JP2008025862A - Ejector type refrigerating cycle - Google Patents

Ejector type refrigerating cycle Download PDF

Info

Publication number
JP2008025862A
JP2008025862A JP2006195772A JP2006195772A JP2008025862A JP 2008025862 A JP2008025862 A JP 2008025862A JP 2006195772 A JP2006195772 A JP 2006195772A JP 2006195772 A JP2006195772 A JP 2006195772A JP 2008025862 A JP2008025862 A JP 2008025862A
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
ejector
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195772A
Other languages
Japanese (ja)
Other versions
JP4835296B2 (en
Inventor
Hiroshi Oshitani
洋 押谷
Hirotsugu Takeuchi
裕嗣 武内
Yoshiaki Takano
義昭 高野
Mika Saito
美歌 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006195772A priority Critical patent/JP4835296B2/en
Publication of JP2008025862A publication Critical patent/JP2008025862A/en
Application granted granted Critical
Publication of JP4835296B2 publication Critical patent/JP4835296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit generation of vapor lock in a throttling means for decompressing and expanding a refrigerant branched at an upstream side of a nozzle portion of an ejector. <P>SOLUTION: When this ejector type refrigerating cycle comprising an internal heat exchanger 21 for exchanging heat between a refrigerant on an outlet side of a radiator 12 and a refrigerant on a suction side of a compressor 11, is applied in an air conditioner for a vehicle, a refrigerant passage is formed outside of a vehicle interior to guide the refrigerant on the outlet side of the radiator 12, from an outlet side of the internal heat exchanger 21 to an inlet side of the throttling means 17. As the refrigerant flowing into the throttling means 17 can be cooled by low-temperature outside air even under an operating condition where the refrigerant on the outlet side of the radiator 12 is heated by the internal heat exchanger 21, like an operation at low outside air temperature in winter, the refrigerant flowing into the throttling means 17 is prevented from being brought into a gas-liquid two phase state, and the generation of vapor lock in the throttling means 17 can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エジェクタを有するエジェクタ式冷凍サイクルに関する。   The present invention relates to an ejector-type refrigeration cycle having an ejector.

従来、特許文献1に、圧縮機吐出冷媒を放熱させる放熱器の下流側、かつエジェクタのノズル部上流側の分岐部で冷媒の流れを分岐して、分岐された一方の冷媒をノズル部側へ流入させ、他方の冷媒をエジェクタの冷媒吸引口側へ流入させるエジェクタ式冷凍サイクルが開示されている。   Conventionally, in Patent Document 1, the flow of the refrigerant is branched at a branching portion on the downstream side of the radiator that dissipates the refrigerant discharged from the compressor and on the upstream side of the nozzle portion of the ejector, and one of the branched refrigerants is directed to the nozzle portion side. An ejector-type refrigeration cycle is disclosed in which the other refrigerant flows into the refrigerant suction port side of the ejector.

この特許文献1のエジェクタ式冷凍サイクルでは、エジェクタのディフューザ部下流側にエジェクタから流出した冷媒を蒸発させる第1蒸発器を配置し、さらに、分岐部とエジェクタの冷媒吸引口の間に、冷媒を減圧させる絞り機構および冷媒を蒸発させて冷媒吸引口上流側に流出する第2蒸発器を配置して、双方の蒸発器において冷媒が吸熱作用を発揮できるようにしている。   In the ejector-type refrigeration cycle of Patent Document 1, a first evaporator that evaporates the refrigerant that has flowed out of the ejector is disposed downstream of the diffuser portion of the ejector, and further, the refrigerant is placed between the branch portion and the refrigerant suction port of the ejector. A throttle mechanism for depressurization and a second evaporator that evaporates the refrigerant and flows out to the upstream side of the refrigerant suction port are arranged so that the refrigerant can exert an endothermic effect in both evaporators.

また、エジェクタのディフューザ部の昇圧作用によって、第1蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を第2蒸発器における冷媒蒸発圧力(冷媒蒸発温度)よりも上昇させて、それぞれの蒸発器において異なる温度帯で冷媒が蒸発できるようにしている。さらに、第1蒸発器の下流側を圧縮機吸入側に接続して、圧縮機吸入冷媒圧力を上昇させることで、圧縮機駆動動力を低減させてサイクル効率(COP)の向上を図っている。
特開2005−308380号公報
Further, the refrigerant evaporating pressure (refrigerant evaporating temperature) in the first evaporator is raised above the refrigerant evaporating pressure (refrigerant evaporating temperature) in the second evaporator by the pressure increasing action of the diffuser portion of the ejector, and the respective evaporators are different. The refrigerant can be evaporated in the temperature range. Further, by connecting the downstream side of the first evaporator to the compressor suction side and increasing the compressor suction refrigerant pressure, the compressor drive power is reduced and cycle efficiency (COP) is improved.
JP 2005-308380 A

さらに、本発明者らは、先に、特願2006−36532号(以下、先願例という。)にて、特許文献1のエジェクタ式冷凍サイクルに、放熱器12出口側冷媒と圧縮機11吸入側冷媒とを熱交換させる内部熱交換器21を設けたサイクル(図6に示す。)を提案している。   Furthermore, the present inventors previously disclosed in Japanese Patent Application No. 2006-36532 (hereinafter referred to as the prior application example) the ejector-type refrigeration cycle of Patent Document 1 to the refrigerant 12 outlet side refrigerant and the compressor 11 suction. A cycle (shown in FIG. 6) provided with an internal heat exchanger 21 for exchanging heat with the side refrigerant is proposed.

ここで、この先願例のサイクルの通常運転時における内部熱交換器21の作用を図7により説明する。なお、図7は、先願例のサイクルの冷媒の状態を示したモリエル線図であり、通常運転時の冷媒の状態を破線で示し、二点鎖線は等温線を示している。   Here, the operation of the internal heat exchanger 21 during the normal operation of the cycle of this prior application will be described with reference to FIG. FIG. 7 is a Mollier diagram showing the state of the refrigerant in the cycle of the prior application example. The state of the refrigerant during normal operation is shown by a broken line, and the two-dot chain line shows an isotherm.

図7の破線に示すように、先願例のサイクルの通常運転時において、内部熱交換器21は、放熱器12出口側冷媒のエンタルピを、a→bに示すように減少させ、圧縮機11吸入側冷媒のエンタルピを、c→dに示すように増大させるように作用する。その結果、それぞれの蒸発器15、18における冷媒入口・出口間の冷媒のエンタルピ差を拡大できるので、サイクルの冷凍能力を増大できる。   As shown by the broken line in FIG. 7, during the normal operation of the cycle of the prior application example, the internal heat exchanger 21 reduces the enthalpy of the refrigerant on the outlet side of the radiator 12 as indicated by a → b, and the compressor 11 It acts to increase the enthalpy of the suction side refrigerant as shown by c → d. As a result, the refrigerant enthalpy difference between the refrigerant inlet and outlet in each of the evaporators 15 and 18 can be increased, so that the refrigeration capacity of the cycle can be increased.

ところで、先願例のサイクルを車両用空調装置に適用した場合、冬季の低外気温時に車室内を暖房する際等に、車室内吹出空気の除湿を目的として、サイクルを運転させる(以下、このような運転を低外気温除湿運転という。)ことがある。そして、それぞれの蒸発器15、18において除湿された冷風を、エンジン冷却水を熱源とするヒータコアにて再加熱して車室内に吹き出している。   By the way, when the cycle of the prior application example is applied to a vehicle air conditioner, the cycle is operated for the purpose of dehumidifying the air blown into the vehicle interior when the vehicle interior is heated at a low outdoor temperature in winter (hereinafter referred to as this This type of operation is sometimes called dehumidifying operation at low outside temperature.) The cold air dehumidified in each of the evaporators 15 and 18 is reheated by a heater core using engine cooling water as a heat source and blown out into the passenger compartment.

この低外気温除湿運転時は、車室内の冷房を行う通常運転時に対して冷凍サイクルに要求される冷凍能力が少なくなるので、通常運転時に対して圧縮機の冷媒吐出能力を低下させた状態でサイクルが運転される。   During this low outside air temperature dehumidifying operation, the refrigeration capacity required for the refrigeration cycle is reduced compared to the normal operation in which the passenger compartment is cooled, so that the refrigerant discharge capacity of the compressor is reduced in comparison with the normal operation. The cycle is operated.

従って、通常運転時に対して、冷凍サイクルの高圧側冷媒圧力と低圧側冷媒圧力との高低圧差が小さくなり、冷凍サイクル内を循環する冷媒流量も少なくなる。具体的には、この低外気温除湿運転時の冷媒の状態は、図7の実線で示すように、通常運転時の高低圧冷媒の高低圧差ΔPnに対して、低外気温除湿運転時の高低圧差ΔPdhが縮小する。   Therefore, the high-low pressure difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure in the refrigeration cycle becomes smaller than in normal operation, and the refrigerant flow rate circulating in the refrigeration cycle is also reduced. Specifically, as shown by the solid line in FIG. 7, the state of the refrigerant during the low outside air temperature dehumidifying operation is higher or lower during the low outside air temperature dehumidifying operation than the high / low pressure difference ΔPn of the high / low pressure refrigerant during normal operation. The pressure difference ΔPdh is reduced.

さらに、低外気温除湿運転時には、放熱器12において高圧側冷媒が低温の外気と熱交換して充分に放熱し、さらに、それぞれの蒸発器15、18において低圧側冷媒が高温の内気と熱交換して吸熱するので、放熱器12出口側冷媒温度が圧縮機11吸入側冷媒温度よりも低くなってしまうことがある。   Furthermore, during the low outside air temperature dehumidifying operation, the high pressure side refrigerant exchanges heat with the low temperature outside air in the radiator 12 to sufficiently dissipate heat, and the low pressure side refrigerant exchanges heat with the high temperature inside air in each of the evaporators 15 and 18. As a result, the radiator 12 outlet-side refrigerant temperature may be lower than the compressor 11 suction-side refrigerant temperature.

そして、放熱器12出口側冷媒温度が圧縮機11吸入側冷媒温度よりも低くなってしまうと、内部熱交換器21は、放熱器12出口側冷媒のエンタルピを、図7のe→fに示すように増大させ、圧縮機11吸入側冷媒のエンタルピを、図7のg→hに示すように減少させるように作用してしまう。   And if the radiator 12 exit side refrigerant | coolant temperature becomes lower than the compressor 11 suction | inhalation side refrigerant | coolant temperature, the internal heat exchanger 21 will show the enthalpy of the radiator 12 exit side refrigerant | coolant to e → f of FIG. Thus, the enthalpy of the refrigerant on the suction side of the compressor 11 acts to decrease as shown by g → h in FIG.

つまり、内部熱交換器21において、それぞれの蒸発器15、18における冷媒入口・出口間の冷媒のエンタルピ差を縮小させて、サイクルの冷凍能力を低下させてしまうという好ましくない熱交換が行われてしまう。   In other words, in the internal heat exchanger 21, an undesirable heat exchange is performed in which the enthalpy difference of the refrigerant between the refrigerant inlet and outlet in each of the evaporators 15 and 18 is reduced to reduce the cycle refrigerating capacity. End up.

さらに、低外気温除湿運転時には、外気温に対して、車室内温度が高くなるので、放熱器12出口側冷媒を絞り手段17入口側へ導く冷媒通路が車室内に配置されていると、この冷媒通路を通過する冷媒が車室内空気に加熱されてエンタルピを増加させてしまうことがある。   Further, during the dehumidifying operation of the low outside air temperature, the vehicle interior temperature is higher than the outside air temperature. Therefore, if the refrigerant passage for guiding the refrigerant on the outlet side of the radiator 12 to the inlet side of the throttle means 17 is arranged in the vehicle interior, The refrigerant passing through the refrigerant passage may be heated by the cabin air and increase enthalpy.

上述の内部熱交換器21における好ましくない熱交換および上記の冷媒通路通過時の加熱によって、放熱器12出口側冷媒のエンタルピが増大して気液二相状態になり、この気液二相状態の冷媒が絞り手段17に流入すると、液相冷媒中に存在する気泡が絞り手段17の小さい開度の冷媒通路を塞いでしまい、冷媒の流れを遮断してしまう。   Due to the unfavorable heat exchange in the internal heat exchanger 21 and the heating when passing through the refrigerant passage, the enthalpy of the refrigerant on the outlet side of the radiator 12 is increased to be in a gas-liquid two-phase state. When the refrigerant flows into the throttle means 17, bubbles present in the liquid phase refrigerant block the refrigerant passage with a small opening of the throttle means 17 and block the refrigerant flow.

さらに、前述の如く、低外気温除湿運転時においては、サイクル内を循環する冷媒流量が少なくなるので、上記の気泡を押し流すこともできない。そのため、第2蒸発器18に冷媒が供給されなくなり、サイクルが所望の冷凍能力(除湿能力)を発揮できないという問題(いわゆる、ベーパロックの問題)が発生してしまう。   Further, as described above, during the low outside air temperature dehumidifying operation, the flow rate of the refrigerant circulating in the cycle is reduced, so that the bubbles cannot be pushed away. Therefore, the refrigerant is not supplied to the second evaporator 18, and a problem that the cycle cannot exhibit a desired refrigeration capacity (dehumidification capacity) (so-called vapor lock problem) occurs.

本発明は、上記点に鑑み、エジェクタのノズル部上流側で分岐された冷媒を減圧膨張させる絞り手段におけるベーパロックの発生を抑制することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to suppress the occurrence of a vapor lock in a throttle means for decompressing and expanding a refrigerant branched upstream of a nozzle portion of an ejector.

上記の目的を達成するため、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、絞り手段(17)下流側の低圧冷媒を、空調対象空間に送風される空気と熱交換させることによって蒸発させて、冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備え、放熱器(12)出口側から絞り手段(17)入口側へ至る冷媒通路のうち少なくとも一部は、空調対象空間の外部に配置されているエジェクタ式冷凍サイクルを第1の特徴とする。   In order to achieve the above object, in the present invention, a compressor (11) that compresses and discharges a refrigerant, a radiator (12) that dissipates high-pressure refrigerant discharged from the compressor (11), and a radiator ( 12) The branch portion (Z) that branches the flow of the outlet side refrigerant, and the high-speed refrigerant flow that is injected from the nozzle portion (14a) that decompresses and expands one of the refrigerant branches at the branch portion (Z) An ejector (14) sucked from the refrigerant suction port (14b), a throttle means (17) for decompressing and expanding the other refrigerant branched by the branch portion (Z), and a low-pressure refrigerant downstream of the throttle means (17) An evaporator (18) that evaporates by exchanging heat with the air blown into the air-conditioning target space and flows out to the upstream side of the refrigerant suction port (14b), and includes a throttle means (17) from the outlet side of the radiator (12). ) Less of the refrigerant passage leading to the inlet side Some and also makes the refrigerant cycle, which is arranged outside the air conditioning target space and the first feature.

これによれば、放熱器(12)出口側から絞り手段(17)入口側へ至る冷媒通路のうち、少なくとも一部を空調対象空間の外部に配置しているので、空調対象空間の外部の温度が空調対象空間の温度よりも低くなる運転条件において、上記冷媒通路を通過する冷媒を空調対象空間の外部に放熱させて冷却することができる。   According to this, since at least a part of the refrigerant passage extending from the radiator (12) outlet side to the throttle means (17) inlet side is arranged outside the air conditioning target space, the temperature outside the air conditioning target space In an operating condition where the temperature is lower than the temperature of the air-conditioning target space, the refrigerant passing through the refrigerant passage can be radiated to the outside of the air-conditioning target space to be cooled.

例えば、第1の特徴のエジェクタ式冷凍サイクルを車両用空調装置に適用した場合、前述の低外気温除湿運転時のように、外気温(空調対象空間の外部の温度)が車室内温度(空調対象空間の温度)よりも低くなる運転条件において、冷媒通路を通過して絞り手段(17)へ流入する冷媒を低温外気によって冷却するサイクル構成を容易に実現できる。   For example, when the ejector-type refrigeration cycle having the first characteristic is applied to a vehicle air conditioner, the outside air temperature (temperature outside the air-conditioning target space) is the vehicle interior temperature (air conditioning) as in the low outside air dehumidifying operation described above. A cycle configuration in which the refrigerant flowing through the refrigerant passage and flowing into the throttle means (17) is cooled by low-temperature outside air under an operating condition lower than the temperature of the target space can be easily realized.

これにより、冷媒通路を通過して絞り手段(17)へ流入する冷媒のエンタルピが増大することを抑制できるので、絞り手段(17)へ流入する冷媒が気液二相状態になることを抑制できる。その結果、絞り手段(17)におけるベーパロックの発生を抑制できる。   Thereby, since it can suppress that the enthalpy of the refrigerant | coolant which flows into a throttle means (17) through a refrigerant path increases, it can suppress that the refrigerant | coolant which flows into a throttle means (17) becomes a gas-liquid two-phase state. . As a result, the occurrence of vapor lock in the squeezing means (17) can be suppressed.

もちろん、第1の特徴のエジェクタ式冷凍サイクルを車両用空調装置に適用した場合に、夏季の高外気温時に外気によって冷媒通路を通過する冷媒が加熱されてしまうという不具合は発生しない。その理由は、冷媒通路を通過する冷媒は、放熱器(12)において外気と熱交換して放熱するので、冷媒通路を通過する冷媒の温度が外気温よりも低くなることがないからである。   Of course, when the ejector-type refrigeration cycle having the first feature is applied to a vehicle air conditioner, there is no problem that the refrigerant passing through the refrigerant passage is heated by the outside air at the high outdoor temperature in summer. The reason is that the refrigerant passing through the refrigerant passage dissipates heat by exchanging heat with the outside air in the radiator (12), so that the temperature of the refrigerant passing through the refrigerant passage does not become lower than the outside air temperature.

なお、本発明における空調対象空間とは、温度、湿度等が目的に適合するように処理調整される空間を意味する。従って、冷房、暖房される室内空間のみを意味するだけでなく、食品などの腐敗を防ぐために低温貯蔵する冷蔵庫内空間、食品などを凍結させて保存する冷凍庫内空間等も含まれる。   In addition, the air-conditioning target space in the present invention means a space that is processed and adjusted so that temperature, humidity, and the like suit the purpose. Accordingly, it not only means an indoor space to be cooled and heated, but also includes a refrigerator internal space for storing at low temperature in order to prevent corruption of foods, a freezer space for freezing and storing foods and the like.

また、上記第1の特徴のエジェクタ式冷凍サイクルにおいて、放熱器(12)出口側冷媒と圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(21)を備え、冷媒通路のうち空調対象空間の外部に配置される部位は、内部熱交換器(21)よりも下流側に設けられていてもよい。   The ejector refrigeration cycle of the first feature further includes an internal heat exchanger (21) for exchanging heat between the radiator (12) outlet-side refrigerant and the compressor (11) suction-side refrigerant, The site | part arrange | positioned outside the air-conditioning object space may be provided in the downstream rather than the internal heat exchanger (21).

これによれば、例えば、車両用空調装置に適用した場合の低外気温除湿運転時のように、内部熱交換器(21)において放熱器(12)出口側冷媒が加熱されるような場合であっても、冷媒通路のうち空調対象空間の外部に配置される部位が、内部熱交換器(21)よりも下流側に設けられているので、絞り手段(17)へ流入する冷媒を確実に低温外気によって冷却することができる。   According to this, for example, when the refrigerant on the outlet side of the radiator (12) is heated in the internal heat exchanger (21) as in the low outside temperature dehumidifying operation when applied to the vehicle air conditioner. Even if it exists, since the site | part arrange | positioned outside the air conditioning object space among refrigerant paths is provided in the downstream rather than an internal heat exchanger (21), the refrigerant | coolant which flows into a throttle means (17) is ensured. It can be cooled by low temperature outside air.

また、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、分岐部(Z)で分岐された一方の冷媒と圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(21)と、内部熱交換器(21)出口側冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、絞り手段(17)下流側の低圧冷媒を蒸発させて、冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備えるエジェクタ式冷凍サイクルを第2の特徴とする。   In the present invention, the compressor (11) that compresses and discharges the refrigerant, the radiator (12) that radiates the high-pressure refrigerant discharged from the compressor (11), and the refrigerant on the outlet side of the radiator (12) A branch section (Z) that branches the flow, an internal heat exchanger (21) that exchanges heat between one refrigerant branched by the branch section (Z) and the compressor (11) suction-side refrigerant, and an internal heat exchanger (21) The ejector (14) that sucks the refrigerant from the refrigerant suction port (14b) and the branch part (Z) are branched by the high-speed refrigerant flow injected from the nozzle (14a) that decompresses and expands the outlet-side refrigerant. Ejector comprising a throttle means (17) for decompressing and expanding the other refrigerant, and an evaporator (18) for evaporating the low-pressure refrigerant on the downstream side of the throttle means (17) and flowing out to the upstream side of the refrigerant suction port (14b). The second refrigeration cycle is a second feature.

これによれば、分岐部(Z)で分岐された冷媒のうち、内部熱交換器(21)にて圧縮機(11)吸入側冷媒と熱交換を行わない冷媒を絞り手段(17)に流入させるので、例えば、車両用空調装置に適用した場合の低外気温除湿運転時であっても、内部熱交換器(21)にて絞り手段(17)に流入する冷媒が加熱されることがない。   According to this, among the refrigerants branched at the branch part (Z), the refrigerant that does not exchange heat with the compressor (11) suction-side refrigerant in the internal heat exchanger (21) flows into the throttle means (17). Therefore, for example, even when the dehumidifying operation is performed at a low outside temperature when applied to a vehicle air conditioner, the refrigerant flowing into the throttle means (17) is not heated by the internal heat exchanger (21). .

従って、絞り手段(17)へ流入する冷媒のエンタルピが増大して、気液二相状態になることがない。その結果、絞り手段(17)におけるベーパロックが発生しない。   Therefore, the enthalpy of the refrigerant flowing into the throttling means (17) is not increased and the gas-liquid two-phase state is not caused. As a result, no vapor lock occurs in the throttle means (17).

また、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、絞り手段(17)下流側の低圧冷媒を蒸発させて、冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備え、放熱器(12)出口側から絞り手段(17)入口側へ至る冷媒通路のうち少なくとも一部には、冷媒通路の内部と外部との熱移動を抑制する断熱材(16a)が設けられているエジェクタ式冷凍サイクルを第3の特徴とする。   In the present invention, the compressor (11) that compresses and discharges the refrigerant, the radiator (12) that radiates the high-pressure refrigerant discharged from the compressor (11), and the refrigerant on the outlet side of the radiator (12) The refrigerant is sucked into the refrigerant suction port (14b) by the high-speed refrigerant flow injected from the branch part (Z) that branches the flow and the nozzle part (14a) that decompresses and expands one of the refrigerants branched at the branch part (Z). An ejector (14) sucked from the refrigerant, a throttle means (17) for decompressing and expanding the other refrigerant branched by the branch portion (Z), and a low-pressure refrigerant on the downstream side of the throttle means (17) are evaporated to obtain a refrigerant suction port. (14b) an evaporator (18) that flows out to the upstream side, and at least part of the refrigerant passage from the radiator (12) outlet side to the throttle means (17) inlet side includes the inside and outside of the refrigerant passage. Insulating material (16a) to suppress heat transfer with Is an ejector type refrigeration cycle is the third characteristic.

これによれば、放熱器(12)出口側から絞り手段(17)入口側へ至る冷媒通路のうち少なくとも一部には、上記冷媒通路の内部と外部との熱移動を抑制する断熱材(16a)が設けられているので、冷媒通路を通過する冷媒の温度よりも、冷媒通路の外部の温度が高くなる運転条件において、冷媒が冷媒通路で加熱されてしまうことを抑制できる。   According to this, at least a part of the refrigerant passage extending from the radiator (12) outlet side to the throttle means (17) inlet side includes a heat insulating material (16a) that suppresses heat transfer between the inside and outside of the refrigerant passage. ) Is provided, it is possible to prevent the refrigerant from being heated in the refrigerant passage under operating conditions in which the temperature outside the refrigerant passage is higher than the temperature of the refrigerant passing through the refrigerant passage.

その結果、第1の特徴のエジェクタ式冷凍サイクルと同様に、絞り手段(17)へ流入する冷媒が気液二相状態になることを抑制して、絞り手段(17)におけるベーパロックの発生を抑制できる。   As a result, similar to the ejector-type refrigeration cycle of the first feature, the refrigerant flowing into the throttle means (17) is suppressed from entering a gas-liquid two-phase state, and the occurrence of vapor lock in the throttle means (17) is suppressed. it can.

また、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、放熱器(12)に向けて空気を送風する放熱器用送風手段(13)と、放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、絞り手段(17)下流側の低圧冷媒を蒸発させて、冷媒吸引口(14b)上流側に流出する蒸発器(18)と、蒸発器(18)に向けて空気を送風する蒸発器用送風手段(20)と、圧縮機(11)吐出側から絞り手段(17)入口側に至る冷媒通路内の高圧側冷媒圧力と絞り手段(17)出口側から冷媒吸引口(14b)へ至る冷媒通路内の低圧側冷媒圧力との高低圧差を検出する高低圧差検出手段(33、34)とを備え、高低圧差が予め定めた値以下になったとき、絞り手段(17)へ流入する冷媒の圧力を上昇させるようになっているエジェクタ式冷凍サイクルを第4の特徴とする。   In the present invention, the compressor (11) that compresses and discharges the refrigerant, the radiator (12) that radiates the high-pressure refrigerant discharged from the compressor (11), and the air toward the radiator (12). Radiator means (13) for blowing air, a branch part (Z) for branching the flow of the refrigerant on the outlet side of the radiator (12), and a nozzle part for decompressing and expanding one of the refrigerants branched at the branch part (Z) An ejector (14) that sucks the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from (14a), and a throttle means (17) that decompresses and expands the other refrigerant branched by the branch portion (Z). ) And the throttle means (17) for evaporating the low-pressure refrigerant on the downstream side and flowing out to the refrigerant suction port (14b) upstream side, and for the evaporator for blowing air toward the evaporator (18) From the blower means (20) and the discharge side of the compressor (11) Detecting the difference between the high and low pressures of the high pressure side refrigerant pressure in the refrigerant passage leading to the inlet means (17) and the low pressure side refrigerant pressure in the refrigerant passage leading from the outlet means side to the refrigerant suction port (14b). An ejector-type refrigeration cycle provided with pressure difference detection means (33, 34) and configured to increase the pressure of the refrigerant flowing into the throttle means (17) when the high-low pressure difference becomes a predetermined value or less. 4 features.

これによれば、高圧側冷媒圧力と低圧側冷媒圧力との高低圧差が予め定めた値以下になったとき、絞り手段(17)へ流入する冷媒の圧力を上昇させるようになっているので、絞り手段(17)の上流側と下流側との高低圧差を予め定めた値以上に維持できる。つまり、絞り手段(17)の冷媒流路を通過する冷媒流量を所定の流量以上に維持できる。   According to this, when the high-low pressure difference between the high-pressure side refrigerant pressure and the low-pressure side refrigerant pressure is equal to or less than a predetermined value, the pressure of the refrigerant flowing into the throttle means (17) is increased. The high / low pressure difference between the upstream side and the downstream side of the throttle means (17) can be maintained at a predetermined value or more. That is, the refrigerant flow rate passing through the refrigerant flow path of the throttle means (17) can be maintained at a predetermined flow rate or higher.

従って、例えば、車両用空調装置に適用した場合の低外気温除湿運転時のように、絞り手段(17)に気液二相状態の冷媒が流入しやすい運転条件においても、絞り手段(17)の上流側と下流側との圧力差を、絞り手段(17)の冷媒通路を塞いでしまう気泡を押し流すことができる値以上に維持することができる。その結果、絞り手段(17)におけるベーパロックの発生を抑制できる。   Therefore, for example, the throttle means (17) can be used even under operating conditions in which the gas-liquid two-phase refrigerant is liable to flow into the throttle means (17), such as during low-air temperature dehumidifying operation when applied to a vehicle air conditioner. The pressure difference between the upstream side and the downstream side can be maintained at a value higher than or equal to the value that can blow away the bubbles that block the refrigerant passage of the throttle means (17). As a result, the occurrence of vapor lock in the squeezing means (17) can be suppressed.

また、上記第4の特徴のエジェクタ式冷凍サイクルにおいて、具体的に、高低圧差検出手段(33、34)は、実際の高圧側冷媒圧力と実際の低圧側冷媒圧力との差に基づいて、高低圧差を検出するようになっていてもよい。これによれば、高低圧差を確実に検出できるので、確実に絞り手段(17)の上流側と下流側との圧力差を所定の値以上に維持できる。   In the ejector refrigeration cycle of the fourth feature, specifically, the high / low pressure difference detecting means (33, 34) is based on a difference between the actual high pressure side refrigerant pressure and the actual low pressure side refrigerant pressure. The pressure difference may be detected. According to this, since the high / low pressure difference can be reliably detected, the pressure difference between the upstream side and the downstream side of the throttle means (17) can be reliably maintained at a predetermined value or more.

さらに、高低圧差検出手段は、放熱器用送風手段(13)の送風量と蒸発器用送風手段(20)の送風量との差に基づいて、高低圧差を検出するようになっていてもよい。   Further, the high / low pressure difference detecting means may detect the high / low pressure difference based on the difference between the air blowing amount of the radiator blower means (13) and the air blowing amount of the evaporator blower means (20).

一般的に、放熱器用送風手段(13)の送風量が増加すると高圧側冷媒圧力が低下し、蒸発器用送風手段(20)の送風量が増加すると低圧側冷媒圧力が上昇する。従って、放熱器用送風手段(13)の送風量と蒸発器用送風手段(20)の送風量との差に基づいて、高低圧差を検出することができる。   Generally, the high-pressure side refrigerant pressure decreases as the amount of air blown by the radiator fan means (13) increases, and the low-pressure side refrigerant pressure increases when the amount of air blown by the evaporator fan means (20) increases. Therefore, the high / low pressure difference can be detected on the basis of the difference between the blower amount of the radiator blower means (13) and the blower amount of the evaporator blower means (20).

なお、各送風量は、例えば、放熱器用送風手段(13)および蒸発器用送風手段(20)として電動送風機を採用すれば、電動送風機に供給する電源電圧によって検出することができる。   In addition, if an electric blower is employ | adopted as the ventilation means for radiator (13) and the ventilation means for evaporator (20), for example, each ventilation volume can be detected with the power supply voltage supplied to an electric blower.

さらに、高低圧差検出手段は、放熱器用送風手段(13)の送風空気温度と蒸発器用送風手段(20)の送風空気温度との差に基づいて、高低圧差を検出するようになっていてもよい。   Further, the high / low pressure difference detecting means may detect the high / low pressure difference based on the difference between the blowing air temperature of the radiator blowing means (13) and the blowing air temperature of the evaporator blowing means (20). .

一般的に、放熱器用送風手段(13)の送風空気温度が上昇すると高圧側冷媒圧力が低下し、蒸発器用送風手段(20)の送風空気温度が上昇すると低圧側冷媒圧力が上昇する。従って、放熱器用送風手段(13)の送風空気温度と蒸発器用送風手段(20)の送風空気温度との差に基づいて、高低圧差を検出することができる。   Generally, when the blowing air temperature of the radiator means (13) rises, the high-pressure side refrigerant pressure decreases, and when the blowing air temperature of the evaporator blowing means (20) rises, the low-pressure side refrigerant pressure rises. Therefore, a high-low pressure difference can be detected based on the difference between the blower air temperature of the radiator blower means (13) and the blower air temperature of the evaporator blower means (20).

また、上述の第4の特徴のエジェクタ式冷凍サイクルにおいて、圧縮機(11)吐出冷媒を放熱器(12)下流側へ導くバイパス通路(31)と、バイパス通路(31)を開閉する開閉手段(32)と、開閉手段(32)の作動を制御する制御手段(30)とを備え、制御手段(30)は、高低圧差が予め定めた値以下になったとき、バイパス通路(31)を開くように開閉手段(32)を作動させてもよい。   In the ejector refrigeration cycle having the fourth feature described above, the bypass passage (31) for guiding the refrigerant discharged from the compressor (11) to the downstream side of the radiator (12) and the opening / closing means for opening and closing the bypass passage (31) ( 32) and a control means (30) for controlling the operation of the opening / closing means (32), and the control means (30) opens the bypass passage (31) when the high-low pressure difference becomes a predetermined value or less. Thus, the opening / closing means (32) may be operated.

これによれば、高低圧差が予め定めた値以下になったとき、開閉手段(32)が開くので、放熱器(12)において圧縮機(11)吐出冷媒が冷却されない。従って、圧縮機(11)吐出冷媒の凝縮量を低下させて、高圧側冷媒圧力を上昇させることができる。その結果、絞り手段(17)へ流入する冷媒の圧力を上昇させることができる。   According to this, when the high-low pressure difference becomes equal to or less than a predetermined value, the opening / closing means (32) is opened, so that the refrigerant discharged from the compressor (11) is not cooled in the radiator (12). Therefore, the amount of condensation of the refrigerant discharged from the compressor (11) can be reduced, and the high-pressure side refrigerant pressure can be increased. As a result, the pressure of the refrigerant flowing into the throttle means (17) can be increased.

また、上述の第4の特徴のエジェクタ式冷凍サイクルにおいて、放熱器用送風手段(13)の作動を制御する制御手段を備え、制御手段は、高低圧差が予め定めた値以下になったとき、放熱器用送風手段(13)の作動を停止させてもよい。   The ejector-type refrigeration cycle of the fourth feature described above further comprises control means for controlling the operation of the radiator blower means (13), and the control means dissipates heat when the high-low pressure difference becomes equal to or less than a predetermined value. You may stop the action | operation of the air blower means (13).

これによれば、高低圧差が予め定めた値以下になったとき、放熱器用送風手段(13)が作動を停止するので、放熱器(12)において圧縮機(11)吐出冷媒が冷却されない。その結果、絞り手段(17)へ流入する冷媒の圧力を上昇させることができる。   According to this, when the high-low pressure difference becomes equal to or less than a predetermined value, the radiator blower means (13) stops operating, so that the refrigerant discharged from the compressor (11) is not cooled in the radiator (12). As a result, the pressure of the refrigerant flowing into the throttle means (17) can be increased.

また、上述の第4の特徴のエジェクタ式冷凍サイクルにおいて、放熱器用送風手段(13)の送風空気の流れを遮断する遮断機構と、遮断機構の作動を制御する制御手段とを備え、制御手段は、高低圧差が予め定めた値以下になったとき、送風空気の流れを遮断するように遮断機構を作動させてもよい。   In the ejector refrigeration cycle of the fourth feature described above, the ejector refrigeration cycle includes a shut-off mechanism that shuts off the flow of blown air from the radiator blower means (13), and a control means that controls the operation of the shut-off mechanism. The shut-off mechanism may be operated so as to shut off the flow of the blown air when the high-low pressure difference becomes equal to or less than a predetermined value.

これによれば、高低圧差が予め定めた値以下になったとき、遮断機構が送風空気の流れを遮断するので、放熱器(12)において圧縮機(11)吐出冷媒が冷却されない。その結果、絞り手段(17)へ流入する冷媒の圧力を上昇させることができる。   According to this, when the high / low pressure difference becomes equal to or less than a predetermined value, the shut-off mechanism shuts off the flow of the blown air, so that the refrigerant discharged from the compressor (11) is not cooled in the radiator (12). As a result, the pressure of the refrigerant flowing into the throttle means (17) can be increased.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1〜2により、本発明のエジェクタ式冷凍サイクル10を車両用冷凍サイクル装置に適用した例を説明する。図1は、本実施形態のエジェクタ式冷凍サイクル10の全体構成図である。エジェクタ式冷凍サイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ11a、ベルト等を介して図示しない車両エンジンにより回転駆動される。
(First embodiment)
An example in which the ejector refrigeration cycle 10 of the present invention is applied to a vehicle refrigeration cycle apparatus will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of an ejector refrigeration cycle 10 of the present embodiment. In the ejector refrigeration cycle 10, a compressor 11 that sucks and compresses refrigerant is rotated by a vehicle engine (not shown) through an electromagnetic clutch 11a, a belt, and the like.

この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチ11aの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。   As the compressor 11, a variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or a fixed capacity type that adjusts the refrigerant discharge capacity by changing the operating rate of the compressor operation by intermittently connecting the electromagnetic clutch 11a. Any of the compressors may be used. Further, if an electric compressor is used as the compressor 11, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor.

圧縮機11の冷媒吐出側には、放熱器12が接続されている。放熱器12は圧縮機11から吐出された高圧冷媒と放熱器用送風手段を構成する電動送風機13により送風される外気(車室外空気)とを熱交換させて高圧冷媒を冷却するものである。   A radiator 12 is connected to the refrigerant discharge side of the compressor 11. The radiator 12 cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (air outside the vehicle compartment) blown by the electric blower 13 constituting the radiator blower.

電動送風機13は、周知の遠心多翼ファンを電動モータ13aにて回転駆動させる構成になっており、電動モータ13aの回転数は、後述する空調制御装置30から出力される制御電圧によって制御される。   The electric blower 13 is configured to rotate a known centrifugal multiblade fan by an electric motor 13a, and the number of rotations of the electric motor 13a is controlled by a control voltage output from an air conditioning control device 30 described later. .

なお、本実施形態のエジェクタ式冷凍サイクル10では、冷媒として通常のフロン系冷媒を採用し、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界サイクルを構成している。従って、放熱器12は冷媒を凝縮させる凝縮器として機能する。   In the ejector refrigeration cycle 10 of the present embodiment, a normal chlorofluorocarbon refrigerant is employed as the refrigerant, and a subcritical cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. Therefore, the radiator 12 functions as a condenser that condenses the refrigerant.

さらに、本実施形態の放熱器12は、冷媒を凝縮させる凝縮用熱交換部と、この凝縮用熱交換部で冷却された冷媒の気液を分離するレシーバ12aと、このレシーバ12aからの飽和液相冷媒を過冷却する過冷却用熱交換部とを有して構成されている。つまり、本実施形態の放熱器12は、いわゆるサブクール型凝縮器である。   Further, the radiator 12 of the present embodiment includes a condensing heat exchange unit that condenses the refrigerant, a receiver 12a that separates the gas and liquid of the refrigerant cooled by the condensing heat exchange unit, and a saturated liquid from the receiver 12a. And a supercooling heat exchanging part for supercooling the phase refrigerant. That is, the radiator 12 of this embodiment is a so-called subcool condenser.

放熱器12出口側には、内部熱交換器21の高圧側冷媒流路21aが接続されている。この内部熱交換器21は、高圧側冷媒流路21aを通過する放熱器12出口側冷媒と低圧側冷媒流路21bを通過する圧縮機11吸入側冷媒との間で熱交換を行うものである。   The high-pressure side refrigerant flow path 21a of the internal heat exchanger 21 is connected to the radiator 12 outlet side. The internal heat exchanger 21 performs heat exchange between the radiator 12 outlet-side refrigerant passing through the high-pressure side refrigerant flow path 21a and the compressor 11 suction-side refrigerant passing through the low-pressure side refrigerant flow path 21b. .

この内部熱交換器21の具体的構成としては種々なものを採用できるが、本実施形態では、2重管式の熱交換器構成を採用している。具体的には、高圧側冷媒流路21aを形成する外側管の内側に低圧側冷媒流路21bを形成する内側管を配置した構成になっている。   As the specific configuration of the internal heat exchanger 21, various configurations can be adopted, but in the present embodiment, a double-pipe heat exchanger configuration is adopted. Specifically, the inner pipe that forms the low-pressure side refrigerant flow path 21b is arranged inside the outer pipe that forms the high-pressure side refrigerant flow path 21a.

内部熱交換器21の高圧側冷媒流路21aの出口側には、冷媒の流れを分岐する分岐点Zが設けられ、分岐点Zで分岐された一方の冷媒は、エジェクタ14のノズル部14a側に流入し、他方の冷媒は冷媒分岐通路16を介して、エジェクタ14の冷媒吸引口14b側に流入するようになっている。   A branch point Z for branching the refrigerant flow is provided on the outlet side of the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21, and one of the refrigerants branched at the branch point Z is on the nozzle part 14a side of the ejector 14 The other refrigerant flows into the refrigerant suction port 14 b side of the ejector 14 through the refrigerant branch passage 16.

エジェクタ14は、冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用によって冷媒の循環を行う冷媒循環手段でもある。   The ejector 14 is a depressurizing unit that depressurizes the refrigerant, and is also a refrigerant circulating unit that circulates the refrigerant by suction of a refrigerant flow ejected at high speed.

また、エジェクタ14は、内部熱交換器21の高圧側冷媒流路21a出口側から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部14aと、ノズル部14aの冷媒噴射口と連通するように配置されて後述する第2蒸発器18から流出した冷媒を吸引する冷媒吸引口14bとを有して構成される。   Further, the ejector 14 includes a nozzle portion 14a for reducing the passage area of the high-pressure refrigerant flowing from the outlet side of the high-pressure side refrigerant flow passage 21a of the internal heat exchanger 21 to an isentropic decompression expansion, and a nozzle portion The refrigerant suction port 14b is arranged so as to communicate with the refrigerant jet port 14a and sucks the refrigerant flowing out from the second evaporator 18 described later.

さらに、ノズル部14aおよび冷媒吸引口14bの冷媒流れ下流側部位には、ノズル部14aから噴射する高速度の冷媒流と冷媒吸引口14bからの吸引冷媒とを混合する混合部14cが設けられ、混合部14cの冷媒流れ下流側には昇圧部をなすディフューザ部14dが設けられている。   Further, a mixing portion 14c for mixing the high-speed refrigerant flow ejected from the nozzle portion 14a and the suction refrigerant from the refrigerant suction port 14b is provided in the refrigerant flow downstream portion of the nozzle portion 14a and the refrigerant suction port 14b. A diffuser portion 14d forming a pressure increasing portion is provided on the refrigerant flow downstream side of the mixing portion 14c.

ディフューザ部14dは冷媒通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。さらに、エジェクタ14のディフューザ部14d出口側には第1蒸発器15が接続される。   The diffuser portion 14d is formed in a shape that gradually increases the refrigerant passage area, and functions to increase the refrigerant pressure by decelerating the refrigerant flow, that is, to convert the velocity energy of the refrigerant into pressure energy. Further, the first evaporator 15 is connected to the outlet side of the diffuser portion 14 d of the ejector 14.

第1蒸発器15は、内部を通過する低圧冷媒と電動送風機19により送風される空気(内気または外気)と熱交換させることによって、冷媒を蒸発させて吸熱作用を発揮させる吸熱器である。電動送風機19は、前述の電動送風機13と同様の構成で、電動送風機19の電動モータ19aの回転数も、空調制御装置30から出力される制御電圧によって制御される。   The first evaporator 15 is a heat absorber that evaporates the refrigerant and exerts an endothermic effect by exchanging heat with the low-pressure refrigerant passing through the inside and the air (inside air or outside air) blown by the electric blower 19. The electric blower 19 has the same configuration as the electric blower 13 described above, and the number of rotations of the electric motor 19 a of the electric blower 19 is also controlled by a control voltage output from the air conditioning control device 30.

なお、第1蒸発器15は車両用空調装置の室内空調ユニット(図示せず)の空気通路を形成するケース内に配置されて、このケース内を通過して車室内へ吹き出される空気を冷却する冷却手段を構成している。つまり、本実施形態では、第1蒸発器15は車室内空調用として用いられており、第1蒸発器15の空調対象空間は車室内となる。   The first evaporator 15 is disposed in a case that forms an air passage of an indoor air conditioning unit (not shown) of the vehicle air conditioner, and cools the air that passes through the case and blows into the vehicle interior. The cooling means is configured. That is, in this embodiment, the 1st evaporator 15 is used for vehicle interior air conditioning, and the air-conditioning object space of the 1st evaporator 15 becomes a vehicle interior.

また、上記室内空調ユニットのケース内のうち第1蒸発器15の空気流れ下流側には、空気を加熱する加熱手段を構成するヒータコア(図示せず)等が配置され、このヒータコアの加熱度合いにより温度調整および湿度調整された空調風がケースの空気流れ下流側端部の吹出口(図示せず)から車室内へ吹き出すようになっている。   Further, a heater core (not shown) constituting a heating means for heating the air is disposed in the case of the indoor air conditioning unit on the downstream side of the air flow of the first evaporator 15, and the heater core is heated depending on the degree of heating of the heater core. The temperature-controlled and humidity-adjusted conditioned air is blown out from the air outlet (not shown) at the downstream end of the case into the vehicle compartment.

第1蒸発器15の冷媒出口側には、前述の内部熱交換器21の低圧側冷媒流路21bが接続され、低圧側冷媒流路21bの出口側には圧縮機11吸入側が接続されている。   The refrigerant outlet side of the first evaporator 15 is connected to the low-pressure side refrigerant passage 21b of the internal heat exchanger 21 described above, and the compressor 11 suction side is connected to the outlet side of the low-pressure side refrigerant passage 21b. .

一方、分岐点Zで分岐された他方の冷媒は冷媒分岐通路16を介して、エジェクタ14の冷媒吸引口14b側に流入する。この冷媒分岐通路16には絞り手段17が配置され、この絞り手段17よりも冷媒流れ下流側には第2蒸発器18が配置されている。絞り手段17は第2蒸発器18へ流入する冷媒を減圧膨張させる減圧手段であって、具体的にはキャピラリチューブやオリフィスのような固定絞りで構成されている。   On the other hand, the other refrigerant branched at the branch point Z flows into the refrigerant suction port 14 b side of the ejector 14 through the refrigerant branch passage 16. A throttle means 17 is arranged in the refrigerant branch passage 16, and a second evaporator 18 is arranged downstream of the refrigerant flow from the throttle means 17. The throttle unit 17 is a decompression unit that decompresses and expands the refrigerant flowing into the second evaporator 18, and specifically includes a fixed throttle such as a capillary tube or an orifice.

第2蒸発器18は、内部を通過する低圧冷媒と蒸発器用送風手段である電動送風機20により送風される空気と熱交換させることによって、冷媒を蒸発させて吸熱作用を発揮させる吸熱器である。電動送風機20は、電動送風機13、19と同様の構成で、電動送風機20の電動モータ20aの回転数も、空調制御装置30から出力される制御電圧によって制御される。   The second evaporator 18 is a heat absorber that evaporates the refrigerant and exerts an endothermic effect by exchanging heat with the low-pressure refrigerant passing through the inside and the air blown by the electric blower 20 that is the blowing means for the evaporator. The electric blower 20 has the same configuration as the electric blowers 13 and 19, and the number of rotations of the electric motor 20 a of the electric blower 20 is also controlled by a control voltage output from the air conditioning control device 30.

なお、第2蒸発器18は車室内に配置された冷蔵庫内へ吹き出される空気を冷却する冷却手段を構成している。つまり、本実施形態では、第2蒸発器18は冷蔵庫内の冷却用として用いられており、第2蒸発器18の空調対象空間(冷却対象空間)は冷蔵庫内となる。また、電動送風機20は冷蔵庫内空気を第2蒸発器18に向けて送風するようになっており、第2蒸発器18にて冷却された冷風を冷蔵庫内に循環させている。   In addition, the 2nd evaporator 18 comprises the cooling means which cools the air which blows off into the refrigerator arrange | positioned in a vehicle interior. That is, in the present embodiment, the second evaporator 18 is used for cooling in the refrigerator, and the air-conditioning target space (cooling target space) of the second evaporator 18 is in the refrigerator. Moreover, the electric blower 20 blows the air in the refrigerator toward the second evaporator 18, and the cold air cooled by the second evaporator 18 is circulated in the refrigerator.

さらに、本実施形態では、図1の太破線に示すように、上記の構成のうち、圧縮機11、放熱器12、内部熱交換器21、分岐部Zおよび冷媒分岐通路16の絞り手段17上流側を車室外に配置している。   Further, in the present embodiment, as shown by a thick broken line in FIG. 1, among the above configurations, the compressor 11, the radiator 12, the internal heat exchanger 21, the branch portion Z, and the throttle unit 17 upstream of the refrigerant branch passage 16. The side is located outside the passenger compartment.

なお、本実施形態の車室外とは、乗員が搭乗する車室の外部を意味し、エンジンルーム内、車室の床下等も車室外に含まれる。エンジンルーム内や車室の床下等についても、車両走行動圧(ラム圧)による走行風が流入するため、車室外と同等の温度環境となりうるからである。   The term “outside of the passenger compartment” in the present embodiment means the outside of the passenger compartment in which the occupant is boarded, and the inside of the engine compartment, the under floor of the passenger compartment, and the like are also included outside the passenger compartment. This is because the traveling wind caused by the vehicle traveling dynamic pressure (ram pressure) flows in the engine room and under the floor of the vehicle compartment, and therefore, the temperature environment can be the same as that outside the vehicle compartment.

より具体的には、本実施形態では、圧縮機11、放熱器12および内部熱交換器21をエンジンルーム内に配置し、内部熱交換器21の高圧側冷媒流路21a下流側の分岐部Zおよび冷媒分岐通路16の絞り手段17上流側を車両床下に配置している。さらに、本実施形態の車室外は、空調対象空間の外部に相当する。   More specifically, in this embodiment, the compressor 11, the radiator 12 and the internal heat exchanger 21 are arranged in the engine room, and the branch portion Z on the downstream side of the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21 is arranged. The upstream side of the throttle means 17 of the refrigerant branch passage 16 is disposed below the vehicle floor. Further, the outside of the passenger compartment of the present embodiment corresponds to the outside of the air conditioning target space.

一方、上記の構成のうち、エジェクタ14、第1蒸発器15、絞り手段17および第2蒸発器18は車室内に配置されている。なお、本実施形態の車室内とは、乗員が搭乗する車室の内部のみを意味するものではなく、エンジンルームと車室内を仕切るダッシュパネルより車室内側等も含まれる。   On the other hand, among the above configurations, the ejector 14, the first evaporator 15, the throttle means 17, and the second evaporator 18 are arranged in the vehicle interior. In addition, the vehicle interior of the present embodiment does not mean only the interior of the vehicle cabin in which the occupant is boarded, but also includes the vehicle interior side from the dash panel that partitions the engine room and the vehicle interior.

つまり、ダッシュパネルと車両計器板等が配置されるインストルメントパネルとの間の空間等も車室内に含まれる。なお、前述の室内空調ユニットは、ダッシュパネルとインストルメントパネルとの間の空間に配置されている。   That is, a space between the dash panel and the instrument panel on which the vehicle instrument panel and the like are arranged is also included in the vehicle interior. The indoor air conditioning unit described above is disposed in a space between the dash panel and the instrument panel.

空調制御装置30は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置30は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、各種の電気式のアクチュエータ13a、19a、20a等の作動を制御する。   The air conditioning control device 30 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The air conditioning control device 30 performs various calculations and processes based on a control program stored in the ROM, and controls the operations of various electric actuators 13a, 19a, 20a and the like.

また、空調制御装置30には、外気温(車室外温度)を検出する外気センサ等のセンサ群の検出値や、車両用空調装置を作動させる作動スイッチ等が設けられた操作パネルの各種操作信号が入力される。なお、図1では、空調制御装置30も車室内に配置されているが、空調制御装置30の配置は車室外であってもよい。   In addition, the air conditioning control device 30 includes various detection signals from an operation panel provided with a detection value of a sensor group such as an outside air sensor for detecting an outside air temperature (a temperature outside the passenger compartment), an operation switch for operating a vehicle air conditioner, and the like. Is entered. In FIG. 1, the air conditioning control device 30 is also disposed in the vehicle interior, but the air conditioning control device 30 may be disposed outside the vehicle interior.

次に、上述の構成において本実施形態の作動について説明する。まず、車室内を冷房し、冷蔵庫内を冷却する通常運転時について説明する。操作パネルの作動スイッチが投入されると、圧縮機11に車両エンジンにより駆動力が伝達される。圧縮機11で圧縮され吐出された高温高圧状態の気相冷媒は放熱器12に流入する。   Next, the operation of the present embodiment in the above configuration will be described. First, the normal operation of cooling the passenger compartment and cooling the refrigerator will be described. When the operation switch of the operation panel is turned on, the driving force is transmitted to the compressor 11 by the vehicle engine. The high-temperature and high-pressure gas-phase refrigerant compressed and discharged by the compressor 11 flows into the radiator 12.

放熱器12の凝縮用熱交換部では高温高圧の気相冷媒が外気により冷却されて凝縮し、凝縮した冷媒はレシーバ12a内において気相冷媒と液相冷媒とに分離され、この液相冷媒が過冷却用熱交換部において、さらに冷却されて内部熱交換器21の高圧側冷媒流路21aに流入する。   In the heat exchanger for condensation of the radiator 12, the high-temperature and high-pressure gas-phase refrigerant is cooled and condensed by the outside air, and the condensed refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant in the receiver 12a. In the supercooling heat exchange section, it is further cooled and flows into the high-pressure side refrigerant flow path 21 a of the internal heat exchanger 21.

ここで、本実施形態のエジェクタ式冷凍サイクルの通常運転時における内部熱交換器21の作用を図2により説明する。なお、図2は、本実施形態のエジェクタ式冷凍サイクルの冷媒の状態を示したモリエル線図であり、通常運転時の冷媒の状態を破線で示し、後述する低外気温除湿運転時の冷媒の状態を実線で示し、二点鎖線は等温線を示している。   Here, the operation of the internal heat exchanger 21 during normal operation of the ejector refrigeration cycle of the present embodiment will be described with reference to FIG. FIG. 2 is a Mollier diagram showing the state of the refrigerant in the ejector-type refrigeration cycle of the present embodiment. The state of the refrigerant during normal operation is indicated by a broken line, and the refrigerant state during dehumidifying operation at a low outside temperature described later is shown. The state is indicated by a solid line, and the two-dot chain line indicates an isotherm.

通常運転時には、内部熱交換器21において、高圧側冷媒流路21aの高温の高圧液相冷媒と低圧側冷媒流路21bの低温の低圧冷媒との間で熱交換が行われる。従って、先願例のサイクルと同様に、内部熱交換器21は、放熱器12出口側冷媒のエンタルピを、a→bに示すように減少させ、圧縮機11吸入側冷媒のエンタルピを、c→dに示すように増大させるように作用する。   During normal operation, heat exchange is performed in the internal heat exchanger 21 between the high-temperature high-pressure liquid phase refrigerant in the high-pressure side refrigerant flow path 21a and the low-temperature low-pressure refrigerant in the low-pressure side refrigerant flow path 21b. Therefore, similarly to the cycle of the prior application example, the internal heat exchanger 21 reduces the enthalpy of the refrigerant on the outlet side of the radiator 12 as indicated by a → b, and reduces the enthalpy of the refrigerant on the suction side of the compressor 11 to c → It acts to increase as shown in d.

内部熱交換器21の高圧側冷媒流路21aから流出した冷媒は、分岐点Zにてエジェクタ14に向かう冷媒流れと、分岐冷媒通路16に向かう冷媒流れとに分流する。   The refrigerant flowing out from the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21 is divided into a refrigerant flow toward the ejector 14 and a refrigerant flow toward the branch refrigerant passage 16 at the branch point Z.

エジェクタ14に流入した冷媒流れはノズル部14aで減圧され膨張する。これにより、ノズル部14aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部14aの噴出口から冷媒は高速度となって噴出する。この際の冷媒吸引作用により、冷媒吸引口14bから分岐冷媒通路16の第2蒸発器18通過後の冷媒を吸引する。   The refrigerant flow flowing into the ejector 14 is decompressed and expanded by the nozzle portion 14a. Thereby, the pressure energy of the refrigerant is converted into velocity energy at the nozzle portion 14a, and the refrigerant is ejected at a high velocity from the outlet of the nozzle portion 14a. Due to the refrigerant suction action at this time, the refrigerant after passing through the second evaporator 18 in the branch refrigerant passage 16 is sucked from the refrigerant suction port 14b.

ノズル部14aから噴出した冷媒と冷媒吸引口14bに吸引された冷媒は、ノズル部14a下流側の混合部14cで混合してディフューザ部14dに流入する。このディフューザ部14dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。   The refrigerant ejected from the nozzle portion 14a and the refrigerant sucked into the refrigerant suction port 14b are mixed in the mixing portion 14c on the downstream side of the nozzle portion 14a and flow into the diffuser portion 14d. In the diffuser portion 14d, the passage area is enlarged, so that the speed (expansion) energy of the refrigerant is converted into pressure energy, so that the pressure of the refrigerant rises.

エジェクタ14のディフューザ部14dから流出した冷媒は第1蒸発器15に流入する。第1蒸発器15では、低圧冷媒が電動送風機19の送風空気から吸熱して蒸発する。この第1蒸発器15通過後の冷媒は内部熱交換器21の低圧側冷媒流路21bに流入して、内部熱交換器21の高圧側冷媒流路21aの高圧冷媒と熱交換する。そして、低圧側冷媒流路21b通過後の気相冷媒は圧縮機11に吸入され再び圧縮される。   The refrigerant that has flowed out of the diffuser portion 14 d of the ejector 14 flows into the first evaporator 15. In the first evaporator 15, the low-pressure refrigerant absorbs heat from the air blown from the electric blower 19 and evaporates. The refrigerant that has passed through the first evaporator 15 flows into the low-pressure side refrigerant passage 21b of the internal heat exchanger 21 and exchanges heat with the high-pressure refrigerant in the high-pressure side refrigerant passage 21a of the internal heat exchanger 21. And the gaseous-phase refrigerant | coolant after passing the low voltage | pressure side refrigerant flow path 21b is suck | inhaled by the compressor 11, and is compressed again.

一方、分岐冷媒通路16に流入した冷媒流れは絞り手段17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。第2蒸発器18では、低圧冷媒が電動送風機20の送風空気から吸熱して蒸発する。この第2蒸発器18通過後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。   On the other hand, the refrigerant flow flowing into the branch refrigerant passage 16 is decompressed by the throttle means 17 to become a low-pressure refrigerant, and this low-pressure refrigerant flows into the second evaporator 18. In the second evaporator 18, the low-pressure refrigerant absorbs heat from the blown air of the electric blower 20 and evaporates. The gas-phase refrigerant after passing through the second evaporator 18 is sucked into the ejector 14 from the refrigerant suction port 14b.

上記の如く作動することで、第1、2蒸発器15、18の双方に冷媒を供給できるので、第1、2蒸発器15、18で同時に冷却作用を発揮できる。その際に、第1蒸発器15の冷媒蒸発圧力はディフューザ部14dで昇圧した後の圧力となり、一方、第2蒸発器18の冷媒蒸発圧力はノズル部14aでの減圧直後の圧力となる。   Since the refrigerant can be supplied to both the first and second evaporators 15 and 18 by operating as described above, the first and second evaporators 15 and 18 can simultaneously exert a cooling action. At that time, the refrigerant evaporation pressure of the first evaporator 15 becomes the pressure after being increased by the diffuser part 14d, while the refrigerant evaporation pressure of the second evaporator 18 becomes the pressure immediately after the pressure reduction at the nozzle part 14a.

これにより、第1蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器18の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。本実施形態では、第1蒸発器15を車室内空調用として用い、第2蒸発器18を冷蔵庫内の冷却用として用いているので、車室内冷房温度よりも車載の冷凍冷蔵庫内の冷却温度を低くすることができる。   Thereby, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the second evaporator 18 can be made lower than the refrigerant evaporation pressure (refrigerant evaporation temperature) of the first evaporator 15. In the present embodiment, since the first evaporator 15 is used for air conditioning in the vehicle interior and the second evaporator 18 is used for cooling in the refrigerator, the cooling temperature in the in-vehicle refrigerator-freezer is set higher than the cooling temperature in the vehicle interior. Can be lowered.

しかも、エジェクタ14のディフューザ部14dでの昇圧作用によって圧縮機11の吸入圧を上昇できる分だけ、圧縮機11の圧縮仕事量を低減できるので、圧縮機11の省動力効果を得ることができる。さらに、内部熱交換器21の作用によって、第1、2蒸発器15、18における冷媒入口・出口間の冷媒のエンタルピ差を拡大できるので、サイクルの冷凍能力を増大できる。その結果、サイクル効率(COP)を向上させることができる。   In addition, since the compression work of the compressor 11 can be reduced by the amount by which the suction pressure of the compressor 11 can be increased by the pressure increasing action at the diffuser portion 14d of the ejector 14, the power saving effect of the compressor 11 can be obtained. Furthermore, since the enthalpy difference of the refrigerant between the refrigerant inlet and outlet in the first and second evaporators 15 and 18 can be increased by the action of the internal heat exchanger 21, the refrigeration capacity of the cycle can be increased. As a result, cycle efficiency (COP) can be improved.

ところで、車両用空調装置では、冬季の低外気温時であっても車室内吹出空気の除湿および冷蔵庫内の温度維持を目的として、エジェクタ式冷凍サイクルを運転させることがある。このような運転条件では、車室外の温度が第2蒸発器18の空調対象空間(冷却対象空間)の温度より低くなる運転条件となりうる。つまり、前述の低外気温除湿運転と同様の運転がなされることがある。   By the way, in a vehicle air conditioner, an ejector-type refrigeration cycle may be operated for the purpose of dehumidifying the air blown into the passenger compartment and maintaining the temperature in the refrigerator even at low outdoor temperatures in winter. Such an operating condition may be an operating condition in which the temperature outside the passenger compartment is lower than the temperature of the air-conditioning target space (cooling target space) of the second evaporator 18. That is, the same operation as the above-described low outside temperature dehumidifying operation may be performed.

このような低外気温除湿運転では、前述の図7で説明したように、通常運転時に対して冷凍サイクルに要求される冷凍能力が少なくなり、サイクル熱負荷が小さくなる。そして、サイクルの高低圧差が小さくなるととともに、内部熱交換器21の好ましくない熱交換によって、絞り手段17においベーパロックが懸念される。   In such a low outside air temperature dehumidifying operation, as described with reference to FIG. 7, the refrigeration capacity required for the refrigeration cycle is reduced compared to the normal operation, and the cycle heat load is reduced. As the difference between the high and low pressures of the cycle becomes smaller, there is a concern about vapor lock in the throttling means 17 due to undesirable heat exchange of the internal heat exchanger 21.

これに対して、本実施形態では、内部熱交換器21の高圧側冷媒流路21a出口側から絞り手段17入口側に至る冷媒通路の一部が、車室外に配置されている。従って、低外気温除湿運転時に、内部熱交換器21の高圧側冷媒流路21a出口側から絞り手段17入口側に至る冷媒通路を通過する冷媒を車室外の低温外気によって冷却することができる。   In contrast, in the present embodiment, a part of the refrigerant passage extending from the high-pressure side refrigerant flow path 21a outlet side of the internal heat exchanger 21 to the throttle means 17 inlet side is disposed outside the vehicle compartment. Therefore, the refrigerant passing through the refrigerant passage extending from the high-pressure side refrigerant flow path 21a outlet side of the internal heat exchanger 21 to the throttle means 17 inlet side can be cooled by the low-temperature outside air outside the vehicle compartment during the low outside air temperature dehumidifying operation.

つまり、低外気温除湿運転時の内部熱交換器21の好ましくない熱交換によって放熱器12出口側冷媒が加熱されてしまう場合でも、低温外気によって絞り手段17へ流入する冷媒を確実に再冷却することができる。   That is, even when the refrigerant on the outlet side of the radiator 12 is heated due to undesired heat exchange of the internal heat exchanger 21 at the time of dehumidifying the low outside air temperature, the refrigerant flowing into the throttle means 17 is reliably recooled by the low temperature outside air. be able to.

具体的には、低外気温除湿運転時において、内部熱交換器21が放熱器12出口側冷媒のエンタルピを、図2のe→fに示すように増加させてしまう場合でも、低温外気によって冷却することで、再びf→e’に示すように減少させることができる。従って、絞り手段17へ流入する冷媒が気液二相状態になることを抑制できる。その結果、絞り手段17におけるベーパロックの発生を抑制できる。   Specifically, even when the internal heat exchanger 21 increases the enthalpy of the refrigerant on the outlet side of the radiator 12 as shown by e → f in FIG. By doing so, it can be decreased again as shown by f → e ′. Therefore, it can suppress that the refrigerant | coolant which flows in into the expansion means 17 becomes a gas-liquid two-phase state. As a result, the occurrence of vapor lock in the throttle means 17 can be suppressed.

ここで、上述の構成の車両用空調装置を夏季の高外気温時に運転した場合について説明する。夏季の高外気温時には、もちろん、車室外の温度が第2蒸発器18の空調対象空間(冷却対象空間)の温度より高くなっている。さらに、この状態では、内部熱交換器21は放熱器12出口側冷媒のエンタルピを減少させるように作用する。   Here, the case where the vehicle air conditioner having the above-described configuration is operated at a high outdoor temperature in summer will be described. Of course, at the time of high outdoor temperature in summer, the temperature outside the passenger compartment is higher than the temperature of the air conditioning target space (cooling target space) of the second evaporator 18. Further, in this state, the internal heat exchanger 21 acts to reduce the enthalpy of the radiator 12 outlet side refrigerant.

従って、内部熱交換器21の高圧側冷媒流路21a出口側から絞り手段17入口側に至る冷媒通路を通過する冷媒を車室外の高温空気によって再加熱されてしまうことが懸念される。ところが、圧縮機11から吐出された冷媒は放熱器12において外気と熱交換して放熱するものの、必ずしも外気と同等の温度まで冷却されない。   Therefore, there is a concern that the refrigerant passing through the refrigerant passage extending from the outlet side of the high-pressure side refrigerant passage 21a of the internal heat exchanger 21 to the inlet side of the throttle means 17 is reheated by the high-temperature air outside the passenger compartment. However, although the refrigerant discharged from the compressor 11 radiates heat by exchanging heat with the outside air in the radiator 12, it is not necessarily cooled to the same temperature as the outside air.

そのため、内部熱交換器21で冷却された高圧側冷媒流路21a流出冷媒と、外気温との温度差は僅かな値に過ぎない。従って、内部熱交換器21の高圧側冷媒流路21a出口側から絞り手段17入口側に至る冷媒通路が、車室外に配置されていても、内部熱交換器21による冷凍能力増大効果を大幅に損ねることもない。   Therefore, the temperature difference between the refrigerant flowing out of the high-pressure side refrigerant passage 21a cooled by the internal heat exchanger 21 and the outside air temperature is only a small value. Therefore, even if the refrigerant passage extending from the outlet side of the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21 to the inlet side of the throttle means 17 is disposed outside the passenger compartment, the effect of increasing the refrigerating capacity by the internal heat exchanger 21 is greatly increased. There is no loss.

(第2実施形態)
上述の第1実施形態では、内部熱交換器21の高圧側冷媒流路21aの下流側に分岐部Zを配置しているが、本実施形態では、図3に示すように、放熱器12出口側と内部熱交換器21入口側(具体的には、内部熱交換器21の高圧側冷媒流路21a入口側)との間に分岐部Zを配置している。さらに、分岐部Z下流側の冷媒分岐通路16の一部が車室内に配置されている。その他の構成は、第1実施形態と同様である。
(Second Embodiment)
In the first embodiment described above, the branching portion Z is arranged on the downstream side of the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21, but in this embodiment, as shown in FIG. The branch part Z is arranged between the side and the inlet side of the internal heat exchanger 21 (specifically, the inlet side of the high-pressure refrigerant passage 21a of the internal heat exchanger 21). Furthermore, a part of the refrigerant branch passage 16 on the downstream side of the branch portion Z is disposed in the vehicle interior. Other configurations are the same as those of the first embodiment.

上記の構成において本実施形態の作動について説明する。まず、車室内を冷房して、冷蔵庫を作動させる通常運転時は、第1実施形態と同様に、圧縮機11で圧縮され吐出された高温高圧状態の気相冷媒は放熱器12に流入して外気により冷却されて凝縮する。そして、高圧冷媒はレシーバ12aにて気液分離された冷媒のうち、液相冷媒が分岐部Zで分岐されて、一方の冷媒が、内部熱交換器21の高圧側冷媒流路21aに流入する。   The operation of the present embodiment in the above configuration will be described. First, during normal operation of cooling the passenger compartment and operating the refrigerator, the high-temperature and high-pressure gas-phase refrigerant compressed and discharged by the compressor 11 flows into the radiator 12 as in the first embodiment. It is cooled and condensed by the outside air. Of the refrigerant separated from the gas and liquid by the receiver 12a, the liquid-phase refrigerant is branched at the branch portion Z, and one refrigerant flows into the high-pressure side refrigerant passage 21a of the internal heat exchanger 21. .

内部熱交換器21の高圧側冷媒流路21aに流入した冷媒は、第1実施形態と同様に、エンタルピが減少されて、エジェクタ14のノズル部14aに流入して減圧されて膨張する。   As in the first embodiment, the refrigerant flowing into the high-pressure side refrigerant flow path 21a of the internal heat exchanger 21 is reduced in enthalpy, flows into the nozzle portion 14a of the ejector 14, is decompressed, and expands.

そして、ノズル部14aから噴射された冷媒は、冷媒吸引口14bから吸引された第2蒸発器18通過後の冷媒と混合されて、ディフューザ部14dにて昇圧されて第1蒸発器15に流入する。第1蒸発器15に流入した冷媒は、電動送風機19の送風空気から吸熱して蒸発し、内部熱交換器21の低圧側冷媒流路21bを介して圧縮機11に吸入される。   Then, the refrigerant injected from the nozzle portion 14a is mixed with the refrigerant that has passed through the second evaporator 18 sucked from the refrigerant suction port 14b, is pressurized by the diffuser portion 14d, and flows into the first evaporator 15. . The refrigerant that has flowed into the first evaporator 15 absorbs heat from the blown air of the electric blower 19 and evaporates, and is sucked into the compressor 11 via the low-pressure side refrigerant passage 21 b of the internal heat exchanger 21.

一方、分岐冷媒通路16に流入した冷媒流れは絞り手段17で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器18に流入する。第2蒸発器18に流入した冷媒は、電動送風機20の送風空気から吸熱して蒸発する。この第2蒸発器18通過後の気相冷媒は冷媒吸引口14bからエジェクタ14内に吸引される。   On the other hand, the refrigerant flow flowing into the branch refrigerant passage 16 is decompressed by the throttle means 17 to become a low-pressure refrigerant, and this low-pressure refrigerant flows into the second evaporator 18. The refrigerant flowing into the second evaporator 18 absorbs heat from the blown air of the electric blower 20 and evaporates. The gas-phase refrigerant after passing through the second evaporator 18 is sucked into the ejector 14 from the refrigerant suction port 14b.

上記の如く作動することで、通常運転時には、第1実施形態と同様に、第1、2蒸発器15、18において異なる温度帯で同時に冷却作用を発揮できる。しかも、内部熱交換器21の作用によって、第1蒸発器15における冷媒入口・出口間の冷媒のエンタルピ差を拡大できるので、サイクル効率(COP)を向上させることができる。   By operating as described above, during the normal operation, the first and second evaporators 15 and 18 can exhibit the cooling action simultaneously in different temperature zones as in the first embodiment. In addition, since the enthalpy difference of the refrigerant between the refrigerant inlet and outlet in the first evaporator 15 can be increased by the action of the internal heat exchanger 21, cycle efficiency (COP) can be improved.

さらに、本実施形態では、分岐部Zが放熱器12出口側と内部熱交換器21入口側との間に配置されているので、絞り手段17へ流入する冷媒が、内部熱交換機21を通過することがない。従って、例えば、前述の低外気温除湿運転においても、内部熱交換器21にて絞り手段17に流入する冷媒が加熱されることがない。その結果、第1実施形態と同様に、絞り手段17におけるベーパロックの発生を抑制できる。   Furthermore, in this embodiment, since the branch part Z is arrange | positioned between the heat radiator 12 exit side and the internal heat exchanger 21 entrance side, the refrigerant | coolant which flows in into the expansion means 17 passes the internal heat exchanger 21. FIG. There is nothing. Therefore, for example, even in the above-described low outside temperature dehumidifying operation, the refrigerant flowing into the expansion means 17 is not heated by the internal heat exchanger 21. As a result, it is possible to suppress the occurrence of vapor lock in the throttle means 17 as in the first embodiment.

(第3実施形態)
上述の第1実施形態では、エジェクタ式冷凍サイクル10のうち、圧縮機11、放熱器12、内部熱交換器21、分岐部Zおよび冷媒分岐通路16の絞り手段17上流側を車室外に配置しているが、本実施形態では、図4に示すように、分岐部Z下流側の冷媒分岐通路16の一部が車室内に配置されている。
(Third embodiment)
In the first embodiment described above, in the ejector refrigeration cycle 10, the compressor 11, the radiator 12, the internal heat exchanger 21, the branch part Z, and the throttle means 17 upstream side of the refrigerant branch passage 16 are arranged outside the vehicle compartment. However, in the present embodiment, as shown in FIG. 4, a part of the refrigerant branch passage 16 on the downstream side of the branch portion Z is disposed in the vehicle interior.

さらに、冷媒分岐通路16のうち車室内に配置された部分の外周には冷媒分岐通路16の内部と外部との熱移動を抑制する断熱材16aが設けられている。具体的には、この断熱材16aとして、樹脂発泡材等が採用されており、冷媒分岐通路16の外周に巻き付けられている。その他の構成は、第1実施形態と同様である。   Further, a heat insulating material 16 a that suppresses heat transfer between the inside and the outside of the refrigerant branch passage 16 is provided on the outer periphery of a portion of the refrigerant branch passage 16 disposed in the vehicle interior. Specifically, a resin foam or the like is employed as the heat insulating material 16 a and is wound around the outer periphery of the refrigerant branch passage 16. Other configurations are the same as those of the first embodiment.

上記の構成において本実施形態の作動について説明する。まず、上述の通常運転時は、第1実施形態と同様に作用する。従って、第1実施形態と同様の効果を得ることができる。   The operation of the present embodiment in the above configuration will be described. First, during the above-described normal operation, the operation is the same as in the first embodiment. Therefore, the same effect as the first embodiment can be obtained.

さらに、本実施形態では、冷媒分岐通路16のうち車室内に配置された部分の外周に断熱材16aが設けられているので、例えば、前述の低外気温除湿運転のように、冷媒分岐通路16を通過する冷媒の温度よりも、冷媒通路の外部である車室内温度が高くなる運転条件において、冷媒が冷媒通路で加熱されてしまうことを抑制できる。   Furthermore, in the present embodiment, since the heat insulating material 16a is provided on the outer periphery of the portion of the refrigerant branch passage 16 disposed in the vehicle interior, for example, as in the low outside temperature dehumidifying operation described above, the refrigerant branch passage 16 is provided. It is possible to prevent the refrigerant from being heated in the refrigerant passage under operating conditions in which the vehicle interior temperature outside the refrigerant passage is higher than the temperature of the refrigerant passing through the refrigerant passage.

その結果、第1実施形態と同様に、絞り手段17へ流入する冷媒が気液二相状態になることを抑制して、絞り手段17におけるベーパロックの発生を抑制できる。   As a result, similarly to the first embodiment, it is possible to suppress the refrigerant flowing into the throttle means 17 from entering a gas-liquid two-phase state, and to suppress the occurrence of vapor lock in the throttle means 17.

(第4実施形態)
上述の第1実施形態では、エジェクタ式冷凍サイクル10のうち、圧縮機11、放熱器12、内部熱交換器21、分岐部Zおよび冷媒分岐通路16の絞り手段17上流側を車室外に配置しているが、本実施形態では、図5に示すように、分岐部Z下流側の冷媒分岐通路16の一部が車室内に配置されている。
(Fourth embodiment)
In the first embodiment described above, in the ejector refrigeration cycle 10, the compressor 11, the radiator 12, the internal heat exchanger 21, the branch part Z, and the throttle means 17 upstream side of the refrigerant branch passage 16 are arranged outside the vehicle compartment. However, in this embodiment, as shown in FIG. 5, a part of the refrigerant branch passage 16 on the downstream side of the branch portion Z is disposed in the vehicle interior.

さらに、圧縮機11吐出冷媒を放熱器12下流側へバイパスさせるバイパス通路31、このバイパス通路31を開閉する開閉手段を構成する電磁弁32、放熱器12下流側冷媒圧力を検出する高圧圧力センサ33、第2蒸発器18下流側冷媒圧力を検出する低圧圧力センサ34が設けられている。   Further, a bypass passage 31 that bypasses the refrigerant discharged from the compressor 11 downstream of the radiator 12, an electromagnetic valve 32 that constitutes an opening / closing means that opens and closes the bypass passage 31, and a high-pressure sensor 33 that detects refrigerant pressure downstream of the radiator 12. A low pressure sensor 34 for detecting the refrigerant pressure downstream of the second evaporator 18 is provided.

この電磁弁32は、空調制御装置30から出力される制御電圧によって開閉され、高圧圧力センサ33および低圧圧力センサ34の検出信号は、空調制御装置30に入力される。   The electromagnetic valve 32 is opened and closed by a control voltage output from the air conditioning control device 30, and detection signals from the high pressure sensor 33 and the low pressure sensor 34 are input to the air conditioning control device 30.

ここで、高圧圧力センサ33は高圧側冷媒圧力を検出する検出手段であり、低圧圧力センサ34は低圧側冷媒圧力を検出する検出手段なので、各圧力センサ33、34によって高低圧差検出手段が構成される。さらに、本実施形態では、高低圧差が予め定めた値以下になったとき、空調制御装置30が、電磁弁32を開弁させるようになっている。   Here, since the high pressure sensor 33 is a detecting means for detecting the high pressure side refrigerant pressure and the low pressure sensor 34 is a detecting means for detecting the low pressure side refrigerant pressure, the pressure sensors 33 and 34 constitute a high / low pressure difference detecting means. The Further, in the present embodiment, the air conditioning control device 30 opens the electromagnetic valve 32 when the high / low pressure difference becomes equal to or less than a predetermined value.

上記の構成において本実施形態の作動について説明する。まず、上述の通常運転時は、第1実施形態と同様に作用する。従って、第1実施形態と同様の効果を得ることができる。   The operation of the present embodiment in the above configuration will be described. First, during the above-described normal operation, the operation is the same as in the first embodiment. Therefore, the same effect as the first embodiment can be obtained.

さらに、本実施形態では、高低圧差が小さくなると空調制御装置30が電磁弁32を開弁させるので、例えば、前述の低外気温除湿運転のように、高低圧差が小さくなる運転条件において、圧縮機11吐出冷媒の一部を、バイパス通路31を介して、放熱器12下流側に導くことができる。   Further, in the present embodiment, when the high / low pressure difference becomes small, the air conditioning control device 30 opens the electromagnetic valve 32. For example, under the operating conditions where the high / low pressure difference becomes small like the low outside temperature dehumidifying operation, the compressor 11 A part of the discharged refrigerant can be guided to the downstream side of the radiator 12 through the bypass passage 31.

そして、バイパス通路31を通過した圧縮機11吐出冷媒の一部は、放熱器12において冷却されることなく、放熱器12下流側へ導かれるので、放熱器12における圧縮機11吐出冷媒の凝縮量を低下させて、高圧側冷媒圧力を上昇させることができる。従って、絞り手段17へ流入する冷媒の圧力を、電磁弁32を開弁させる前よりも上昇させることができる。   A part of the refrigerant discharged from the compressor 11 that has passed through the bypass passage 31 is guided to the downstream side of the radiator 12 without being cooled by the radiator 12, and therefore, the amount of condensation of the refrigerant discharged from the compressor 11 in the radiator 12. And the high-pressure side refrigerant pressure can be increased. Therefore, the pressure of the refrigerant flowing into the throttle means 17 can be increased more than before the solenoid valve 32 is opened.

これにより、絞り手段17の上流側と下流側との圧力差が拡大し、絞り手段17を通過する冷媒流量を増加させることができるので、低外気温除湿運転時のベーパロックの発生原因となる気泡が絞り手段17の冷媒通路を塞いでしまっていても、この気泡を押し流すことができる。その結果、絞り手段17におけるベーパロックの発生を抑制できる。   As a result, the pressure difference between the upstream side and the downstream side of the throttle means 17 can be increased, and the flow rate of the refrigerant passing through the throttle means 17 can be increased. Therefore, bubbles that cause the occurrence of vapor lock during the low outside temperature dehumidifying operation However, even if the refrigerant passage of the throttle means 17 is blocked, the bubbles can be pushed away. As a result, the occurrence of vapor lock in the throttle means 17 can be suppressed.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の各実施形態では、第1蒸発器15を車室内空調用に用い、第2蒸発器18を冷蔵庫内冷却用に用いているが、第1、2蒸発器15、18の用途は、これに限定されない。   (1) In each of the above-described embodiments, the first evaporator 15 is used for air conditioning in the vehicle interior, and the second evaporator 18 is used for cooling in the refrigerator. However, the first and second evaporators 15 and 18 are used. Is not limited to this.

例えば、第1、2蒸発器15、18を車室内空調用に用いてもよい。すなわち、第1、2蒸発器15、18によって同一の空調対象空間(冷却対象空間)を冷却するようにしてもよい。なお、この場合は、電動送風機19、20のうちいずれか一方を廃止できるので、部品点数低減によるコストダウン効果を得ることもできる。   For example, the first and second evaporators 15 and 18 may be used for vehicle interior air conditioning. That is, the same air-conditioning target space (cooling target space) may be cooled by the first and second evaporators 15 and 18. In this case, since one of the electric blowers 19 and 20 can be eliminated, a cost reduction effect can be obtained by reducing the number of parts.

また、第1、2蒸発器15、18によって同一の空調対象空間(冷却対象空間)を冷却する場合は、第1、2蒸発器15、18を同一の材料(例えば、アルミニウム材)等で構成して、ろう付け手段によって一体化してもよい。さらに、例えば、第1実施形態のエジェクタ式冷凍サイクルにおいて、第1蒸発器15、第2蒸発器18、絞り手段17およびエジェクタ14を一体化してもよい。   Further, when the same air-conditioning target space (cooling target space) is cooled by the first and second evaporators 15 and 18, the first and second evaporators 15 and 18 are made of the same material (for example, aluminum material). Then, it may be integrated by brazing means. Furthermore, for example, in the ejector refrigeration cycle of the first embodiment, the first evaporator 15, the second evaporator 18, the throttle means 17, and the ejector 14 may be integrated.

具体的には、エジェクタ14を第2蒸発器18のヘッダタンク内部に収容し、キャピラリチューブで構成された絞り手段17を第1蒸発器15および第2蒸発器18のヘッダタンク外壁面に沿って接合する構成にすればよい。   Specifically, the ejector 14 is accommodated inside the header tank of the second evaporator 18, and the throttle means 17 constituted by a capillary tube is provided along the header tank outer wall surface of the first evaporator 15 and the second evaporator 18. What is necessary is just to make it the structure to join.

(2)上述の各実施形態では、エジェクタ14のディフューザ部14dの下流側に第1蒸発器15を配置しているが、この第1蒸発器15を廃止してもよい。さらに、この場合は、放熱器12のレシーバ12aを廃止して、ディフューザ部14d出口側と圧縮機11吸入側との間に、冷媒の気液を分離する気液分離器をなすアキュムレータを配置して、このアキュムレータから気相冷媒を圧縮機11吸入側に供給するようにしてもよい。   (2) In each embodiment described above, the first evaporator 15 is disposed on the downstream side of the diffuser portion 14d of the ejector 14, but the first evaporator 15 may be eliminated. Furthermore, in this case, the receiver 12a of the radiator 12 is abolished, and an accumulator that forms a gas-liquid separator that separates the gas-liquid refrigerant is disposed between the diffuser portion 14d outlet side and the compressor 11 suction side. Thus, the gas-phase refrigerant may be supplied from the accumulator to the suction side of the compressor 11.

もちろん、上述の各実施形態のサイクル構成において、レシーバ12aを廃止して上記のアキュムレータを設けてもよい。   Of course, in the cycle configurations of the above-described embodiments, the receiver 12a may be eliminated and the accumulator may be provided.

(3)上述の各実施形態では、絞り手段17をキャピラリチューブやオリフィスのような固定絞りで構成しているが、さらにベーパロックを抑制するために、各実施形態の絞り手段17の絞り形状を変更してもよい。具体的には、キャピラリチューブを採用している場合はチューブ内径の拡大化やチューブ長さの短縮化等を行えばよい。また、オリフィスを採用している場合は冷媒通路面積の拡大化等を行えばよい。   (3) In each of the above-described embodiments, the throttle means 17 is constituted by a fixed throttle such as a capillary tube or an orifice. However, in order to further suppress the vapor lock, the throttle shape of the throttle means 17 of each embodiment is changed. May be. Specifically, when a capillary tube is employed, the inner diameter of the tube may be increased or the tube length may be shortened. If an orifice is employed, the refrigerant passage area may be increased.

(4)上述の第2実施形態のエジェクタ式冷凍サイクルに、第3実施形態の断熱材16aを適用してもよい。すなわち、第2実施形態の構成で、冷媒分岐通路16のうち車室内に配置された部分の外周に断熱材16aを設けてもよい。   (4) The heat insulating material 16a of the third embodiment may be applied to the ejector refrigeration cycle of the second embodiment described above. That is, in the configuration of the second embodiment, the heat insulating material 16a may be provided on the outer periphery of the portion of the refrigerant branch passage 16 disposed in the vehicle interior.

これによれば、低外気温除湿運転時に、絞り手段17に流入する冷媒が内部熱交換器21および冷媒通路のいずれにおいても加熱されることがないので、より一層、絞り手段17に流入する冷媒が加熱されてエンタルピを増加させることを防止できる。   According to this, since the refrigerant flowing into the throttle means 17 is not heated in either the internal heat exchanger 21 or the refrigerant passage during the low external temperature dehumidifying operation, the refrigerant flowing into the throttle means 17 is further increased. Can be prevented from being heated to increase enthalpy.

(5)上述の第4実施形態では、高圧圧力センサ33および低圧圧力センサ34によって、高低圧差検出手段を構成しているが、高低圧差検出手段はこれに限定されない。   (5) In the above-described fourth embodiment, the high and low pressure difference detecting means is constituted by the high pressure sensor 33 and the low pressure sensor 34, but the high and low pressure difference detecting means is not limited to this.

例えば、放熱器用送風手段である電送送風機13の送風量と蒸発器用送風手段である電動送風機20の送風量との差に基づいて、高低圧差を検出するようになっていてもよい。一般的に、放熱器用送風手段の送風量が増加すると高圧側冷媒圧力が低下し、蒸発器用送風手段の送風量が増加すると低圧側冷媒圧力が上昇する。従って、放熱器用送風手段の送風量と蒸発器用送風手段の送風量との差に基づいて、高低圧差を検出できる。   For example, the high-low pressure difference may be detected based on the difference between the air flow rate of the electric blower 13 that is the blower means for the radiator and the air flow rate of the electric blower 20 that is the blower means for the evaporator. Generally, when the amount of air blown by the radiator fan increases, the high-pressure side refrigerant pressure decreases, and when the amount of air blown by the evaporator fan increases, the low-pressure side refrigerant pressure increases. Therefore, it is possible to detect the high / low pressure difference based on the difference between the blower amount of the radiator blower unit and the blower unit of the evaporator blower unit.

具体的には、例えば、第4実施形態のサイクルにおいて、空調制御装置30から各電動送風機13、20に出力される制御電圧と各電動送風機13、20の送風量との関係を示すマップ、電動送風機13の送風量と高圧側冷媒圧力との関係を示すマップ、電動送風機20の送風量と低圧側冷媒圧力との関係を示すマップ等を予め空調制御装置30に記憶させておき、空調制御装置30において各制御電圧に基づいて上記各マップを参照して高低圧差を決定すればよい。   Specifically, for example, in the cycle of the fourth embodiment, a map indicating the relationship between the control voltage output from the air-conditioning control device 30 to each electric blower 13, 20 and the amount of air blown by each electric blower 13, 20, electric A map showing the relationship between the air flow rate of the blower 13 and the high-pressure side refrigerant pressure, a map showing the relationship between the air flow rate of the electric blower 20 and the low-pressure side refrigerant pressure, and the like are stored in the air-conditioning control device 30 in advance. In step 30, the high / low pressure difference may be determined by referring to each of the above maps based on each control voltage.

また、放熱器用送風手段の送風空気温度と蒸発器用送風手段の送風空気温度との差に基づいて、高低圧差を検出するようになっていてもよい。一般的に、放熱器用送風手段の送風空気温度が上昇すると高圧側冷媒圧力が低下し、蒸発器用送風手段の送風空気温度が上昇すると低圧側冷媒圧力が上昇する。従って、放熱器用送風手段の送風空気温度と蒸発器用送風手段の送風空気温度との差に基づいて、高低圧差を検出できる。   Further, the high / low pressure difference may be detected based on the difference between the blower air temperature of the radiator blower and the blower air temperature of the evaporator blower. Generally, when the blown air temperature of the radiator blower rises, the high-pressure side refrigerant pressure decreases, and when the blower air temperature of the evaporator blower rises, the low-pressure refrigerant pressure rises. Therefore, a high-low pressure difference can be detected based on the difference between the blown air temperature of the radiator blower and the blower air temperature of the evaporator blower.

具体的には、例えば、第4実施形態のサイクルにおいて、車室外温度を検出する外気温センサおよび冷蔵庫内温度を検出する庫内温度センサを設け、外気温センサによって放熱器用送風手段の送風空気温度を検出し、庫内温度センサによって蒸発器用送風手段の送風空気温度を検出する。   Specifically, for example, in the cycle of the fourth embodiment, an outside air temperature sensor for detecting the outside temperature of the passenger compartment and an inside temperature sensor for detecting the inside temperature of the refrigerator are provided, and the air temperature of the blower means for the radiator is provided by the outside air temperature sensor. And the blown air temperature of the blowing means for the evaporator is detected by the internal temperature sensor.

さらに、放熱器用送風手段の送風空気温度と高圧側冷媒圧力との関係を示すマップ、蒸発器用送風手段の送風空気温度と低圧側冷媒圧力との関係を示すマップ等を予め空調制御装置30に記憶させておき、空調制御装置30において外気温センサおよび庫内温度センサの各検出値に基づいて上記各マップを参照して高低圧差を算定すればよい。   Further, a map showing the relationship between the blowing air temperature of the radiator blowing means and the high pressure side refrigerant pressure, a map showing the relationship between the blowing air temperature of the evaporator blowing means and the low pressure side refrigerant pressure, and the like are stored in the air conditioning controller 30 in advance. The air-conditioning control device 30 may calculate the high / low pressure difference with reference to the maps based on the detected values of the outside air temperature sensor and the internal temperature sensor.

(6)上述の第4実施形態では、圧縮機11吐出冷媒を放熱器12下流側へバイパスさせるバイパス通路31およびバイパス通路31を開閉する開閉手段を構成する電磁弁32を設け、高低圧差が予め定めた値以下になったとき、電磁弁32を開弁させることで高圧側冷媒圧力を上昇させているが、高圧側冷媒圧力を上昇させる手段は、これに限定されない。   (6) In the fourth embodiment described above, the bypass passage 31 for bypassing the refrigerant discharged from the compressor 11 to the downstream side of the radiator 12 and the electromagnetic valve 32 constituting the opening / closing means for opening and closing the bypass passage 31 are provided, and the high-low pressure difference is preliminarily set. When the pressure falls below a predetermined value, the high pressure side refrigerant pressure is increased by opening the solenoid valve 32, but means for increasing the high pressure side refrigerant pressure is not limited to this.

例えば、放熱器用送風手段の作動を制御する制御手段を設けて、高低圧差が予め定めた値以下になったとき、制御手段が放熱器用送風手段の作動を停止するようになっていてもよい。具体的には、上述の第4実施形態のサイクルにおいて、高低圧差が予め定めた値以下になったとき、空調制御装置30が電動送風機13の作動を停止させてもよい。   For example, a control means for controlling the operation of the air blower means for the radiator may be provided so that the control means stops the operation of the air blower means for the heat radiator when the high / low pressure difference becomes a predetermined value or less. Specifically, in the cycle of the fourth embodiment described above, the air conditioning control device 30 may stop the operation of the electric blower 13 when the high-low pressure difference becomes equal to or less than a predetermined value.

また、放熱器用送風手段の送風空気の流れを遮断する遮断機構と、遮断機構の作動を制御する制御手段とを設けて、高低圧差が予め定めた値以下になったとき、制御手段が送風空気の流れを遮断するように遮断機構を作動させてもよい。   Also, a shut-off mechanism that shuts off the flow of the blown air of the blower means for the radiator and a control means that controls the operation of the shut-off mechanism are provided, and when the high-low pressure difference becomes a predetermined value or less, the control means The shut-off mechanism may be operated so as to shut off the flow.

具体的には、上述の第4実施形態のサイクルにおいて、電動送風機13と放熱器12との間に、空調制御装置30の制御信号によって作動する遮断機構を配置する。この遮断機構としては、スライド式の開閉ドア等を採用できる。そして、高低圧差が予め定めた値以下になったとき、空調制御装置30が、送風空気の流れを遮断するように遮断機構を作動させてもよい。   Specifically, in the cycle of the above-described fourth embodiment, a shut-off mechanism that is operated by a control signal of the air conditioning control device 30 is disposed between the electric blower 13 and the radiator 12. As this blocking mechanism, a slide-type opening / closing door or the like can be adopted. Then, when the high / low pressure difference becomes equal to or less than a predetermined value, the air conditioning control device 30 may operate the shut-off mechanism so as to shut off the flow of the blown air.

(7)上述の各実施形態では、車両用の冷凍サイクルについて説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても本発明を同様に適用できることはもちろんである。   (7) In each of the above-described embodiments, the refrigeration cycle for a vehicle has been described. However, the present invention is not limited to a vehicle and can be similarly applied to a refrigeration cycle for stationary use.

(8)上述の実施形態では、放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、第1、2蒸発器15、18を室内側熱交換器として車室内および冷蔵庫内の冷却用に適用しているが、逆に、第1、2蒸発器15、18を外気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。   (8) In the above embodiment, the radiator 12 is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the first and second evaporators 15 and 18 are indoor heat exchangers. Although applied for cooling, conversely, the first and second evaporators 15 and 18 are configured as outdoor heat exchangers that absorb heat from a heat source such as outside air, and the radiator 12 is heated fluid such as air or water. You may apply this invention to the heat pump cycle comprised as an indoor side heat exchanger which heats.

第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 1st Embodiment. 第1実施形態のエジェクタ式冷凍サイクルのモリエル線図である。It is a Mollier diagram of the ejector type refrigeration cycle of the first embodiment. 第2実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector type refrigerating cycle of 2nd Embodiment. 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 3rd Embodiment. 第4実施形態のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector-type refrigerating cycle of 4th Embodiment. 先願例のエジェクタ式冷凍サイクルの全体構成図である。It is a whole block diagram of the ejector type refrigeration cycle of the example of a prior application. 先願例のエジェクタ式冷凍サイクルのモリエル線図である。It is a Mollier diagram of the ejector type refrigeration cycle of the prior application example.

符号の説明Explanation of symbols

11…圧縮機、12…放熱器、13、20…電動送風機、14…エジェクタ、
14a…ノズル部、14b…冷媒吸引口、16a…断熱材、17…絞り手段、
18…第2蒸発器、21…内部熱交換器、30…空調制御装置、31…バイパス通路、
32…電磁弁、33…高圧圧力センサ、34…低圧圧力センサ。
DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Radiator, 13, 20 ... Electric blower, 14 ... Ejector,
14a ... Nozzle part, 14b ... Refrigerant suction port, 16a ... Heat insulating material, 17 ... Throttle means,
18 ... second evaporator, 21 ... internal heat exchanger, 30 ... air conditioning control device, 31 ... bypass passage,
32 ... Solenoid valve, 33 ... High pressure sensor, 34 ... Low pressure sensor.

Claims (11)

冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、
前記放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、
前記分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、
前記分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、
前記絞り手段(17)下流側の低圧冷媒を、空調対象空間に送風される空気と熱交換させることによって蒸発させて、前記冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備え、
前記放熱器(12)出口側から前記絞り手段(17)入口側へ至る冷媒通路のうち少なくとも一部は、前記空調対象空間の外部に配置されていることを特徴とするエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
A branch part (Z) for branching the flow of the refrigerant on the radiator (12) outlet side,
An ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle part (14a) for decompressing and expanding one of the refrigerants branched at the branch part (Z);
Throttle means (17) for decompressing and expanding the other refrigerant branched at the branch portion (Z);
An evaporator (18) that evaporates the low-pressure refrigerant on the downstream side of the throttle means (17) by exchanging heat with the air blown into the air-conditioning target space and flows out upstream of the refrigerant suction port (14b). Prepared,
An ejector type refrigeration cycle, wherein at least a part of a refrigerant passage extending from the radiator (12) outlet side to the throttle means (17) inlet side is disposed outside the air-conditioning target space.
前記放熱器(12)出口側冷媒と前記圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(21)を備え、
前記冷媒通路のうち前記空調対象空間の外部に配置される部位は、前記内部熱交換器(21)よりも下流側に設けられていることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
An internal heat exchanger (21) for exchanging heat between the radiator (12) outlet-side refrigerant and the compressor (11) suction-side refrigerant;
2. The ejector refrigeration cycle according to claim 1, wherein a portion of the refrigerant passage disposed outside the air-conditioning target space is provided downstream of the internal heat exchanger (21). .
冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、
前記放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、
前記分岐部(Z)で分岐された一方の冷媒と前記圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(21)と、
前記内部熱交換器(21)出口側冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、
前記分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、
前記絞り手段(17)下流側の低圧冷媒を蒸発させて、前記冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備えることを特徴とするエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
A branch part (Z) for branching the flow of the refrigerant on the radiator (12) outlet side,
An internal heat exchanger (21) for exchanging heat between one of the refrigerants branched at the branch part (Z) and the compressor (11) suction-side refrigerant;
An ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle (14a) for decompressing and expanding the refrigerant on the outlet side of the internal heat exchanger (21);
Throttle means (17) for decompressing and expanding the other refrigerant branched at the branch portion (Z);
An ejector refrigeration cycle comprising: an evaporator (18) that evaporates the low-pressure refrigerant on the downstream side of the throttle means (17) and flows out upstream of the refrigerant suction port (14b).
冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、
前記放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、
前記分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、
前記分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、
前記絞り手段(17)下流側の低圧冷媒を蒸発させて、前記冷媒吸引口(14b)上流側に流出する蒸発器(18)とを備え、
前記放熱器(12)出口側から前記絞り手段(17)入口側へ至る冷媒通路のうち少なくとも一部には、前記冷媒通路の内部と外部との熱移動を抑制する断熱材(16a)が設けられていることを特徴とするエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
A branch part (Z) for branching the flow of the refrigerant on the radiator (12) outlet side,
An ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle part (14a) for decompressing and expanding one of the refrigerants branched at the branch part (Z);
Throttle means (17) for decompressing and expanding the other refrigerant branched at the branch portion (Z);
An evaporator (18) that evaporates the low-pressure refrigerant on the downstream side of the throttle means (17) and flows out to the upstream side of the refrigerant suction port (14b);
At least a part of the refrigerant passage from the radiator (12) outlet side to the throttle means (17) inlet side is provided with a heat insulating material (16a) that suppresses heat transfer between the inside and outside of the refrigerant passage. An ejector-type refrigeration cycle characterized by that.
冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機(11)から吐出された高圧冷媒を放熱させる放熱器(12)と、
前記放熱器(12)に向けて空気を送風する放熱器用送風手段(13)と、
前記放熱器(12)出口側冷媒の流れを分岐する分岐部(Z)と、
前記分岐部(Z)で分岐された一方の冷媒を減圧膨張させるノズル部(14a)から噴射する高速度の冷媒流によって、冷媒を冷媒吸引口(14b)から吸引するエジェクタ(14)と、
前記分岐部(Z)で分岐された他方の冷媒を減圧膨張させる絞り手段(17)と、
前記絞り手段(17)下流側の低圧冷媒を蒸発させて、前記冷媒吸引口(14b)上流側に流出する蒸発器(18)と、
前記蒸発器(18)に向けて空気を送風する蒸発器用送風手段(20)と、
前記圧縮機(11)吐出側から前記絞り手段(17)入口側に至る冷媒通路内の高圧側冷媒圧力と前記絞り手段(17)出口側から前記冷媒吸引口(14b)へ至る冷媒通路内の低圧側冷媒圧力との高低圧差を検出する高低圧差検出手段(33、34)とを備え、
前記高低圧差が予め定めた値以下になったとき、前記絞り手段(17)へ流入する冷媒の圧力を上昇させるようになっていることを特徴とするエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant;
A radiator (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
A radiator means (13) for radiator which blows air toward the radiator (12);
A branch part (Z) for branching the flow of the refrigerant on the radiator (12) outlet side,
An ejector (14) for sucking the refrigerant from the refrigerant suction port (14b) by a high-speed refrigerant flow injected from the nozzle part (14a) for decompressing and expanding one of the refrigerants branched at the branch part (Z);
Throttle means (17) for decompressing and expanding the other refrigerant branched at the branch portion (Z);
An evaporator (18) that evaporates the low-pressure refrigerant on the downstream side of the throttle means (17) and flows out upstream of the refrigerant suction port (14b);
An evaporator blowing means (20) for blowing air toward the evaporator (18);
The high pressure side refrigerant pressure in the refrigerant passage extending from the discharge side of the compressor (11) to the inlet side of the throttle means (17) and the refrigerant passage extending from the outlet side of the throttle means (17) to the refrigerant suction port (14b). High / low pressure difference detecting means (33, 34) for detecting a high / low pressure difference from the low pressure side refrigerant pressure;
An ejector-type refrigeration cycle, wherein the pressure of the refrigerant flowing into the throttle means (17) is increased when the high-low pressure difference becomes equal to or less than a predetermined value.
前記高低圧差検出手段(33、34)は、実際の前記高圧側冷媒圧力と実際の前記低圧側冷媒圧力との差に基づいて、前記高低圧差を検出するようになっていることを特徴とする請求項5に記載のエジェクタ式冷凍サイクル。 The high / low pressure difference detecting means (33, 34) detects the high / low pressure difference based on a difference between the actual high pressure side refrigerant pressure and the actual low pressure side refrigerant pressure. The ejector-type refrigeration cycle according to claim 5. 前記高低圧差検出手段は、前記放熱器用送風手段(13)の送風量と前記蒸発器用送風手段(20)の送風量との差に基づいて、前記高低圧差を検出するようになっていることを特徴とする請求項5に記載のエジェクタ式冷凍サイクル。 The high / low pressure difference detecting means is adapted to detect the high / low pressure difference based on a difference between an air blowing amount of the radiator air blowing means (13) and an air blowing amount of the evaporator air blowing means (20). The ejector refrigeration cycle according to claim 5, wherein 前記高低圧差検出手段は、前記放熱器用送風手段(13)の送風空気温度と前記蒸発器用送風手段(20)の送風空気温度との差に基づいて、前記高低圧差を検出するようになっていることを特徴とする請求項5に記載のエジェクタ式冷凍サイクル。 The high / low pressure difference detecting means detects the high / low pressure difference based on the difference between the blowing air temperature of the radiator blowing means (13) and the blowing air temperature of the evaporator blowing means (20). The ejector refrigeration cycle according to claim 5. 前記圧縮機(11)吐出冷媒を前記放熱器(12)下流側へ導くバイパス通路(31)と、
前記バイパス通路(31)を開閉する開閉手段(32)と、
前記開閉手段(32)の作動を制御する制御手段(30)とを備え、
前記制御手段(30)は、前記高低圧差が予め定めた値以下になったとき、前記バイパス通路(31)を開くように前記開閉手段(32)を作動させることを特徴とする請求項5ないし8のいずれか1つに記載のエジェクタ式冷凍サイクル。
A bypass passage (31) for guiding the refrigerant discharged from the compressor (11) to the downstream side of the radiator (12);
Opening and closing means (32) for opening and closing the bypass passage (31);
Control means (30) for controlling the operation of the opening and closing means (32),
The control means (30) operates the opening / closing means (32) to open the bypass passage (31) when the high-low pressure difference becomes equal to or less than a predetermined value. The ejector type refrigeration cycle according to any one of 8.
前記放熱器用送風手段(13)の作動を制御する制御手段を備え、
前記制御手段は、前記高低圧差が予め定めた値以下になったとき、前記放熱器用送風手段(13)の作動を停止させることを特徴とする請求項5ないし8のいずれか1つに記載のエジェクタ式冷凍サイクル。
Comprising control means for controlling the operation of the air blower means (13) for the radiator;
The said control means stops the action | operation of the said air blower means (13) for a heat radiator, when the said high-low pressure difference becomes below a predetermined value, The operation | movement of any one of Claim 5 thru | or 8 characterized by the above-mentioned. Ejector refrigeration cycle.
前記放熱器用送風手段(13)の送風空気の流れを遮断する遮断機構と、
前記遮断機構の作動を制御する制御手段とを備え、
前記制御手段は、前記高低圧差が予め定めた値以下になったとき、前記送風空気の流れを遮断するように前記遮断機構を作動させることを特徴とする請求項5ないし8のいずれか1つに記載のエジェクタ式冷凍サイクル。
A shut-off mechanism for shutting off the flow of blown air from the radiator blower means (13);
Control means for controlling the operation of the shut-off mechanism,
The said control means operates the said interruption | blocking mechanism so that the flow of the ventilation air may be interrupted when the said high-low pressure difference becomes below a predetermined value. The ejector-type refrigeration cycle described in 1.
JP2006195772A 2006-07-18 2006-07-18 Ejector refrigeration cycle Expired - Fee Related JP4835296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195772A JP4835296B2 (en) 2006-07-18 2006-07-18 Ejector refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195772A JP4835296B2 (en) 2006-07-18 2006-07-18 Ejector refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2008025862A true JP2008025862A (en) 2008-02-07
JP4835296B2 JP4835296B2 (en) 2011-12-14

Family

ID=39116674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195772A Expired - Fee Related JP4835296B2 (en) 2006-07-18 2006-07-18 Ejector refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4835296B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356023A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
WO2019004112A1 (en) * 2017-06-26 2019-01-03 ダイキン工業株式会社 Refrigerating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318852A (en) * 1976-08-06 1978-02-21 Hoshizaki Electric Co Ltd Double temperatures cooler and its control
JP2003329315A (en) * 2002-05-09 2003-11-19 Denso Corp Vapor compression type refrigerating machine
JP2004108736A (en) * 2002-09-20 2004-04-08 Denso Corp Vapor compression type refrigerator
JP2006143124A (en) * 2004-11-24 2006-06-08 Denso Corp Refrigeration cycle device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318852A (en) * 1976-08-06 1978-02-21 Hoshizaki Electric Co Ltd Double temperatures cooler and its control
JP2003329315A (en) * 2002-05-09 2003-11-19 Denso Corp Vapor compression type refrigerating machine
JP2004108736A (en) * 2002-09-20 2004-04-08 Denso Corp Vapor compression type refrigerator
JP2006143124A (en) * 2004-11-24 2006-06-08 Denso Corp Refrigeration cycle device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356023A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356023B (en) * 2016-05-10 2019-12-10 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
WO2019004112A1 (en) * 2017-06-26 2019-01-03 ダイキン工業株式会社 Refrigerating device

Also Published As

Publication number Publication date
JP4835296B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5423528B2 (en) Heat pump cycle
JP6794964B2 (en) Refrigeration cycle equipment
JP5949648B2 (en) Refrigeration cycle equipment
JP6277888B2 (en) Refrigeration cycle equipment
JP6547781B2 (en) Refrigeration cycle device
WO2006033378A1 (en) Ejector type refrigeration cycle
JP2007040586A (en) Ejector type refrigeration cycle
JP4539571B2 (en) Vapor compression cycle
JP2015075268A (en) Refrigeration cycle device
JP6102552B2 (en) Refrigeration cycle equipment
WO2013145537A1 (en) Air conditioner device for vehicle
JP2018118540A (en) Refrigeration cycle device
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
JP6708161B2 (en) Ejector type refrigeration cycle
JP6225709B2 (en) Air conditioner
JP4631721B2 (en) Vapor compression refrigeration cycle
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP4400533B2 (en) Ejector refrigeration cycle
JP2009002576A (en) Refrigerating cycle apparatus
JP2010038456A (en) Vapor compression refrigeration cycle
JP4835296B2 (en) Ejector refrigeration cycle
JP6167891B2 (en) Heat pump cycle device.
JP4556791B2 (en) Ejector refrigeration cycle
WO2019017169A1 (en) Ejector module
JP2009204183A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees