondary battery
JP2000243445A (en) Nonaqueous electrolyte secondary battery
JP4687942B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
JP5023649B2 (en) Lithium ion secondary battery
JP2010153167A (en) Flat type nonaqueous electrolyte battery
JP3699589B2 (en) Positive electrode paste composition, positive electrode manufacturing method, positive electrode, and lithium secondary battery using the same
JP2003109662A (en) Method of manufacturing secondary battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
CN108352559B (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130716