JP2008103294A - Flat type battery - Google Patents

Flat type battery Download PDF

Info

Publication number
JP2008103294A
JP2008103294A JP2006286997A JP2006286997A JP2008103294A JP 2008103294 A JP2008103294 A JP 2008103294A JP 2006286997 A JP2006286997 A JP 2006286997A JP 2006286997 A JP2006286997 A JP 2006286997A JP 2008103294 A JP2008103294 A JP 2008103294A
Authority
JP
Japan
Prior art keywords
positive
electrode terminal
negative electrode
film
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006286997A
Other languages
Japanese (ja)
Other versions
JP5100082B2 (en
Inventor
Nobukazu Suzuki
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2006286997A priority Critical patent/JP5100082B2/en
Publication of JP2008103294A publication Critical patent/JP2008103294A/en
Application granted granted Critical
Publication of JP5100082B2 publication Critical patent/JP5100082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat type battery capable of restraining short-circuiting failure between a cathode and an anode terminals and a thermal fusion part, without bringing forth manufacturing failure. <P>SOLUTION: The flat type battery is provided with a film-made vessel 1 having thermal fusion parts 21<SB>1</SB>to 21<SB>3</SB>at least at a part of its peripheral edge, a flat-shaped electrode group 8 housed in the vessel 1 containing cathodes 11 and anodes 15, a cathode terminal 16 electrically connected with the cathodes 11 and drawn out from the vessel 1 through the thermal fusion parts, and an anode terminal 17 electrically connected with the anodes 15 and drawn out from the vessel 1 through the thermal fusion parts. The cathode terminal 16 and the anode terminal 17 are equipped with slanted parts 22, respectively, getting thinner toward an end face at part located inside the thermal fusion part, with a microhardness of the slanted parts 22 of 1.5 times or more and 3 times or less of that of non-slanted parts 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、扁平型電池に関するものである。   The present invention relates to a flat battery.

近年、電子機器の発達に伴い、小型で軽量かつエネルギー密度が高く、更に繰り返し充放電が可能な非水電解質二次電池としてリチウム二次電池が発達してきた。また最近では、ハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適な、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発が要望されている。このような二次電池として、例えば特許文献1に記載されているような、負極活物質として小粒径(一次粒子の平均粒子径が1μm以下)のリチウムチタン酸化物(リチウムチタン複合酸化物)を用いた、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発がなされている。   In recent years, with the development of electronic devices, lithium secondary batteries have been developed as non-aqueous electrolyte secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. Recently, it is suitable for in-vehicle secondary batteries mounted on hybrid cars and electric cars, and secondary batteries for power storage used for power leveling. Development of a nonaqueous electrolyte secondary battery is desired. As such a secondary battery, for example, as described in Patent Document 1, lithium titanium oxide (lithium titanium composite oxide) having a small particle size (average particle size of primary particles is 1 μm or less) as a negative electrode active material. A non-aqueous electrolyte secondary battery that can be rapidly charged and discharged with high power and has excellent cycle performance has been developed.

一方、上記のような非水電解質二次電池を収納する外装部材として、従来の金属缶に代わり、より一層の薄型化・軽量化を目的としてアルミニウム箔および熱可塑性樹脂フィルムを有するラミネートフィルムからなる容器を使用することが試みられ、実用化されている。   On the other hand, as an exterior member for housing the nonaqueous electrolyte secondary battery as described above, it is made of a laminate film having an aluminum foil and a thermoplastic resin film for the purpose of further reducing the thickness and weight in place of the conventional metal can. Attempts have been made to use containers and they have been put to practical use.

このようなフィルム製容器を使用する非水電解質二次電池は、例えば、以下のように構成される。深絞り加工により作製された矩形状凹部(矩形状カップ部)、このカップ部の4辺に水平方向に延出された縁部およびこれらの縁部のうちの一つと繋がった平板部を有するフィルム製容器を使用する。この容器のカップ部に、リチウムイオンを吸蔵・放出可能な正極、負極およびこれら正負極間に介在するセパレータまたはリチウムイオン伝導性固体電解質層を備えた電極群を収納する。この電極群の正負極に正負極端子を接続する。正負極端子は、縁部を通して容器外部に延出される。容器の平板部を180°折り曲げて、この平板部と繋がる縁部を除く3つの縁部に熱融着し、電極群をカップ内に気密に封口した扁平型電池とする。   A non-aqueous electrolyte secondary battery using such a film container is configured as follows, for example. A film having a rectangular concave portion (rectangular cup portion) produced by deep drawing, an edge portion extending horizontally in the four sides of the cup portion, and a flat plate portion connected to one of these edge portions. Use a container. In the cup portion of the container, a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a separator interposed between the positive and negative electrodes or an electrode group including a lithium ion conductive solid electrolyte layer are housed. Positive and negative terminals are connected to the positive and negative electrodes of this electrode group. The positive and negative terminals are extended outside the container through the edge. The flat plate of the container is bent 180 ° and heat-sealed to three edges excluding the edge connected to the flat plate, and the electrode group is hermetically sealed in the cup.

フィルム製容器を構成する熱可塑性樹脂フィルムは、電池を薄くするために薄くする必要がある。しかし、熱可塑性樹脂フィルムを薄くすると、熱融着時の加圧により熱可塑性樹脂フィルムが軟化した際に、その熱可塑性樹脂フィルムが正負極端子の厚さ分、押し退けられて、正負極端子とフィルム製容器を構成するアルミニウムの様な金属箔が接触して短絡不良を発生する。このようなことから、熱融着時に熱可塑性樹脂フィルムが正負極端子により、ある程度押し退けられても、正負極端子と容器の金属箔の間に十分な厚さの絶縁樹脂層を存在させるために、正負極端子の融着部に対応する位置に絶縁フィルムを配置することが行われている。絶縁フィルムとしては、金属に対する接着性が良好な酸変性樹脂が用いられる。   The thermoplastic resin film constituting the film container needs to be thinned in order to make the battery thin. However, when the thermoplastic resin film is thinned, when the thermoplastic resin film is softened by the pressure at the time of thermal fusion, the thermoplastic resin film is pushed away by the thickness of the positive and negative electrode terminals, and the positive and negative electrode terminals and A metal foil such as aluminum constituting the film container is brought into contact, and short-circuit failure occurs. For this reason, even when the thermoplastic resin film is pushed away to some extent by the positive and negative electrode terminals at the time of heat fusion, an insulating resin layer having a sufficient thickness exists between the positive and negative electrode terminals and the metal foil of the container. An insulating film is disposed at a position corresponding to the fused portion of the positive and negative electrode terminals. As the insulating film, an acid-modified resin having good adhesion to metal is used.

この時、正負極端子にバリや反りがあると、絶縁フィルムを用いても、正負極端子と容器中のアルミニウムの様な金属箔が接触して短絡不良が発生するという問題があった。   At this time, if the positive and negative electrode terminals have burrs or warps, there is a problem that even if an insulating film is used, the positive and negative electrode terminals and a metal foil such as aluminum in the container come into contact with each other and short circuit failure occurs.

特に、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発がなされる最近では、大電流での充放電が要求される。さらに、車載用二次電池、電力平準化に使用される電力貯蔵用二次電池には大型の電池が適用されるため、これらの電池には従来よりも低抵抗の正負極端子が要求されている。つまり、低抵抗を実現させるためには通電断面積を大きくすることが望ましく、従来よりも厚くかつ幅広の正負極端子が好適である。このような状況は、正負極端子と容器間の短絡不良をより生じやすいものとする。   In particular, in recent years when non-aqueous electrolyte secondary batteries capable of rapid charging and high output discharge and excellent in cycle performance are developed, charging and discharging with a large current is required. In addition, large-sized batteries are applied to in-vehicle secondary batteries and secondary batteries for power storage used for power leveling. Therefore, these batteries require positive and negative terminals with lower resistance than before. Yes. That is, in order to realize low resistance, it is desirable to increase the current cross-sectional area, and a positive and negative electrode terminal that is thicker and wider than the conventional one is suitable. Such a situation is more likely to cause a short circuit failure between the positive and negative terminals and the container.

ところで、特許文献2には、ポリマー電池のタブの角部を角丸もしくは面取りすることにより、タブの端部の部分における密封性を改善することが記載されている。特許文献2のようにタブの角部を角丸もしくは面取りすると、その部分の強度が低下するため、電池製造工程でタブに欠け、反り、折れ曲がり等の不良を生じやすい。
特開2005−123183 特開2001−57203
By the way, Patent Document 2 describes that the sealing performance at the end portion of the tab is improved by rounding or chamfering the corner portion of the tab of the polymer battery. When the corner of the tab is rounded or chamfered as in Patent Document 2, the strength of the corner is reduced, and thus the tab is likely to be chipped, warped, bent or the like in the battery manufacturing process.
JP-A-2005-123183 JP 2001-57203 A

本発明の目的は、製造不良を招くことなく、正負極端子と熱融着部間の短絡不良を抑制することが可能な扁平型電池を提供しようとするものである。   An object of the present invention is to provide a flat battery capable of suppressing a short circuit failure between the positive and negative electrode terminals and the heat-sealed portion without causing a manufacturing failure.

本発明に係る扁平型電池は、周縁の少なくとも一部に熱融着による熱融着部を有するフィルム製容器と、
前記容器内に収納され、正極及び負極を含む扁平状の電極群と、
前記正極と電気的に接続され、前記容器から前記熱融着部を通して引き出された正極端子と、
前記負極と電気的に接続され、前記容器から前記熱融着部を通して引き出された負極端子とを具備し、
前記正極端子及び前記負極端子は、それぞれ、前記熱融着部内に位置する部分に厚さが端面に向かって薄くなる傾斜部を有し、前記傾斜部の超微小硬度は非傾斜部の超微小硬度の1.5倍以上、3倍以下であることを特徴とする。
A flat battery according to the present invention comprises a film container having a heat fusion part by heat fusion at least a part of the periphery,
A flat electrode group that is housed in the container and includes a positive electrode and a negative electrode;
A positive electrode terminal electrically connected to the positive electrode and drawn from the container through the thermal fusion part;
A negative electrode terminal electrically connected to the negative electrode and drawn out from the container through the thermal fusion part,
Each of the positive electrode terminal and the negative electrode terminal has an inclined portion whose thickness decreases toward an end surface at a portion located in the heat-sealed portion, and the ultrafine hardness of the inclined portion is higher than that of the non-inclined portion. It is characterized by being 1.5 to 3 times the microhardness.

本発明によれば、製造不良を招くことなく、正負極端子と熱融着部間の短絡不良を抑制することが可能な扁平型電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flat battery which can suppress the short circuit defect between a positive-negative electrode terminal and a heat-fusion part can be provided, without causing a manufacturing defect.

以下、本発明の実施形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す通り、この扁平型非水電解質電池は、フィルム製容器1を備えている。図3に示すように、フィルム製容器1は、矩形状カップ部2と、カップ部2の開口端三辺に形成された縁部3a〜3cと、カップ部2の残りの開口端から延び出た平板状の蓋体4とを有する。蓋体4は、カップ部2側に折り返して使用される。フィルム製容器1は、図2に示すように、容器1の内面を構成する熱可塑性樹脂フィルム5、アルミニウム箔のような金属箔6、および剛性を有する有機樹脂フィルム7を、この順序で積層したラミネートフィルムから形成されている。   As shown in FIG. 1, the flat type non-aqueous electrolyte battery includes a film container 1. As shown in FIG. 3, the film container 1 extends from the rectangular cup portion 2, the edges 3 a to 3 c formed on the three open ends of the cup portion 2, and the remaining open ends of the cup portion 2. And a flat plate-like lid 4. The lid body 4 is used by being folded back to the cup portion 2 side. As shown in FIG. 2, the film container 1 is formed by laminating a thermoplastic resin film 5 constituting an inner surface of the container 1, a metal foil 6 such as an aluminum foil, and a rigid organic resin film 7 in this order. It is formed from a laminate film.

図3に示すように、扁平状の電極群8は、フィルム製容器1のカップ部2内に収納される。この扁平状の電極群8は、図2に示すように、正極層9,9間に集電体10を介在させた構造の正極11、セパレータ12、負極層13,13間に集電体14を介在させた構造の負極15およびセパレータ12を渦巻き状に捲回して、ほぼ円筒状物とした後、例えば室温で圧力10〜30kg/cm2の条件下で加圧成形して偏平化することにより作製される。帯状の正極端子16は、電極群8の正極11に電気的に接続されている。一方、帯状の負極端子17は、電極群8の負極15に電気的に接続されている。正極端子16と負極端子17の先端は、電極群8の同じ端面から延び出ており、容器1におけるカップ部2の短辺側縁部3cを通して外部に引き出されている。 As shown in FIG. 3, the flat electrode group 8 is housed in the cup portion 2 of the film container 1. As shown in FIG. 2, the flat electrode group 8 includes a current collector 14 between a positive electrode 11 having a structure in which a current collector 10 is interposed between positive electrode layers 9 and 9, a separator 12, and negative electrode layers 13 and 13. The negative electrode 15 and the separator 12 having a structure in which a metal is interposed are spirally wound into a substantially cylindrical shape, and then flattened by, for example, pressure molding at room temperature under a pressure of 10 to 30 kg / cm 2. It is produced by. The strip-like positive electrode terminal 16 is electrically connected to the positive electrode 11 of the electrode group 8. On the other hand, the strip-like negative electrode terminal 17 is electrically connected to the negative electrode 15 of the electrode group 8. The tips of the positive electrode terminal 16 and the negative electrode terminal 17 extend from the same end surface of the electrode group 8 and are drawn out through the short side edge 3 c of the cup portion 2 in the container 1.

帯状の絶縁フィルム18aは、図3に示すように、容器1におけるカップ部2の短辺側縁部3cと、正負極端子16,17との間に介在されている。一方、帯状の絶縁フィルム18bは、図3に示すように、蓋体4の内面のうち縁部3cと対向する箇所に配置されている。これら絶縁フィルム18a、18bは、図2に示すように、正負極端子16、17と接し、熱融着時に溶融して正負極端子16、17と密着する第1の樹脂フィルム19と、この第1の樹脂フィルム19に積層され、第1の樹脂フィルム19に比べて高い融点を有する第2の樹脂フィルム20とからなる2層構造を有する。   As shown in FIG. 3, the strip-shaped insulating film 18 a is interposed between the short side edge 3 c of the cup 2 in the container 1 and the positive and negative terminals 16 and 17. On the other hand, as shown in FIG. 3, the strip-shaped insulating film 18 b is disposed at a location facing the edge 3 c on the inner surface of the lid 4. As shown in FIG. 2, the insulating films 18a and 18b are in contact with the positive and negative terminals 16 and 17, and are melted at the time of heat-sealing and are in close contact with the positive and negative terminals 16 and 17, respectively. It has a two-layer structure that is laminated on one resin film 19 and is composed of a second resin film 20 having a higher melting point than that of the first resin film 19.

フィルム製容器1における蓋体4はカップ部2側に折り返され、カップ部2の3つの縁部3a〜3cと蓋体4とが熱融着される。長辺側縁部3a、3bと蓋体4は、その内面に位置する熱可塑性樹脂フィルム5により熱融着され、熱融着部211,212が形成される。熱融着部211,212は、図1に示すように、カップ部2に向けて90°内側に折り曲げられている。短辺側縁部3cと蓋体4は、その間に、絶縁フィルム18a、正負極端子16,17及び絶縁フィルム18bが介在された状態で熱融着され、熱融着部213が形成される。熱融着部211〜213により、扁平状電極群8が容器1内に密閉されている。なお、非水電解質は、容器1のカップ部2内に収容されている。 The lid body 4 in the film container 1 is folded back to the cup portion 2 side, and the three edges 3a to 3c of the cup portion 2 and the lid body 4 are heat-sealed. The long side edge portions 3a and 3b and the lid 4 are heat-sealed by the thermoplastic resin film 5 located on the inner surface thereof to form heat-sealed portions 21 1 and 21 2 . As shown in FIG. 1 , the heat fusion portions 21 1 and 21 2 are bent inward by 90 ° toward the cup portion 2. Short side edge 3c and the cover 4, in the meantime, the insulating film 18a, positive and negative terminals 16, 17 and the insulating film 18b is thermally fused in a state of being interposed, heat-sealed portion 21 3 is formed . The flat electrode group 8 is hermetically sealed in the container 1 by the heat fusion portions 21 1 to 21 3 . The nonaqueous electrolyte is accommodated in the cup portion 2 of the container 1.

次いで、正負極端子16,17について図4〜図7を参照して説明する。正負極端子16,17は、引き出し方向(図5の場合、長手方向)に平行な端面のうち熱融着部213内に位置する部分に潰し成型が施されている。潰し成型として、例えば、プレス成型、ロール成型を採用することができる。プレス成型の方が容易である。潰し成型が施された部分は、正負極端子16,17の幅L方向に引き伸ばされ、図5〜図7に示すように、両端面に向かって厚さが薄くなる傾斜構造を有している(以下、傾斜部22と称す)。傾斜部22の超微小硬度は、非傾斜部(非成型部)23の超微小硬度の1.5倍以上、3倍以下とする。この理由を説明する。1.5倍未満にすると、電池製造工程、特に熱融着工程において正負極端子16,17に欠け、反り、折れ曲がり等の不良を生じる。また、正負極端子が持っているバリや反りが潰し成型後も残りやすいため、正負極端子とフィルム製容器のアルミニウムの様な金属箔とが接触して短絡不良を生じる。また、3倍を超えると、傾斜部22の端面の厚さが薄くなるため、電池製造工程、特に熱融着工程において正負極端子16,17に欠け、反り、折れ曲がり等の不良を生じる。傾斜部22の超微小硬度を非傾斜部の超微小硬度の1.5倍以上、3倍以下にすることによって、製造不良と短絡不良の双方を回避することができる。 Next, the positive and negative terminals 16 and 17 will be described with reference to FIGS. Positive and negative terminals 16 and 17, (in the case of FIG. 5, the longitudinal direction) withdrawing direction molded crush the portion located thermally fused portion 21 3 of the parallel end faces is applied. As crushing molding, for example, press molding or roll molding can be employed. Press molding is easier. The portion subjected to the crush molding is stretched in the width L direction of the positive and negative electrode terminals 16 and 17 and has an inclined structure in which the thickness decreases toward both end faces as shown in FIGS. (Hereinafter referred to as the inclined portion 22). The ultra micro hardness of the inclined portion 22 is 1.5 times or more and 3 times or less of the ultra micro hardness of the non-inclined portion (non-molded portion) 23. The reason for this will be explained. If the ratio is less than 1.5 times, the positive and negative terminals 16 and 17 may be defective, warped, bent, or the like in the battery manufacturing process, particularly in the heat fusion process. Moreover, since the burr | flash and curvature which a positive / negative electrode terminal has are crushed and it is easy to remain after shaping | molding, a metal foil like aluminum of a film-made container contacts, and a short circuit defect arises. On the other hand, if the ratio exceeds three times, the thickness of the end face of the inclined portion 22 becomes thin, and thus the positive and negative terminals 16 and 17 are chipped, warped, bent, etc. in the battery manufacturing process, particularly in the heat fusion process. By making the ultra micro hardness of the inclined portion 22 1.5 times or more and 3 times or less than the ultra micro hardness of the non-inclined portion, both of manufacturing defects and short circuit defects can be avoided.

超微小硬度とは、試料に圧子を載置し、一定の速度で荷重を増加し、指定荷重到達後、一定時間その荷重で保持し試験荷重と押し込み深さから算出される硬度である。具体的には、後述する実施例で説明する方法により測定される。   The ultra-micro hardness is a hardness calculated from a test load and an indentation depth by placing an indenter on a sample, increasing the load at a constant speed, holding the load for a certain time after reaching a specified load. Specifically, it is measured by the method described in Examples described later.

傾斜部22の長さLpは、正負極端子16,17の厚さをT0とした際に、Lp≦10T0を満足することが望ましい。Lpが10T0を超えると、傾斜部22の最も厚さの薄くなる先端面の強度が不足し、電池製造工程、特に熱融着工程において正負極端子16,17に欠け、反り、折れ曲がり等の不良を生じる恐れがある。Lpの下限値は、5T0にすることが望ましい。これは、Lpを5T0未満にすると、熱融着により軟化した樹脂フィルムが正負極端子の形状に馴染み難く、正負極端子と樹脂フィルムとの密着性が低下するため、熱融着部(シール部)に隙間(気泡)が生成することがあるからである。Lpを5T0≦Lp≦10T0にすることによって、熱融着部のシール強度をより高めることができると共に、製造不良をより少なくすることができる。 The length Lp of the inclined portion 22 desirably satisfies L p ≦ 10T 0 when the thickness of the positive and negative terminals 16 and 17 is T 0 . When L p exceeds 10T 0 , the strength of the tip surface where the inclined portion 22 is the thinnest is insufficient, and the positive and negative terminals 16 and 17 are missing, warped, bent, etc. in the battery manufacturing process, particularly in the heat sealing process. May cause defects. The lower limit value of Lp is desirably 5T 0 . This is because when Lp is less than 5T 0 , the resin film softened by heat fusion is not easily adapted to the shape of the positive and negative electrode terminals, and the adhesion between the positive and negative electrode terminals and the resin film is lowered. This is because gaps (bubbles) may be generated in the portion. By setting Lp to 5T 0 ≦ L p ≦ 10T 0 , it is possible to further increase the sealing strength of the heat-sealed portion and to reduce manufacturing defects.

傾斜部22の長さLpの測定方法を説明する。正負極端子16,17の熱融着部213内に位置する部分の表面の光学顕微鏡写真(例えば図9)において、傾斜部22は非傾斜部23に比して明度が低く、傾斜部22と非傾斜部23との間に明度の違いに基づく境界が存在する。この境界Xから傾斜部22の端面Yまでの距離のうち最大値を長さLpとする。 A method for measuring the length Lp of the inclined portion 22 will be described. In the optical micrograph (for example, FIG. 9) of the surface of the portion located in the heat fusion part 21 3 of the positive and negative terminals 16 and 17, the inclined part 22 has lower brightness than the non-inclined part 23, and the inclined part 22 And a non-inclined portion 23 has a boundary based on a difference in brightness. The maximum value of the distance from the boundary X to the end face Y of the inclined portion 22 is defined as a length Lp.

傾斜部22の端面の厚さTpは、Tp≦T0/2にすることが望ましい。厚さTpがT0/2よりも大きいと、熱融着により軟化した樹脂フィルムが正負極端子の形状に馴染み難く、正負極端子と樹脂フィルムとの密着性が低下するため、熱融着部(シール部)に隙間(気泡)が生成することがある。Tp≦T0/2にすることによって、正負極端子16,17が介在された熱融着部のシール強度を十分なものとすることができる。但し、厚さTpを10μm未満にすると、傾斜部22の端面の強度が不足する恐れがある。よって、熱融着部のシール強度と傾斜部22の強度を十分なものにするために、厚さTpを10μm≦Tp≦T0/2にすることがより望ましい。 The thickness Tp of the end surface of the inclined portion 22, it is desirable to Tp ≦ T 0/2. If the thickness Tp is greater than T 0/2, hardly familiar softened the shape of the resin film positive and negative terminals by thermal fusion, the adhesion between the positive and negative terminals and the resin film is reduced, heat-sealed portion A gap (bubble) may be generated in the (seal part). By the Tp ≦ T 0/2, can be a seal strength of heat-sealing unit positive and negative terminals 16, 17 are interposed between sufficient. However, when the thickness Tp is less than 10 μm, the strength of the end face of the inclined portion 22 may be insufficient. Therefore, in order to make the strength of the seal strength between the inclined portion 22 of the heat-sealed portion in sufficient, it is more preferable that the thickness Tp to 10μm ≦ Tp ≦ T 0/2 .

なお、T0は、正極端子16の傾斜部22の長さLpと厚さTpの場合には正極端子16の厚さとし、負極端子17の傾斜部22の長さLpと厚さTpの場合には負極端子17の厚さとする。正極端子16及び負極端子17の厚さは、それぞれ、50μm以上、500μm以下の範囲にすることができる。正極端子16と負極端子17の厚さは同じでも、互いに異なっていても良い。 Note that T 0 is the thickness of the positive electrode terminal 16 when the length Lp and the thickness Tp of the inclined portion 22 of the positive electrode terminal 16, and T 0 is the case of the length Lp and the thickness Tp of the inclined portion 22 of the negative electrode terminal 17. Is the thickness of the negative electrode terminal 17. The thickness of the positive electrode terminal 16 and the negative electrode terminal 17 can be in the range of 50 μm or more and 500 μm or less, respectively. The thicknesses of the positive electrode terminal 16 and the negative electrode terminal 17 may be the same or different from each other.

傾斜部22の長さLn(Lpと直交する方向の長さ)は、熱融着部213の幅Lsと等しくても良いし、幅Lsよりも長くても良い。幅Lsよりも長い場合、長さLnと幅Lsの差は2mm以下にすることが望ましい。 The length Ln (the length in the direction orthogonal to Lp) of the inclined portion 22 may be equal to the width Ls of the heat-sealing portion 21 3 or may be longer than the width Ls. When longer than the width Ls, the difference between the length Ln and the width Ls is desirably 2 mm or less.

正負極端子16,17の材質は、アルミニウムもしくはアルミニウム合金にすることが望ましい。この材質を選択することにより、潰し成型で端子の強度を高めることが可能となる。アルミニウム合金は、Cu,Mn,Mg及びCrよりなる群から選択される少なくとも1種類の元素を含有することが望ましい。   The material of the positive and negative terminals 16 and 17 is preferably aluminum or an aluminum alloy. By selecting this material, the strength of the terminal can be increased by crushing molding. The aluminum alloy preferably contains at least one element selected from the group consisting of Cu, Mn, Mg, and Cr.

次に、本発明に係る扁平型電池の一製造方法を以下に説明する。   Next, a method for manufacturing a flat battery according to the present invention will be described below.

まず、熱可塑性樹脂フィルム、金属箔および剛性を有する有機樹脂フィルムをこの順序で積層したラミネートフィルムを、深絞り加工して矩形状カップ部2を形成する。つづいて、このラミネートフィルムを切断して矩形状カップ部2の開口部の一辺が中央に位置すると共に、カップ部2周囲の4辺に水平方向に延出した幅狭の縁部3a〜3cおよび幅広(カップ部2と第2縁部3cと合算した長さと同幅)の縁部(蓋体)4が形成されるように切り出してフィルム製容器1を得る。ついで、このフィルム製容器1の縁部3cおよび蓋体4の内面に帯状の絶縁フィルム18a、18bをそれぞれ熱融着する。これら絶縁フィルム18a、18bは、正負極端子16,17と接し、熱融着時に溶融して正負極端子16,17と密着する第1の樹脂フィルム19と、この第1の樹脂フィルム19に積層され、第1の樹脂フィルム19に比べて高い融点を有する第2の樹脂フィルム20とからなる2層構造を有する。   First, the rectangular cup portion 2 is formed by deep drawing a laminate film obtained by laminating a thermoplastic resin film, a metal foil, and a rigid organic resin film in this order. Subsequently, the laminate film is cut so that one side of the opening of the rectangular cup part 2 is located at the center, and the narrow edges 3a to 3c extending horizontally in the four sides around the cup part 2 and The film container 1 is obtained by cutting out so as to form a wide edge (lid) having a wide width (the same width as the combined length of the cup 2 and the second edge 3c). Next, strip-shaped insulating films 18 a and 18 b are thermally fused to the edge 3 c of the film container 1 and the inner surface of the lid 4, respectively. The insulating films 18 a and 18 b are in contact with the positive and negative terminals 16 and 17, and are laminated on the first resin film 19 and a first resin film 19 that melts and adheres closely to the positive and negative terminals 16 and 17 during heat fusion. And has a two-layer structure including the second resin film 20 having a higher melting point than the first resin film 19.

次いで、正負極端子16,17を有する扁平状電極群8をフィルム製容器1のカップ部2内に正負極端子16,17が縁部3cから外部に延出するように収納する。つづいて、フィルム製容器1の蓋体4を180°折り曲げ、蓋体4と縁部3a〜3cとを重ね、2つの縁部3b,3cを所望の圧力で加圧しながら熱融着する。この時、正負極端子16,17が延出される縁部3cと蓋体4とにおいて、絶縁フィルム18a、18bが正負極端子16,17の両面にそれぞれ熱融着すると共に、正負極端子16,17を除く領域で絶縁フィルム18a、18b同士が熱融着される。また、縁部3bと蓋体4とにおいて、フィルム製容器1の熱可塑性樹脂フィルム同士が熱融着される。この後、非水電解液を未熱融着の縁部3aと蓋体4との隙間を通してカップ部2内に注入してそこに収納された電極群8に非水電解液を含浸させる。ひきつづき、未熱融着部を熱融着して扁平状電極群8を気密に封口した後、熱融着部211,212を所望の幅に裁断し、カップ部2に向けて折り曲げることにより、前述した図1〜図3に示す扁平型電池を製造する。 Next, the flat electrode group 8 having the positive and negative terminals 16 and 17 is accommodated in the cup portion 2 of the film container 1 so that the positive and negative terminals 16 and 17 extend from the edge 3c to the outside. Subsequently, the lid body 4 of the film container 1 is bent by 180 °, the lid body 4 and the edges 3a to 3c are overlapped, and the two edges 3b and 3c are heat-sealed while being pressed at a desired pressure. At this time, the insulating films 18a and 18b are thermally fused to both surfaces of the positive and negative terminals 16 and 17, respectively, at the edge 3c from which the positive and negative terminals 16 and 17 extend and the lid body 4, and the positive and negative terminals 16, In the region excluding 17, the insulating films 18 a and 18 b are heat-sealed. Further, the thermoplastic resin films of the film container 1 are heat-sealed at the edge 3 b and the lid 4. Thereafter, the nonaqueous electrolytic solution is injected into the cup portion 2 through the gap between the non-thermally bonded edge portion 3a and the lid body 4, and the electrode group 8 accommodated therein is impregnated with the nonaqueous electrolytic solution. Subsequently, after the non-heat-sealed portion is heat-sealed and the flat electrode group 8 is hermetically sealed, the heat-sealed portions 21 1 and 21 2 are cut to a desired width and bent toward the cup portion 2. Thus, the flat battery shown in FIGS. 1 to 3 described above is manufactured.

前述した扁平型電池における絶縁フィルムの配置は、図3に示す形態に限定されない。例えば、図8に示すように、正極端子16の各面と対向する箇所と、負極端子17の各面と対向する箇所、それぞれに絶縁フィルム24,25を配置しても良い。   The arrangement of the insulating film in the flat battery described above is not limited to the form shown in FIG. For example, as shown in FIG. 8, insulating films 24 and 25 may be disposed at locations facing each surface of the positive electrode terminal 16 and locations facing each surface of the negative electrode terminal 17, respectively.

また、図1〜3,8に示すように、絶縁フィルムを蓋体及び縁部に固定した後、蓋体と縁部を熱融着しても良いが、絶縁フィルムを蓋体と縁部に固定する代りに、正負極端子に固定することも可能である。本発明では、熱融着部内に位置する部分にのみ傾斜部(潰し成型部)が形成されているため、正負極端子への絶縁フィルムの位置決めを容易に行うことができる。   Moreover, as shown in FIGS. 1-3 and 8, after fixing an insulating film to a cover body and an edge part, you may heat-seal a cover body and an edge part, but an insulating film is attached to a cover body and an edge part. Instead of fixing, it is also possible to fix to the positive and negative terminals. In this invention, since the inclination part (crush molding part) is formed only in the part located in a heat-fusion part, positioning of the insulating film to a positive / negative electrode terminal can be performed easily.

熱融着部は、前述した図3に示すように容器の周縁の一部に形成しても良いが、容器の周縁全体に形成することも可能である。   The heat-sealing portion may be formed on a part of the peripheral edge of the container as shown in FIG. 3 described above, but it can also be formed on the entire peripheral edge of the container.

前述した図1では、正負極端子16,17を容器1の同じ熱融着部から引き出したが、一方の熱融着部から正極端子16を引き出し、かつこの熱融着部の反対側に位置する熱融着部から負極端子17を引き出しても良い。   In FIG. 1 described above, the positive and negative electrode terminals 16 and 17 are drawn out from the same heat fusion part of the container 1, but the positive electrode terminal 16 is drawn out from one of the heat fusion parts and positioned on the opposite side of the heat fusion part. The negative electrode terminal 17 may be drawn out from the heat-sealed part.

以下、フィルム製容器1、正極11、セパレータ12、負極15、非水電解質および絶縁フィルム18a,18bについて説明する。   Hereinafter, the film container 1, the positive electrode 11, the separator 12, the negative electrode 15, the nonaqueous electrolyte, and the insulating films 18a and 18b will be described.

1)フィルム製容器
このフィルム製容器を構成する熱可塑性樹脂フィルムとしては、例えばポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリプロピレンーポリエチレン共重合体フィルム、アイオノマーフィルム、エチレンビニルアセテート(EVA)フィルム等を用いることができる。
1) Container made of film Examples of the thermoplastic resin film constituting the container made of film include polyethylene (PE) film, polypropylene (PP) film, polypropylene-polyethylene copolymer film, ionomer film, and ethylene vinyl acetate (EVA) film. Etc. can be used.

フィルム製容器を構成する金属箔としては、例えばアルミニウム箔をもちいることができる。   As the metal foil constituting the film container, for example, an aluminum foil can be used.

フィルム製容器を構成する剛性を有する有機樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)フィルム、ナイロンフィルム等を用いることができる。   As the organic resin film having rigidity that constitutes the film container, for example, a polyethylene terephthalate (PET) film, a nylon film, or the like can be used.

2)正極
この正極は、集電体の両面(もしくは片面)に活物質および結着剤を含む正極層を担持した構造を有する。
2) Positive electrode The positive electrode has a structure in which a positive electrode layer containing an active material and a binder is supported on both surfaces (or one surface) of a current collector.

前記集電体としては、例えばアルミニウム、ニッケルまたはステンレスの板、アルミニウム、ニッケルまたはステンレスのメッシュ等を挙げることができる。   Examples of the current collector include aluminum, nickel or stainless steel plates, aluminum, nickel or stainless steel meshes, and the like.

前記活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn24またはLiMnO2)を用いると、高電圧が得られるために好ましい。 Examples of the active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium containing lithium. Examples thereof include chalcogen compounds such as oxides, titanium disulfide, and molybdenum disulfide. Among them, it is preferable to use lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or lithium manganese oxide (LiMn 2 O 4 or LiMnO 2 ) because a high voltage can be obtained.

前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレンープロピレンージェン共重合体(EPDM)、スチレンーブタジェンゴム(SBR)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-gen copolymer (EPDM), and styrene-butadiene rubber (SBR).

前記正極層には、例えばアセチレンブラック、カーボンブラック、黒鉛等の導電剤が含有される。   The positive electrode layer contains a conductive agent such as acetylene black, carbon black, and graphite.

前記正極層は、前記集電体に対して片面塗工(片面担持)で3〜6倍の厚さを有することが好ましい。   The positive electrode layer preferably has a thickness of 3 to 6 times that of the current collector by single-sided coating (single-sided support).

3)セパレータ
このセパレータとしては、例えばポリエチレン、ポリプロピレン、エチレンープロピレン共重合体、エチレンーブテン共重合体からなる微多孔性膜またはこれら材料の繊維を有する織布、不織布から作られる。
3) Separator The separator is made of, for example, a microporous film made of polyethylene, polypropylene, an ethylene-propylene copolymer, an ethylene-butene copolymer, or a woven or non-woven fabric having fibers of these materials.

4)負極
この負極は、集電体の(もしくは片面)に活物質および結着剤を含む負極層を担持した構造を有する。
4) Negative electrode This negative electrode has a structure in which a negative electrode layer containing an active material and a binder is supported on (or on one side of) a current collector.

前記集電体としては、例えば銅板、銅メッシュ等を挙げることができる。   Examples of the current collector include a copper plate and a copper mesh.

前記活物質は、特に限定されないが、金属リチウム、リチウム合金、又は充放電時にリチウムイオンを可逆的に吸蔵・放出、もしくはインターカレートするコークス、炭素繊維、黒鉛、メソフェーズピッチ系炭素、熱分解気相炭素質物、樹脂焼成体等の炭素質材料等を挙げることができる。   The active material is not particularly limited, but is lithium metal, lithium alloy, or coke, carbon fiber, graphite, mesophase pitch carbon, pyrolysis gas, which reversibly occludes / releases or intercalates lithium ions during charge / discharge. Examples thereof include carbonaceous materials such as phase carbonaceous materials and resin fired bodies.

前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレンープロピレンージェン共重合体(EPDM)、スチレンーブタジェンゴム(SBR)、カルボキシメチルセルロース(CMC)等の結着剤を含有することが好ましい。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-gen copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. It is preferable to contain this binder.

前記負極層は、前記集電体に対して片面塗工(片面担持)で3〜6倍の厚さを有することが好ましい。   It is preferable that the negative electrode layer has a thickness of 3 to 6 times by single-sided coating (single-sided support) with respect to the current collector.

5) 非水電解質
この非水電解質としては、例えば、非水電解液、ゲル状非水電解質等を使用することができる。非水電解液は、電解質と、電解質が溶解される非水溶媒とを含むものである。
5) Nonaqueous electrolyte As this nonaqueous electrolyte, a nonaqueous electrolyte, a gel-like nonaqueous electrolyte, etc. can be used, for example. The nonaqueous electrolytic solution includes an electrolyte and a nonaqueous solvent in which the electrolyte is dissolved.

電解質としては、例えば過塩素酸リチウム(LiClO4)、四フッ化硼酸リチウム(LiBF4)、六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、LiN(CF3SO22等を用いることができる。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium trifluoromethanesulfonate. (LiCF 3 SO 3 ), LiN (CF 3 SO 2 ) 2 or the like can be used.

非水溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;γ―ブチロラクトン等の環状エステル;テトラメチルスルホラン、ジメチルスルホキシド、N−メチルピロリドン、ジメチルフォルムアミドまたはこれらの誘導体などの他の非水溶媒;等を用いることができる。これらの非水溶媒は、1種または2種以上の混合物の形態で用いることができる。更に、これらの非水溶媒に、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのような鎖状カーボネートやアセトニトリル、酢酸エチル、酢酸メチル、トルエン、キシレン等の溶媒を混合することにより非水電解液の粘度を下げることが可能になる。   Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; cyclic esters such as γ-butyrolactone; tetramethylsulfolane, dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide, and derivatives thereof. Non-aqueous solvents, etc. can be used. These non-aqueous solvents can be used in the form of one kind or a mixture of two or more kinds. Furthermore, the viscosity of the non-aqueous electrolyte can be obtained by mixing these non-aqueous solvents with a chain carbonate such as dimethyl carbonate, methyl ethyl carbonate or diethyl carbonate, or a solvent such as acetonitrile, ethyl acetate, methyl acetate, toluene or xylene. Can be lowered.

前記非水溶媒中の前記電解質の濃度は、0.5モル/L以上にすることが好ましい。   The concentration of the electrolyte in the non-aqueous solvent is preferably 0.5 mol / L or more.

なお、本発明に係る扁平型電池において、セパレータの代わりに固体電解質を用いても良い。ただし、このような構成の扁平型電池では、非水電解質は前記正負極および固体電解質にそれぞれ保持される。   In the flat battery according to the present invention, a solid electrolyte may be used instead of the separator. However, in the flat battery having such a configuration, the nonaqueous electrolyte is held by the positive and negative electrodes and the solid electrolyte, respectively.

6)絶縁フィルム18a、18b
前述したように、絶縁フィルム18a、18bは、それぞれ、第1の樹脂フィルム19と、第2の樹脂フィルム20とからなる2層構造を有する。
6) Insulating films 18a and 18b
As described above, the insulating films 18 a and 18 b each have a two-layer structure including the first resin film 19 and the second resin film 20.

第2の樹脂フィルム20のメルトフローレート(MFR)を第1の樹脂フィルムのMFRに比して低くすることが望ましい。このような構成によれば、絶縁フィルムのうち、正負極端子に接する第1の樹脂フィルム(MFRが高く、融着時に樹脂フィルムの流れ特性が良い)が、熱融着によって溶融した際に正負極端子の傾斜部に沿って良好な樹脂流れを形成することができる。特に、第2の樹脂フィルム20は、2g/10分のメルトフローレート(MFR)を有することが好ましい。   It is desirable to make the melt flow rate (MFR) of the second resin film 20 lower than the MFR of the first resin film. According to such a configuration, when the first resin film (high MFR and good flow characteristics of the resin film at the time of fusion) out of the insulating films in contact with the positive and negative terminals is positive or negative when melted by heat fusion. A good resin flow can be formed along the inclined portion of the electrode terminal. In particular, the second resin film 20 preferably has a melt flow rate (MFR) of 2 g / 10 minutes.

すなわち、正負極端子と絶縁フィルムとを密着させるためには、正負極端子周辺の樹脂フィルムを十分に軟化させて正負極端子の形状に馴染ませる必要がある。このとき、両端面における正負極端子の傾斜部は有効に機能し、熱融着部(シール部)に隙間(気泡)が生成しなくなり、良好なシール形成が可能となる。また、上記の様な良好な樹脂流れを形成することにより、熱融着時に発生するこれら第1、第2の樹脂フィルム間の対流による樹脂フィルムの層間での混ざり合いが低減され、第2樹脂フィルムの保護層としての機能が十分に保持され、フィルム製容器の金属箔と正負極端子との接触による短絡を防止することができる。   That is, in order for the positive and negative electrode terminals and the insulating film to be in close contact with each other, it is necessary to sufficiently soften the resin film around the positive and negative electrode terminals so as to conform to the shape of the positive and negative electrode terminals. At this time, the inclined portions of the positive and negative electrode terminals on both end surfaces function effectively, and no gaps (bubbles) are generated in the heat-sealed portion (seal portion), and a favorable seal can be formed. Further, by forming a good resin flow as described above, the mixing between the layers of the resin film due to the convection between the first and second resin films generated at the time of heat fusion is reduced, and the second resin The function as the protective layer of the film is sufficiently maintained, and a short circuit due to contact between the metal foil of the film container and the positive and negative terminals can be prevented.

第2の樹脂フィルムのMFRが低い2層構造の絶縁フィルムにおいては、(a)酸変性ポリエチレン層とポリエチレン層とからなり、正負極端子と接する側に酸変性ポリエチレン層を配置するか、(b)酸変性ポリプロピレン層とポリプロピレン層とからなり、正負極端子と接する側に酸変性ポリプロピレン層を配置することが好ましい。   In the insulating film having a two-layer structure having a low MFR of the second resin film, (a) an acid-modified polyethylene layer and a polyethylene layer are arranged, and the acid-modified polyethylene layer is disposed on the side in contact with the positive and negative electrode terminals, or (b It is preferable that the acid-modified polypropylene layer is disposed on the side in contact with the positive and negative electrode terminals.

前記酸変性ポリエチレンとしては、例えば酸変性低密度直鎖状ポリエチレンまたは酸変性直鎖状ポリエチレンであることが好ましい。   The acid-modified polyethylene is preferably, for example, acid-modified low-density linear polyethylene or acid-modified linear polyethylene.

前記ポリエチレンとしては、例えば中密度または高密度ポリエチレンであることが好ましい。   The polyethylene is preferably, for example, medium density or high density polyethylene.

前記ポリプロピレンとしては、例えばホモポリマーベースのポリプロピレンであることが好ましい。   The polypropylene is preferably, for example, a homopolymer-based polypropylene.

前記酸変性ポリプロピレンとしては、例えばランダムコポリマーベースのポリプロピレンであることが好ましい。   The acid-modified polypropylene is preferably a random copolymer-based polypropylene, for example.

[実施例]
以下、本発明の実施例を前述した図面を参照して説明する。
[Example]
Embodiments of the present invention will be described below with reference to the drawings described above.

(実施例1)
<フィルム製容器の作製>
厚さ0.025mmのナイロンフィルム/厚さ0.04mmのアルミニウム箔/厚さ0.03mmのポリエチレンフィルムで構成される総厚さ0.095mmのラミネートフィルムに、深絞り加工を施して深さ3.0mm、長さ54mm、幅34mmの矩形状カップ部2を形成した。つづいて、このラミネートフィルムを裁断することにより前述した図3に示すような、カップ部2周囲の3辺に水平方向に延出した幅5mmの縁部3a〜3cおよび残りの一辺に幅60mmの蓋体4を有し、外形寸法170mm×130mmのフィルム製容器1を作製した。
(Example 1)
<Production of film container>
Depth processing is applied to a laminate film with a total thickness of 0.095 mm composed of 0.025 mm thick nylon film / 0.04 mm thick aluminum foil / 0.03 mm thick polyethylene film to a depth of 3 A rectangular cup portion 2 having a length of 0.0 mm, a length of 54 mm, and a width of 34 mm was formed. Next, by cutting the laminate film, as shown in FIG. 3 described above, the edges 3a to 3c having a width of 5 mm extending horizontally on the three sides around the cup portion 2 and a width of 60 mm on the remaining one side. A film container 1 having a lid 4 and having an outer dimension of 170 mm × 130 mm was produced.

次いで、融点が120℃、MFRが1.7g/minの酸変性直鎖状低密度ポリエチレン(酸変性LLDPE)からなる厚さ0.07mmの第1の樹脂フィルムと、融点が130℃、MFRが0.6g/minの高密度ポリエチレン(HDPE)からなる、厚さ0.05mmの第2の樹脂フィルムとを積層した総厚さ0.12mmの2層フィルムを、幅5mm、長さ30mmの寸法に裁断して帯状の2枚の絶縁樹脂フィルム(絶縁フィルム)を作製した。つづいて、前述した図3に示すように、これら絶縁フィルム18a、18bをフィルム製容器1の縁部3cおよび蓋体4の内面に配置した。この際、絶縁フィルム18a、18bのHDPEからなる第2の樹脂フィルムが容器内面と当接するように配置し、フィルム製容器1に熱融着した。   Next, a 0.07 mm thick first resin film made of acid-modified linear low density polyethylene (acid-modified LLDPE) having a melting point of 120 ° C. and MFR of 1.7 g / min, a melting point of 130 ° C. and MFR of A two-layer film having a total thickness of 0.12 mm made of 0.6 g / min high-density polyethylene (HDPE) and laminated with a second resin film having a thickness of 0.05 mm, has a width of 5 mm and a length of 30 mm. Two strip-shaped insulating resin films (insulating films) were produced. Subsequently, as shown in FIG. 3 described above, these insulating films 18 a and 18 b were arranged on the edge 3 c of the film container 1 and the inner surface of the lid 4. At this time, the second resin film made of HDPE of the insulating films 18 a and 18 b was disposed so as to contact the inner surface of the container, and was heat-sealed to the film container 1.

<端部潰し成型電極端子の作製>
厚さT0が0.1mm、幅Lが4mmの帯状のアルミニウム製正極端子及び負極端子を用意した。それぞれについて、長手方向側の両端面のうち熱融着部内に位置する箇所に、プレスにより潰し成型を施した。傾斜部(潰し成型部)の光学顕微鏡写真を図9に示す。図9に示す通りに、傾斜部22と非傾斜部23の間には、明度の違いに基づく境界Xが存在している。この境界Xから傾斜部22の端面Yまでの距離のうち最大値を長さLpとした。長さLpは0.8mmであった。正負極端子の厚さT0が0.1mmのため、この場合の5T0≦Lp≦10T0は0.5mm≦Lp≦1mmとなる。
<Preparation of end crushing electrode terminal>
A strip-shaped aluminum positive electrode terminal and negative electrode terminal having a thickness T 0 of 0.1 mm and a width L of 4 mm were prepared. About each, it crush-molded with the press in the location located in a heat-fusion part among the both end surfaces of a longitudinal direction side. FIG. 9 shows an optical micrograph of the inclined portion (crushed molding portion). As shown in FIG. 9, a boundary X based on the difference in brightness exists between the inclined portion 22 and the non-inclined portion 23. The maximum value of the distance from the boundary X to the end face Y of the inclined portion 22 is the length Lp. The length Lp was 0.8 mm. Since the thickness T 0 of the positive and negative electrode terminals is 0.1 mm, 5T 0 ≦ L p ≦ 10T 0 in this case is 0.5 mm ≦ L p ≦ 1 mm.

また、傾斜部22の端面の厚さTpは40μmであった。正負極端子の厚さT0が0.1mmのため、この場合の10μm≦Tp≦T0/2は10μm≦Tp≦50μm(0.05mm)となる。 The thickness Tp of the end face of the inclined portion 22 was 40 μm. Since the thickness T 0 of the positive and negative terminals of 0.1mm, 10μm ≦ Tp ≦ T 0 /2 in this case is 10μm ≦ Tp ≦ 50μm (0.05mm) .

傾斜部22の端面の厚さTpの測定方法は、以下の通りである。   A method for measuring the thickness Tp of the end face of the inclined portion 22 is as follows.

傾斜部22の端面部を顕微鏡観察することにより、端面厚さTpを測定した。   The end face thickness Tp was measured by observing the end face part of the inclined part 22 with a microscope.

さらに、傾斜部22及び非傾斜部23の超微小硬度を、島津製作所製のダイナミック超微小硬度計DUH−201Sを用い、下記に示す試験条件で測定した。   Furthermore, the ultra micro hardness of the inclined part 22 and the non-inclined part 23 was measured using the dynamic ultra micro hardness meter DUH-201S manufactured by Shimadzu Corporation under the test conditions shown below.

試験モード: 圧子押し込みモード
試験荷重: 50mN
負荷速度: 1.323898 mN/sec
保持時間: 15 sec
圧子の種類: 三角すい圧子115°
硬度の算出式: DHT115=3.8584×P/D2
ここで、DHT115は凌間角115°の三角すい圧子によるダイナミック硬さで、Pは試験荷重(mN)で、Dは押し込み深さ(μm)である。
Test mode: Indenter push-in mode Test load: 50mN
Load speed: 1.323898 mN / sec
Holding time: 15 sec
Indenter type: Triangular indenter 115 °
Formula for calculating hardness: DHT115 = 3.8854 × P / D 2
Here, DHT 115 is dynamic hardness by a triangular pan indenter with a recliner angle of 115 °, P is a test load (mN), and D is an indentation depth (μm).

上記試験の結果、超微小硬度(ダイナミック硬度DHT115)は、傾斜部22で51、非傾斜部23で25であった。よって、傾斜部22の超微小硬度は、非傾斜部23の2.0倍であった。   As a result of the above test, the ultrafine hardness (dynamic hardness DHT115) was 51 in the inclined portion 22 and 25 in the non-inclined portion 23. Therefore, the ultra-micro hardness of the inclined portion 22 was 2.0 times that of the non-inclined portion 23.

<電極群の作製>
まず、活物質としてのLiCoO2粉末89重量部に導電フィラーとしてのグラファイト粉末8重量部および結着材としてポリフッ化ビニリデン(PVdF)樹脂3重量部をN−メチルピロリドン25重量部に混合してペーストを調製した。このペーストを集電体である外形寸法50mm×370mm、厚さ0.2mmのアルミニウム箔の両面に、片面に50mm×70mmのエッジ部が未塗布部分として残るように塗布し、乾燥後、前記未塗布部分に上記正極端子を溶接することにより正極を作製した。
<Production of electrode group>
First, a paste prepared by mixing 89 parts by weight of LiCoO 2 powder as an active material, 8 parts by weight of graphite powder as a conductive filler and 3 parts by weight of polyvinylidene fluoride (PVdF) resin as a binder into 25 parts by weight of N-methylpyrrolidone. Was prepared. This paste was applied to both sides of an aluminum foil having an outer dimension of 50 mm × 370 mm and a thickness of 0.2 mm as a current collector so that an edge portion of 50 mm × 70 mm remained as an uncoated portion on one side, and after drying, The positive electrode was produced by welding the positive electrode terminal to the coated portion.

次いで、メソフェーズピッチ系炭素繊維を粉砕した後、熱処理した炭素繊維粉末100重量部をカルボキシメチルセルロースおよびスチレン−ブタジェンの架橋ゴムラテックス粒子2重量部を含む水溶液に混合してペーストを調製した。このペーストを、集電体である外形寸法51.5mm×380mm、厚さ0.15mmの銅箔の両面に、片面に51.5mm×60mmのエッジ部が未塗布部分として残るように塗布し、乾燥後、前記未塗布部分に上記負極端子を溶接することにより負極を作製した。   Next, after the mesophase pitch-based carbon fiber was pulverized, 100 parts by weight of the heat-treated carbon fiber powder was mixed with an aqueous solution containing 2 parts by weight of carboxymethylcellulose and styrene-butadiene crosslinked rubber latex particles to prepare a paste. This paste was applied to both sides of a copper foil having an outer dimension of 51.5 mm × 380 mm and a thickness of 0.15 mm as a current collector so that an edge portion of 51.5 mm × 60 mm remained as an uncoated part on one side, After drying, a negative electrode was produced by welding the negative electrode terminal to the uncoated portion.

次いで、正負極の間および正極側に53mm×450mmのポリエチレン製微多孔膜を配置した後、捲回機により負極の銅箔で最外周面が覆われるように、渦巻き状に捲回して100個の円筒状物を作製した。つづいて、この円筒状物を室温で圧力10〜30kg/cm2の条件で加圧成型することにより、前述した図3に示す正負極端子16,17を有する厚さ約3mmの扁平状電極群を作製した。 Next, after placing a polyethylene microporous film of 53 mm × 450 mm between the positive and negative electrodes and on the positive electrode side, it was wound in a spiral shape so that the outermost peripheral surface was covered with the copper foil of the negative electrode by a winding machine. A cylindrical product was prepared. Subsequently, this cylindrical object is subjected to pressure molding at room temperature under a pressure of 10 to 30 kg / cm 2 , whereby a flat electrode group having a thickness of about 3 mm having the above-described positive and negative terminals 16 and 17 shown in FIG. Was made.

<非水電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:1の割合で混合された非水溶媒に電解質としてLiPF6を1モル/Lの濃度になるように溶解させて非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 as an electrolyte is dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / L. Was prepared.

<薄型リチウムイオン二次電池の製造>
得られた扁平状電極群8をフィルム製容器1のカップ部2内に正負極端子16,17が縁部3cから外部に延出するように収納した。つづいて、フィルム製容器1の蓋体4を180°折り曲げて、この蓋体4と縁部3a〜3cとを重ね、2つの縁部3b、3cに4.0kgf/cm2の圧力で加圧しながら酸変性LLDPEの融点に70℃足した温度にて熱融着した。この時、正負極端子16,17が延出される縁部3cと蓋体4とにおいて、絶縁フィルム18a、18bの酸変性LLDPEからなる第1の樹脂フィルムが正負極端子16,17の両面にそれぞれ熱融着すると共に、正負極端子16,17を除く領域で絶縁フィルム18a、18bの第1の樹脂フィルム同士が熱融着された。また、縁部3bと蓋体4とにおいて、フィルム製容器1のポリエチレンフィルム同士が熱融着された。この後、非水電解液を未熱融着の縁部3aと蓋体4との隙間を通してカップ部2内に注入して、そこに収納された電極群8に非水電解液を含浸させた。ひきつづき、未熱融着部を熱融着して扁平状の電極群8を気密に封口した後、熱融着部211、212を2.5mm幅残るように裁断し、カップ部2に向けて折り曲げることにより、前述した図1〜図7に示す構造を有し、正負極端子を除く外形寸法が35mm×60mm、容量が300mAhの1000個の扁平型(薄型)リチウムイオン二次電池を製造した。
<Manufacture of thin lithium-ion secondary batteries>
The obtained flat electrode group 8 was accommodated in the cup portion 2 of the film container 1 so that the positive and negative electrode terminals 16 and 17 extended from the edge portion 3c to the outside. Subsequently, the lid 4 of the film container 1 is bent 180 °, the lid 4 and the edges 3a to 3c are overlapped, and the two edges 3b and 3c are pressurized with a pressure of 4.0 kgf / cm 2. However, heat fusion was performed at a temperature of 70 ° C. added to the melting point of the acid-modified LLDPE. At this time, the first resin film made of the acid-modified LLDPE of the insulating films 18a and 18b is formed on both surfaces of the positive and negative terminals 16 and 17, respectively, at the edge 3c from which the positive and negative terminals 16 and 17 are extended and the lid 4. While heat-sealing, the first resin films of the insulating films 18a and 18b were heat-sealed in the region excluding the positive and negative terminals 16 and 17. Moreover, the polyethylene film of the film container 1 was heat-sealed in the edge part 3b and the cover body 4. FIG. Thereafter, the nonaqueous electrolytic solution was injected into the cup portion 2 through the gap between the non-thermally bonded edge portion 3a and the lid body 4, and the electrode group 8 accommodated therein was impregnated with the nonaqueous electrolytic solution. . Subsequently, the non-heat-sealed portion is heat-sealed to seal the flat electrode group 8 in an airtight manner, and then the heat-sealed portions 21 1 and 21 2 are cut so as to remain 2.5 mm wide. The 1000 flat-type (thin) lithium ion secondary batteries having the structure shown in FIGS. 1 to 7 described above, having an external dimension excluding positive and negative terminals of 35 mm × 60 mm and a capacity of 300 mAh are obtained. Manufactured.

(実施例2〜3)
絶縁樹脂フィルムの種類を下記表1にしめすように変更すること以外、実施例1と同様な方法により扁平型リチウムイオン二次電池(各、総数1000個)を製造した。
(Examples 2-3)
A flat lithium ion secondary battery (each, 1000 in total) was produced by the same method as in Example 1 except that the type of insulating resin film was changed as shown in Table 1 below.

(実施例4〜5)
実施例1と同様な方法によりフィルム製容器1を作製した後、扁平状の電極群8をカップ部2に収納する際に、正負極端子16,17の両面のうち縁部3cに対応する箇所に下記表1に示す構成の絶縁フィルムを熱融着した。この後、実施例1と同様な手法により、前述した図1〜図7に示す構造を有し、正負極端子を除く外形寸法が35mm×60mm、容量が300mAhの扁平型リチウムイオン二次電池(各総数1000個)を製造した。
(Examples 4 to 5)
After producing the film container 1 by the same method as in Example 1, when storing the flat electrode group 8 in the cup part 2, the part corresponding to the edge part 3c of both surfaces of the positive and negative terminals 16 and 17 An insulating film having the structure shown in Table 1 below was heat-sealed. Thereafter, a flat lithium ion secondary battery having the structure shown in FIGS. 1 to 7 and having an outer dimension of 35 mm × 60 mm and a capacity of 300 mAh, excluding the positive and negative terminals, is obtained in the same manner as in Example 1. A total of 1000) was manufactured.

(実施例6)
厚さT0が0.2mm、幅Lが4mmの帯状のアルミニウム製正極端子及び負極端子を用意した。それぞれについて、長手方向側の両端面のうち熱融着部内に位置する箇所に、プレスにより潰し成型を施した。傾斜部の長さLpは2.0mmであった。正負極端子の厚さT0が0.2mmのため、この場合の5T0≦Lp≦10T0は1.0mm≦Lp≦2.0mmとなる。
(Example 6)
A strip-shaped aluminum positive electrode terminal and negative electrode terminal having a thickness T 0 of 0.2 mm and a width L of 4 mm were prepared. About each, it crush-molded with the press in the location located in a heat-fusion part among the both end surfaces of a longitudinal direction side. The length Lp of the inclined portion was 2.0 mm. Since the thickness T 0 of the positive and negative electrode terminals is 0.2 mm, 5T 0 ≦ L p ≦ 10T 0 in this case is 1.0 mm ≦ L p ≦ 2.0 mm.

また、傾斜部22の端面の厚さは20μmであった。正負極端子の厚さT0が0.2mmのため、この場合の10μm≦Tp≦T0/2は10μm≦Tp≦100μm(0.1mm)となる。 Further, the thickness of the end face of the inclined portion 22 was 20 μm. Since the thickness T 0 of the positive and negative terminals of 0.2mm, 10μm ≦ Tp ≦ T 0 /2 in this case is 10μm ≦ Tp ≦ 100μm (0.1mm) .

さらに、超微小硬度(ダイナミック硬度DHT115)は、傾斜部22で50、非傾斜部23で25であった。よって、傾斜部22の超微小硬度は、非傾斜部23の2.0倍であった。   Furthermore, the ultrafine hardness (dynamic hardness DHT115) was 50 in the inclined portion 22 and 25 in the non-inclined portion 23. Therefore, the ultra-micro hardness of the inclined portion 22 was 2.0 times that of the non-inclined portion 23.

上記正負極端子を用いること以外は、実施例1と同様な方法により扁平型リチウムイオン二次電池(各、総数1000個)を製造した。   Except for using the positive and negative electrode terminals, flat lithium ion secondary batteries (each 1000 in total) were produced in the same manner as in Example 1.

(実施例7)
厚さT0が0.08mm、幅Lが4mmの帯状のアルミニウム製正極端子及び負極端子を用意した。それぞれについて、長手方向側の両端面のうち熱融着部内に位置する箇所に、プレスにより潰し成型を施した。傾斜部の長さLpは0.4mmであった。正負極端子の厚さT0が0.08mmのため、この場合の5T0≦Lp≦10T0は0.4mm≦Lp≦0.8mmとなる。
(Example 7)
A strip-shaped aluminum positive electrode terminal and negative electrode terminal having a thickness T 0 of 0.08 mm and a width L of 4 mm were prepared. About each, it crush-molded with the press in the location located in a heat-fusion part among the both end surfaces of a longitudinal direction side. The length Lp of the inclined portion was 0.4 mm. Since the thickness T 0 of the positive and negative electrode terminals is 0.08 mm, 5T 0 ≦ L p ≦ 10T 0 in this case is 0.4 mm ≦ L p ≦ 0.8 mm.

また、傾斜部22の端面の厚さは40μmであった。正負極端子の厚さT0が0.08mmのため、この場合の10μm≦Tp≦T0/2は10μm≦Tp≦40μm(0.04mm)となる。 Further, the thickness of the end face of the inclined portion 22 was 40 μm. Since the thickness T 0 of the positive and negative terminals of 0.08mm, 10μm ≦ Tp ≦ T 0 /2 in this case is 10μm ≦ Tp ≦ 40μm (0.04mm) .

さらに、超微小硬度(ダイナミック硬度DHT115)は、傾斜部22で51、非傾斜部23で26であった。よって、傾斜部22の超微小硬度は、非傾斜部23の2.0倍であった。   Furthermore, the ultrafine hardness (dynamic hardness DHT115) was 51 at the inclined portion 22 and 26 at the non-inclined portion 23. Therefore, the ultra-micro hardness of the inclined portion 22 was 2.0 times that of the non-inclined portion 23.

上記正負極端子を用いること以外は、実施例1と同様な方法により扁平型リチウムイオン二次電池(各、総数1000個)を製造した。   Except for using the positive and negative electrode terminals, flat lithium ion secondary batteries (each 1000 in total) were produced in the same manner as in Example 1.

(実施例8)
厚さT0が0.1mm、幅Lが4mmの帯状のアルミニウム合金製正極端子及び負極端子を用意した。アルミニウム合金は、Al96重量%、Mg2.5重量%、Si0.25重量%以下、Fe0.40重量%以下、Cu0.10重量%以下、Mn0.10重量%以下、Zn0.10重量%以下の組成の5052材である。それぞれについて、長手方向側の両端面のうち熱融着部内に位置する箇所に、プレスにより潰し成型を施した。傾斜部の長さLpと端面の厚さは実施例1と同様な値にした。
(Example 8)
A strip-shaped aluminum alloy positive electrode terminal and negative electrode terminal having a thickness T 0 of 0.1 mm and a width L of 4 mm were prepared. Aluminum alloy is composed of Al 96 wt%, Mg 2.5 wt%, Si 0.25 wt% or less, Fe 0.40 wt% or less, Cu 0.10 wt% or less, Mn 0.10 wt% or less, Zn 0.10 wt% or less. 5052 material. About each, it crush-molded with the press in the location located in a heat-fusion part among the both end surfaces of a longitudinal direction side. The length Lp of the inclined portion and the thickness of the end face were set to the same values as in Example 1.

超微小硬度(ダイナミック硬度DHT115)は、傾斜部22で55、非傾斜部23で25であった。よって、傾斜部22の超微小硬度は、非傾斜部23の2.2倍であった。   The ultrafine hardness (dynamic hardness DHT115) was 55 at the inclined portion 22 and 25 at the non-inclined portion 23. Therefore, the ultra-micro hardness of the inclined portion 22 was 2.2 times that of the non-inclined portion 23.

(比較例1〜5)
実施例に用いた端部潰し成型リードに代え、端部潰し成型しない正負極端子を用いた以外、実施例と同様な手法により扁平型リチウムイオン二次電池(各総数1000個)を製造した。
(Comparative Examples 1-5)
A flat type lithium ion secondary battery (each 1000 in total) was manufactured in the same manner as in the example except that positive and negative terminals that were not subjected to end crushing were used instead of the end crushing formed lead used in the example.

得られた電池それぞれについて、製造した1000個中のうち内部短絡不良が生じている個数を測定し、その結果を表1に示す。また、1000個の電池を製造するに際し、正極端子または負極端子に欠け、反りあるいは折れ曲がり等の不具合が発生した製造不良率(%)を下記表1に併記する。なお、製造した1000個には、製造不良と判定されたものが含まれていない。

Figure 2008103294
For each of the obtained batteries, the number of internal short-circuit defects in 1000 manufactured was measured, and the results are shown in Table 1. In addition, the production failure rate (%) in which defects such as chipping, warping or bending are generated in the positive electrode terminal or the negative electrode terminal when 1000 batteries are manufactured is also shown in Table 1 below. Note that the manufactured 1000 pieces do not include those determined to be defective.
Figure 2008103294

表1から明らかなように、傾斜部の超微小硬度が非傾斜部の超微小硬度の1.5倍以上、3倍以下の実施例1〜8の電池は、正負極の短絡発生数(1000個中)がゼロであり、また製造不良率も皆無で、高い信頼性を有することが分かる。   As is clear from Table 1, the batteries of Examples 1 to 8 in which the ultrafine hardness of the inclined portion is 1.5 times or more and 3 times or less of the ultrafine hardness of the non-inclined portion are the number of occurrences of short-circuiting of the positive and negative electrodes. It can be seen that (out of 1,000) is zero, and there is no manufacturing defect rate, and it has high reliability.

これに対し、傾斜部を持たず、超微小硬度が均等な正負極端子を備えた比較例1〜5では、いずれの種類の絶縁フィルムを用いても、正負極の短絡発生と製造不良を生じた。   On the other hand, in Comparative Examples 1 to 5 having positive and negative terminals that have no inclined portion and uniform ultra-micro hardness, no matter what kind of insulating film is used, the positive and negative electrodes are short-circuited and defective in production. occured.

以上詳述したように、本発明によれば正負極間の短絡不良を防止し、かつリードシール信頼性に優れた扁平型電池が提供でき、特にハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適なものとなる。   As described above in detail, according to the present invention, it is possible to provide a flat battery that prevents a short circuit failure between positive and negative electrodes and that has excellent lead seal reliability, and is particularly suitable for a secondary vehicle mounted on a hybrid vehicle or an electric vehicle. The battery is suitable as a secondary battery for power storage used for power leveling.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の実施形態に係る扁平型電池を示す斜視図。The perspective view which shows the flat battery which concerns on embodiment of this invention. 図1の扁平型電池のII−IIに沿う断面図。Sectional drawing which follows II-II of the flat battery of FIG. 図1の扁平型電池の分解斜視図。The disassembled perspective view of the flat battery of FIG. 図1の扁平型電池における正負極端子と熱融着部の位置関係を示す模式図。The schematic diagram which shows the positional relationship of the positive / negative electrode terminal and heat sealing | fusion part in the flat battery of FIG. 図4の扁平型電池のV−V線に沿う断面図。Sectional drawing which follows the VV line | wire of the flat battery of FIG. 図5の正負極端子の拡大断面図。The expanded sectional view of the positive / negative terminal of FIG. 図4のA部で示す箇所における正負極端子の断面図。Sectional drawing of the positive / negative electrode terminal in the location shown by the A section of FIG. 本発明の別な実施形態に係る扁平型電池の封止前の状態を示す平面図。The top view which shows the state before sealing of the flat battery which concerns on another embodiment of this invention. 実施例1で用いられる正負極端子の光学顕微鏡写真。2 is an optical micrograph of positive and negative electrode terminals used in Example 1. FIG.

符号の説明Explanation of symbols

1…フィルム製容器、2…矩形状カップ部、3a〜3c…縁部、4…蓋体、5…熱可塑性樹脂フィルム、6…アルミニウム箔、7…剛性を有する有機樹脂フィルム、8…扁平状の電極群、11…正極、12…セパレータ、15…負極、16…正極端子、17…負極端子、18a、18b,24,25…絶縁フィルム、19…第1の樹脂フィルム、20…第2の樹脂フィルム、211〜213…熱融着部、22…傾斜部、23…非傾斜部。 DESCRIPTION OF SYMBOLS 1 ... Film container, 2 ... Rectangular cup part, 3a-3c ... Edge part, 4 ... Cover body, 5 ... Thermoplastic resin film, 6 ... Aluminum foil, 7 ... Organic resin film which has rigidity, 8 ... Flat shape 11 ... positive electrode, 12 ... separator, 15 ... negative electrode, 16 ... positive electrode terminal, 17 ... negative electrode terminal, 18a, 18b, 24, 25 ... insulating film, 19 ... first resin film, 20 ... second Resin film, 21 1 to 21 3 ... heat-sealed part, 22 ... inclined part, 23 ... non-inclined part.

Claims (5)

周縁の少なくとも一部に熱融着部を有するフィルム製容器と、
前記容器内に収納され、正極及び負極を含む扁平状の電極群と、
前記正極と電気的に接続され、前記容器から前記熱融着部を通して引き出された正極端子と、
前記負極と電気的に接続され、前記容器から前記熱融着部を通して引き出された負極端子とを具備し、
前記正極端子及び前記負極端子は、それぞれ、前記熱融着部内に位置する部分に厚さが端面に向かって薄くなる傾斜部を有し、前記傾斜部の超微小硬度は非傾斜部の超微小硬度の1.5倍以上、3倍以下であることを特徴とする扁平型電池。
A film container having a heat-sealed portion at least at a part of the periphery;
A flat electrode group that is housed in the container and includes a positive electrode and a negative electrode;
A positive electrode terminal electrically connected to the positive electrode and drawn from the container through the thermal fusion part;
A negative electrode terminal electrically connected to the negative electrode and drawn out from the container through the thermal fusion part,
Each of the positive electrode terminal and the negative electrode terminal has an inclined portion whose thickness decreases toward an end surface at a portion located in the heat-sealed portion, and the ultrafine hardness of the inclined portion is higher than that of the non-inclined portion. A flat battery having a microhardness of 1.5 times or more and 3 times or less.
前記傾斜部は、長さLpがLp≦10T0で、かつ端面の厚さTpがTp≦T0/2である(T0は前記正極端子または前記負極端子の厚さ)ことを特徴とする請求項1記載の扁平型電池。 The inclined section, said the length Lp is L p ≦ 10T 0, and the thickness Tp of the end surface is Tp ≦ T 0/2 (T 0 is the thickness of the positive electrode terminal or the negative terminal) The flat battery according to claim 1. 前記傾斜部は、プレスもしくはロールによる潰し成型で形成されることを特徴とする請求項1または2記載の扁平型電池。   3. The flat battery according to claim 1, wherein the inclined portion is formed by crushing molding using a press or a roll. 前記正極端子または前記負極端子の前記熱融着部内に位置する部分に介在される絶縁フィルムをさらに具備し、
前記絶縁フィルムは、前記正極端子または前記負極端子と接する第1の樹脂フィルムと、前記第1の樹脂フィルムに積層され、前記第1の樹脂フィルムに比して低いメルトフローレート(MFR)を有する第2の樹脂フィルムとを含むことを特徴とする請求項1〜3いずれか1項記載の扁平型電池。
Further comprising an insulating film interposed in a portion located in the thermal fusion part of the positive electrode terminal or the negative electrode terminal,
The insulating film is laminated on the first resin film in contact with the positive electrode terminal or the negative electrode terminal, and has a low melt flow rate (MFR) as compared with the first resin film. The flat battery according to any one of claims 1 to 3, further comprising a second resin film.
前記正極端子及び前記負極端子は、アルミニウムもしくはアルミニウム合金から形成されることを特徴とする請求項1〜4いずれか1項記載の扁平型電池。   The flat battery according to claim 1, wherein the positive electrode terminal and the negative electrode terminal are made of aluminum or an aluminum alloy.
JP2006286997A 2006-10-20 2006-10-20 Flat battery Expired - Fee Related JP5100082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286997A JP5100082B2 (en) 2006-10-20 2006-10-20 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286997A JP5100082B2 (en) 2006-10-20 2006-10-20 Flat battery

Publications (2)

Publication Number Publication Date
JP2008103294A true JP2008103294A (en) 2008-05-01
JP5100082B2 JP5100082B2 (en) 2012-12-19

Family

ID=39437459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286997A Expired - Fee Related JP5100082B2 (en) 2006-10-20 2006-10-20 Flat battery

Country Status (1)

Country Link
JP (1) JP5100082B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108901A (en) * 2008-09-30 2010-05-13 Dainippon Printing Co Ltd Manufacturing method for battery tab, battery tab, and hoop material having same
WO2010098018A1 (en) * 2009-02-24 2010-09-02 パナソニック株式会社 Electrode plate for nonaqueous secondary battery, manufacturing method therefor, and nonaqueous secondary battery using same
WO2012020721A1 (en) * 2010-08-11 2012-02-16 大倉工業株式会社 Method for producing tape for terminal adhesion and tape for terminal adhesion
KR101217331B1 (en) * 2009-10-16 2012-12-31 스미토모 덴키 고교 가부시키가이샤 Lead member for nonaqueous electrolyte electrical storage device, and nonaqueous electrolyte electrical storage device
US8486561B2 (en) 2009-11-27 2013-07-16 Tdk Corporation Electrochemical device and manufacturing method thereof
JP2015060787A (en) * 2013-09-20 2015-03-30 三菱自動車工業株式会社 Secondary battery
WO2015141772A1 (en) * 2014-03-19 2015-09-24 凸版印刷株式会社 Secondary battery
WO2015145715A1 (en) * 2014-03-28 2015-10-01 オートモーティブエナジーサプライ株式会社 Cell terminal and cell
JP2015191755A (en) * 2014-03-28 2015-11-02 オートモーティブエナジーサプライ株式会社 Negative electrode terminal and manufacturing method therefor
KR20160138810A (en) * 2015-05-26 2016-12-06 주식회사 엘지화학 Method and apparatus for manufacturing electrode lead
JP7315916B1 (en) 2023-03-20 2023-07-27 アポロ工業株式会社 Lead terminal manufacturing method and lead terminal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285903A (en) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Thin battery
JP2001057203A (en) * 1999-08-19 2001-02-27 Dainippon Printing Co Ltd Tab structure of polymer battery
JP2002246269A (en) * 2001-02-20 2002-08-30 Kyocera Corp Electrochemical element
JP2003007268A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery and packaging material for battery using the same
JP2003242961A (en) * 2002-02-20 2003-08-29 Dainippon Printing Co Ltd Battery terminal and packaging material for battery unit using the same
JP2004014123A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Battery pack
JP2006164784A (en) * 2004-12-08 2006-06-22 Nec Lamilion Energy Ltd Film-armored electric device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285903A (en) * 1999-03-31 2000-10-13 Sanyo Electric Co Ltd Thin battery
JP2001057203A (en) * 1999-08-19 2001-02-27 Dainippon Printing Co Ltd Tab structure of polymer battery
JP2002246269A (en) * 2001-02-20 2002-08-30 Kyocera Corp Electrochemical element
JP2003007268A (en) * 2001-06-20 2003-01-10 Dainippon Printing Co Ltd Film for lead wire of battery and packaging material for battery using the same
JP2003242961A (en) * 2002-02-20 2003-08-29 Dainippon Printing Co Ltd Battery terminal and packaging material for battery unit using the same
JP2004014123A (en) * 2002-06-03 2004-01-15 Nissan Motor Co Ltd Battery pack
JP2006164784A (en) * 2004-12-08 2006-06-22 Nec Lamilion Energy Ltd Film-armored electric device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108901A (en) * 2008-09-30 2010-05-13 Dainippon Printing Co Ltd Manufacturing method for battery tab, battery tab, and hoop material having same
WO2010098018A1 (en) * 2009-02-24 2010-09-02 パナソニック株式会社 Electrode plate for nonaqueous secondary battery, manufacturing method therefor, and nonaqueous secondary battery using same
CN101978531A (en) * 2009-02-24 2011-02-16 松下电器产业株式会社 Electrode for non-aqueous secondary battery, method of manufacturing the same and non-aqueous secondary battery using the same
KR101172714B1 (en) 2009-02-24 2012-08-14 파나소닉 주식회사 Electrode for non-aqueous secondary battery, method of manufacturing the same and non-aqueous secondary battery using the same
KR101217331B1 (en) * 2009-10-16 2012-12-31 스미토모 덴키 고교 가부시키가이샤 Lead member for nonaqueous electrolyte electrical storage device, and nonaqueous electrolyte electrical storage device
US8486561B2 (en) 2009-11-27 2013-07-16 Tdk Corporation Electrochemical device and manufacturing method thereof
JP5934646B2 (en) * 2010-08-11 2016-06-15 大倉工業株式会社 Manufacturing method of terminal bonding tape and terminal bonding tape
WO2012020721A1 (en) * 2010-08-11 2012-02-16 大倉工業株式会社 Method for producing tape for terminal adhesion and tape for terminal adhesion
JP2015060787A (en) * 2013-09-20 2015-03-30 三菱自動車工業株式会社 Secondary battery
WO2015141772A1 (en) * 2014-03-19 2015-09-24 凸版印刷株式会社 Secondary battery
JPWO2015141772A1 (en) * 2014-03-19 2017-04-13 凸版印刷株式会社 Secondary battery
US10109826B2 (en) 2014-03-19 2018-10-23 Toppan Printing Co., Ltd. Secondary battery
JP2015191755A (en) * 2014-03-28 2015-11-02 オートモーティブエナジーサプライ株式会社 Negative electrode terminal and manufacturing method therefor
WO2015145715A1 (en) * 2014-03-28 2015-10-01 オートモーティブエナジーサプライ株式会社 Cell terminal and cell
JPWO2015145715A1 (en) * 2014-03-28 2017-04-13 オートモーティブエナジーサプライ株式会社 Battery terminals and batteries
KR20160138810A (en) * 2015-05-26 2016-12-06 주식회사 엘지화학 Method and apparatus for manufacturing electrode lead
KR102002953B1 (en) * 2015-05-26 2019-07-23 주식회사 엘지화학 Method and apparatus for manufacturing electrode lead
JP7315916B1 (en) 2023-03-20 2023-07-27 アポロ工業株式会社 Lead terminal manufacturing method and lead terminal

Also Published As

Publication number Publication date
JP5100082B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5100082B2 (en) Flat battery
US9214696B2 (en) Degassing method of secondary battery using centrifugal force
JP4927064B2 (en) Secondary battery
JP6250921B2 (en) battery
KR102032508B1 (en) Pouch-type secondary battery comprising safety member
JP2018513524A (en) Secondary battery with improved safety
KR101294259B1 (en) Secondary battery having zigzag-shaped sealing part
JP2014502024A (en) Battery cell manufacturing method and battery cell manufactured by the manufacturing method
KR101787254B1 (en) Secondary battery
CN112582621B (en) Nonaqueous electrolyte secondary battery
JPWO2016113863A1 (en) Nonaqueous electrolyte battery and battery pack
JPWO2019069402A1 (en) Electrodes, non-aqueous electrolyte batteries and battery packs
JP2006202680A (en) Polymer battery
JP2002245988A (en) Thin battery
KR101925982B1 (en) Pouch type secondary battery and method of making the same
JP2008262788A (en) Nonaqueous electrolyte battery
KR101936074B1 (en) Battery Cell Comprising Electrolyte-Containing Member for Supplying Electrolyte
KR102065089B1 (en) Battery Case Including Adiabatic Layer And Battery Cell Comprising the Same
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
WO2019098056A1 (en) Lithium ion secondary battery
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2006092973A (en) Nonaqueous electrolyte secondary battery
KR101307772B1 (en) Method for Manufacturing Secondary Battery and Secondary Battery Manufactured thereby
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees