WO2015145715A1 - Cell terminal and cell - Google Patents

Cell terminal and cell Download PDF

Info

Publication number
WO2015145715A1
WO2015145715A1 PCT/JP2014/059086 JP2014059086W WO2015145715A1 WO 2015145715 A1 WO2015145715 A1 WO 2015145715A1 JP 2014059086 W JP2014059086 W JP 2014059086W WO 2015145715 A1 WO2015145715 A1 WO 2015145715A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
interface
positive electrode
electrode terminal
battery
Prior art date
Application number
PCT/JP2014/059086
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 櫻井
水田 政智
Original Assignee
オートモーティブエナジーサプライ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オートモーティブエナジーサプライ株式会社 filed Critical オートモーティブエナジーサプライ株式会社
Priority to JP2016509814A priority Critical patent/JP6227756B2/en
Priority to PCT/JP2014/059086 priority patent/WO2015145715A1/en
Publication of WO2015145715A1 publication Critical patent/WO2015145715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery terminal using a clad material and a battery using the terminal.
  • Patent Document 1 in a film-clad battery such as a lithium ion battery, a positive electrode side or a negative electrode side terminal is made of a clad material obtained by bonding two kinds of metals (aluminum and nickel for a positive electrode terminal and copper and nickel for a negative electrode terminal).
  • a structure in which a resin layer is provided on a part of the terminal in the length direction so as to cover the interface between the two is disclosed.
  • the positive electrode current collector in the power generation element is generally made of aluminum and the negative electrode current collector is generally made of copper
  • the inner end connected to each current collector is made of the same metal material as the current collector (Ie, aluminum for the positive terminal, copper for the negative terminal), while the outer end drawn to the outside is made of a dissimilar metal selected in consideration of the connection with the external terminal, bus bar, etc., for example, nickel It is composed.
  • the resin layer provided so as to cover the interface functions as an adhesive layer for the film-shaped outer package, and the sealing surface of the film-shaped outer package that is bonded to each other so as to sandwich the negative electrode terminal from both sides is on the resin layer. Glued.
  • the interface between the two is a simple plane (typically a plane perpendicular to the length direction of the terminal).
  • a three-dimensional shape that also changes in the length direction of the terminal.
  • the three-dimensional interface changed in the terminal length direction as described above appears in a simple straight line extending in the width direction of the terminal on both main surfaces, but spreads in the terminal length direction on the side surface of the terminal. It will appear in shape.
  • the present invention is a battery terminal comprising a plate-like clad material in which a first metal constituting one end in the length direction and a second metal constituting the other end are joined via an interface extending in the width direction. is there.
  • the interface is shaped as a cross-section along the length direction of the terminal, and is longer than the start point appearing on one main surface of the terminal, the end point appearing on the other main surface, and the positions of these start and end points. And at least one top portion in the middle portion in the thickness direction, which is offset to one side in the direction.
  • the shape on the cross section along the length direction of the terminal is V-shaped or W-shaped.
  • the interface expanded in the thickness direction is crushed so as to approach one linear shape, and the metal position exposed in a wide area moves in the length direction of the terminal. Therefore, the distance from the atmospheric humidity and the electrolytic solution can be increased, and the corrosion rate can be suppressed. Even if crushing is not complete, the surface area of the interface that is substantially exposed at the terminal side edge is reduced.
  • the first edge portion extending from the start point to the top portion and the second piece extending from the end point toward the top portion are the side edges of the terminal at which both ends of the interface extending in the width direction are located.
  • the one part is converged in the thickness direction.
  • the metal position exposed in a wide area moves in the length direction of the terminal by the amount of convergence, so the humidity from the atmosphere and the distance from the electrolyte can be separated, and the corrosion rate is reduced. Can be suppressed. Even if the convergence is not complete, the surface area of the interface that is substantially exposed at the terminal side edge is reduced, and the corrosion area can be reduced.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG.
  • the perspective view of the terminal which shows the base material state which has not crushed the side edge.
  • Explanatory drawing of the angle of a taper surface Explanatory drawing which shows the example of the combination of the direction of an interface at the time of applying to a positive electrode terminal, and the formation range of a resin layer.
  • the film-clad battery 1 is, for example, a lithium ion secondary battery, and has a flat rectangular external shape as shown in FIG. 1 and includes a positive electrode terminal 2 and a negative electrode terminal 3 at one edge in the longitudinal direction. ing.
  • the film-clad battery 1 is one in which the power generating element 4 is housed in an exterior body 5 made of a laminate film together with an electrolytic solution.
  • the power generation element 4 has a laminated structure in which a plurality of positive electrodes 11 and negative electrodes 21 each having a sheet shape are alternately laminated via separators 31.
  • the positive electrode 11 is configured by applying a positive electrode active material layer 13 on both surfaces of a positive electrode current collector 12 made of, for example, an aluminum foil, and the negative electrode 21 is formed on both surfaces of a negative electrode current collector 22 made of, for example, a copper foil. 23 is applied.
  • the dimension of each part in a figure, and the number of the positive electrodes 11 and the negative electrodes 22 are not necessarily exact, and are exaggerated for explanation.
  • a part of the edge in the longitudinal direction of the negative electrode current collector 22 extends as a terminal connection portion 22a that does not include the negative electrode active material layer 23, and one end portion 3a of the negative electrode terminal 3 is connected to the tip thereof.
  • the terminal connection portions 22a of the plurality of negative electrodes 22 are superposed on the negative electrode terminal 3, and then joined together by ultrasonic welding.
  • the other end 3 b of the negative electrode terminal 3 is led out of the exterior body 5.
  • the positive electrode terminal 2 also has a similar connection structure, that is, a positive electrode active material layer 13 is provided on a part of the longitudinal edge of the positive electrode current collector 12. A terminal connection portion that is not to be extended is formed, and one end portion of the positive electrode terminal 2 is ultrasonically welded to the tip thereof. The other end of the positive electrode terminal 2 is led out of the exterior body 5.
  • the exterior body 5 that houses the power generation element 4 together with the electrolytic solution has a three-layer structure of a heat-fusible layer 51, a metal layer 52, and a protective layer 53 as shown in an enlarged view in FIG. 2. It has a laminate film.
  • the intermediate metal layer 52 is made of, for example, an aluminum foil
  • the heat-sealing layer 51 that covers the inner surface thereof is made of a synthetic resin that can be heat-fused, for example, polypropylene (PP), and is a protection that covers the outer surface of the metal layer 52.
  • the layer 53 is made of a synthetic resin having excellent durability, such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a laminate film having a larger number of layers can also be used.
  • the synthetic resin layers are laminated on both surfaces of the metal layer 52.
  • the synthetic resin layer on the outer side of the metal layer 52 is not necessarily essential, and the configuration includes the synthetic resin layer only on the inner surface. It may be.
  • the outer package 5 has a two-sheet structure of one laminate film disposed on the lower surface side of the power generation element 4 in FIG. 2 and another laminate film disposed on the upper surface side, The four sides around these two laminate films are superposed and heat-sealed to each other.
  • the illustrated example shows such a two-layer exterior body 5.
  • the exterior body 5 is made of one relatively large laminate film, and the power generation element 4 is arranged inside in a folded state, and the surrounding three sides are overlapped, and It can be set as the structure heat-sealed mutually.
  • the positive electrode terminal 2 and the negative electrode terminal 3 are arranged side by side on the short side of the rectangular film-clad battery 1, and these terminals 2 and 3 are heated by overlapping the edge 5 a of the laminate film that becomes the outer package 5. At the time of fusion, it is led out through the joint surface 5b of both.
  • a resin layer 41 is provided in advance on the outer peripheral surface of the intermediate portion in the length direction of the terminals 2 and 3, and the edge 5 a of the outer package 5 is formed in such a manner as to sandwich the resin layer 41 from both sides. Bonded on the layer 41.
  • a resin material excellent in resistance to an electrolytic solution and adhesiveness is used.
  • an acid-modified polyolefin resin is used.
  • FIG. 3 and 4 show an embodiment in which the present invention is applied to the positive electrode terminal 2
  • FIG. 3 is a cross section (longitudinal cross section) along the length direction of the positive electrode terminal 2
  • FIG. It is a cross section along a line.
  • the positive electrode terminal 2 is composed of a plate-like clad material in which aluminum as the first metal and copper as the second metal are integrally joined, and is connected to the positive electrode current collector 12 inside the exterior body 5.
  • One end portion 2a in the length direction is constituted by the first metal portion 61 made of aluminum, and the other end portion 2b in the length direction led out from the exterior body 5 to the outside is made by the second metal portion 62 made of copper. It is configured.
  • the z direction in FIG. 3 is referred to as the “thickness direction” of the terminals 2 and 3.
  • the interface 63 between the first metal portion 61 and the second metal portion 62 exists at a substantially intermediate portion in the length direction of the positive electrode terminal 2, so that the one end portion 2 a of the positive electrode terminal 2 is entirely in the thickness direction.
  • the other end portion 2 b is configured as a second metal portion 62 as a whole in the thickness direction.
  • the first metal portion 61 is made a material suitable for bonding to the positive electrode current collector 12, and the second metal portion 62 is bonded to an external terminal, a bus bar, or the like. It can be made a material suitable for.
  • the positive electrode terminal 2 of the above embodiment can be used in combination with the negative electrode terminal 3 made entirely of copper, whereby the portions led out of the terminals 2 and 3 are made of the same copper material. Is possible.
  • the interface 63 extends linearly over the entire width direction of the positive electrode terminal 2, but in order to ensure high bonding strength between the two types of metal portions 61 and 62, the interface 63 is not a simple flat surface. As shown in FIG. 4, the interface 63 has a three-dimensional shape having a substantially V-shaped cross section. That is, the interface 63 of this embodiment has a thickness from the start point 63a appearing on the first main surface 64a of the positive electrode terminal 2 in the cross-sectional shape (Z direction) along the length direction of the terminals 2 and 3 in FIG.
  • the first piece 631 extending obliquely toward the middle portion in the direction and the second piece 632 extending obliquely from the end point 63b appearing on the second main surface 64b of the positive electrode terminal 2 toward the middle portion in the thickness direction are approximately
  • the first piece 631 and the second piece 632 are formed symmetrically and are continuous with each other at the apex 63c at the intermediate portion in the thickness direction, thereby forming a substantially V-shaped cross section as a whole. Accordingly, with respect to the length direction of the terminals 2 and 3, the position of the start point 63a of the interface 63 appearing on the first main surface 64a and the position of the end point 63b of the interface 63 appearing on the second main surface 64b are basically equal. Compared to these positions, the V-shaped top portion 63 c is located closer to the one end portion 2 a of the positive electrode terminal 2.
  • the interface 63 may have a cross-sectional shape close to a U-shape, or a W-shaped cross-sectional shape having a plurality of top portions 63c.
  • the V-shaped cross-sectional shape of the interface 63 as described above basically has the same cross-sectional shape over the entire width direction excluding the side edges 2c and 2d of the positive electrode terminal 2 shown in FIG.
  • the side edges 2c and 2d of the positive electrode terminal 2 are formed in a tapered shape that is crushed from above and below in the thickness direction.
  • the one piece 631 and the second piece 632 are gradually converged in the thickness direction. That is, as shown in FIG. 7, the base material of the clad material in which two kinds of metals are joined has a V-shaped cross-section interface 63 continuous to the side surface 101 in the same cross-sectional shape.
  • the edges 102 and 103 on both sides of the terminal 101 are crushed in a taper shape from both sides in the thickness direction of the terminals 2 and 3, so that a pair of tapered surfaces 104 and 105 ( 5) is formed. Then, with such plastic deformation of the base material, the first piece 631 and the second piece 632 of the interface 63 gradually converge as shown in FIG. 6, and finally close to one line. It is in shape. Further, the material of the first metal portion 61 (material of the portion indicated by reference numeral 61a in FIG. 7) existing in a triangle along the edges 102 and 103 in the base material shown in FIG.
  • the interface 63 that finally appears on the side edges 2c and 2d becomes thinner.
  • the interface 63 appearing on the side edges 2c and 2d has a long thin linear portion.
  • the positive electrode terminal 2 has a length of 50 mm, a width of 70 mm, and a thickness of 0.2 mm.
  • the positive electrode terminal 2 has a length of 50 mm, a width of 70 mm, and a thickness of 0.2 mm.
  • as shown in FIG. 2c and 2d are crushed over a width W1 of about 1 mm, and the angle ⁇ of each of the tapered surfaces 104 and 105 is about 7 °.
  • the crushing of the edges 102 and 103 at the side edges 2c and 2d can be performed simultaneously with the cutting of the side edges 2c and 2d.
  • the interface which is the contact surface of the dissimilar metal in the clad material approaches the electrolytic solution or the outside air.
  • the first metal portion covers the second metal portion, so that the distance from the exposed second metal portion can be increased, and the corrosion rate can be suppressed.
  • the corrosion area can be reduced.
  • the resin layer 41 is provided on the surface of the positive electrode terminal 2 by an appropriate method such as application of a resin material or adhesion of a resin film after the processing of the side edges 2c and 2d.
  • the resin layer 41 is provided in the range of the length L between the boundary lines 106 and 107.
  • the boundary lines 106 and 107 may be set so as to cover the entire length direction of the positive electrode terminal 2 of the interface 63 at the side edges 2c and 2d, or at the side edges 2c and 2d.
  • the boundary lines 106 and 107 may be set so that one end of the positive electrode terminal 2 in the length direction of the interface 63 is exposed from the resin layer 41.
  • the top 63c of the interface 63 having a V-shaped cross section extends toward the first metal portion 61, but conversely, the interface 63 extends in the direction in which the top 63c extends toward the second metal portion 62. May be configured.
  • FIG. 9 shows three other typical examples in which the orientation of the interface 63 and the formation range of the resin layer 41 are appropriately combined. In addition, in FIG. 9, in order to make an understanding easy, each example is shown by the base material state which has not crushed the edges 102 and 103 of the side edges 2c and 2d.
  • FIG. 9A has the same configuration as the embodiment described with reference to FIGS. 3 to 7, and the top 63c of the interface 63 extends toward the first metal portion 61 side.
  • the boundary lines 106 and 107 of the resin layer 41 are set so that the entire length of the interface 63 is also covered with the resin layer 41 at the side edges 2c and 2d.
  • the side edges 2c, 2d can be crushed to separate the exposed position of copper, which is the second metal portion 62 at the side edges 2c, 2d, from the electrolyte on the first metal portion 61 side. Even if crushing is not complete, the surface area can be reduced.
  • the boundary lines 106 and 107 are set so as to allow exposure of the V-shaped interface 63 on the top 63c side. That is, in this example, the boundary lines 106 and 107 and the interface 63 are set so that the margin between the boundary line 106 and the interface 63 is larger on the resin layer 41 on the first metal portion 61 side where the electrolytic solution exists.
  • the relative positional relationship of is set. In the side edges 2c and 2d, the end of the interface 63 is exposed to the outside air, but the side edges 2c and 2d are crushed in the thickness direction to increase the distance between the outside air and the first metal portion 61. The corrosion of the exposed first metal portion 61 (not crushed) due to the outside air can be suppressed. Even if crushing is not complete, the substantial surface area can be reduced.
  • the boundary line 106 which has the same orientation of the interface 63 as in FIG. 9A, allows the start point 63a and end point 63b side of the interface 63 to be exposed from the resin layer 41. 107 is set. Also in this example, as in the example of (a), the possibility that copper as the second metal contacts the electrolytic solution is reduced. This example is particularly effective when corrosion due to the outside air hardly occurs.
  • FIG. 9D is obtained by reversing the direction of the interface 63 in the example of FIG. 9A, and the entire length direction of the interface 63 is also covered with the resin layer 41 at the side edges 2c and 2d.
  • boundary lines 106 and 107 of the resin layer 41 are set.
  • FIG. 10 shows several examples in which the present invention is applied to the negative electrode terminal 3.
  • FIG. 10 shows each example in a base material state in which the edges 102 and 103 of the side edges 3c and 3d are not crushed, as in FIG.
  • the negative electrode terminal 3 is made of a plate-like clad material in which copper as the first metal and aluminum as the second metal are integrally joined, and the negative electrode current collector 22 is formed inside the exterior body 5.
  • the one end portion 3a in the length direction to be connected is constituted by the first metal portion 61 made of copper, and the other end portion 3b in the length direction led out from the exterior body 5 to the outside is made of the second metal portion 62 made of aluminum. Consists of.
  • the negative electrode terminal 3 using such a clad material can be used in combination with, for example, the positive electrode terminal 2 made entirely of aluminum, whereby the portions led out of both terminals 2 and 3 are made of the same aluminum. It can be a material.
  • the top 63c of the interface 63 extends toward the first metal portion 61 side made of copper.
  • the boundary lines 106 and 107 of the resin layer 41 are set so that the entire length of the interface 63 is also covered with the resin layer 41 at the side edges 3c and 3d.
  • the side surface 101 is crushed and the exposed position of the second metal on the side edges 3c and 3d (the portion that is not crushed) is shifted, and in particular, the speed at which aluminum as the second metal contacts the electrolyte. Becomes slower.
  • boundary lines 106 and 107 are set.
  • the boundary lines 106, 106 are formed so that the margin between the boundary line 106 and the interface 63 is larger on the first metal portion 61 side where the electrolytic solution is present than the resin layer 41 having the length L.
  • a relative positional relationship between 107 and the interface 63 is set.
  • the end portion of the interface 63 is exposed to the outside air.
  • the side edges 3c and 3d are crushed in the thickness direction to suppress the corrosion of the interface 63 due to the outside air.
  • FIG. 10C has the same interface 63 direction as FIG. 10A, and the boundary line is allowed to allow the start point 63a and end point 63b side of the interface 63 to be exposed from the resin layer 41. 106 and 107 are set. Also in this example, similarly to the example of FIG. 10A, the possibility that the second metal, aluminum, comes into contact with the electrolytic solution is reduced. This example is particularly effective when corrosion at the interface 63 due to the outside air hardly occurs.
  • FIG. 10D is obtained by reversing the direction of the interface 63 in the example of FIG. 10A, and the entire length direction of the interface 63 is also covered with the resin layer 41 at the side edges 3c and 3d. As shown, the boundary lines 106 and 107 of the resin layer 41 are set. In this embodiment, the side surface 101 is crushed, and the possibility of corrosion by outside air at the side edges 3c and 3d is reduced.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • copper and aluminum are used as the metal material of the clad material, but other metal materials can also be used.
  • the pair of terminals 2 and 3 are arranged side by side on one end edge of the outer package 5, but the positive electrode terminal 2 is arranged on one end edge.
  • the present invention can be similarly applied to a battery having a configuration in which the negative electrode terminal 3 is disposed on the other edge.

Abstract

 A positive electrode terminal (2) of a film-packaged cell (1) comprises a cladding in which a first metal portion (61) comprising aluminum and a second metal portion (62) comprising copper are joined at an interface (63). One end part (2a) is connected to a positive electrode collector (12) and the other end part (2b) is led out from a packaging body (5). A resin layer (41) joined to the packaging body (5) is provided around the interface (63). The interface (63) has a three-dimensional shape having a substantially V-shaped cross-section. Side edges (2c, 2d) of the positive electrode terminal (2) are squeezed to a tapered shape, and the interface (63) appearing at the surface converges in a straight line. The essential surface area of the interface (63) is thereby reduced.

Description

電池用端子および電池Battery terminals and batteries
 この発明は、クラッド材を用いた電池用端子およびこの端子を用いた電池に関する。 The present invention relates to a battery terminal using a clad material and a battery using the terminal.
 特許文献1には、リチウムイオン電池などのフィルム外装電池において、正極側ないし負極側の端子を、2種の金属(正極端子ではアルミニウムとニッケル、負極端子では銅とニッケル)を接合したクラッド材から形成するとともに、両者の界面を覆うように端子の長さ方向の一部に樹脂層を設けた構成が開示されている。 In Patent Document 1, in a film-clad battery such as a lithium ion battery, a positive electrode side or a negative electrode side terminal is made of a clad material obtained by bonding two kinds of metals (aluminum and nickel for a positive electrode terminal and copper and nickel for a negative electrode terminal). A structure in which a resin layer is provided on a part of the terminal in the length direction so as to cover the interface between the two is disclosed.
 すなわち、発電要素における正極集電体は一般にアルミニウムからなり、かつ負極集電体は一般に銅からなるので、各々の集電体に接続される内側の端部を、集電体と同一の金属材料(つまり正極端子ではアルミニウム、負極端子では銅)から構成し、他方、外部へ引き出される外側の端部を、外部端子やバスバーなどとの接続を考慮して選択される異種の金属、例えばニッケルから構成しているのである。 That is, since the positive electrode current collector in the power generation element is generally made of aluminum and the negative electrode current collector is generally made of copper, the inner end connected to each current collector is made of the same metal material as the current collector (Ie, aluminum for the positive terminal, copper for the negative terminal), while the outer end drawn to the outside is made of a dissimilar metal selected in consideration of the connection with the external terminal, bus bar, etc., for example, nickel It is composed.
 そして、界面を覆うように設けられる樹脂層は、フィルム状外装体に対する接着層として機能し、負極端子を両側から挟むようにして互いに接合されるフィルム状外装体の封止面が、樹脂層の上に接着される。 The resin layer provided so as to cover the interface functions as an adhesive layer for the film-shaped outer package, and the sealing surface of the film-shaped outer package that is bonded to each other so as to sandwich the negative electrode terminal from both sides is on the resin layer. Glued.
 このようなクラッド材を用いた端子においては、2種の金属部分の接合強度を高く確保するために、両者の界面を単純な一平面(典型的には端子の長さ方向に直交する平面)とするのではなく、端子の長さ方向にも変化した立体形状とすることが望ましい。しかしながら、このように端子長さ方向に変化した立体形状の界面は、両主面ではそれぞれ端子の幅方向に延びた単純な一直線に現れるものの、端子の側面においては、端子長さ方向に拡がった形に現れることとなる。 In a terminal using such a clad material, in order to ensure a high bonding strength between the two metal parts, the interface between the two is a simple plane (typically a plane perpendicular to the length direction of the terminal). Instead, it is desirable to have a three-dimensional shape that also changes in the length direction of the terminal. However, the three-dimensional interface changed in the terminal length direction as described above appears in a simple straight line extending in the width direction of the terminal on both main surfaces, but spreads in the terminal length direction on the side surface of the terminal. It will appear in shape.
特開2001-126709号公報JP 2001-126709 A
 この発明は、長さ方向の一端部を構成する第1金属と他端部を構成する第2金属とが幅方向に延びる界面を介して接合された板状のクラッド材からなる電池用端子である。 The present invention is a battery terminal comprising a plate-like clad material in which a first metal constituting one end in the length direction and a second metal constituting the other end are joined via an interface extending in the width direction. is there.
 上記界面は、端子の長さ方向に沿った断面上の形状として、端子の一方の主面に現れる始点と、他方の主面に現れる終点と、これら始点および終点の位置に比較して長さ方向の一方へ片寄って位置する厚さ方向中間部における少なくとも1つの頂部と、を有している。例えば、端子の長さ方向に沿った断面上の形状として、V字形もしくはW字形をなしている。 The interface is shaped as a cross-section along the length direction of the terminal, and is longer than the start point appearing on one main surface of the terminal, the end point appearing on the other main surface, and the positions of these start and end points. And at least one top portion in the middle portion in the thickness direction, which is offset to one side in the direction. For example, the shape on the cross section along the length direction of the terminal is V-shaped or W-shaped.
 そして、本発明の一つの態様においては、幅方向に延びる界面の両端が位置する端子の側縁部分が、厚さ方向に押し潰された形状をなしている。 And in one aspect of this invention, the side edge part of the terminal in which the both ends of the interface extended in the width direction are located in the shape crushed in the thickness direction.
 従って、側縁部分では、厚さ方向に拡がっていた界面が1本の直線形状に近付くように押し潰された形となり、広い面積で露出している金属位置が端子の長さ方向で移動するため、大気の湿度や電解液からの距離を離すことができ、腐食速度を抑制することができる。仮に押し潰しが完全でなくても、端子側縁において実質的に露出する界面の表面積が小さくなる。 Therefore, in the side edge portion, the interface expanded in the thickness direction is crushed so as to approach one linear shape, and the metal position exposed in a wide area moves in the length direction of the terminal. Therefore, the distance from the atmospheric humidity and the electrolytic solution can be increased, and the corrosion rate can be suppressed. Even if crushing is not complete, the surface area of the interface that is substantially exposed at the terminal side edge is reduced.
 また、本発明の第2の態様においては、幅方向に延びる界面の両端が位置する端子の側縁で、始点から頂部へ向かって延びる第1の片部と終点から頂部へ向かって延びる第2の片部とが、厚さ方向に収束したものとなっている。 In the second aspect of the present invention, the first edge portion extending from the start point to the top portion and the second piece extending from the end point toward the top portion are the side edges of the terminal at which both ends of the interface extending in the width direction are located. The one part is converged in the thickness direction.
 従って、側縁部分では、収束した分だけ、広い面積で露出している金属位置が端子の長さ方向で移動するため、大気の湿度や電解液からの距離を離すことができ、腐食速度を抑制することができる。仮に収束が完全でなくても、端子側縁において実質的に露出する界面の表面積は小さくなり、腐食面積を小さくできる。 Therefore, at the side edge portion, the metal position exposed in a wide area moves in the length direction of the terminal by the amount of convergence, so the humidity from the atmosphere and the distance from the electrolyte can be separated, and the corrosion rate is reduced. Can be suppressed. Even if the convergence is not complete, the surface area of the interface that is substantially exposed at the terminal side edge is reduced, and the corrosion area can be reduced.
この発明の端子が用いられるフィルム外装電池の一例を示す斜視図。The perspective view which shows an example of the film-clad battery in which the terminal of this invention is used. 同じくフィルム外装電池の断面図。Sectional drawing of a film exterior battery similarly. この発明に係る端子の一実施例の縦断面図。The longitudinal cross-sectional view of one Example of the terminal which concerns on this invention. 図3のA-A線に沿った横断面図。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 樹脂層装着前の端子の斜視図。The perspective view of the terminal before resin layer mounting | wearing. 図5のB-B線に沿った横断面図。FIG. 6 is a cross-sectional view taken along line BB in FIG. 側縁を潰していない母材状態を示す端子の斜視図。The perspective view of the terminal which shows the base material state which has not crushed the side edge. テーパ面の角度の説明図。Explanatory drawing of the angle of a taper surface. 正極端子に適用した場合の界面の方向と樹脂層の形成範囲との組み合わせの例を示す説明図。Explanatory drawing which shows the example of the combination of the direction of an interface at the time of applying to a positive electrode terminal, and the formation range of a resin layer. 負極端子に適用した場合の界面の方向と樹脂層の形成範囲との組み合わせの例を示す説明図。Explanatory drawing which shows the example of the combination of the direction of the interface at the time of applying to a negative electrode terminal, and the formation range of a resin layer.
 以下、この発明の一実施例を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 初めに図1および図2に基づいて、この発明による端子が用いられるフィルム外装電池1の一例を説明する。フィルム外装電池1は、例えばリチウムイオン二次電池であり、図1に示すように、偏平な長方形の外観形状を有し、長手方向の一方の端縁に、正極端子2および負極端子3を備えている。 First, an example of the film-clad battery 1 in which the terminal according to the present invention is used will be described with reference to FIG. 1 and FIG. The film-clad battery 1 is, for example, a lithium ion secondary battery, and has a flat rectangular external shape as shown in FIG. 1 and includes a positive electrode terminal 2 and a negative electrode terminal 3 at one edge in the longitudinal direction. ing.
 図2に示すように、フィルム外装電池1は、発電要素4を電解液とともにラミネートフィルムからなる外装体5の内部に収容したものである。発電要素4は、それぞれシート状をなす複数の正極11および負極21をセパレータ31を介して交互に積層した積層構造を有する。正極11は、例えばアルミニウム箔からなる正極集電体12の両面に正極活物質層13を塗布して構成され、負極21は、例えば銅箔からなる負極集電体22の両面に負極活物質層23を塗布して構成されている。なお、図における各部の寸法や正極11,負極22の数は必ずしも正確なものではなく、説明のために誇張したものとなっている。 As shown in FIG. 2, the film-clad battery 1 is one in which the power generating element 4 is housed in an exterior body 5 made of a laminate film together with an electrolytic solution. The power generation element 4 has a laminated structure in which a plurality of positive electrodes 11 and negative electrodes 21 each having a sheet shape are alternately laminated via separators 31. The positive electrode 11 is configured by applying a positive electrode active material layer 13 on both surfaces of a positive electrode current collector 12 made of, for example, an aluminum foil, and the negative electrode 21 is formed on both surfaces of a negative electrode current collector 22 made of, for example, a copper foil. 23 is applied. In addition, the dimension of each part in a figure, and the number of the positive electrodes 11 and the negative electrodes 22 are not necessarily exact, and are exaggerated for explanation.
 負極集電体22の長手方向の端縁の一部は、負極活物質層23を具備しない端子接続部22aとして延びており、その先端に負極端子3の一端部3aが接続されている。詳しくは、複数の負極22の端子接続部22aを負極端子3の上に重ね合わせた上で、超音波溶接することによって互いに接合されている。そして、負極端子3の他端部3bは、外装体5の外部へ導出されている。 A part of the edge in the longitudinal direction of the negative electrode current collector 22 extends as a terminal connection portion 22a that does not include the negative electrode active material layer 23, and one end portion 3a of the negative electrode terminal 3 is connected to the tip thereof. Specifically, the terminal connection portions 22a of the plurality of negative electrodes 22 are superposed on the negative electrode terminal 3, and then joined together by ultrasonic welding. The other end 3 b of the negative electrode terminal 3 is led out of the exterior body 5.
 また図2には示されていないが、正極端子2も同様の接続構造を有しており、つまり、正極集電体12の長手方向の端縁の一部に、正極活物質層13を具備しない端子接続部が延長形成され、その先端に正極端子2の一端部が超音波溶接されている。そして、正極端子2の他端部は、外装体5の外部へ導出されている。 Although not shown in FIG. 2, the positive electrode terminal 2 also has a similar connection structure, that is, a positive electrode active material layer 13 is provided on a part of the longitudinal edge of the positive electrode current collector 12. A terminal connection portion that is not to be extended is formed, and one end portion of the positive electrode terminal 2 is ultrasonically welded to the tip thereof. The other end of the positive electrode terminal 2 is led out of the exterior body 5.
 発電要素4を電解液とともに収容する外装体5は、図2に一部を拡大して示すように、熱融着層51と金属層52と保護層53との三層構造の可撓性を有するラミネートフィルムからなる。中間の金属層52は、例えばアルミニウム箔からなり、その内側面を覆う熱融着層51は、熱融着が可能な合成樹脂例えばポリプロピレン(PP)からなり、金属層52の外側面を覆う保護層53は耐久性に優れた合成樹脂例えばポリエチレンテレフタレート(PET)からなる。なお、さらに多数の層を有するラミネートフィルムを用いることもできる。また、上記の例では金属層52の両面に合成樹脂層をラミネートしているが、金属層52の外側の合成樹脂層は必ずしも必須のものではなく、内側表面にのみ合成樹脂層を備えた構成であってもよい。 The exterior body 5 that houses the power generation element 4 together with the electrolytic solution has a three-layer structure of a heat-fusible layer 51, a metal layer 52, and a protective layer 53 as shown in an enlarged view in FIG. 2. It has a laminate film. The intermediate metal layer 52 is made of, for example, an aluminum foil, and the heat-sealing layer 51 that covers the inner surface thereof is made of a synthetic resin that can be heat-fused, for example, polypropylene (PP), and is a protection that covers the outer surface of the metal layer 52. The layer 53 is made of a synthetic resin having excellent durability, such as polyethylene terephthalate (PET). A laminate film having a larger number of layers can also be used. In the above example, the synthetic resin layers are laminated on both surfaces of the metal layer 52. However, the synthetic resin layer on the outer side of the metal layer 52 is not necessarily essential, and the configuration includes the synthetic resin layer only on the inner surface. It may be.
 外装体5は、一つの例では、図2の発電要素4の下面側に配置される1枚のラミネートフィルムと上面側に配置される他の1枚のラミネートフィルムとの2枚構造をなし、これら2枚のラミネートフィルムの周囲の4辺を重ね合わせ、かつ互いに熱融着した構成となっている。図示例は、このような2枚構造の外装体5を示している。また、他の一つの例として、外装体5は1枚の比較的大きなラミネートフィルムからなり、2つ折りとした状態で内側に発電要素4を配置した上で、周囲の3辺を重ね合わせ、かつ互いに熱融着した構成とすることができる。 In one example, the outer package 5 has a two-sheet structure of one laminate film disposed on the lower surface side of the power generation element 4 in FIG. 2 and another laminate film disposed on the upper surface side, The four sides around these two laminate films are superposed and heat-sealed to each other. The illustrated example shows such a two-layer exterior body 5. As another example, the exterior body 5 is made of one relatively large laminate film, and the power generation element 4 is arranged inside in a folded state, and the surrounding three sides are overlapped, and It can be set as the structure heat-sealed mutually.
 正極端子2および負極端子3は、長方形をなすフィルム外装電池1の短辺に並んで配置されており、これら端子2,3は、外装体5となるラミネートフィルムの端縁5aを重ね合わせて熱融着する際に、両者の接合面5bを通して外部へ導出されている。 The positive electrode terminal 2 and the negative electrode terminal 3 are arranged side by side on the short side of the rectangular film-clad battery 1, and these terminals 2 and 3 are heated by overlapping the edge 5 a of the laminate film that becomes the outer package 5. At the time of fusion, it is led out through the joint surface 5b of both.
 詳しくは、端子2,3の長さ方向の中間部の外周面に、予め樹脂層41が設けられており、この樹脂層41を両側から挟み込むような形で外装体5の端縁5aが樹脂層41の上に接合されている。樹脂層41としては、電解液に対する耐性ならびに接着性に優れた樹脂材料が用いられ、例えば、酸変性ポリオレフィン系樹脂が用いられる。 Specifically, a resin layer 41 is provided in advance on the outer peripheral surface of the intermediate portion in the length direction of the terminals 2 and 3, and the edge 5 a of the outer package 5 is formed in such a manner as to sandwich the resin layer 41 from both sides. Bonded on the layer 41. As the resin layer 41, a resin material excellent in resistance to an electrolytic solution and adhesiveness is used. For example, an acid-modified polyolefin resin is used.
 図3および図4は、本発明を正極端子2に適用した一実施例を示し、図3は正極端子2の長さ方向に沿った断面(縦断面)、図4は図3のA-A線に沿った断面である。この正極端子2は、第1金属としてのアルミニウムと第2金属としての銅とが一体に接合された板状のクラッド材から構成されており、外装体5の内部で正極集電体12に接続される長さ方向の一端部2aがアルミニウムからなる第1金属部分61によって構成され、かつ外装体5から外部へ導出される長さ方向の他端部2bが銅からなる第2金属部分62によって構成されている。なお、本明細書では、端子2,3の導出方向である図3のx方向を端子2,3の「長さ方向」と呼び、x方向に直交する図4のy方向を端子2,3の「幅方向」と呼ぶこととする。これは、必ずしもx方向の寸法がy方向の寸法よりも大きいことを意味するものではない。また図3のz方向を端子2,3の「厚さ方向」と呼ぶこととする。 3 and 4 show an embodiment in which the present invention is applied to the positive electrode terminal 2, FIG. 3 is a cross section (longitudinal cross section) along the length direction of the positive electrode terminal 2, and FIG. It is a cross section along a line. The positive electrode terminal 2 is composed of a plate-like clad material in which aluminum as the first metal and copper as the second metal are integrally joined, and is connected to the positive electrode current collector 12 inside the exterior body 5. One end portion 2a in the length direction is constituted by the first metal portion 61 made of aluminum, and the other end portion 2b in the length direction led out from the exterior body 5 to the outside is made by the second metal portion 62 made of copper. It is configured. In this specification, the x direction in FIG. 3 which is the direction in which the terminals 2 and 3 are derived is referred to as the “length direction” of the terminals 2 and 3, and the y direction in FIG. Will be referred to as the “width direction”. This does not necessarily mean that the dimension in the x direction is larger than the dimension in the y direction. The z direction in FIG. 3 is referred to as the “thickness direction” of the terminals 2 and 3.
 第1金属部分61と第2金属部分62との界面63は、正極端子2の長さ方向の略中間部に存在しており、従って、正極端子2の一端部2aは厚さ方向の全体が第1金属部分61として構成され、他端部2bは厚さ方向の全体が第2金属部分62として構成されている。このように正極端子2をクラッド材とすることで、第1金属部分61を正極集電体12との接合に適した材料としつつ、第2金属部分62を外部の端子やバスバー等との接合に適した材料とすることができる。例えば、上記実施例の正極端子2は、全体が銅からなる負極端子3と組み合わせて用いることができ、これにより、両端子2,3の外部に導出されている部分を同じ銅材料とすることが可能である。 The interface 63 between the first metal portion 61 and the second metal portion 62 exists at a substantially intermediate portion in the length direction of the positive electrode terminal 2, so that the one end portion 2 a of the positive electrode terminal 2 is entirely in the thickness direction. The other end portion 2 b is configured as a second metal portion 62 as a whole in the thickness direction. Thus, by using the positive electrode terminal 2 as a clad material, the first metal portion 61 is made a material suitable for bonding to the positive electrode current collector 12, and the second metal portion 62 is bonded to an external terminal, a bus bar, or the like. It can be made a material suitable for. For example, the positive electrode terminal 2 of the above embodiment can be used in combination with the negative electrode terminal 3 made entirely of copper, whereby the portions led out of the terminals 2 and 3 are made of the same copper material. Is possible.
 界面63は、正極端子2の幅方向の全体に亘って直線的に延びているが、2種の金属部分61,62の接合強度を高く確保するために、単純な一平面ではなく、図3に示すように、断面略V字形をなす立体形状の界面63となっている。すなわち、この実施例の界面63は、図3つまり端子2,3の長さ方向に沿った断面上の形状(Z方向)として、正極端子2の第1主面64aに現れる始点63aから厚さ方向中間部へ向かって斜めに延びる第1片部631と、正極端子2の第2主面64bに現れる終点63bから厚さ方向中間部へ向かって斜めに延びる第2片部632と、がほぼ対称に形成され、かつ第1片部631と第2片部632とが厚さ方向中間部の頂部63cで連続することで、全体として、断面略V字形をなしている。従って、端子2,3の長さ方向に関して、第1主面64aに現れる界面63の始点63aの位置と第2主面64bに現れる界面63の終点63bの位置とは、基本的に等しい位置にあり、これらの位置に比較して、V字形の頂部63cが正極端子2の一端部2a寄りに片寄って位置している。 The interface 63 extends linearly over the entire width direction of the positive electrode terminal 2, but in order to ensure high bonding strength between the two types of metal portions 61 and 62, the interface 63 is not a simple flat surface. As shown in FIG. 4, the interface 63 has a three-dimensional shape having a substantially V-shaped cross section. That is, the interface 63 of this embodiment has a thickness from the start point 63a appearing on the first main surface 64a of the positive electrode terminal 2 in the cross-sectional shape (Z direction) along the length direction of the terminals 2 and 3 in FIG. The first piece 631 extending obliquely toward the middle portion in the direction and the second piece 632 extending obliquely from the end point 63b appearing on the second main surface 64b of the positive electrode terminal 2 toward the middle portion in the thickness direction are approximately The first piece 631 and the second piece 632 are formed symmetrically and are continuous with each other at the apex 63c at the intermediate portion in the thickness direction, thereby forming a substantially V-shaped cross section as a whole. Accordingly, with respect to the length direction of the terminals 2 and 3, the position of the start point 63a of the interface 63 appearing on the first main surface 64a and the position of the end point 63b of the interface 63 appearing on the second main surface 64b are basically equal. Compared to these positions, the V-shaped top portion 63 c is located closer to the one end portion 2 a of the positive electrode terminal 2.
 なお、界面63は、U字形に近い断面形状であってもよく、あるいは、頂部63cを複数有するW字形のような断面形状であってもよい。 Note that the interface 63 may have a cross-sectional shape close to a U-shape, or a W-shaped cross-sectional shape having a plurality of top portions 63c.
 上記のような界面63のV字形断面形状は、図4に示す正極端子2の側縁2c,2d部分を除く幅方向の全体に亘って、基本的に同一の断面形状をなしている。これに対し、正極端子2の側縁2c,2dは、図5および図6に示すように、厚さ方向に上下から押し潰されたテーパ状に形成されており、これによって、界面63の第1片部631と第2片部632とが厚さ方向に徐々に収束していく形となっている。すなわち、2種の金属を接合したクラッド材の母材としては、図7に示すように、側面101にまで断面V字形の界面63が同一断面形状で連続したものとなっているが、この側面101の両側のエッジ102,103を端子2,3の厚さ方向に両側からテーパ状に押し潰すことによって、最終的な正極端子2の側縁2c,2dにそれぞれ一対のテーパ面104,105(図5参照)が形成されている。そして、このような母材の塑性変形に伴い、界面63の第1片部631と第2片部632とは、図6に示すように徐々に収束し、最終的に1本の線に近い形となっている。また、図7に示す母材におけるエッジ102,103に沿って三角形に存在する第1金属部分61の材料(図7に符号61aで示す部分の材料)が厚さ方向の中央に集められ、そして、第2金属部分62を覆うことにより、最終的に側縁2c,2dに現れる界面63がより細いものとなる。理想的には、側縁2c,2dに現れる界面63は、細い1本の直線状の部分が長くなる。 The V-shaped cross-sectional shape of the interface 63 as described above basically has the same cross-sectional shape over the entire width direction excluding the side edges 2c and 2d of the positive electrode terminal 2 shown in FIG. On the other hand, as shown in FIGS. 5 and 6, the side edges 2c and 2d of the positive electrode terminal 2 are formed in a tapered shape that is crushed from above and below in the thickness direction. The one piece 631 and the second piece 632 are gradually converged in the thickness direction. That is, as shown in FIG. 7, the base material of the clad material in which two kinds of metals are joined has a V-shaped cross-section interface 63 continuous to the side surface 101 in the same cross-sectional shape. The edges 102 and 103 on both sides of the terminal 101 are crushed in a taper shape from both sides in the thickness direction of the terminals 2 and 3, so that a pair of tapered surfaces 104 and 105 ( 5) is formed. Then, with such plastic deformation of the base material, the first piece 631 and the second piece 632 of the interface 63 gradually converge as shown in FIG. 6, and finally close to one line. It is in shape. Further, the material of the first metal portion 61 (material of the portion indicated by reference numeral 61a in FIG. 7) existing in a triangle along the edges 102 and 103 in the base material shown in FIG. 7 is collected in the center in the thickness direction, and By covering the second metal portion 62, the interface 63 that finally appears on the side edges 2c and 2d becomes thinner. Ideally, the interface 63 appearing on the side edges 2c and 2d has a long thin linear portion.
 一つの具体的な寸法例を挙げると、正極端子2は、例えば、長さが50mm、幅が70mm、厚さが0.2mmであり、一実施例では、図8に示すように、側縁2c,2dが1mm程度の幅W1に亘って押し潰され、各々のテーパ面104,105の角度θが7°程度のものとなっている。 For example, the positive electrode terminal 2 has a length of 50 mm, a width of 70 mm, and a thickness of 0.2 mm. In one embodiment, as shown in FIG. 2c and 2d are crushed over a width W1 of about 1 mm, and the angle θ of each of the tapered surfaces 104 and 105 is about 7 °.
 なお、側縁2c,2dにおけるエッジ102,103の押し潰し加工は、側縁2c,2dの切断と同時に行うことも可能である。 The crushing of the edges 102 and 103 at the side edges 2c and 2d can be performed simultaneously with the cutting of the side edges 2c and 2d.
 このように、クラッド材において異種金属の接触面である界面が電解液または外気に近付くことは、腐食の観点で好ましくない。本実施例では、第1金属部分が第2金属部分を覆うことで、露出する第2金属部分との距離を離すことができ、腐食速度を抑制することができる。 As described above, it is not preferable from the viewpoint of corrosion that the interface which is the contact surface of the dissimilar metal in the clad material approaches the electrolytic solution or the outside air. In the present embodiment, the first metal portion covers the second metal portion, so that the distance from the exposed second metal portion can be increased, and the corrosion rate can be suppressed.
 また、仮に第1金属部分による第2金属部分の覆い方が完全でなくても、端子側縁において実質的に露出する界面の表面積は小さくなり、腐食面積を小さくできる。 Further, even if the second metal portion is not completely covered by the first metal portion, the surface area of the interface that is substantially exposed at the terminal side edge is reduced, and the corrosion area can be reduced.
 そして、樹脂層41は、側縁2c,2dの加工処理の後に、樹脂材料の塗布あるいは樹脂フィルムの貼着などの適宜な方法によって正極端子2の表面に設けられる。図5の例では、境界線106,107の間の長さLの範囲に樹脂層41が設けられる。 The resin layer 41 is provided on the surface of the positive electrode terminal 2 by an appropriate method such as application of a resin material or adhesion of a resin film after the processing of the side edges 2c and 2d. In the example of FIG. 5, the resin layer 41 is provided in the range of the length L between the boundary lines 106 and 107.
 ここで、側縁2c,2dに直線状(あるいは直線に近い極狭いV字形)に現れる界面63の正極端子2の長さ方向の全体を覆うように樹脂層41を設けるか否かは、任意である。つまり、本発明においては、側縁2c,2dにおける界面63の正極端子2の長さ方向の全体を覆いうるように境界線106,107を設定してもよく、あるいは、側縁2c,2dにおける界面63の正極端子2の長さ方向の一端部が樹脂層41から露出するように境界線106,107を設定してもよい。 Here, whether or not to provide the resin layer 41 so as to cover the entire length direction of the positive electrode terminal 2 of the interface 63 appearing in a straight line shape (or a very narrow V shape close to a straight line) on the side edges 2c and 2d is arbitrary. It is. That is, in the present invention, the boundary lines 106 and 107 may be set so as to cover the entire length direction of the positive electrode terminal 2 of the interface 63 at the side edges 2c and 2d, or at the side edges 2c and 2d. The boundary lines 106 and 107 may be set so that one end of the positive electrode terminal 2 in the length direction of the interface 63 is exposed from the resin layer 41.
 上記実施例では、断面V字形をなす界面63の頂部63cが第1金属部分61側へ向かって延びているが、逆に、第2金属部分62側へ向かって頂部63cが延びる方向に界面63を構成してもよい。図9は、界面63の向きと樹脂層41の形成範囲を適宜に組み合わせた他の代表的な3つの例を示している。なお、図9では、理解を容易にするために、側縁2c,2dのエッジ102,103を押し潰していない母材状態でもって各々の例を示している。 In the above embodiment, the top 63c of the interface 63 having a V-shaped cross section extends toward the first metal portion 61, but conversely, the interface 63 extends in the direction in which the top 63c extends toward the second metal portion 62. May be configured. FIG. 9 shows three other typical examples in which the orientation of the interface 63 and the formation range of the resin layer 41 are appropriately combined. In addition, in FIG. 9, in order to make an understanding easy, each example is shown by the base material state which has not crushed the edges 102 and 103 of the side edges 2c and 2d.
 図9(a)の例は、図3~図7で説明した実施例と同様の構成であり、界面63の頂部63cが第1金属部分61側へ向かって延びている。そして、側縁2c,2dにおいても界面63の長さ方向の全体が樹脂層41で覆われるように、樹脂層41の境界線106,107が設定されている。この実施例においては、側縁2c,2dを押し潰して、側縁2c,2dにおける第2金属部分62である銅の露出位置を第1金属部分61側の電解液から離すことができる。仮に押し潰しが完全でなくても、表面積を小さくすることができる。 The example of FIG. 9A has the same configuration as the embodiment described with reference to FIGS. 3 to 7, and the top 63c of the interface 63 extends toward the first metal portion 61 side. The boundary lines 106 and 107 of the resin layer 41 are set so that the entire length of the interface 63 is also covered with the resin layer 41 at the side edges 2c and 2d. In this embodiment, the side edges 2c, 2d can be crushed to separate the exposed position of copper, which is the second metal portion 62 at the side edges 2c, 2d, from the electrolyte on the first metal portion 61 side. Even if crushing is not complete, the surface area can be reduced.
 図9(b)の例は、図7と比べて界面63の向きを逆にした例である。そして、V字形をなす界面63の頂部63c側の露出を許容するように、境界線106,107が設定されている。つまり、この例では、樹脂層41に対し、電解液が存在する第1金属部分61側で境界線106と界面63との間の余裕が大きくなるように、境界線106,107と界面63との相対的な位置関係が設定されている。側縁2c,2dにおいては、界面63の端部が外気に露出する形となるが、側縁2c,2dを厚さ方向に押し潰すことで、外気と第1金属部分61との距離を離すことができ、外気による露出する(潰されていない)第1金属部分61の腐食が抑制される。仮に押し潰しが完全でなくても、実質的な表面積を小さくすることができる。 9B is an example in which the direction of the interface 63 is reversed compared to FIG. The boundary lines 106 and 107 are set so as to allow exposure of the V-shaped interface 63 on the top 63c side. That is, in this example, the boundary lines 106 and 107 and the interface 63 are set so that the margin between the boundary line 106 and the interface 63 is larger on the resin layer 41 on the first metal portion 61 side where the electrolytic solution exists. The relative positional relationship of is set. In the side edges 2c and 2d, the end of the interface 63 is exposed to the outside air, but the side edges 2c and 2d are crushed in the thickness direction to increase the distance between the outside air and the first metal portion 61. The corrosion of the exposed first metal portion 61 (not crushed) due to the outside air can be suppressed. Even if crushing is not complete, the substantial surface area can be reduced.
 図9(c)の例は、(a)と同様の界面63の向きを有するものにおいて、界面63の始点63aおよび終点63b側が樹脂層41から露出することを許容するように、境界線106,107が設定されている。この例でも、(a)の例と同様に、第2金属である銅が電解液に接触する可能性が低くなる。この例は、特に、外気による腐食が生じにくい場合に有効である。 In the example of FIG. 9C, the boundary line 106, which has the same orientation of the interface 63 as in FIG. 9A, allows the start point 63a and end point 63b side of the interface 63 to be exposed from the resin layer 41. 107 is set. Also in this example, as in the example of (a), the possibility that copper as the second metal contacts the electrolytic solution is reduced. This example is particularly effective when corrosion due to the outside air hardly occurs.
 図9(d)の例は、(a)の例における界面63の向きを逆にしたものであり、側縁2c,2dにおいても界面63の長さ方向の全体が樹脂層41で覆われるように、樹脂層41の境界線106,107が設定されている。この実施例においては、側縁2c,2dを押し潰すことで、外気による腐食の可能性が低くなる。仮に押し潰しが完全でなくても、実質的な表面積を小さくすることができる。 The example of FIG. 9D is obtained by reversing the direction of the interface 63 in the example of FIG. 9A, and the entire length direction of the interface 63 is also covered with the resin layer 41 at the side edges 2c and 2d. In addition, boundary lines 106 and 107 of the resin layer 41 are set. In this embodiment, by crushing the side edges 2c and 2d, the possibility of corrosion by outside air is reduced. Even if crushing is not complete, the substantial surface area can be reduced.
 以上、正極端子2に本発明を適用した例を説明したが、本発明は、負極端子3においても全く同様に適用することが可能である。図10は、負極端子3に本発明を適用したいくつかの例を示している。なお、図10は、図9と同じく、側縁3c,3dのエッジ102,103を押し潰していない母材状態でもって各々の例を示している。負極端子3の場合は、例えば、第1金属としての銅と第2金属としてのアルミニウムとが一体に接合された板状のクラッド材から構成され、外装体5の内部で負極集電体22に接続される長さ方向の一端部3aが銅からなる第1金属部分61によって構成され、かつ外装体5から外部へ導出される長さ方向の他端部3bがアルミニウムからなる第2金属部分62によって構成される。このようなクラッド材を用いた負極端子3は、例えば、全体がアルミニウムからなる正極端子2と組み合わせて用いることができ、これにより、両端子2,3の外部に導出されている部分を同じアルミニウム材料とすることが可能である。 Although the example in which the present invention is applied to the positive electrode terminal 2 has been described above, the present invention can be applied to the negative electrode terminal 3 in exactly the same manner. FIG. 10 shows several examples in which the present invention is applied to the negative electrode terminal 3. FIG. 10 shows each example in a base material state in which the edges 102 and 103 of the side edges 3c and 3d are not crushed, as in FIG. In the case of the negative electrode terminal 3, for example, the negative electrode terminal 3 is made of a plate-like clad material in which copper as the first metal and aluminum as the second metal are integrally joined, and the negative electrode current collector 22 is formed inside the exterior body 5. The one end portion 3a in the length direction to be connected is constituted by the first metal portion 61 made of copper, and the other end portion 3b in the length direction led out from the exterior body 5 to the outside is made of the second metal portion 62 made of aluminum. Consists of. The negative electrode terminal 3 using such a clad material can be used in combination with, for example, the positive electrode terminal 2 made entirely of aluminum, whereby the portions led out of both terminals 2 and 3 are made of the same aluminum. It can be a material.
 図10(a)の例は、界面63の頂部63cが銅からなる第1金属部分61側へ向かって延びている。そして、側縁3c,3dにおいても界面63の長さ方向の全体が樹脂層41で覆われるように、樹脂層41の境界線106,107が設定されている。この実施例においては、側面101を押し潰し側縁3c,3dにおける第2金属の露出位置(潰されていない部分)をずらすことで、特に、第2金属であるアルミニウムが電解液に接触する速度が遅くなる。 In the example of FIG. 10A, the top 63c of the interface 63 extends toward the first metal portion 61 side made of copper. The boundary lines 106 and 107 of the resin layer 41 are set so that the entire length of the interface 63 is also covered with the resin layer 41 at the side edges 3c and 3d. In this embodiment, the side surface 101 is crushed and the exposed position of the second metal on the side edges 3c and 3d (the portion that is not crushed) is shifted, and in particular, the speed at which aluminum as the second metal contacts the electrolyte. Becomes slower.
 図10(b)の例は、図10(a)の例と比べて界面63の向きを逆にし、かつ、V字形をなす界面63の頂部63c側を被覆する樹脂からの露出を許容するように、境界線106,107が設定された例である。つまり、この例では、長さLを有する樹脂層41に対し、電解液が存在する第1金属部分61側で境界線106と界面63との間の余裕が大きくなるように、境界線106,107と界面63との相対的な位置関係が設定されている。側縁3c,3dにおいては、界面63の端部が外気に露出する形となるが、側縁3c,3dを厚さ方向に押し潰すことで、外気による界面63の腐食が抑制されている。 In the example of FIG. 10B, the direction of the interface 63 is reversed as compared with the example of FIG. 10A, and exposure from the resin covering the top 63c side of the V-shaped interface 63 is allowed. In this example, boundary lines 106 and 107 are set. In other words, in this example, the boundary lines 106, 106 are formed so that the margin between the boundary line 106 and the interface 63 is larger on the first metal portion 61 side where the electrolytic solution is present than the resin layer 41 having the length L. A relative positional relationship between 107 and the interface 63 is set. In the side edges 3c and 3d, the end portion of the interface 63 is exposed to the outside air. However, the side edges 3c and 3d are crushed in the thickness direction to suppress the corrosion of the interface 63 due to the outside air.
 図10(c)の例は、図10(a)と同様の界面63の向きを有するものにおいて、界面63の始点63aおよび終点63b側が樹脂層41から露出することを許容するように、境界線106,107が設定されている。この例でも、図10(a)の例と同様に、第2金属であるアルミニウムが電解液に接触する可能性が低くなる。この例は、特に、外気による界面63での腐食が生じにくい場合に有効である。 The example of FIG. 10C has the same interface 63 direction as FIG. 10A, and the boundary line is allowed to allow the start point 63a and end point 63b side of the interface 63 to be exposed from the resin layer 41. 106 and 107 are set. Also in this example, similarly to the example of FIG. 10A, the possibility that the second metal, aluminum, comes into contact with the electrolytic solution is reduced. This example is particularly effective when corrosion at the interface 63 due to the outside air hardly occurs.
 図10(d)の例は、図10(a)の例における界面63の向きを逆にしたものであり、側縁3c,3dにおいても界面63の長さ方向の全体が樹脂層41で覆われるように、樹脂層41の境界線106,107が設定されている。この実施例においては、側面101を押し潰して側縁3c,3dにおいて外気による腐食の可能性が低くなる。 The example of FIG. 10D is obtained by reversing the direction of the interface 63 in the example of FIG. 10A, and the entire length direction of the interface 63 is also covered with the resin layer 41 at the side edges 3c and 3d. As shown, the boundary lines 106 and 107 of the resin layer 41 are set. In this embodiment, the side surface 101 is crushed, and the possibility of corrosion by outside air at the side edges 3c and 3d is reduced.
 以上、この発明の一実施例を説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば上記実施例では、クラッド材の金属材料として銅とアルミニウムとが用いられているが、他の金属材料を用いることもできる。また、図1,図2に例示したフィルム外装電池1では、外装体5の一方の端縁に一対の端子2,3が並んで配置されているが、一方の端縁に正極端子2を配置し、かつ他方の端縁に負極端子3を配置した構成の電池においても、この発明を同様に適用することが可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the above embodiment, copper and aluminum are used as the metal material of the clad material, but other metal materials can also be used. Moreover, in the film-clad battery 1 illustrated in FIGS. 1 and 2, the pair of terminals 2 and 3 are arranged side by side on one end edge of the outer package 5, but the positive electrode terminal 2 is arranged on one end edge. However, the present invention can be similarly applied to a battery having a configuration in which the negative electrode terminal 3 is disposed on the other edge.

Claims (5)

  1.  長さ方向の一端部を構成する第1金属と他端部を構成する第2金属とが幅方向に延びる界面を介して接合された板状のクラッド材からなる電池用端子において、
     上記界面は、端子の長さ方向に沿った断面上の形状として、端子の一方の主面に現れる始点と、他方の主面に現れる終点と、これら始点および終点の位置に比較して長さ方向の一方へ片寄って位置する厚さ方向中間部における少なくとも1つの頂部と、を有し、
     幅方向に延びる界面の両端が位置する端子の側縁部分が、厚さ方向に押し潰された形状をなしている、電池用端子。
    In a battery terminal comprising a plate-like clad material in which a first metal constituting one end in the length direction and a second metal constituting the other end are joined via an interface extending in the width direction,
    The interface is shaped as a cross-section along the length direction of the terminal, and is longer than the start point appearing on one main surface of the terminal, the end point appearing on the other main surface, and the positions of these start and end points. At least one apex in the middle in the thickness direction that is offset to one of the directions,
    A battery terminal in which a side edge portion of a terminal where both ends of an interface extending in the width direction are located is crushed in a thickness direction.
  2.  長さ方向の一端部を構成する第1金属と他端部を構成する第2金属とが幅方向に延びる界面を介して接合された板状のクラッド材からなる電池用端子において、
     上記界面は、端子の長さ方向に沿った断面上の形状として、端子の一方の主面に現れる始点と、他方の主面に現れる終点と、これら始点および終点の位置に比較して長さ方向の一方へ片寄って位置する厚さ方向中間部における少なくとも1つの頂部と、を有し、
     幅方向に延びる界面の両端が位置する端子の側縁では、始点から頂部へ向かって延びる第1の片部と終点から頂部へ向かって延びる第2の片部とが、厚さ方向に収束している、電池用端子。
    In a battery terminal comprising a plate-like clad material in which a first metal constituting one end in the length direction and a second metal constituting the other end are joined via an interface extending in the width direction,
    The interface is shaped as a cross-section along the length direction of the terminal, and is longer than the start point appearing on one main surface of the terminal, the end point appearing on the other main surface, and the positions of these start and end points. At least one apex in the middle in the thickness direction that is offset to one of the directions,
    At the side edge of the terminal where both ends of the interface extending in the width direction are located, the first piece extending from the start point to the top and the second piece extending from the end point to the top converge in the thickness direction. The battery terminal.
  3.  上記界面は、端子の長さ方向に沿った断面上の形状として、V字形もしくはW字形をなしている、請求項1または2に記載の電池用端子。 3. The battery terminal according to claim 1, wherein the interface has a V shape or a W shape as a cross-sectional shape along the length direction of the terminal.
  4.  端子の幅方向に沿った断面において、側縁部分がテーパ状をなしている、請求項1~3のいずれかに記載の電池用端子。 The battery terminal according to any one of claims 1 to 3, wherein a side edge portion is tapered in a cross section along the width direction of the terminal.
  5.  発電要素を電解液とともにフィルム状外装体内に収容してなる電池であって、請求項1~4のいずれかに記載の端子が正極端子および負極端子の少なくとも一方に用いられ、上記端子の長さ方向の一部に樹脂層が設けられ、当該樹脂層の上に上記フィルム状外装体が接合されてなる、電池。 A battery in which a power generation element is housed in a film-like outer package together with an electrolyte, wherein the terminal according to any one of claims 1 to 4 is used for at least one of a positive electrode terminal and a negative electrode terminal, and the length of the terminal A battery in which a resin layer is provided in a part of the direction, and the film-shaped outer package is bonded on the resin layer.
PCT/JP2014/059086 2014-03-28 2014-03-28 Cell terminal and cell WO2015145715A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016509814A JP6227756B2 (en) 2014-03-28 2014-03-28 Battery terminals and batteries
PCT/JP2014/059086 WO2015145715A1 (en) 2014-03-28 2014-03-28 Cell terminal and cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059086 WO2015145715A1 (en) 2014-03-28 2014-03-28 Cell terminal and cell

Publications (1)

Publication Number Publication Date
WO2015145715A1 true WO2015145715A1 (en) 2015-10-01

Family

ID=54194304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059086 WO2015145715A1 (en) 2014-03-28 2014-03-28 Cell terminal and cell

Country Status (2)

Country Link
JP (1) JP6227756B2 (en)
WO (1) WO2015145715A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096096A (en) * 2014-11-17 2016-05-26 住友電気工業株式会社 Lead member and battery
CN114597600A (en) * 2020-12-03 2022-06-07 泰星能源解决方案有限公司 Laminated battery
CN114696042A (en) * 2020-12-25 2022-07-01 泰星能源解决方案有限公司 Battery module and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126709A (en) * 1999-10-28 2001-05-11 Hitachi Maxell Ltd Polymer electrolytic cell
JP2006164784A (en) * 2004-12-08 2006-06-22 Nec Lamilion Energy Ltd Film-armored electric device
JP2007134233A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Battery terminal structure
JP2008103294A (en) * 2006-10-20 2008-05-01 Toshiba Battery Co Ltd Flat type battery
JP2011148164A (en) * 2010-01-20 2011-08-04 Sanehiro Yamaguchi Clad material and method of manufacturing the same
JP2011243531A (en) * 2010-05-21 2011-12-01 Sumitomo Electric Ind Ltd Metal lead and manufacturing method thereof
JP2012518545A (en) * 2010-02-25 2012-08-16 テクニカル・マテリアルズ・インコーポレイテッド Method for producing side-by-side metal bonds between dissimilar materials using solid phase bonding and product produced thereby
JP2013054823A (en) * 2011-08-31 2013-03-21 Sanyo Electric Co Ltd Dissimilar metal bonding joint and terminal connection member
WO2014024448A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Battery pack, electric vehicle provided with same, and power storage device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126709A (en) * 1999-10-28 2001-05-11 Hitachi Maxell Ltd Polymer electrolytic cell
JP2006164784A (en) * 2004-12-08 2006-06-22 Nec Lamilion Energy Ltd Film-armored electric device
JP2007134233A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Battery terminal structure
JP2008103294A (en) * 2006-10-20 2008-05-01 Toshiba Battery Co Ltd Flat type battery
JP2011148164A (en) * 2010-01-20 2011-08-04 Sanehiro Yamaguchi Clad material and method of manufacturing the same
JP2012518545A (en) * 2010-02-25 2012-08-16 テクニカル・マテリアルズ・インコーポレイテッド Method for producing side-by-side metal bonds between dissimilar materials using solid phase bonding and product produced thereby
JP2011243531A (en) * 2010-05-21 2011-12-01 Sumitomo Electric Ind Ltd Metal lead and manufacturing method thereof
JP2013054823A (en) * 2011-08-31 2013-03-21 Sanyo Electric Co Ltd Dissimilar metal bonding joint and terminal connection member
WO2014024448A1 (en) * 2012-08-09 2014-02-13 三洋電機株式会社 Battery pack, electric vehicle provided with same, and power storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096096A (en) * 2014-11-17 2016-05-26 住友電気工業株式会社 Lead member and battery
CN114597600A (en) * 2020-12-03 2022-06-07 泰星能源解决方案有限公司 Laminated battery
CN114597600B (en) * 2020-12-03 2023-09-05 泰星能源解决方案有限公司 Laminated battery
CN114696042A (en) * 2020-12-25 2022-07-01 泰星能源解决方案有限公司 Battery module and method for manufacturing same
JP2022101732A (en) * 2020-12-25 2022-07-07 プライムプラネットエナジー&ソリューションズ株式会社 Battery module and manufacturing method thereof
JP7225193B2 (en) 2020-12-25 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 Battery module and manufacturing method thereof
CN114696042B (en) * 2020-12-25 2023-12-05 泰星能源解决方案有限公司 Battery module and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2015145715A1 (en) 2017-04-13
JP6227756B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5495192B2 (en) Film exterior electrical device and battery pack
JP6638593B2 (en) Manufacturing method of electrode assembly
JP5851785B2 (en) Battery and manufacturing method thereof
JP6342231B2 (en) Battery negative terminal
JP5561315B2 (en) Film exterior electrical device
US9966577B2 (en) Battery
JP5676172B2 (en) Manufacturing method of laminated film exterior laminated battery
JP6560877B2 (en) Laminated battery and method of manufacturing the same
US20170279089A1 (en) Laminated cell
JP6227756B2 (en) Battery terminals and batteries
JP6342192B2 (en) Negative electrode terminal for battery and manufacturing method thereof
JP2007250310A (en) Film-armored electric device, and method of manufacturing same
WO2018016654A1 (en) Electrochemical device
JP5098350B2 (en) battery
JP2023100867A (en) Electrode tab, battery, and method for mounting electrode tab
JP6580406B2 (en) Power storage device
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2019194949A (en) Laminate type battery
JP2019003842A (en) Film sheathing battery and manufacturing method therefor
JP2015069962A (en) Power storage element
JP2017130378A (en) Laminate battery module
JP6631214B2 (en) Electrode assembly
KR20140061148A (en) Pouch type secondary battery and method for manufacturing the same
JP2013254751A (en) Battery pack
JP4391861B2 (en) Electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887281

Country of ref document: EP

Kind code of ref document: A1