WO2019004112A1 - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
WO2019004112A1
WO2019004112A1 PCT/JP2018/023975 JP2018023975W WO2019004112A1 WO 2019004112 A1 WO2019004112 A1 WO 2019004112A1 JP 2018023975 W JP2018023975 W JP 2018023975W WO 2019004112 A1 WO2019004112 A1 WO 2019004112A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
fan
temperature
refrigerant
evaporator
Prior art date
Application number
PCT/JP2018/023975
Other languages
French (fr)
Japanese (ja)
Inventor
久瑠美 加藤
圭吾 竹本
優 原口
穂南美 山下
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019004112A1 publication Critical patent/WO2019004112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus provided with a differential pressure type expansion valve.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-218918 discloses a differential pressure type expansion valve which controls the refrigerant flow rate by the balance between the differential pressure on the upstream side and downstream side of the valve seat and the biasing force of the spring. ing. If a refrigeration system performing a compression type refrigeration cycle using such a differential pressure type expansion valve is configured, the differential pressure type expansion valve is inexpensive and the differential pressure type expansion valve is not required to be sent to the differential pressure type expansion valve. Since the valve opening degree can be adjusted, the refrigeration system can be provided at low cost.
  • a refrigeration apparatus includes a compressor, a radiator, a differential pressure type expansion valve, an evaporator, a radiator fan for generating an air flow in the radiator, and an evaporator for generating an air flow in the evaporator.
  • the refrigerant is circulated according to a valve opening degree which is provided with a fan, a refrigerant circulates in the order of a compressor, a radiator, a differential pressure type expansion valve and an evaporator, and is changed according to a differential pressure between a refrigerant inlet and a refrigerant outlet of the differential pressure type expansion valve.
  • a differential pressure is changed toward the predetermined pressure range by changing the air volume of the fan for radiator and / or the fan for evaporator when the refrigerant circuit whose flow rate changes is constituted and the differential pressure deviates from the predetermined pressure range. Change the valve opening degree of the pressure type expansion valve.
  • the air volume of the radiator fan and / or the evaporator fan is changed when the differential pressure between the refrigerant inlet and the refrigerant outlet of the differential pressure type expansion valve deviates from the predetermined pressure range. Since the differential pressure is changed toward the predetermined pressure range to change the valve opening of the differential pressure type expansion valve, the differential pressure is deviated from the predetermined pressure range and the differential pressure becomes too large or too small. Can be prevented.
  • the refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the air volume of the radiator fan and / or the evaporator fan is changed by adjusting the number of rotations of the radiator fan and / or the evaporator fan. It is a thing.
  • control of the change of the air flow rate of the radiator fan and / or the evaporator fan can be easily performed by adjusting the number of rotations of the radiator fan and / or the evaporator fan.
  • the refrigeration system according to a third aspect is the refrigeration system according to the first aspect or the second aspect, wherein the predetermined pressure range is changed based on the number of rotations of the compressor.
  • the predetermined pressure range is changed according to the number of rotations of the compressor, so that, for example, when the number of rotations of the compressor rises in the steady state and a large amount of refrigerant flows
  • the predetermined pressure range is shifted to the high side, for example, when the number of rotations of the compressor decreases and the flow rate of the refrigerant decreases, the predetermined pressure range is The control can be performed with high accuracy, such as shifting to the lower side.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the third aspect, wherein the evaporator is installed in the air conditioning target space, and the radiator fan is mounted so that the differential pressure falls within a predetermined pressure range. Change the air volume.
  • the differential pressure falls within the predetermined pressure range by changing the air volume of the radiator fan
  • the air volume of the evaporator fan can be changed without being restricted by the adjustment of the differential pressure. it can.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the third aspect, wherein one of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space,
  • the air conditioner further includes a first sensor provided to detect a space temperature of the air conditioning target space, which is a change of the air volume of one of the radiator fan and the evaporator fan to be blown in the heat source side space, and the differential pressure is specified.
  • the change in air volume to change towards the pressure range is to use the space temperature detected using at least the first sensor.
  • the space temperature is high by changing the air volume of the fan for radiator and the fan for evaporator among the fans on the heat source side using at least the space temperature of the air conditioning target space
  • the degree of opening of the differential pressure type expansion valve can be made larger or smaller in accordance with the situation where it is low.
  • a refrigeration apparatus is the refrigeration apparatus according to the fifth aspect, further comprising a second sensor provided for detecting the ambient temperature of the heat source side space, wherein one of the radiator fan and the evaporator fan Using a temperature difference detected by using the first sensor and the second sensor for changing the air volume for changing the air pressure in the heat source side space for changing the differential pressure toward the predetermined pressure range It is.
  • the differential pressure is adjusted toward the predetermined pressure range based on the temperature difference between the space temperature of the air conditioning target space and the ambient temperature of the heat source side space
  • the air volume can be changed according to the difference between the high pressure value and the low pressure value of the cycle.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the fourth aspect, wherein the refrigeration system is provided in a refrigerant circuit for detecting a condensation temperature of a radiator and an evaporation temperature of an evaporator.
  • a sensor is further provided, wherein the condensation temperature and the evaporation temperature detected using at least a third sensor are used to change the air volume of the radiator fan and / or the evaporator fan to change the differential pressure toward the predetermined pressure range. It is a thing.
  • the difference between the high pressure value and the low pressure value of the refrigeration cycle is small and evaporation occurs.
  • the difference between the high pressure value and the low pressure value of the refrigeration cycle that the refrigerant easily evaporates in the compressor and the situation in which the refrigerant hardly evaporates in the evaporator increase or decrease the valve opening of the differential pressure type expansion valve Can be
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the fourth aspect, wherein the fourth sensor provided in the refrigerant circuit for detecting the discharge temperature of the refrigerant discharged from the compressor.
  • the discharge temperature detected using at least the fourth sensor is used to change the air volume of the radiator fan and / or the evaporator fan to change the differential pressure toward the predetermined pressure range.
  • the air flow rate of the radiator fan and / or the evaporator fan is changed using at least the discharge temperature, so that the discharge temperature becomes high and the differential pressure expansion valve is operated even before the safety mechanism works. Valve opening degree can be increased.
  • the refrigeration apparatus is the refrigeration apparatus according to any of the first aspect to the fourth aspect, one of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space,
  • the air conditioner further includes a second sensor provided to detect the ambient temperature of the heat source side space, and the air volume of one of the radiator fan and the evaporator fan to be blown to the heat source side space is the number of revolutions of the compressor. It adjusts based on the atmospheric temperature detected using a 2nd sensor.
  • the air flow rate is changed based on the number of rotations of the compressor and the ambient temperature detected using the second sensor, so that the radiator fan can be properly operated even within the predetermined pressure range. And the air volume of the direction which blows the air of the heat-source side space among the fans for evaporators can be changed.
  • the refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the ninth aspect, wherein the differential pressure type expansion valve has a main body and a valve body, and the main body is a refrigerant inlet, a refrigerant outlet, and a valve
  • the differential pressure type expansion valve generates static friction between the valve body and the main body to maintain the positional relationship between the valve body and the main body against the biasing force of the biasing member.
  • the valve body is disposed between the refrigerant inlet and the refrigerant outlet, and moves by changing the differential pressure exceeding the limit pressure which keeps the stationary state without moving, thereby changing the valve opening degree.
  • the change in differential pressure towards the predetermined pressure range by adjusting the number of rotations of the radiator fan and / or the evaporator fan is a change exceeding the limit pressure.
  • the change in differential pressure toward the predetermined pressure range by changing the air volume of the radiator fan and / or the evaporator fan is a change exceeding the limit pressure
  • the change in differential pressure is small and the valve element of the differential pressure type expansion valve does not move, so the opening degree of the differential pressure type expansion valve is too open or too closed It is possible to prevent the situation from becoming unimprovable.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the tenth aspect, wherein when the differential pressure exceeds the upper limit value of the predetermined pressure range, the air volume of the radiator fan is increased and the differential pressure is When the pressure is lower than the lower limit value of the predetermined pressure range, the air volume of the radiator fan is reduced.
  • the air flow rate of the radiator fan is increased when the differential pressure exceeds the upper limit value of the predetermined pressure range, and when the differential pressure falls below the lower limit value of the predetermined pressure range
  • the air pressure of the radiator fan is increased or the differential pressure is reduced by decreasing the air volume. Can be changed towards.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the third aspect, further comprising a control device that controls a compressor, a radiator fan and an evaporator fan, the radiator and the evaporator One is installed in the air conditioning target space, the other is installed in the heat source side space, and the control device determines that the differential pressure has deviated from the predetermined pressure range, the space temperature of the air conditioning target space, the ambient temperature of the heat source side space, condensation Direct judgment using at least one of temperature, evaporation temperature, discharge temperature, current value of compressor, or at least one of space temperature, ambient temperature, condensation temperature, evaporation temperature, discharge temperature, current value of compressor The air flow rate of the radiator fan and / or the evaporator fan so that the differential pressure is changed toward the predetermined pressure range when it is determined that the differential pressure has deviated from the predetermined pressure range. It is configured to perform control for changing, those.
  • the control device can omit the process of estimating the differential pressure.
  • Accurate control can be facilitated along the differential pressure.
  • the refrigeration apparatus is the refrigeration apparatus according to any one of the first aspect to the twelfth aspect, wherein the differential pressure is out of the predetermined pressure range when the differential pressure is out of the predetermined pressure range, and the differential pressure is small during the cooling operation. And the superheat degree of the refrigerant sucked and discharged by the compressor exceeds a predetermined value and the superheat degree is too high, and the differential pressure is set to a predetermined pressure by changing the air volume of the radiator fan Varying toward the range includes increasing the differential pressure back to a predetermined pressure range by stopping the radiator fan.
  • the degree of superheat when the differential pressure is too small and the degree of superheat of the refrigerant sucked or discharged by the compressor exceeds a predetermined value, the degree of superheat is too high.
  • the rotational speed of the compressor in order to eliminate the state in which the degree of superheat is too high, so stopping the radiator fan makes it easy to eliminate the state in which the degree of superheat is too high.
  • the degree of superheat of the refrigerant sucked or discharged from the compressor into the compressor is appropriate It is possible to suppress a defect due to the fact that it is easy to become larger than the value or to make the degree of superheat to easily become smaller than the proper value.
  • the differential pressure type expansion valve suppresses the valve opening from becoming too small or too large without affecting the air flow in the air-conditioned space and maintaining an appropriate degree of superheat be able to.
  • the appropriate degree of superheat can be maintained with high accuracy.
  • the refrigeration apparatus can maintain an appropriate degree of superheat within a predetermined pressure range.
  • FIG. 5 is a schematic cross-sectional view showing a state in which the valve opening degree of the differential pressure type expansion valve of FIG. 3 has increased.
  • the graph which shows an example of adjustment operation of the valve-opening degree of a differential pressure type expansion valve.
  • the graph which shows an example of the relationship between the rotation speed of an outdoor fan, discharge temperature, and differential pressure.
  • the circuit diagram which shows the outline
  • FIG. 2 shows a vapor compression refrigeration cycle performed by the refrigeration system 10 shown in FIG. That is, FIG. 2 shows the relationship between the refrigerant pressure p and the specific enthalpy h for the refrigerant circulating in the refrigerant circuit 11 of the refrigeration system 10.
  • the refrigeration system 10 shown in FIG. 1 includes a utilization unit 20 and a heat source unit 30 connected to the utilization unit 20.
  • the usage unit 20 includes an indoor heat exchanger 21 and an indoor fan 22.
  • the heat source unit 30 includes a compressor 31, an outdoor heat exchanger 32, a differential pressure type expansion valve 33, and an outdoor fan 34.
  • the utilization unit 20 and the heat source unit 30 are connected by refrigerant piping, and a refrigerant circuit 11 for circulating the refrigerant between the utilization unit 20 and the heat source unit 30 is formed.
  • a refrigerant circuit 11 for circulating the refrigerant between the utilization unit 20 and the heat source unit 30 is formed.
  • the refrigerant circuit 11 is configured such that the refrigerant circulates in the order of the compressor 31, the outdoor heat exchanger 32, the differential pressure type expansion valve 33, and the indoor heat exchanger 21.
  • the compressor 31 compresses a gas refrigerant (the refrigerant in the state of point A shown in FIG. 2).
  • the high-temperature and high-pressure refrigerant (refrigerant in the state of point B shown in FIG. 2) that has exited from the discharge port of the compressor 31 flows into the inlet of the outdoor heat exchanger 32.
  • the liquid refrigerant (the refrigerant in the state of point C shown in FIG.
  • the refrigeration system is a compressor such as the air conditioner shown in FIG. 1 or FIG. 7 and consumes motive power, and one of the outdoor heat exchanger 32 and the indoor heat exchanger 21. Is a device that takes in heat from the other and discharges heat from the other.
  • the refrigeration system is an apparatus that performs a refrigeration cycle in a refrigerant circuit.
  • the refrigeration system includes, for example, a heat pump water heater that supplies hot water, a refrigerator, and a cooling system that cools the inside of the refrigerator, in addition to the air conditioner.
  • the compressor 31 provided in the heat source unit 30 is a positive displacement compressor whose operating capacity can be changed by the number of rotations, and the number of rotations of the compressor 31 is, for example, a motor 31m whose number of rotations is controlled by an inverter. It is controlled.
  • the motor 31m of the compressor 31 is controlled by a heat source side controller 41 described later.
  • the outdoor heat exchanger 32 exchanges heat between the outside air flowing into the heat source unit 30 and the refrigerant compressed by the compressor 31.
  • the outdoor heat exchanger 32 is, for example, a cross fin type fin-and-tube heat exchanger, and exchanges heat between the refrigerant passing through a tube (heat transfer tube) and the outside air passing between a large number of fins. Let me do it. That is, the outdoor heat exchanger 32 functions as a radiator during the cooling operation.
  • the refrigerant immediately after flowing into the outdoor heat exchanger 32 is the gas refrigerant in the state of point B shown in FIG. 2.
  • the outdoor fan 34 sends the outside air around the casing of the heat source unit 30 to the outdoor heat exchanger 32.
  • the outdoor fan 34 is a fan capable of changing the air flow rate of the air supplied to the outdoor heat exchanger 32, and is, for example, a propeller fan driven by a motor 34m including a DC fan motor or the like.
  • the number of revolutions of the motor 34 m of the outdoor fan 34 is controlled by the heat source side controller 41.
  • the discharge temperature sensor 35 is attached to, for example, a discharge pipe of the compressor 31 and detects the temperature of the refrigerant discharged from the compressor 31 (hereinafter also referred to as discharge temperature).
  • the outdoor temperature sensor 36 detects the temperature (ambient temperature) of the outdoor air taken into the casing of the heat source unit 30 by the outdoor fan 34.
  • the outdoor heat exchanger temperature sensor 37 detects the temperature of the portion of the outdoor heat exchanger 32 in the gas-liquid two-phase state. That is, the outdoor heat exchanger temperature sensor 37 detects the condensation temperature of the refrigerant in the outdoor heat exchanger 32.
  • the heat source side controller 41 controls the compressor 31 and the outdoor fan 34 as described above.
  • the heat source side controller 41 is connected to the use side controller 42.
  • the heat source side control device 41 and the use side control device 42 constitute a control device 40 of the refrigeration system 10.
  • the control device 40 includes a CPU (not shown) and a memory (not shown), and controls each device of the refrigeration system 10 by executing a program stored in the memory.
  • the control device 40 controls the on / off and rotational speed of the compressor 31 and the outdoor fan 34 according to, for example, information on thermo-off and thermo-on, information on the difference between the set temperature and the indoor temperature, and information on the outdoor temperature.
  • the heat source side controller 41 includes a timer 43.
  • the control device 40 can measure the timing of control by means of the timer 43.
  • the differential pressure type expansion valve 33 changes the flow rate of the refrigerant circulating in the refrigerant circuit 11 by changing the valve opening degree.
  • the valve opening changes in accordance with the differential pressure applied to the differential pressure type expansion valve 33, that is, the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 described later.
  • the differential pressure type expansion valve 33 is controlled by the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62.
  • the configuration of the differential pressure type expansion valve 33 is schematically shown in FIGS. 3 and 4.
  • the differential pressure type expansion valve 33 includes a main body 51 and a valve body 52.
  • a refrigerant inlet 61 where the refrigerant flows from the refrigerant circuit 11 into the differential pressure type expansion valve 33
  • a refrigerant outlet where the refrigerant flows out from the inside of the differential pressure type expansion valve 33 to the refrigerant circuit 11. 62 are provided.
  • the pressure of the refrigerant at the refrigerant inlet 61 is substantially the pressure P1 at point C in FIG. 2, and the pressure of the refrigerant at the refrigerant outlet 62 is substantially the pressure P2 at point D in FIG.
  • the differential pressure type expansion valve 33 functions as a pressure reducing mechanism that reduces the pressure of the refrigerant.
  • the shape of the main body 51 is, for example, a cylinder.
  • the differential pressure expansion valve 33 can be easily installed in the cylindrical pipe that constitutes the refrigerant circuit 11.
  • a valve body 52 is disposed between the refrigerant inlet 61 and the refrigerant outlet 62.
  • a valve body 52 is movably disposed in a cavity 63 inside the main body 51 connecting the refrigerant inlet 61 and the refrigerant outlet 62.
  • the main body 51 has a coil spring 53 that supports the valve body 52.
  • the coil spring 53 applies a biasing force to the valve body 52.
  • the biasing force that the coil spring 53 applies to the valve body 52 is a force that pushes the valve body 52 in the direction from the refrigerant outlet 62 to the refrigerant inlet 61.
  • the differential pressure (P1-P2) between the refrigerant inlet 61 and the refrigerant outlet 62 is small, as shown in FIG. 3, the valve body 52 moves toward the refrigerant inlet 61, and the valve opening degree is small. Become.
  • the differential pressure (P1-P2) between the refrigerant inlet 61 and the refrigerant outlet 62 is large, as shown in FIG. 4, the valve body 52 moves to the refrigerant outlet 62 and the valve is opened. The degree gets bigger.
  • an in-valve flow path FC1 having a cross-sectional area S1 is formed at the narrowest portion.
  • the cross-sectional area S1 is an area of a cross section cut by a plane perpendicular to the flow direction of the in-valve channel FC1.
  • the outer dimensions of the valve body 52 are smaller than the dimensions of the cavity 63 of the main body 51. Therefore, a gap is created between the valve body 52 and the main body 51. This gap becomes the non-valve flow path FC2.
  • the out-of-valve flow path FC2 has a cross-sectional area S2 at the narrowest portion.
  • the valve body 52 is in contact with the narrow portion 51a of the main body 51 until the differential pressure increases and exceeds the differential pressure DP6 shown in FIG. 5, as shown in FIG.
  • the valve body 52 is in contact with the narrow portion 51a, the refrigerant flows in the in-valve flow path FC1.
  • the refrigerant flow passage area of the in-valve flow passage FC1 is the cross-sectional area S1 of the minimum area. At this time, the valve opening degree becomes the smallest.
  • the distance between the narrow portion 51a and the valve body 52 widens.
  • the cross-sectional area S2 of the out-of-valve flow path FC2 is added to the cross-sectional area S1 of the in-valve flow path FC1 in a state where the distance between the narrow portion 51a and the valve body 52 is expanded most. That is, when the valve body 52 is separated from the narrow portion 51a, the valve opening degree is increased, and the refrigerant passage area of the differential pressure type expansion valve 33 is the largest area when the valve opening degree is maximized (S1 + S2) become.
  • the differential pressure type expansion valve 33 basically maintains the balance between the biasing force generated by the coil spring 53 and the differential pressure as the valve body 52 moves. Then, as the valve body 52 moves, the valve opening changes as described above. However, when the biasing force generated by the coil spring 53 and the differential pressure move by balancing, chattering in which the valve opening degree fluctuates due to small fluctuation of the differential pressure is generated.
  • a leaf spring 54 that generates static friction is provided on the valve body 52 so as to be disposed between the valve body 52 and the main body 51. The leaf spring 54 is in contact with the inner surface of the cavity 63 of the main body 51. That is, a static friction force is generated between the main body 51 and the valve body 52 by the plate spring 54.
  • the indoor heat exchanger 21 is an air heat exchanger that performs heat exchange between air and a refrigerant, and is, for example, a fin-and-tube type heat exchange of cross fin type constituted by a heat transfer tube and a large number of fins. It is In the indoor heat exchanger 21, heat exchange is performed between the refrigerant of the refrigerant circuit 11 flowing in the inside of the tube (heat transfer pipe) and the indoor air passing between the fins. Therefore, the indoor heat exchanger 21 functions as an evaporator of the refrigerant during the cooling operation to cool the indoor air.
  • the indoor fan 22 of the utilization unit 20 sucks indoor air into the casing, exchanges heat with the refrigerant in the indoor heat exchanger 21, and then functions as a blower supplying the air after heat exchange into the room as supply air.
  • the indoor fan 22 is, for example, a centrifugal fan or a multiblade fan, and in the usage unit 20 illustrated in FIG. 1, for example, a cross flow fan is used.
  • the indoor fan 22 is a fan capable of changing the air volume of the air supplied to the indoor heat exchanger 21 in a predetermined air volume range, and is driven by, for example, a motor 22 m including a DC fan motor or the like.
  • the motor 22m is controlled by the use side control device 42.
  • the indoor temperature sensor 23 detects the temperature of indoor air taken into the casing of the usage unit 20 by the indoor fan 22.
  • the indoor heat exchanger temperature sensor 24 detects the temperature (for example, the same temperature as the temperature of the refrigerant at the point D) of the portion in the indoor heat exchanger 21 in the gas-liquid two-phase state. That is, the indoor heat exchanger temperature sensor 24 detects the evaporation temperature of the refrigerant in the indoor heat exchanger 21.
  • the use-side control device 42 performs control of thermo-on and thermo-off as the control device 40 in addition to the control of the indoor fan 22 described above.
  • the user-side control device 42 includes an input device such as a remote controller (not shown). The user inputs the set temperature using the remote controller.
  • the refrigerating apparatus 10 is an apparatus dedicated to cooling, and is controlled by the control device 40 so that the indoor temperature becomes a set temperature.
  • the refrigerant drawn into the compressor 31 is controlled to be substantially in the superheated state.
  • the term "superheated state" means that the gas-liquid two-phase state may temporarily be allowed, but the gas-liquid two-phase state is not always established.
  • the degree of superheat of the refrigerant discharged from the compressor 31 is controlled to maintain an appropriate range.
  • the controller 40 controls the number of rotations of the compressor 31 and / or the number of rotations of the outdoor fan 34 in order to set the degree of superheat of the refrigerant to the target degree of superheat.
  • the control for changing the number of rotations of the compressor 31 and / or the number of rotations of the outdoor fan 34 in this case is, for example, a control that changes the number of rotations stepwise. Alternatively, a period in which the rotational speed of the outdoor fan 34 is constant tends to occur.
  • the control device 40 increases the rotational speed of the compressor 31, and when the difference between the indoor temperature and the set temperature is small, the compressor 31 Control to reduce the rotation speed of Since the cooling capacity increases as the rotation speed of the compressor 31 increases, the room temperature can be brought close to the set temperature even if the cooling load is large.
  • the rotation speed of the compressor 31 changes according to the difference between the indoor temperature and the set temperature
  • the rotation speed of the outdoor fan 34 changes according to the rotation speed of the compressor 31 and the temperature of the outdoor air (ambient temperature). To be controlled.
  • the control device 40 compresses the refrigeration apparatus 10 so that the discharge superheat degree matches the target superheat degree according to the first table stored in the control device 40.
  • the rotation speed of the machine 31 is controlled.
  • the set temperature, the indoor temperature (the detection value of the indoor temperature sensor 23), the discharge temperature (the detection value of the discharge temperature sensor 35), etc. The relationship is described.
  • the control device 40 reads the description of this relation, and changes the rotation speed of the compressor 31 according to the situation.
  • the differential pressure type expansion is operated if it is operated in an appropriate refrigeration cycle.
  • the differential pressure applied to the valve 33 is stable in the vicinity of DP1 (see FIG. 5), and the controller 40 can control the operation of the refrigeration system 10 without departing from the predetermined pressure range SC1 (see FIG. 5).
  • the control device 40 reduces the rotational speed of the compressor 31 to reduce the circulation amount of the refrigerant flowing to the refrigerant circuit 11.
  • the differential pressure applied to the differential pressure type expansion valve 33 is stable in the vicinity of DP2 (see FIG. 5), and the controller 40 controls the rotational speed of the compressor 31 to The operation of the refrigeration system 10 can be controlled without departing from the predetermined pressure range SC2 (see FIG. 5) which is also changed.
  • the control device 40 increases the number of revolutions of the compressor 31 significantly. Increase the cooling capacity.
  • the differential pressure applied to the differential pressure type expansion valve 33 is stable in the vicinity of DP3 (see FIG. 5), and the controller 40 controls the rotational speed of the compressor 31 to The operation of the refrigeration system 10 can be controlled without departing from the predetermined pressure range SC3 (see FIG. 5) which is also changed.
  • the valve opening degree of the differential pressure type expansion valve 33 is set to a predetermined pressure range SC1, SC2, SC3 set based on the rotational speed of the compressor 31. It is set to fit within the range. Therefore, the differential pressure of the differential pressure type expansion valve 33 in the state where the operation of the refrigeration system 10 is stable becomes the differential pressure in the predetermined pressure range SC1, SC2, SC3.
  • the differential pressure of the differential pressure type expansion valve 33 is greatly influenced by the environment in which the refrigeration system 10 is placed, particularly the indoor temperature and the outdoor temperature. Since the differential pressure of the differential pressure type expansion valve 33 is affected by the environment, it may be difficult to control the differential pressure of the differential pressure type expansion valve 33 by the rotational speed of the compressor 31 depending on the environment where the refrigeration system 10 is placed. Sometimes. As described above, when the differential pressure of the differential pressure type expansion valve 33 can not be sufficiently controlled depending on the rotational speed of the compressor 31, it is an abnormal time.
  • differential pressure type The differential pressure of the expansion valve 33 may be too small for a predetermined pressure range. For example, assuming that the set temperature is 18 ° C. and the room temperature is 27 ° C. is the case where the difference between the set temperature and the room temperature described above is the third value, the refrigeration apparatus 10 operates in an appropriate refrigeration cycle. If so, the differential pressure of the differential pressure type expansion valve 33 is stabilized in the vicinity of DP3 and can be controlled within the range of the predetermined pressure range SC3.
  • the differential pressure may become so small that it deviates from the appropriate predetermined pressure range SC3.
  • the differential pressure of the differential pressure type expansion valve 33 reaches the differential pressure DP4 shown in FIG. 5, the valve opening degree decreases and the refrigerant flow rate of the refrigerant circuit 11 decreases to FR1.
  • the rotational speed of the compressor 31 at this time is appropriate as long as the flow rate of the refrigerant circulating through the refrigerant circuit 11 is in the range RA1.
  • the valve opening degree of the motor operated valve can be controlled regardless of the differential pressure applied to the motored valve.
  • the discharge temperature of the refrigerant discharged from the nozzle is about 58.degree.
  • the discharge temperature of the refrigerant discharged from the compressor 31 is about 103 ° C.
  • the control device 40 detects or estimates that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range SC3 by a method described in (3-3) described later or the like.
  • the control device 40 performs control to change the differential pressure of the differential pressure type expansion valve 33 toward the predetermined pressure range SC3.
  • the control device 40 performs control to raise the differential pressure of the differential pressure type expansion valve 33 toward DP3 because the value falls below the lower limit LDP of the predetermined pressure range SC3.
  • the control device 40 performs control to lower the rotational speed of the outdoor fan 34.
  • FIG. 6 shows a curve C1 showing a change in differential pressure when the rotation speed of the outdoor fan 34 is changed, and a curve C2 showing a change in discharge temperature.
  • the discharge temperature is about at the point when the control device 40 detects that the differential pressure of the differential pressure type expansion valve 33 falls below the lower limit LDP of the predetermined pressure range SC3.
  • the controller 40 can lower the discharge temperature to about 66 ° C. by reducing the rotational speed of the outdoor fan 34 to 340 rpm.
  • the system is configured to limit the increase in the rotational speed of the compressor 31 in order to protect the compressor 31 when the refrigeration system 10 reaches a predetermined discharge temperature or more.
  • the rotation speed of the compressor 31 at which the discharge temperature of the compressor 31 of the refrigeration apparatus 10 reaches the upper limit under the same environmental conditions for example, the indoor temperature and the outdoor temperature is 27 ° C. and the set temperature 18 ° C.
  • the differential pressure type expansion valve 33 may be too high for a given pressure range. For example, when the set temperature is 18 ° C. and the room temperature is 23 ° C., the difference between the set temperature and the room temperature described above is the second value, and the refrigeration system 10 is operated in an appropriate refrigeration cycle. Then, the differential pressure of the differential pressure type expansion valve 33 can be stably controlled in the vicinity of DP2 and can be controlled within the range of the predetermined pressure range SC2. However, for example, when the room temperature is 21 ° C. and the outdoor temperature is 46 ° C.
  • the differential pressure may become so large that it deviates from the appropriate predetermined pressure range SC2.
  • the differential pressure of the differential pressure type expansion valve 33 reaches the differential pressure DP5 shown in FIG. 5, the valve opening degree is increased and the refrigerant flow rate of the refrigerant circuit 11 is increased to FR2.
  • the rotational speed of the compressor 31 at this time is appropriate as long as the flow rate of the refrigerant circulating through the refrigerant circuit 11 is in the range of RA2, but when the flow rate of the refrigerant increases to FR2, the indoor heat exchanger 21 exits the indoor heat exchanger 21 and the compressor 31
  • the degree of superheat of the refrigerant drawn into the air becomes so small that liquid return to the compressor 31 easily occurs.
  • the valve opening degree of the motor operated valve can be controlled regardless of the differential pressure applied to the motored valve. Is approximately 32 deg, while the discharge superheat degree is approximately 17 deg when the differential pressure type expansion valve 33 is operated under the same conditions.
  • the control device 40 When the differential pressure of the differential pressure type expansion valve 33 exceeds the upper limit value UDP of the predetermined pressure range SC2, the control device 40 performs control to lower the differential pressure of the differential pressure type expansion valve 33 toward DP2. For example, the control device 40 performs control to increase the rotational speed of the outdoor fan 34 in order to lower the differential pressure of the differential pressure type expansion valve 33 toward DP2.
  • (3-2-1) and (3-2-2) have described the case where the differential pressure deviates from the predetermined pressure range SC2, SC3, the differential pressure may deviate from the predetermined pressure range SC1. Even when the differential pressure deviates from the predetermined pressure range SC1, as described in (3-2-1) and (3-2-2), the rotational speed of the outdoor fan 34 is changed to set the predetermined pressure range SC1.
  • the control device 40 may perform control so that the differential pressure falls within the range. Further, when the differential pressure is increased outside the predetermined pressure range SC3 and the differential pressure is decreased outside the predetermined pressure range SC2, the number of rotations of the outdoor fan 34 is similarly changed to fall within the predetermined pressure range SC1.
  • the controller 40 may be configured to perform control so that the differential pressure is contained.
  • three cases of the predetermined pressure range SC1 to SC3 have been described as the case of performing control to change the differential pressure toward the predetermined pressure range by adjusting the number of rotations of the radiator fan and / or the evaporator fan.
  • a two-dot chain line in FIG. It is set.
  • the two-dot chain line may be a straight line, but the two-dot chain line may be curved or stepped so that the width of the predetermined pressure range changes depending on the magnitude of the differential pressure.
  • the above-described control may be partially performed instead of the whole.
  • the number of rotations of the radiator fan and / or the evaporator fan may be adjusted only between the differential pressure DP1 and the differential pressure DP3.
  • control may be performed to change the differential pressure toward a predetermined pressure range, and the above-described control may not be performed between the differential pressure DP1 and the differential pressure DP2.
  • the control device 40 has, for example, the differential pressure of the differential pressure type expansion valve 33 from the predetermined pressure range SC. It is determined using the difference between the detection values of the indoor temperature sensor 23 and the outdoor temperature sensor 36, that is, the temperature difference between the indoor temperature and the outdoor temperature. As described in (3-1) above, the differential pressure is smaller than the lower limit LDP of the predetermined pressure range SC3 when the outdoor temperature and the indoor temperature are the same temperature or when the indoor temperature is higher than the outdoor temperature Sometimes. However, for example, when the indoor temperature and the outdoor temperature become equal, the differential pressure is not always smaller than the lower limit LDP of the predetermined pressure range SC3.
  • the differential pressure is smaller than the lower limit LDP also differs depending on the set temperature during cooling operation and the performance and design of the device. Therefore, for example, conditions under which the differential pressure is smaller than the lower limit LDP of the predetermined pressure range SC3 are previously examined using an actual machine or simulation. Then, data based on the preliminary examination result is stored in the control device 40. If the temperature difference between the indoor temperature and the outdoor temperature satisfies a predetermined condition under a specific condition of a specific device based on a program using such data, the control device 40 determines that the differential pressure is smaller than the lower limit LDP. In order to judge and raise the differential pressure, the number of rotations of the outdoor fan 34 is reduced to a predetermined number of rotations.
  • the outdoor temperature is very high relative to the indoor temperature
  • conditions that make the differential pressure higher than the upper limit value UDP of the predetermined pressure range SC2 are examined in advance using a real machine or simulation. Then, data based on the preliminary examination result is stored in the control device 40. If the temperature difference between the indoor temperature and the outdoor temperature satisfies a predetermined condition under a specific condition of a specific device based on a program using such data, the control device 40 determines that the differential pressure is larger than the upper limit value UDP. In order to lower the differential pressure, the number of rotations of the outdoor fan 34 is increased to a predetermined number of rotations.
  • outdoor temperature is used for determination of the rotation speed of the outdoor fan 34 with the rotation speed of the compressor 31, as already demonstrated, for example.
  • the outdoor temperature is already used to determine the rotational speed of the outdoor fan 34, instead of using the temperature difference between the outdoor temperature and the indoor temperature, the outdoor fan according to the conventional rotational speed of the compressor 31 and the outdoor temperature
  • the rotational speed of the outdoor fan 34 may be determined in consideration of the room temperature in addition to the method of determining the rotational speed of 34.
  • a method of determining the rotation speed of the outdoor fan 34 in consideration of the room temperature there is, for example, a method of correcting the determined value of the rotation speed of the outdoor fan 34 based on the room temperature.
  • the room temperature is used to control the rotational speed of the outdoor fan 34 for returning the differential pressure to the predetermined pressure range SC.
  • the rotational speed of the outdoor fan 34 may be controlled using a differential pressure related detection value. Therefore, the control device 40 estimates the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 from the condensation temperature of the outdoor heat exchanger 32 and the evaporation temperature of the indoor heat exchanger 21 to estimate it. The control may be performed by determining whether or not the pressure difference is out of the predetermined pressure range SC using the pressure difference.
  • the refrigerant in the gas-liquid two-phase state between the point B and the point C in FIG. 2 appears in the outdoor heat exchanger 32.
  • the controller 40 measures the temperature of the refrigerant in the gas-liquid two-phase state in the outdoor heat exchanger 32 by the outdoor heat exchanger temperature sensor 37. Since the temperature of the refrigerant in the gas-liquid two-phase state between the point B and the point C is the condensation temperature, the pressure P1 shown in FIG. 2 can be obtained from the relationship between the condensation temperature of the specific refrigerant and the pressure. Further, in the refrigerant circuit 11, the refrigerant in the gas-liquid two-phase state between the point D and the point A in FIG. 2 appears in the indoor heat exchanger 21.
  • the controller 40 measures the temperature of the refrigerant in the gas-liquid two-phase state in the indoor heat exchanger 21 by the temperature sensor 24 for the indoor heat exchanger. Since the temperature of the refrigerant in the gas-liquid two-phase state between the point D and the point A is the evaporation temperature, the pressure P2 shown in FIG. 2 can be obtained from the relationship between the evaporation temperature and the pressure of a specific refrigerant.
  • the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 is substantially the pressure difference (P1-P2) between the point C and the point D.
  • both the outdoor heat exchanger temperature sensor 37 and the indoor heat exchanger temperature sensor 24 constitute a third sensor for detecting the condensation temperature and the evaporation temperature.
  • the control device 40 is configured to store the second table for obtaining the pressure from the condensation temperature and the evaporation temperature in the internal memory (not shown), the temperature sensor 37 for outdoor heat exchanger and the indoor heat exchange
  • the controller 40 can monitor the differential pressure of the differential pressure type expansion valve 33 using the temperature detected by the instrumental temperature sensor 24. If the control device 40 performs such monitoring and determines that the differential pressure has become smaller than the lower limit LDP, the rotational speed of the outdoor fan 34 is increased to a predetermined rotational speed in order to increase the differential pressure. Reduce. Further, if the control device 40 determines that the differential pressure becomes larger than the upper limit value UDP under such monitoring, the number of rotations of the outdoor fan 34 is set in advance to lower the differential pressure. Raise to.
  • the above (3-2-1) has described the case where the differential pressure becomes too small.
  • the control device 40 may be configured to determine that the differential pressure falls below the lower limit LDP of the predetermined pressure range SC due to an abnormal increase in the discharge temperature of the refrigerant.
  • the refrigeration system 10A shown in FIG. 7 includes a utilization unit 20 and a heat source unit 30 connected to the utilization unit 20.
  • the usage unit 20 includes an indoor heat exchanger 21 and an indoor fan 22.
  • the heat source unit 30 includes a compressor 31, an outdoor heat exchanger 32, a differential pressure type expansion valve 33, and an outdoor fan 34.
  • the utilization unit 20 and the heat source unit 30 are connected by a refrigerant pipe, and a refrigerant circuit 11A that circulates the refrigerant between the utilization unit 20 and the heat source unit 30 is formed. By circulating the refrigerant through the refrigerant circuit 11A, the refrigeration system 10A can perform a vapor compression refrigeration cycle.
  • the refrigerant circuit 11A is configured such that the refrigerant circulates in the order of the compressor 31, the indoor heat exchanger 21, the differential pressure type expansion valve 33, and the outdoor heat exchanger 32.
  • the compressor 31 compresses a gas refrigerant (the refrigerant in the state of point A shown in FIG. 2).
  • the high-temperature and high-pressure refrigerant (refrigerant in the state of point B shown in FIG. 2) that has exited from the discharge port of the compressor 31 flows into the inlet of the indoor heat exchanger 21.
  • the liquid refrigerant (refrigerant in the state of point C shown in FIG.
  • the indoor heat exchanger 21 functions as a radiator (or a condenser), and the outdoor heat exchanger 32 functions as an evaporator.
  • the refrigeration apparatus 10A is an apparatus dedicated to heating, and is controlled by the control device 40 so that the indoor temperature becomes a set temperature.
  • the control device 40 controls the degree of superheat of the refrigerant detected by the discharge temperature sensor 35 to be the target degree of superheat, so that the refrigerant sucked from the compressor 31
  • the degree of discharge superheat is controlled to maintain an appropriate range.
  • the controller 40 controls the number of revolutions of the compressor 31 and / or the number of revolutions of the outdoor fan 34 in order to bring the temperature of the refrigerant to the target degree of superheat.
  • the control device 40 increases the rotational speed of the compressor 31, and when the difference between the indoor temperature and the set temperature is small, the compressor 31 Control to reduce the rotation speed of Since the heating capacity increases as the rotation speed of the compressor 31 increases, the indoor temperature can be brought close to the set temperature even if the heating load is large.
  • the refrigeration apparatus 10A also adjusts the discharge superheat degree to the target superheat degree according to the third table stored in the control device 40, similarly to the refrigeration apparatus 10
  • the control device 40 is configured to control, for example, the number of rotations of the compressor 31.
  • the control device 40 reads the description of this relation, and changes the rotation speed of the compressor 31 according to the situation.
  • the differential pressure of the differential pressure type expansion valve 33 may be too small relative to the predetermined pressure range.
  • the control device 40 that detects or estimates that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range determines that the differential pressure of the differential pressure type expansion valve 33 has deviated, the differential pressure type expansion valve 33 Control of changing the differential pressure of the pressure sensor to a predetermined pressure range.
  • the control device 40 performs control to increase the differential pressure of the differential pressure type expansion valve 33 when the pressure falls below the lower limit value of the predetermined pressure range. For example, in order to raise the differential pressure of the differential pressure type expansion valve 33, the control device 40 performs control to lower the rotational speed of the outdoor fan 34.
  • the differential pressure of the differential pressure type expansion valve 33 may be too large for a predetermined pressure range.
  • the control device 40 performs control to lower the differential pressure of the differential pressure type expansion valve 33 when the differential pressure of the differential pressure type expansion valve 33 exceeds the upper limit value of the predetermined pressure range. For example, in order to lower the differential pressure of the differential pressure type expansion valve 33, the control device 40 performs control to increase the rotational speed of the outdoor fan 34.
  • the determination for returning the differential pressure in the heating operation to the predetermined pressure range is the same as the determination for returning the differential pressure in the cooling operation described in (3-3) above to the predetermined pressure range in the control device 40. It can be carried out.
  • the coil spring 53 is described as an example of the biasing member, but the spring used for the biasing member is not limited to the coil spring 53.
  • a spring such as a coil spring 53 has been described as an example of the biasing member, the biasing member is not limited to a spring, and another elastic member such as rubber can be used as the biasing member.
  • a magnet can be used as the biasing member. The repulsive force or attractive force generated between the magnet and the magnet can be used as a biasing force, or the attractive force generated between the magnet and the metal can be used as a biasing force.
  • the differential pressure may be changed toward a predetermined pressure range to change the valve opening degree of the differential pressure type expansion valve 33.
  • the differential pressure is changed toward a predetermined pressure range by adjusting the rotational speeds of both the outdoor fan 34 and the indoor fan 22 which are the fan for the radiator and the fan for the evaporator in the refrigerating apparatus 10, 10A, and the differential pressure type expansion You may comprise so that the valve-opening degree of the valve 33 may be changed.
  • the refrigeration apparatus 10 can be operated in an appropriate refrigeration cycle, for example, the refrigerant sucked by the compressor 31 does not become a liquid refrigerant by controlling the discharge superheat degree to fall within an appropriate range. I am in control.
  • the refrigeration system to which the concept of the above embodiment can be applied is not limited to the refrigeration system 10 that performs the control as described above, and controls, for example, the suction superheat degree of the compressor 31 within an appropriate range.
  • the concept of the above-described embodiment can be applied to a system in which the refrigeration system is operated in an appropriate refrigeration cycle such that the refrigerant sucked by the compressor 31 does not become a liquid refrigerant.
  • the current value of the compressor 31 may be used to estimate whether the differential pressure of the differential pressure type expansion valve 33 deviates from the predetermined pressure range. For example, when the refrigeration system 10 is operated while the discharge superheat degree is controlled to be a predetermined value or less during the cooling operation, the superheat degree is too high such that the discharge superheat degree is higher than the predetermined value think of.
  • the degree of discharge superheat is determined, for example, by subtracting the detection value (condensing temperature) of the outdoor heat exchanger temperature sensor 37 from the detection value (discharge temperature) of the discharge temperature sensor 35.
  • the control device 40 of the refrigeration system 10 performs control to increase the circulation amount of the refrigerant to lower the discharge superheat degree. Do. At this time, since the outdoor temperature is low and the condensation temperature is low, the condensation pressure is low, and since the outdoor temperature is high, the evaporation temperature is high and the evaporation pressure is also high, so the differential pressure of the differential pressure type expansion valve 33 is also small. As a result, the opening degree of the differential pressure type expansion valve 33 is reduced. In such a case, the degree of discharge superheat is also too high, and the control device 40 does not perform control to increase the number of revolutions of the compressor 31.
  • the control device 40 reduces the rotational speed of the outdoor fan 34 to raise the condensation temperature.
  • the condensation pressure rises and the differential pressure of the differential pressure type expansion valve 33 becomes large.
  • the differential pressure of the differential pressure type expansion valve 33 becomes large, the differential pressure type expansion valve 33 can be opened to increase the circulation amount of the refrigerant.
  • the control device 40 monitors the current value of the compressor 31. Therefore, the control device 40 has a function of detecting the current value of the compressor 31. If the differential pressure of the differential pressure type expansion valve 33 is too small, the circulation amount of the refrigerant is also small, so the current value of the compressor 31 also becomes small. Therefore, the control device 40 can estimate the differential pressure of the differential pressure type expansion valve 33 from the current value of the compressor 31. The control device 40 can estimate the differential pressure from the current value of the compressor 31 and can perform control to reduce the rotational speed of the outdoor fan 34 in a state where the degree of discharge superheat is too high.
  • the controller 40 does not estimate the differential pressure of the differential pressure type expansion valve 33 from the current value of the compressor 31, but the controller 40 determines that the discharge superheat degree is too high and the current value of the compressor 31 is predetermined.
  • the condition that the current value is smaller it may be determined to decrease the rotation speed of the outdoor fan 34 directly, and control may be performed to reduce the rotation speed of the outdoor fan 34.
  • the control device 40 may directly determine that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range using the current value of the compressor 31.
  • the discharge superheat degree is described, for example, also in the case where the refrigeration apparatus 10 is operated while the suction superheat degree is controlled to be a predetermined value or less during the cooling operation, as described above.
  • Control using the current value of the compressor 31 can be performed.
  • the degree of suction superheat is determined by subtracting the evaporation temperature from the suction temperature of the compressor 31.
  • a suction temperature sensor for detecting the suction temperature of the compressor 31 is provided, and the control device 40 detects the detection value of the indoor heat exchanger temperature sensor 24 from the detection value of the suction temperature sensor A calculation function is provided which subtracts the evaporation temperature).
  • changing the air volume of the outdoor fan 34 to a smaller value includes the case where the outdoor fan 34 is turned off, and changing the air volume of the indoor fan 22 so as to reduce the air volume. Is included. Further, in the case where a plurality of outdoor fans 34 are provided, reducing the number of outdoor fans 34 that are on is included in the case where the air volume is changed to be smaller. This is included when changing the number to increase the air volume. Similarly, in the case where a plurality of indoor fans 22 are provided, reducing the number of indoor fans 22 being turned on is included when changing the air volume to be smaller, and the indoor fans 22 being turned on are included. In the case of changing to increase the air volume, it is included in the case of increasing the number of.
  • the control device 40 of the refrigeration system 10 increases the circulation amount of the refrigerant to lower the discharge superheat degree. Take control. In such a case, the controller 40 turns off the outdoor fan 34 to increase the condensation temperature in order to increase the circulating amount of the refrigerant.
  • the control device 40 is a differential pressure type expansion valve from the condensation temperature (the detection value of the outdoor heat exchanger temperature sensor 37) and the evaporation temperature (the detection value of the indoor heat exchanger temperature sensor 24). 33 differential pressures can be estimated.
  • the control device 40 can estimate the differential pressure from the condensation temperature and the evaporation temperature, and can perform control to turn off the outdoor fan 34 in a state where the degree of discharge superheat is too high. In this case, the controller 40 does not estimate the differential pressure of the differential pressure type expansion valve 33 from the condensation temperature and the evaporation temperature, but the controller 40 determines that the discharge superheat degree is too high and the temperature difference between the condensation temperature and the evaporation temperature If the condition that the difference is smaller than the predetermined temperature difference is satisfied, it may be determined that the outdoor fan 34 is to be turned off directly, and the control to turn off the outdoor fan 34 may be performed. In other words, the control device 40 may directly determine that the differential pressure of the differential pressure type expansion valve 33 deviates from the predetermined pressure range using the temperature difference between the condensing temperature and the evaporation temperature.
  • control device 40 performs control by interpreting and executing executable program data stored in the memory by the CPU.
  • the program data may be introduced into the memory via the recording medium, or may be executed directly from the recording medium. Further, the introduction of data from the recording medium to the memory may be performed via a telephone line, a transport path, or the like.
  • the control device 40 may be configured using an integrated circuit (IC) that can perform the same control as that performed using the CPU and the memory.
  • the IC includes a large-scale integrated circuit (LSI), an application-specific integrated circuit (ASIC), a gate array, a field programmable gate array (FPGA), and the like.
  • LSI large-scale integrated circuit
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the outdoor heat exchanger 32 functions as a radiator (or condenser), the indoor heat exchanger 21 functions as an evaporator, the outdoor fan 34 functions as a radiator fan, and the indoor fan 22 functions as a fan for the evaporator.
  • the outdoor heat exchanger 32 functions as an evaporator
  • the indoor heat exchanger 21 functions as a radiator
  • the outdoor fan 34 functions as an evaporator fan
  • the indoor fan 22 is a radiator fan Acts as.
  • the rotational speed of the outdoor fan 34 is increased to increase the air volume, and when the differential pressure falls below the lower limit value of the predetermined pressure range SC Since the number of rotations of the outdoor fan 34 is reduced to reduce the air volume, the number of rotations of the outdoor fan 34 is reduced to lower the heat exchange efficiency in the outdoor heat exchanger 32 which is a radiator and deviate from the predetermined pressure range SC. When this occurs, the differential pressure can be changed toward the predetermined pressure range SC.
  • the refrigeration apparatus 10 Since the differential pressure is controlled to be within the predetermined pressure range SC by adjusting the rotational speed of the outdoor fan 34 which is a radiator fan, the refrigeration apparatus 10 is a fan for an evaporator without being bound by the adjustment of the differential pressure.
  • the rotation speed of the indoor fan 22 can be controlled. By performing control such that the differential pressure does not deviate from the predetermined pressure range SC, it is possible to prevent the air conditioning of the room which is the air conditioning target space by the indoor fan 22 which is the evaporator fan from being restricted.
  • the differential pressure when the differential pressure is controlled to be within the predetermined pressure range SC by adjusting the rotational speed of the outdoor fan 34, which is a fan for the evaporator, it is not bound by the adjustment of the differential pressure.
  • the number of rotations of the indoor fan 22, which is a radiator fan, can be controlled. In this case, by performing control such that the differential pressure does not deviate from the predetermined pressure range SC, it is possible to prevent the air conditioning of the room which is the air conditioning target space by the indoor fan 22 from being restricted.
  • the outdoor heat exchanger 32 and the indoor heat exchanger 21 which are radiators and evaporators are installed indoors, one of which is a space to be air conditioned, and the other is outdoor, the heat source side space.
  • the indoor temperature sensor 23 which is installed and is provided in order to detect the indoor temperature which is space temperature of air-conditioning object space is provided.
  • the refrigeration apparatuses 10 and 10A are adjustment of the rotational speed of the outdoor fan 34 blowing air outside, and are detected using at least the indoor temperature sensor 23 for adjustment for changing the differential pressure toward the predetermined pressure range.
  • the room temperature is used.
  • the valve opening degree of the differential pressure type expansion valve 33 can be made larger or smaller in accordance with the situation where the room temperature is high or low.
  • the rotation speed of the outdoor fan 34 is adjusted using at least the room temperature, the room temperature is high, the refrigerant is easily evaporated in the evaporator, and the room temperature is low.
  • the valve opening degree of the differential pressure type expansion valve 33 can be made larger or smaller in accordance with the occurrence of the difficult situation. As a result, it is possible to suppress the valve opening degree from becoming too small or too large in the differential pressure type expansion valve 33 without affecting the air flow in the room and maintain an appropriate degree of superheat.
  • the above-described refrigeration systems 10 and 10A include the outdoor temperature sensor 36, which is a second sensor provided to detect the outdoor temperature that is the ambient temperature of the heat source side space.
  • the refrigeration apparatuses 10 and 10A are detected by using the indoor temperature sensor 23 and the outdoor temperature sensor 36 in adjustment for adjusting the rotational speed of the outdoor fan 34 and changing the differential pressure toward the predetermined pressure range SC. Temperature difference is used.
  • Such refrigeration apparatuses 10 and 10A perform adjustment for changing the differential pressure toward the predetermined pressure range SC based on the temperature difference between the indoor temperature and the outdoor temperature. Control can be performed according to the difference, and an appropriate degree of superheat can be maintained with high accuracy.
  • the refrigeration apparatus 10, 10A is a temperature sensor 24 for an indoor heat exchanger, which is a third sensor provided in the refrigerant circuit 11, 11A to detect the condensation temperature of the radiator and the evaporation temperature of the evaporator. And a pair of outdoor heat exchanger temperature sensors 37. At least the temperature sensor 24 for indoor heat exchangers and the temperature sensor for outdoor heat exchangers for adjusting the rotational speed of the outdoor fan 34 and / or the indoor fan 22 to change the differential pressure of the differential pressure type expansion valve 33 toward the predetermined pressure range SC.
  • the valve opening degree of the differential pressure type expansion valve 33 is made large according to the situation where the difference between the high pressure value and the low pressure value of the refrigeration cycle is small or large. Since the differential pressure type expansion valve 33 can be made smaller or smaller, it is possible to maintain an appropriate degree of superheat by suppressing the valve opening degree from becoming too small or too large. For example, in the refrigeration apparatus 10, the refrigerant is easily evaporated in the indoor heat exchanger 21 which is an evaporator, and the difference between the high pressure value and the low pressure value of the refrigeration cycle is large and the refrigerant is hardly evaporated in the indoor heat exchanger 21. The degree of opening of the differential pressure type expansion valve can be increased or decreased according to the occurrence.
  • the above-described refrigeration apparatus 10, 10A includes a discharge temperature sensor 35 which is a fourth sensor provided in the refrigerant circuit 11, 11A to detect the discharge temperature of the refrigerant discharged from the compressor 31. Since the discharge temperature detected using at least the discharge temperature sensor 35 is used to adjust the rotational speed of the outdoor fan 34 and / or the indoor fan 22 to change the differential pressure toward the predetermined pressure range SC, the discharge temperature is The valve opening degree of the differential pressure type expansion valve 33 can be made large even before the safety mechanism works. As a result, in the differential pressure type expansion valve 33, it is possible to maintain an appropriate degree of superheat while preventing the safety mechanism from working due to the valve opening becoming too small.
  • the refrigeration apparatuses 10 and 10A further adjust the number of rotations of the outdoor fan 34 based on the number of rotations of the compressor 31 and the outdoor temperature detected using the outdoor temperature sensor 36.
  • the refrigeration apparatus 10 adjusts the number of rotations of the outdoor fan 34 based on the number of rotations of the compressor 31 and the outdoor temperature during normal operation. Since the adjustment is performed based on the rotation speed of the compressor 31 and the outdoor temperature, the rotation speed of the outdoor fan 34 can be appropriately adjusted even within the predetermined pressure range SC.
  • the differential pressure type expansion valve 33 of the refrigeration system 10, 10A has a main body 51 and a valve body 52, and the main body 51 is a coil spring 53 which is a biasing member supporting the refrigerant inlet 61, the refrigerant outlet 62 and the valve body 52. have.
  • static friction for maintaining the positional relationship between the valve body 52 and the main body 51 against the biasing force of the coil spring 53 is generated between the valve body 52 and the main body 51.
  • the valve body 52 is disposed between the refrigerant inlet 61 and the refrigerant outlet 62 and moves to change the valve opening degree by the differential pressure exceeding the limit pressure which keeps the stationary state without moving.
  • the change of the differential pressure toward the predetermined pressure range SC by adjusting the rotation speed of the outdoor fan 34 and / or the indoor fan 22 is a change exceeding the limit pressure.
  • control device 40 In the case where the control device 40 directly determines that the differential pressure has deviated from the predetermined pressure range using at least one of the room temperature, the outside temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor, The control device 40 can omit the process of estimating the differential pressure. Further, according to such a refrigeration apparatus 10, the control device 40 estimates the differential pressure using at least one of the indoor temperature, the outdoor temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor. In the case of determination, accurate control can be facilitated along the differential pressure. The following control may be performed by performing a simulation or a test on a real machine in advance and obtaining data.
  • the air volume of the outdoor fan 34 is to be reduced by estimating the differential pressure directly or from the condensation temperature.
  • the cooling operation when the outdoor air is taken into the room for ventilation and the indoor temperature becomes the same as the outdoor temperature, the air volume of the outdoor fan 34 is estimated directly or from the differential pressure estimated from the change in the indoor temperature. It may be determined whether or not to reduce.
  • the air volume may be controlled directly or by estimating the differential pressure using the room temperature, the outdoor temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor alone, but some of these may be used.
  • the air volume may be controlled by directly or by estimating a differential pressure.
  • the refrigeration apparatus 10 When the differential pressure of the differential pressure type expansion valve 33 is too small during the cooling operation, the refrigeration apparatus 10 is in a state where a sufficient refrigerant flow rate can not be obtained because the valve opening degree of the differential pressure type expansion valve 33 is too small. If the flow rate is not sufficient and the degree of superheat is too high, it is difficult to increase the number of revolutions of the compressor 31. Even in such a state, the refrigeration apparatus 10 is a simple control in which the control device 40 stops the outdoor fan 34, and the refrigerant in the gas-liquid two-phase state passes through the outdoor heat exchanger 32 functioning as a radiator. Temperature (condensing temperature) can be raised. Thereby, the differential pressure of the differential pressure type expansion valve 33 is increased to increase the valve opening degree of the differential pressure type expansion valve 33, and the flow rate of the refrigerant is increased, so that the state of the superheat degree can be easily eliminated. .
  • Indoor Heat Exchanger (Example of Evaporator or Example of Radiator) 22 Indoor fan (example of an evaporator fan or example of a radiator fan) 23 Indoor temperature sensor (example of first sensor) 24 Temperature sensor for indoor heat exchanger (constitutes third sensor with temperature sensor 37 for outdoor heat exchanger) 30 heat source unit 31 compressor 32 outdoor heat exchanger (example of a radiator or example of an evaporator) 33 Differential pressure type expansion valve 34 Outdoor fan (example of fan for radiator or example of fan for evaporator) 35 Discharge temperature sensor (example of the 4th sensor) 36 Outdoor temperature sensor (example of second sensor) 37 Temperature sensor for outdoor heat exchanger (constitutes the third sensor with the temperature sensor 24 for indoor heat exchanger) 43 timer 51 main body 52 valve body 53 coil spring (example of biasing member)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention addresses the problem of suppressing, in a refrigerating device provided with a differential pressure-type expansion valve in which the valve opening degree varies according to a pressure difference, defects that are generated when the degree of refrigerant superheating applied to a compressor of the refrigerating device becomes greater than a suitable value or when the degree of refrigerant superheating becomes less than the suitable value. This refrigeration device (10) has a refrigerant circuit (11) configured such that: a refrigerant is circulated in the order of a compressor (31), an outdoor heat exchanger (32) which is a radiator, a differential pressure-type expansion valve (33), and an indoor heat exchanger (21) which is an evaporator; and the flow rate of the refrigerant varies according to a valve opening degree that varies according to the pressure difference between a refrigerant inlet and a refrigerant outlet of the differential pressure-type expansion valve (33). The refrigeration device (10) changes the wind amount of an outdoor fan (32) which is a radiator fan, and/or the wind amount of an indoor fan (22) which is an evaporator fan when the pressure difference is outside a predetermined pressure range, and thereby adjusts the pressure difference to approach the predetermined pressure range and changes the valve opening degree of the differential pressure-type expansion valve (33).

Description

冷凍装置Refrigeration system
 冷凍装置、特に差圧式膨張弁を備える冷凍装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus provided with a differential pressure type expansion valve.
 従来から、膨張弁に流れる冷媒流量の変更を、膨張弁の上流側と下流側の差圧に応じて行う差圧式膨張弁が知られている。例えば、特許文献1(特開2004-218918号公報)には、弁座部の上流側と下流側の差圧とバネの付勢力とのバランスによって冷媒流量を制御する差圧式膨張弁が開示されている。このような差圧式膨張弁を用いて圧縮式冷凍サイクルを行う冷凍装置を構成すると、差圧式膨張弁が安価であること及び制御信号を差圧式膨張弁に送信しなくても差圧式膨張弁の弁開度の調整ができることなどから冷凍装置を安価に提供することができる。 Conventionally, differential pressure type expansion valves are known which change the flow rate of refrigerant flowing through the expansion valve according to the pressure difference between the upstream side and the downstream side of the expansion valve. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-218918) discloses a differential pressure type expansion valve which controls the refrigerant flow rate by the balance between the differential pressure on the upstream side and downstream side of the valve seat and the biasing force of the spring. ing. If a refrigeration system performing a compression type refrigeration cycle using such a differential pressure type expansion valve is configured, the differential pressure type expansion valve is inexpensive and the differential pressure type expansion valve is not required to be sent to the differential pressure type expansion valve. Since the valve opening degree can be adjusted, the refrigeration system can be provided at low cost.
 しかしながら、特許文献1に記載されている差圧式膨張弁の弁開度の変化が差圧に依存するため、冷凍装置の冷媒回路に設けられる圧縮機、放熱器及び蒸発器の周囲の状況によって圧縮式冷凍サイクルの状態が変化すると圧縮機に係る冷媒の過熱度の制御が難しくなる。冷媒の過熱度が適正値より大きくなり易くなると、圧縮機から吐出される冷媒の温度が高くなり易くなったり、蒸発器が乾き易くなって蒸発器で熱交換された空気の吹出口の周辺に結露を生じやすくなったりする。また、冷媒の過熱度が適正値より小さくなり易くなると、圧縮機が液冷媒を吸入して圧縮機が故障する可能性が高くなる。 However, since the change in the valve opening degree of the differential pressure type expansion valve described in Patent Document 1 depends on the differential pressure, compression is performed according to the surrounding conditions of the compressor, the radiator and the evaporator provided in the refrigerant circuit of the refrigeration system When the state of the refrigeration cycle changes, it becomes difficult to control the degree of superheat of the refrigerant related to the compressor. If the degree of superheat of the refrigerant tends to become larger than the appropriate value, the temperature of the refrigerant discharged from the compressor tends to rise, or the evaporator tends to dry, and around the outlet of the air heat-exchanged by the evaporator. Condensation tends to occur. Further, when the degree of superheat of the refrigerant tends to be smaller than the appropriate value, the possibility that the compressor sucks the liquid refrigerant and the compressor breaks down becomes high.
 従って、差圧により弁開度が変化する差圧式膨張弁を備える冷凍装置においては、冷凍装置の圧縮機に係る冷媒の過熱度が適正値より大きくなったり、逆に過熱度が適正値より小さくなったりすることによる不具合を抑制するという課題がある。 Therefore, in a refrigeration system provided with a differential pressure type expansion valve whose valve opening changes due to differential pressure, the degree of superheat of the refrigerant relating to the compressor of the freezer becomes larger than the appropriate value or conversely the degree of superheat is smaller than the appropriate value There is a problem of suppressing a defect due to becoming
 第1観点に係る冷凍装置は、圧縮機と、放熱器と、差圧式膨張弁と、蒸発器と、放熱器に空気流を生じさせる放熱器用ファンと、蒸発器に空気流を生じさせる蒸発器用ファンとを備え、圧縮機、放熱器、差圧式膨張弁及び蒸発器の順に冷媒が循環し、差圧式膨張弁の冷媒入口と冷媒出口との間の差圧に応じて変わる弁開度により冷媒流量が変わる冷媒回路が構成され、所定圧力範囲から差圧が外れたときに、放熱器用ファン及び/または蒸発器用ファンの風量を変更することにより差圧を所定圧力範囲に向けて変化させて差圧式膨張弁の弁開度を変化させる。 A refrigeration apparatus according to a first aspect includes a compressor, a radiator, a differential pressure type expansion valve, an evaporator, a radiator fan for generating an air flow in the radiator, and an evaporator for generating an air flow in the evaporator. The refrigerant is circulated according to a valve opening degree which is provided with a fan, a refrigerant circulates in the order of a compressor, a radiator, a differential pressure type expansion valve and an evaporator, and is changed according to a differential pressure between a refrigerant inlet and a refrigerant outlet of the differential pressure type expansion valve. A differential pressure is changed toward the predetermined pressure range by changing the air volume of the fan for radiator and / or the fan for evaporator when the refrigerant circuit whose flow rate changes is constituted and the differential pressure deviates from the predetermined pressure range. Change the valve opening degree of the pressure type expansion valve.
 第1観点に係る冷凍装置によれば、差圧式膨張弁の冷媒入口と冷媒出口との間の差圧が所定圧力範囲から外れたときに、放熱器用ファン及び/または蒸発器用ファンの風量を変更することにより差圧を所定圧力範囲に向けて変化させて差圧式膨張弁の弁開度を変化させることから、所定圧力範囲から差圧が外れて差圧が大きくなりすぎたり逆に小さくなりすぎたりすることが防がれる。 According to the refrigeration system according to the first aspect, the air volume of the radiator fan and / or the evaporator fan is changed when the differential pressure between the refrigerant inlet and the refrigerant outlet of the differential pressure type expansion valve deviates from the predetermined pressure range. Since the differential pressure is changed toward the predetermined pressure range to change the valve opening of the differential pressure type expansion valve, the differential pressure is deviated from the predetermined pressure range and the differential pressure becomes too large or too small. Can be prevented.
 第2観点に係る冷凍装置は、第1観点に係る冷凍装置において、放熱器用ファン及び/または蒸発器用ファンの風量の変更が、放熱器用ファン及び/または蒸発器用ファンの回転数の調整により行われる、ものである。 The refrigeration apparatus according to the second aspect is the refrigeration apparatus according to the first aspect, wherein the air volume of the radiator fan and / or the evaporator fan is changed by adjusting the number of rotations of the radiator fan and / or the evaporator fan. It is a thing.
 第2観点に係る冷凍装置によれば、放熱器用ファン及び/または蒸発器用ファンの風量の変更の制御が、放熱器用ファン及び/または蒸発器用ファンの回転数の調整によって容易に行える。 According to the refrigeration system of the second aspect, control of the change of the air flow rate of the radiator fan and / or the evaporator fan can be easily performed by adjusting the number of rotations of the radiator fan and / or the evaporator fan.
 第3観点に係る冷凍装置は、第1観点または第2観点に係る冷凍装置において、所定圧力範囲は、圧縮機の回転数に基づいて変更される、ものである。 The refrigeration system according to a third aspect is the refrigeration system according to the first aspect or the second aspect, wherein the predetermined pressure range is changed based on the number of rotations of the compressor.
 第3観点に係る冷凍装置によれば、所定圧力範囲が圧縮機の回転数に応じて変更されることから、例えば定常状態において圧縮機の回転数が上昇して冷媒を多く流すときには弁開度の絞り過ぎを防止するために所定圧力範囲を高い側にずらし、例えば圧縮機の回転数が低下して冷媒の流量が少なくなったときには弁開度の開きすぎを防止するために所定圧力範囲を低い側にずらすなど、精度の高い制御を行うことができる。 According to the refrigeration apparatus according to the third aspect, the predetermined pressure range is changed according to the number of rotations of the compressor, so that, for example, when the number of rotations of the compressor rises in the steady state and a large amount of refrigerant flows In order to prevent over-squeezing of the valve, the predetermined pressure range is shifted to the high side, for example, when the number of rotations of the compressor decreases and the flow rate of the refrigerant decreases, the predetermined pressure range is The control can be performed with high accuracy, such as shifting to the lower side.
 第4観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置において、蒸発器は、空調対象空間に設置され、差圧が所定圧力範囲に入るように放熱器用ファンの風量を変更する。 A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any one of the first aspect to the third aspect, wherein the evaporator is installed in the air conditioning target space, and the radiator fan is mounted so that the differential pressure falls within a predetermined pressure range. Change the air volume.
 第4観点に係る冷凍装置によれば、放熱器用ファンの風量の変更で差圧が所定圧力範囲に入ることから、差圧の調整に束縛されずに蒸発器用ファンの風量の変更を行うことができる。 According to the refrigeration apparatus according to the fourth aspect, since the differential pressure falls within the predetermined pressure range by changing the air volume of the radiator fan, the air volume of the evaporator fan can be changed without being restricted by the adjustment of the differential pressure. it can.
 第5観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置において、放熱器及び蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、空調対象空間の空間温度を検出するために設けられている第1センサをさらに備え、放熱器用ファン及び蒸発器用ファンのうちの熱源側空間で送風する方の風量の変更であって差圧を所定圧力範囲に向けて変化させるための風量の変更に少なくとも第1センサを使って検出される空間温度を用いる、ものである。 A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to any one of the first aspect to the third aspect, wherein one of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space, The air conditioner further includes a first sensor provided to detect a space temperature of the air conditioning target space, which is a change of the air volume of one of the radiator fan and the evaporator fan to be blown in the heat source side space, and the differential pressure is specified. The change in air volume to change towards the pressure range is to use the space temperature detected using at least the first sensor.
 第5観点に係る冷凍装置によれば、少なくとも空調対象空間の空間温度を用いて放熱器用ファン及び蒸発器用ファンのうちの熱源側空間で送風する方の風量を変更して、空間温度が高かったり低かったりする状況に合わせて差圧式膨張弁の弁開度を大きくしたり小さくしたりすることができる。 According to the refrigeration apparatus according to the fifth aspect, the space temperature is high by changing the air volume of the fan for radiator and the fan for evaporator among the fans on the heat source side using at least the space temperature of the air conditioning target space The degree of opening of the differential pressure type expansion valve can be made larger or smaller in accordance with the situation where it is low.
 第6観点に係る冷凍装置は、第5観点に係る冷凍装置において、熱源側空間の雰囲気温度を検出するために設けられている第2センサをさらに備え、放熱器用ファン及び蒸発器用ファンのうちの熱源側空間で送風する方の風量の変更であって差圧を所定圧力範囲に向けて変化させるための風量の変更に第1センサと第2センサを使って検出される温度差を用いる、ものである。 A refrigeration apparatus according to a sixth aspect of the present invention is the refrigeration apparatus according to the fifth aspect, further comprising a second sensor provided for detecting the ambient temperature of the heat source side space, wherein one of the radiator fan and the evaporator fan Using a temperature difference detected by using the first sensor and the second sensor for changing the air volume for changing the air pressure in the heat source side space for changing the differential pressure toward the predetermined pressure range It is.
 第6観点に係る冷凍装置によれば、空調対象空間の空間温度と熱源側空間の雰囲気温度の温度差に基づいて差圧を所定圧力範囲に向けて変化させるための調整を行うことから、冷凍サイクルの高圧値と低圧値の差に応じて風量の変更を行うことができる。 According to the refrigeration apparatus according to the sixth aspect, since the differential pressure is adjusted toward the predetermined pressure range based on the temperature difference between the space temperature of the air conditioning target space and the ambient temperature of the heat source side space The air volume can be changed according to the difference between the high pressure value and the low pressure value of the cycle.
 第7観点に係る冷凍装置は、第1観点から第4観点のいずれかに係る冷凍装置において、放熱器の凝縮温度及び蒸発器の蒸発温度を検出するために冷媒回路に設けられている第3センサをさらに備え、差圧を所定圧力範囲に向けて変化させるための放熱器用ファン及び/または蒸発器用ファンの風量の変更に少なくとも第3センサを使って検出される凝縮温度及び蒸発温度を用いる、ものである。 A refrigeration apparatus according to a seventh aspect is the refrigeration apparatus according to any one of the first aspect to the fourth aspect, wherein the refrigeration system is provided in a refrigerant circuit for detecting a condensation temperature of a radiator and an evaporation temperature of an evaporator. A sensor is further provided, wherein the condensation temperature and the evaporation temperature detected using at least a third sensor are used to change the air volume of the radiator fan and / or the evaporator fan to change the differential pressure toward the predetermined pressure range. It is a thing.
 第7観点に係る冷凍装置によれば、少なくとも凝縮温度及び蒸発温度を用いて放熱器用ファン及び/または蒸発器用ファンの風量を変更ことから、冷凍サイクルの高圧値と低圧値の差が小さくて蒸発器で冷媒が蒸発し易い状況及び冷凍サイクルの高圧値と低圧値の差が大きくて蒸発器で冷媒が蒸発し難い状況の発生に合わせて差圧式膨張弁の弁開度を大きくしたり小さくしたりすることができる。 According to the refrigeration apparatus according to the seventh aspect, since the air flow rate of the radiator fan and / or the evaporator fan is changed using at least the condensing temperature and the evaporating temperature, the difference between the high pressure value and the low pressure value of the refrigeration cycle is small and evaporation occurs. The difference between the high pressure value and the low pressure value of the refrigeration cycle that the refrigerant easily evaporates in the compressor and the situation in which the refrigerant hardly evaporates in the evaporator increase or decrease the valve opening of the differential pressure type expansion valve Can be
 第8観点に係る冷凍装置は、第1観点から第4観点のいずれかに係る冷凍装置において、圧縮機から吐出される冷媒の吐出温度を検出するために冷媒回路に設けられている第4センサをさらに備え、差圧を所定圧力範囲に向けて変化させるための放熱器用ファン及び/または蒸発器用ファンの風量の変更に少なくとも第4センサを使って検出される吐出温度を用いる、ものである。 A refrigeration apparatus according to an eighth aspect is the refrigeration apparatus according to any one of the first aspect to the fourth aspect, wherein the fourth sensor provided in the refrigerant circuit for detecting the discharge temperature of the refrigerant discharged from the compressor. The discharge temperature detected using at least the fourth sensor is used to change the air volume of the radiator fan and / or the evaporator fan to change the differential pressure toward the predetermined pressure range.
 第8観点に係る冷凍装置によれば、少なくとも吐出温度を用いて放熱器用ファン及び/または蒸発器用ファンの風量を変更することから、吐出温度が高くなって安全機構が働く前でも差圧式膨張弁の弁開度を大きくすることができる。 According to the refrigeration system of the eighth aspect, the air flow rate of the radiator fan and / or the evaporator fan is changed using at least the discharge temperature, so that the discharge temperature becomes high and the differential pressure expansion valve is operated even before the safety mechanism works. Valve opening degree can be increased.
 第9観点に係る冷凍装置は、第1観点から第4観点のいずれかに係る冷凍装置において、放熱器及び蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、熱源側空間の雰囲気温度を検出するために設けられている第2センサをさらに備え、放熱器用ファン及び蒸発器用ファンのうちの熱源側空間に送風する方の風量を、さらに圧縮機の回転数と第2センサを用いて検出される雰囲気温度とに基づいて調整する、ものである。 The refrigeration apparatus according to a ninth aspect is the refrigeration apparatus according to any of the first aspect to the fourth aspect, one of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space, The air conditioner further includes a second sensor provided to detect the ambient temperature of the heat source side space, and the air volume of one of the radiator fan and the evaporator fan to be blown to the heat source side space is the number of revolutions of the compressor. It adjusts based on the atmospheric temperature detected using a 2nd sensor.
 第9観点に係る冷凍装置によれば、圧縮機の回転数と第2センサを用いて検出される雰囲気温度とに基づいて風量を変更することから、所定圧力範囲内においても適切に放熱器用ファン及び蒸発器用ファンのうちの熱源側空間の空気を送風する方の風量を変更することができる。 According to the refrigeration system according to the ninth aspect, the air flow rate is changed based on the number of rotations of the compressor and the ambient temperature detected using the second sensor, so that the radiator fan can be properly operated even within the predetermined pressure range. And the air volume of the direction which blows the air of the heat-source side space among the fans for evaporators can be changed.
 第10観点に係る冷凍装置は、第1観点から第9観点のいずれかに係る冷凍装置において、差圧式膨張弁は、本体と弁体とを有し、本体は、冷媒入口、冷媒出口及び弁体を支持する付勢部材を持ち、差圧式膨張弁は、付勢部材の付勢力に逆らって弁体と本体との位置関係を維持するための静止摩擦が弁体と本体との間に発生しており、弁体は、冷媒入口と冷媒出口との間に配置され、移動せずに静止状態を保つ限界圧力を差圧が超えて変化することにより移動して弁開度を変化させ、放熱器用ファン及び/または蒸発器用ファンの回転数を調整することによる所定圧力範囲に向けての差圧の変化は、限界圧力を超える変化である、ものである。 The refrigeration apparatus according to a tenth aspect is the refrigeration apparatus according to any one of the first aspect to the ninth aspect, wherein the differential pressure type expansion valve has a main body and a valve body, and the main body is a refrigerant inlet, a refrigerant outlet, and a valve The differential pressure type expansion valve generates static friction between the valve body and the main body to maintain the positional relationship between the valve body and the main body against the biasing force of the biasing member. The valve body is disposed between the refrigerant inlet and the refrigerant outlet, and moves by changing the differential pressure exceeding the limit pressure which keeps the stationary state without moving, thereby changing the valve opening degree. The change in differential pressure towards the predetermined pressure range by adjusting the number of rotations of the radiator fan and / or the evaporator fan is a change exceeding the limit pressure.
 第10観点に係る冷凍装置によれば、放熱器用ファン及び/または蒸発器用ファンの風量を変更することによる所定圧力範囲に向けての差圧の変化が限界圧力を超える変化であることから、放熱器用ファン及び/または蒸発器用ファンの風量を変更したけれども差圧の変化が小さくて差圧式膨張弁の弁体が移動しないために差圧式膨張弁の弁開度が開き過ぎていたり閉じ過ぎていたりしている状況が改善できなくなるのを防止することができる。 According to the refrigeration apparatus according to the tenth aspect, since the change in differential pressure toward the predetermined pressure range by changing the air volume of the radiator fan and / or the evaporator fan is a change exceeding the limit pressure, Although the air volume of the fan for fan and / or the fan for evaporator is changed, the change in differential pressure is small and the valve element of the differential pressure type expansion valve does not move, so the opening degree of the differential pressure type expansion valve is too open or too closed It is possible to prevent the situation from becoming unimprovable.
 第11観点に係る冷凍装置は、第1観点から第10観点のいずれかに係る冷凍装置において、差圧が所定圧力範囲の上限値を上回ったときには放熱器用ファンの風量を大きくし、差圧が所定圧力範囲の下限値を下回ったときには放熱器用ファンの風量を小さくする、ものである。 A refrigeration apparatus according to an eleventh aspect of the present invention is the refrigeration apparatus according to any one of the first aspect to the tenth aspect, wherein when the differential pressure exceeds the upper limit value of the predetermined pressure range, the air volume of the radiator fan is increased and the differential pressure is When the pressure is lower than the lower limit value of the predetermined pressure range, the air volume of the radiator fan is reduced.
 第11観点に係る冷凍装置によれば、差圧が所定圧力範囲の上限値を上回ったときには放熱器用ファンの風量を大きくし、差圧が所定圧力範囲の下限値を下回ったときには放熱器用ファンの風量を小さくすることから、放熱器での熱交換効率が低下して所定圧力範囲を外れたときに、放熱器用ファンの風量を大きくすることでまたは風量を小さくすることで差圧を所定圧力範囲に向けて変化させることができる。 According to the refrigeration system of the eleventh aspect, the air flow rate of the radiator fan is increased when the differential pressure exceeds the upper limit value of the predetermined pressure range, and when the differential pressure falls below the lower limit value of the predetermined pressure range By reducing the air volume, when the heat exchange efficiency at the radiator decreases and deviates from the predetermined pressure range, the air pressure of the radiator fan is increased or the differential pressure is reduced by decreasing the air volume. Can be changed towards.
 第12観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置において、圧縮機、放熱器用ファン及び蒸発器用ファンを制御する制御装置をさらに備え、放熱器及び蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、制御装置は、所定圧力範囲から差圧が外れたことを、空調対象空間の空間温度、熱源側空間の雰囲気温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて直接判断し、あるいは、空間温度、雰囲気温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて差圧を推定して判断し、所定圧力範囲から差圧が外れたと判断された場合に差圧を所定圧力範囲に向けて変化させるように放熱器用ファン及び/または蒸発器用ファンの風量を変更する制御を行えるように構成されている、ものである。 A refrigeration apparatus according to a twelfth aspect of the present invention is the refrigeration apparatus according to any one of the first aspect to the third aspect, further comprising a control device that controls a compressor, a radiator fan and an evaporator fan, the radiator and the evaporator One is installed in the air conditioning target space, the other is installed in the heat source side space, and the control device determines that the differential pressure has deviated from the predetermined pressure range, the space temperature of the air conditioning target space, the ambient temperature of the heat source side space, condensation Direct judgment using at least one of temperature, evaporation temperature, discharge temperature, current value of compressor, or at least one of space temperature, ambient temperature, condensation temperature, evaporation temperature, discharge temperature, current value of compressor The air flow rate of the radiator fan and / or the evaporator fan so that the differential pressure is changed toward the predetermined pressure range when it is determined that the differential pressure has deviated from the predetermined pressure range. It is configured to perform control for changing, those.
 第12観点に係る冷凍装置によれば、空調対象空間の空間温度、熱源側空間の雰囲気温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて所定圧力範囲から差圧が外れたことを直接判断する場合には、制御装置が、差圧を推定する処理を省くことができる。また、このような冷凍装置によれば、空間温度、雰囲気温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて差圧を推定して判断する場合には、差圧に沿って精度の良い制御がし易くなる。 According to the refrigeration apparatus according to the twelfth aspect, from the predetermined pressure range using at least one of the space temperature of the air conditioned space, the atmosphere temperature of the heat source side space, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor In the case of directly judging that the differential pressure has been released, the control device can omit the process of estimating the differential pressure. Moreover, according to such a refrigeration apparatus, when the differential pressure is estimated and determined using at least one of space temperature, ambient temperature, condensation temperature, evaporation temperature, discharge temperature, and current value of the compressor, Accurate control can be facilitated along the differential pressure.
 第13観点に係る冷凍装置は、第1観点から第12観点のいずれかに係る冷凍装置において、所定圧力範囲から差圧が外れる場合が、冷房運転時に、所定圧力範囲を外れて差圧が小さくなり過ぎていて圧縮機が吸入または吐出する冷媒の過熱度が所定値を超えて過熱度が高すぎる状態になっている場合を含み、放熱器用ファンの風量を変更することにより差圧を所定圧力範囲に向けて変化させることが、放熱器用ファンを止めることにより差圧を大きくして所定圧力範囲内に戻すことを含む、ものである。 The refrigeration apparatus according to the thirteenth aspect is the refrigeration apparatus according to any one of the first aspect to the twelfth aspect, wherein the differential pressure is out of the predetermined pressure range when the differential pressure is out of the predetermined pressure range, and the differential pressure is small during the cooling operation. And the superheat degree of the refrigerant sucked and discharged by the compressor exceeds a predetermined value and the superheat degree is too high, and the differential pressure is set to a predetermined pressure by changing the air volume of the radiator fan Varying toward the range includes increasing the differential pressure back to a predetermined pressure range by stopping the radiator fan.
 第13観点に係る冷凍装置によれば、差圧が小さくなり過ぎていて圧縮機が吸入または吐出する冷媒の過熱度が所定値を超えて過熱度が高すぎる状態になっている場合には、過熱度が高すぎる状態を解消するために圧縮機の回転数を変更するには制約があることから、放熱器用ファンを止めることで過熱度が高すぎる状態を解消し易くなる。 According to the refrigeration apparatus of the thirteenth aspect, when the differential pressure is too small and the degree of superheat of the refrigerant sucked or discharged by the compressor exceeds a predetermined value, the degree of superheat is too high. There is a limitation in changing the rotational speed of the compressor in order to eliminate the state in which the degree of superheat is too high, so stopping the radiator fan makes it easy to eliminate the state in which the degree of superheat is too high.
 第1観点、第2観点、第3観点、第10観点、第11観点、第12観点または第13観点に係る冷凍装置では、圧縮機に吸入または圧縮機から吐出される冷媒の過熱度が適正値より大きくなり易かったり、逆に過熱度が適正値よりも小さくなり易かったりすることによる不具合を抑制することができる。 In the refrigeration apparatus according to the first aspect, the second aspect, the third aspect, the tenth aspect, the eleventh aspect, the twelfth aspect or the thirteenth aspect, the degree of superheat of the refrigerant sucked or discharged from the compressor into the compressor is appropriate It is possible to suppress a defect due to the fact that it is easy to become larger than the value or to make the degree of superheat to easily become smaller than the proper value.
 第4観点に係る冷凍装置では、差圧が所定圧力範囲から外れないような制御を行うことによって蒸発器用ファンによる空調対象空間の空調が制限されるのを防ぐことができる。 In the refrigeration apparatus according to the fourth aspect, by performing control such that the differential pressure does not deviate from the predetermined pressure range, it is possible to prevent the air conditioning of the air-conditioned space by the evaporator fan from being restricted.
 第5観点に係る冷凍装置では、差圧式膨張弁において弁開度が小さくなり過ぎたり大きくなり過ぎたりするのを空調対象空間の送風に影響を与えることなく抑制して適正な過熱度を維持することができる。 In the refrigeration system according to the fifth aspect, the differential pressure type expansion valve suppresses the valve opening from becoming too small or too large without affecting the air flow in the air-conditioned space and maintaining an appropriate degree of superheat be able to.
 第6観点に係る冷凍装置では、適正な過熱度を精度良く維持することができる。 In the refrigeration apparatus according to the sixth aspect, the appropriate degree of superheat can be maintained with high accuracy.
 第7観点に係る冷凍装置では、差圧式膨張弁において弁開度が小さくなり過ぎたり大きくなり過ぎたりするのを抑制して適正な過熱度を維持することができる。 In the refrigeration system according to the seventh aspect, it is possible to maintain an appropriate degree of superheat by suppressing the valve opening degree from becoming too small or too large in the differential pressure type expansion valve.
 第8観点に係る冷凍装置では、差圧式膨張弁において弁開度が小さくなり過ぎて安全機構が働くのを防止しつつ適正な過熱度を維持することができる。 In the refrigeration system according to the eighth aspect, it is possible to maintain an appropriate degree of superheat while preventing the safety mechanism from working due to the valve opening becoming too small in the differential pressure type expansion valve.
 第9観点に係る冷凍装置では、所定圧力範囲内において適切な過熱度を維持することができる。 The refrigeration apparatus according to the ninth aspect can maintain an appropriate degree of superheat within a predetermined pressure range.
実施形態に係る冷凍装置の構成の概要を示す回路図。BRIEF DESCRIPTION OF THE DRAWINGS The circuit diagram which shows the outline | summary of a structure of the freezing apparatus which concerns on embodiment. 図1の冷凍装置の動作を説明するためのp-h線図。The ph diagram for demonstrating operation | movement of the freezing apparatus of FIG. 差圧式膨張弁の構成の一例を示す模式的な断面図。Typical sectional drawing which shows an example of a structure of a differential pressure type expansion valve. 図3の差圧式膨張弁の弁開度が増加した状態を示す模式的な断面図。FIG. 5 is a schematic cross-sectional view showing a state in which the valve opening degree of the differential pressure type expansion valve of FIG. 3 has increased. 差圧式膨張弁の弁開度の調整動作の一例を示すグラフ。The graph which shows an example of adjustment operation of the valve-opening degree of a differential pressure type expansion valve. 室外ファンの回転数と吐出温度及び差圧の関係の一例を示すグラフ。The graph which shows an example of the relationship between the rotation speed of an outdoor fan, discharge temperature, and differential pressure. 変形例1Aに係る冷凍装置の構成の概要を示す回路図。The circuit diagram which shows the outline | summary of a structure of the freezing apparatus which concerns on the modification 1A.
 以下、実施形態に係る冷凍装置について図面を用いて説明する。図1には、実施形態に係る冷凍装置が備える冷媒回路が示されている。また、図2には、図1に示された冷凍装置10で行われる蒸気圧縮式冷凍サイクルが示されている。つまり、図2には、冷凍装置10の冷媒回路11を循環する冷媒についての冷媒圧力pと比エンタルピhとの関係が示されている。 Hereinafter, a refrigeration apparatus according to an embodiment will be described using the drawings. The refrigerant | coolant circuit with which the freezing apparatus which concerns on embodiment is equipped with FIG. 1 is shown. Further, FIG. 2 shows a vapor compression refrigeration cycle performed by the refrigeration system 10 shown in FIG. That is, FIG. 2 shows the relationship between the refrigerant pressure p and the specific enthalpy h for the refrigerant circulating in the refrigerant circuit 11 of the refrigeration system 10.
 (1)全体構成
 図1に示されている冷凍装置10は、利用ユニット20と利用ユニット20に接続された熱源ユニット30とを備えている。利用ユニット20は、室内熱交換器21と室内ファン22とを備えている。熱源ユニット30は、圧縮機31と室外熱交換器32と差圧式膨張弁33と室外ファン34とを備えている。
(1) Overall Configuration The refrigeration system 10 shown in FIG. 1 includes a utilization unit 20 and a heat source unit 30 connected to the utilization unit 20. The usage unit 20 includes an indoor heat exchanger 21 and an indoor fan 22. The heat source unit 30 includes a compressor 31, an outdoor heat exchanger 32, a differential pressure type expansion valve 33, and an outdoor fan 34.
 利用ユニット20と熱源ユニット30とは冷媒配管で接続されており、利用ユニット20と熱源ユニット30の間で冷媒を循環させる冷媒回路11が形成されている。この冷媒回路11を冷媒が循環することによって、冷凍装置10は、蒸気圧縮式冷凍サイクルを行うことができる。 The utilization unit 20 and the heat source unit 30 are connected by refrigerant piping, and a refrigerant circuit 11 for circulating the refrigerant between the utilization unit 20 and the heat source unit 30 is formed. By circulating the refrigerant through the refrigerant circuit 11, the refrigeration apparatus 10 can perform a vapor compression refrigeration cycle.
 圧縮機31、室外熱交換器32、差圧式膨張弁33及び室内熱交換器21の順に冷媒が循環するように冷媒回路11が構成されている。圧縮機31は、ガス冷媒(図2に示された点Aの状態の冷媒)を圧縮する。圧縮機31の吐出口から出た高温高圧の冷媒(図2に示された点Bの状態の冷媒)は、室外熱交換器32の流入口に流入する。室外熱交換器32において室外空気との間で熱交換された液冷媒(図2に示された点Cの状態の冷媒)は、室外熱交換器32の流出口から流出し、差圧式膨張弁33の流入口に流入する。差圧式膨張弁33で膨張されて減圧された冷媒(図2に示された点Dの状態の冷媒)は、差圧式膨張弁33の流出口から流出し、室内熱交換器21の流入口に流入する。室内熱交換器21において室内空気との間で熱交換されたガス冷媒(図2に示された点Aの状態の冷媒)は、室内熱交換器21の流出口から流出し、圧縮機31の吸入口に流入する。 The refrigerant circuit 11 is configured such that the refrigerant circulates in the order of the compressor 31, the outdoor heat exchanger 32, the differential pressure type expansion valve 33, and the indoor heat exchanger 21. The compressor 31 compresses a gas refrigerant (the refrigerant in the state of point A shown in FIG. 2). The high-temperature and high-pressure refrigerant (refrigerant in the state of point B shown in FIG. 2) that has exited from the discharge port of the compressor 31 flows into the inlet of the outdoor heat exchanger 32. The liquid refrigerant (the refrigerant in the state of point C shown in FIG. 2) heat-exchanged with the outdoor air in the outdoor heat exchanger 32 flows out from the outlet of the outdoor heat exchanger 32, and the differential pressure type expansion valve Flow into the 33 inlet. The refrigerant expanded and reduced in pressure by the differential pressure type expansion valve 33 (the refrigerant in the state of point D shown in FIG. 2) flows out from the outlet of the differential pressure type expansion valve 33 and flows to the inlet of the indoor heat exchanger 21. To flow. The gas refrigerant (refrigerant in the state of point A shown in FIG. 2) heat-exchanged with indoor air in the indoor heat exchanger 21 flows out from the outlet of the indoor heat exchanger 21, and It flows into the suction port.
 なお、ここで冷凍装置とは、図1または図7に示されている空気調和装置のように、圧縮機31で動力を消費し、室外熱交換器32と室内熱交換器21のうちの一方から熱を取り入れ、他方から熱を排出する装置である。換言すると、冷凍装置は、冷媒回路で冷凍サイクルを行う装置である。冷凍装置には、空気調和装置以外に、例えば、湯を供給するヒートポンプ式給湯器、冷蔵庫及び庫内を冷却する冷却装置が含まれる。 Here, the refrigeration system is a compressor such as the air conditioner shown in FIG. 1 or FIG. 7 and consumes motive power, and one of the outdoor heat exchanger 32 and the indoor heat exchanger 21. Is a device that takes in heat from the other and discharges heat from the other. In other words, the refrigeration system is an apparatus that performs a refrigeration cycle in a refrigerant circuit. The refrigeration system includes, for example, a heat pump water heater that supplies hot water, a refrigerator, and a cooling system that cools the inside of the refrigerator, in addition to the air conditioner.
 (2)詳細構成
 (2-1)熱源ユニット
 熱源ユニット30のケーシング(図示せず)の内部には、圧縮機31と室外熱交換器32と差圧式膨張弁33と室外ファン34と吐出温度センサ35と室外温度センサ36と室外熱交換器用温度センサ37と熱源側制御装置41が設置されている。熱源ユニット30に設けられている圧縮機31は、回転数によって運転容量を変えることが可能な容積式圧縮機であり、例えばインバータにより回転数が制御されるモータ31mによって圧縮機31の回転数が制御される。この圧縮機31のモータ31mは、後述する熱源側制御装置41により制御される。
(2) Detailed Configuration (2-1) Heat Source Unit Inside the casing (not shown) of the heat source unit 30, the compressor 31, the outdoor heat exchanger 32, the differential pressure type expansion valve 33, the outdoor fan 34 and the discharge temperature sensor An outdoor temperature sensor 36, an outdoor heat exchanger temperature sensor 37, and a heat source side control device 41 are installed. The compressor 31 provided in the heat source unit 30 is a positive displacement compressor whose operating capacity can be changed by the number of rotations, and the number of rotations of the compressor 31 is, for example, a motor 31m whose number of rotations is controlled by an inverter. It is controlled. The motor 31m of the compressor 31 is controlled by a heat source side controller 41 described later.
 室外熱交換器32は、熱源ユニット30の内部に流入する外気と圧縮機31で圧縮された冷媒との間で熱交換を行わせる。室外熱交換器32は、例えばクロスフィン式のフィン・アンド・チューブ型熱交換器であり、チューブ(伝熱管)の中を通る冷媒と多数のフィンの間を通過する外気との間で熱交換を行わせる。つまり、室外熱交換器32は、冷房運転時に放熱器として機能している。室外熱交換器32に流入した直後の冷媒は、図2に示されている点Bの状態のガス冷媒である。この室外熱交換器32を通る間に冷媒から熱が放出されて、ガス冷媒は、気液二相状態を経て液冷媒(図2の点Cの状態の冷媒)に変化する。室外熱交換器32で熱交換された空気は、熱源ユニット30の外部に吹き出される。 The outdoor heat exchanger 32 exchanges heat between the outside air flowing into the heat source unit 30 and the refrigerant compressed by the compressor 31. The outdoor heat exchanger 32 is, for example, a cross fin type fin-and-tube heat exchanger, and exchanges heat between the refrigerant passing through a tube (heat transfer tube) and the outside air passing between a large number of fins. Let me do it. That is, the outdoor heat exchanger 32 functions as a radiator during the cooling operation. The refrigerant immediately after flowing into the outdoor heat exchanger 32 is the gas refrigerant in the state of point B shown in FIG. 2. While passing through the outdoor heat exchanger 32, heat is released from the refrigerant, and the gas refrigerant passes through a gas-liquid two-phase state to change to a liquid refrigerant (refrigerant at point C in FIG. 2). The air heat-exchanged by the outdoor heat exchanger 32 is blown out to the outside of the heat source unit 30.
 室外ファン34は、熱源ユニット30のケーシングの周りの外気を室外熱交換器32に送る。室外ファン34は、室外熱交換器32に供給する空気の風量を変更することが可能なファンであり、例えばDCファンモータ等からなるモータ34mによって駆動されるプロペラファン等である。この室外ファン34のモータ34mの回転数は、熱源側制御装置41により制御される。 The outdoor fan 34 sends the outside air around the casing of the heat source unit 30 to the outdoor heat exchanger 32. The outdoor fan 34 is a fan capable of changing the air flow rate of the air supplied to the outdoor heat exchanger 32, and is, for example, a propeller fan driven by a motor 34m including a DC fan motor or the like. The number of revolutions of the motor 34 m of the outdoor fan 34 is controlled by the heat source side controller 41.
 吐出温度センサ35は、例えば圧縮機31の吐出管に取り付けられ、圧縮機31から吐出される冷媒の温度(以下、吐出温度と呼ぶこともある。)を検出する。室外温度センサ36は、室外ファン34が熱源ユニット30のケーシング内に取り入れる室外空気の温度(雰囲気温度)を検出する。室外熱交換器用温度センサ37は、室外熱交換器32の中の気液二相状態になっている部分の温度を検出する。つまり、室外熱交換器用温度センサ37は、室外熱交換器32における冷媒の凝縮温度を検出する。 The discharge temperature sensor 35 is attached to, for example, a discharge pipe of the compressor 31 and detects the temperature of the refrigerant discharged from the compressor 31 (hereinafter also referred to as discharge temperature). The outdoor temperature sensor 36 detects the temperature (ambient temperature) of the outdoor air taken into the casing of the heat source unit 30 by the outdoor fan 34. The outdoor heat exchanger temperature sensor 37 detects the temperature of the portion of the outdoor heat exchanger 32 in the gas-liquid two-phase state. That is, the outdoor heat exchanger temperature sensor 37 detects the condensation temperature of the refrigerant in the outdoor heat exchanger 32.
 熱源側制御装置41は、上述のように圧縮機31及び室外ファン34を制御する。熱源側制御装置41は、利用側制御装置42に接続されている。熱源側制御装置41と利用側制御装置42は、冷凍装置10の制御装置40を構成する。制御装置40には、例えばコントローラを用いることができる。制御装置40は、CPU(図示せず)及びメモリ(図示せず)を含んで構成され、メモリに記憶されているプログラムを実行することによって冷凍装置10の各機器の制御を行う。制御装置40は、例えばサーモオフ及びサーモオンに関する情報、設定温度と室内温度との差に関する情報、室外温度に関する情報などに応じて圧縮機31と室外ファン34のオン・オフ及び回転数を制御する。熱源側制御装置41は、タイマ43を備えている。制御装置40は、タイマ43により制御のタイミングを計ることができる。 The heat source side controller 41 controls the compressor 31 and the outdoor fan 34 as described above. The heat source side controller 41 is connected to the use side controller 42. The heat source side control device 41 and the use side control device 42 constitute a control device 40 of the refrigeration system 10. For the controller 40, for example, a controller can be used. The control device 40 includes a CPU (not shown) and a memory (not shown), and controls each device of the refrigeration system 10 by executing a program stored in the memory. The control device 40 controls the on / off and rotational speed of the compressor 31 and the outdoor fan 34 according to, for example, information on thermo-off and thermo-on, information on the difference between the set temperature and the indoor temperature, and information on the outdoor temperature. The heat source side controller 41 includes a timer 43. The control device 40 can measure the timing of control by means of the timer 43.
 (2-1-1)差圧式膨張弁33
 差圧式膨張弁33は、弁開度を変えることにより冷媒回路11を循環する冷媒の流量を変化させる。差圧式膨張弁33では、差圧式膨張弁33に掛かる差圧、つまり後述する差圧式膨張弁33の冷媒入口61と冷媒出口62の冷媒の差圧に応じて弁開度が変化する。言い換えると、差圧式膨張弁33は、冷媒入口61と冷媒出口62の差圧によって制御されているということである。
(2-1-1) Differential pressure type expansion valve 33
The differential pressure type expansion valve 33 changes the flow rate of the refrigerant circulating in the refrigerant circuit 11 by changing the valve opening degree. In the differential pressure type expansion valve 33, the valve opening changes in accordance with the differential pressure applied to the differential pressure type expansion valve 33, that is, the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 described later. In other words, the differential pressure type expansion valve 33 is controlled by the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62.
 図3及び図4には、差圧式膨張弁33の構成が模式的に示されている。差圧式膨張弁33は、本体51と弁体52とを備えている。差圧式膨張弁33の本体51には、冷媒回路11から差圧式膨張弁33の内部に冷媒が流入する冷媒入口61と、差圧式膨張弁33の内部から冷媒回路11に冷媒が流出する冷媒出口62とが設けられている。冷媒入口61の冷媒の圧力は、実質的に図2の点Cの圧力P1になり、冷媒出口62の冷媒の圧力は、実質的に図2の点Dの圧力P2になる。ここでは、説明を簡単にするために、冷媒回路11の配管などで生じる冷媒の圧力の低下は無視している。差圧式膨張弁33を冷媒が通過することにより圧力が低下し、圧力P1が圧力P2になる。つまり、差圧式膨張弁33は、冷媒を減圧する減圧機構として機能する。 The configuration of the differential pressure type expansion valve 33 is schematically shown in FIGS. 3 and 4. The differential pressure type expansion valve 33 includes a main body 51 and a valve body 52. In the main body 51 of the differential pressure type expansion valve 33, a refrigerant inlet 61 where the refrigerant flows from the refrigerant circuit 11 into the differential pressure type expansion valve 33, and a refrigerant outlet where the refrigerant flows out from the inside of the differential pressure type expansion valve 33 to the refrigerant circuit 11. 62 are provided. The pressure of the refrigerant at the refrigerant inlet 61 is substantially the pressure P1 at point C in FIG. 2, and the pressure of the refrigerant at the refrigerant outlet 62 is substantially the pressure P2 at point D in FIG. Here, in order to simplify the description, the decrease in the pressure of the refrigerant generated in the piping of the refrigerant circuit 11 and the like is ignored. As the refrigerant passes through the differential pressure type expansion valve 33, the pressure decreases and the pressure P1 becomes the pressure P2. That is, the differential pressure type expansion valve 33 functions as a pressure reducing mechanism that reduces the pressure of the refrigerant.
 本体51の形状は、例えば円筒である。差圧式膨張弁33は、本体51が円筒形であると、冷媒回路11を構成する円筒形の配管に設置し易くなる。冷媒入口61と冷媒出口62の間に弁体52が配置されている。さらに詳細に見ると、冷媒入口61と冷媒出口62を繋ぐ本体51の内部の空洞63の中に弁体52が移動可能に配置されている。 The shape of the main body 51 is, for example, a cylinder. When the main body 51 is cylindrical, the differential pressure expansion valve 33 can be easily installed in the cylindrical pipe that constitutes the refrigerant circuit 11. A valve body 52 is disposed between the refrigerant inlet 61 and the refrigerant outlet 62. In more detail, a valve body 52 is movably disposed in a cavity 63 inside the main body 51 connecting the refrigerant inlet 61 and the refrigerant outlet 62.
 本体51は、弁体52を支持するコイルバネ53を有している。コイルバネ53は、弁体52に対して付勢力を与えている。コイルバネ53が弁体52に与える付勢力は、冷媒出口62から冷媒入口61の向きに弁体52を押す力である。冷媒入口61と冷媒出口62の間の差圧(P1-P2)が小さいときは、図3に示されているように、弁体52が冷媒入口61の方に移動し、弁開度が小さくなる。逆に、冷媒入口61と冷媒出口62の間の差圧(P1-P2)が大きいときは、図4に示されているように、弁体52が冷媒出口62の方に移動し、弁開度が大きくなる。 The main body 51 has a coil spring 53 that supports the valve body 52. The coil spring 53 applies a biasing force to the valve body 52. The biasing force that the coil spring 53 applies to the valve body 52 is a force that pushes the valve body 52 in the direction from the refrigerant outlet 62 to the refrigerant inlet 61. When the differential pressure (P1-P2) between the refrigerant inlet 61 and the refrigerant outlet 62 is small, as shown in FIG. 3, the valve body 52 moves toward the refrigerant inlet 61, and the valve opening degree is small. Become. Conversely, when the differential pressure (P1-P2) between the refrigerant inlet 61 and the refrigerant outlet 62 is large, as shown in FIG. 4, the valve body 52 moves to the refrigerant outlet 62 and the valve is opened. The degree gets bigger.
 弁体52の中には、最も狭くなっている部分において断面積S1を持つ弁内流路FC1が形成されている。この断面積S1は弁内流路FC1の流れ方向に対して垂直な平面で切断した断面の面積である。弁体52の外形の寸法は、本体51の空洞63の寸法よりも小さくなっている。従って、弁体52と本体51との間に隙間ができる。この隙間が弁外流路FC2になる。弁外流路FC2は、最も狭くなっている部分において断面積S2を持つ。 In the valve body 52, an in-valve flow path FC1 having a cross-sectional area S1 is formed at the narrowest portion. The cross-sectional area S1 is an area of a cross section cut by a plane perpendicular to the flow direction of the in-valve channel FC1. The outer dimensions of the valve body 52 are smaller than the dimensions of the cavity 63 of the main body 51. Therefore, a gap is created between the valve body 52 and the main body 51. This gap becomes the non-valve flow path FC2. The out-of-valve flow path FC2 has a cross-sectional area S2 at the narrowest portion.
 図5には、差圧式膨張弁33に掛かっている差圧と差圧式膨張弁33の流量との関係が示されている。差圧が大きくなっていって図5に示されている差圧DP6を超えるまでは、図3に示されているように、弁体52が本体51の幅狭部51aに当接している。このように弁体52が幅狭部51aに当接しているときには、冷媒は、弁内流路FC1を流れる。弁内流路FC1の冷媒流路面積が、最小面積の断面積S1になる。このとき弁開度が最も小さくなる。 The relationship between the differential pressure applied to the differential pressure type expansion valve 33 and the flow rate of the differential pressure type expansion valve 33 is shown in FIG. The valve body 52 is in contact with the narrow portion 51a of the main body 51 until the differential pressure increases and exceeds the differential pressure DP6 shown in FIG. 5, as shown in FIG. Thus, when the valve body 52 is in contact with the narrow portion 51a, the refrigerant flows in the in-valve flow path FC1. The refrigerant flow passage area of the in-valve flow passage FC1 is the cross-sectional area S1 of the minimum area. At this time, the valve opening degree becomes the smallest.
 差圧が大きくなっていって差圧DP6を超えると、幅狭部51aと弁体52の間隔が広がる。幅狭部51aと弁体52の間隔が最も広がった状態で、弁外流路FC2の断面積S2が弁内流路FC1の断面積S1に加わる。つまり、弁体52が幅狭部51aから離隔すると、弁開度が大きくなり、弁開度が最も大きくなったときの差圧式膨張弁33の冷媒流路面積が最大面積の断面積(S1+S2)になる。 When the differential pressure increases and exceeds the differential pressure DP6, the distance between the narrow portion 51a and the valve body 52 widens. The cross-sectional area S2 of the out-of-valve flow path FC2 is added to the cross-sectional area S1 of the in-valve flow path FC1 in a state where the distance between the narrow portion 51a and the valve body 52 is expanded most. That is, when the valve body 52 is separated from the narrow portion 51a, the valve opening degree is increased, and the refrigerant passage area of the differential pressure type expansion valve 33 is the largest area when the valve opening degree is maximized (S1 + S2) become.
 差圧式膨張弁33は、基本的には、弁体52が移動することにより、コイルバネ53によって生じる付勢力と差圧とが釣り合いを保つ。そして弁体52が移動することにより、上述のように弁開度が変化する。しかしながら、コイルバネ53によって生じる付勢力と差圧とが釣り合いだけで移動すると、差圧の小さな変動で弁開度が変動するチャタリングが発生してしまう。このようなチャタリングを防止するために、例えば弁体52と本体51の間に配置されるように、静止摩擦を発生させる板バネ54が弁体52に設けられている。板バネ54は、本体51の空洞63の内面に接触している。つまり、板バネ54によって、本体51と弁体52の間には静止摩擦力が生じる。このような静止摩擦力によってヒステリシスを生じるが、ここでは、実施形態の説明を分かり易くするためにこのようなヒステリシスについては無視している。しかし、このようなヒステリシスが生じていても、本実施形態の考え方の適用は可能である。 The differential pressure type expansion valve 33 basically maintains the balance between the biasing force generated by the coil spring 53 and the differential pressure as the valve body 52 moves. Then, as the valve body 52 moves, the valve opening changes as described above. However, when the biasing force generated by the coil spring 53 and the differential pressure move by balancing, chattering in which the valve opening degree fluctuates due to small fluctuation of the differential pressure is generated. In order to prevent such chattering, for example, a leaf spring 54 that generates static friction is provided on the valve body 52 so as to be disposed between the valve body 52 and the main body 51. The leaf spring 54 is in contact with the inner surface of the cavity 63 of the main body 51. That is, a static friction force is generated between the main body 51 and the valve body 52 by the plate spring 54. Although such static friction causes a hysteresis, such a hysteresis is ignored here for the sake of easy understanding of the embodiment. However, even if such a hysteresis occurs, the application of the concept of the present embodiment is possible.
 (2-2)利用ユニット
 利用ユニット20のケーシング(図示せず)の内部には、室内熱交換器21と室内ファン22と室内温度センサ23と室内熱交換器用温度センサ24と利用側制御装置42が設置されている。室内熱交換器21は、空気と冷媒との間の熱交換をさせる空気熱交換器であって、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器21においては、チューブ(伝熱管)内を流れる冷媒回路11の冷媒と、フィンの間を通過する室内空気との間で熱交換が行われる。従って、室内熱交換器21は、冷房運転時に冷媒の蒸発器として機能して室内空気を冷却する。
(2-2) Use Unit Inside the casing (not shown) of the use unit 20, the indoor heat exchanger 21, the indoor fan 22, the indoor temperature sensor 23, the temperature sensor 24 for the indoor heat exchanger, and the use side control device 42. Is installed. The indoor heat exchanger 21 is an air heat exchanger that performs heat exchange between air and a refrigerant, and is, for example, a fin-and-tube type heat exchange of cross fin type constituted by a heat transfer tube and a large number of fins. It is In the indoor heat exchanger 21, heat exchange is performed between the refrigerant of the refrigerant circuit 11 flowing in the inside of the tube (heat transfer pipe) and the indoor air passing between the fins. Therefore, the indoor heat exchanger 21 functions as an evaporator of the refrigerant during the cooling operation to cool the indoor air.
 利用ユニット20の室内ファン22は、ケーシング内に室内空気を吸入して、室内熱交換器21において冷媒と熱交換させた後に、熱交換後の空気を供給空気として室内に供給する送風機として機能する。室内ファン22は、例えば、遠心ファン又は多翼ファンであり、図1に示す利用ユニット20では、例えばクロスフローファンが用いられる。室内ファン22は、室内熱交換器21に供給する空気の風量を所定風量範囲において変更することが可能なファンであり、例えばDCファンモータ等からなるモータ22mによって駆動される。このモータ22mは、利用側制御装置42によって制御される。室内温度センサ23は、室内ファン22が利用ユニット20のケーシング内に取り入れる室内空気の温度を検出する。室内熱交換器用温度センサ24は、室内熱交換器21の中の気液二相状態になっている部分の温度(例えば、点Dの冷媒の温度と同じ温度)を検出する。つまり、室内熱交換器用温度センサ24は、室内熱交換器21における冷媒の蒸発温度を検出する。 The indoor fan 22 of the utilization unit 20 sucks indoor air into the casing, exchanges heat with the refrigerant in the indoor heat exchanger 21, and then functions as a blower supplying the air after heat exchange into the room as supply air. . The indoor fan 22 is, for example, a centrifugal fan or a multiblade fan, and in the usage unit 20 illustrated in FIG. 1, for example, a cross flow fan is used. The indoor fan 22 is a fan capable of changing the air volume of the air supplied to the indoor heat exchanger 21 in a predetermined air volume range, and is driven by, for example, a motor 22 m including a DC fan motor or the like. The motor 22m is controlled by the use side control device 42. The indoor temperature sensor 23 detects the temperature of indoor air taken into the casing of the usage unit 20 by the indoor fan 22. The indoor heat exchanger temperature sensor 24 detects the temperature (for example, the same temperature as the temperature of the refrigerant at the point D) of the portion in the indoor heat exchanger 21 in the gas-liquid two-phase state. That is, the indoor heat exchanger temperature sensor 24 detects the evaporation temperature of the refrigerant in the indoor heat exchanger 21.
 利用側制御装置42は、上述の室内ファン22の制御以外に、制御装置40として、サーモオンとサーモオフの制御を行う。そのために、利用側制御装置42は、例えばリモートコントローラ(図示せず)のような入力装置を備えている。ユーザは、リモートコントローラを用いて設定温度を入力する。 The use-side control device 42 performs control of thermo-on and thermo-off as the control device 40 in addition to the control of the indoor fan 22 described above. To that end, the user-side control device 42 includes an input device such as a remote controller (not shown). The user inputs the set temperature using the remote controller.
 (3)冷凍装置10の動作
 冷凍装置10は、冷房専用の装置であり、室内温度が設定温度になるように制御装置40により制御される。冷凍装置10では、圧縮機31に液冷媒が吸入されるのを防止するために、例えば圧縮機31に吸入される冷媒が実質的に過熱状態になるように制御される。ここで実質的に過熱状態になるとは、一時的に気液二相状態になることが許容される場合もあるが、恒常的には気液二相状態にならないということである。図1に示されている冷凍装置10では、圧縮機31から吐出される冷媒の過熱度が適切な範囲を維持するように制御される。冷媒の過熱度を目標過熱度にするために、制御装置40は、圧縮機31の回転数及び/または室外ファン34の回転数を制御する。この場合の圧縮機31の回転数及び/または室外ファン34の回転数を変更する制御は、例えば、回転数をステップ状に変化させるような制御になっており、圧縮機31の回転数及び/または室外ファン34の回転数が一定になっている期間が生じ易くなっている。
(3) Operation of Refrigerating Apparatus 10 The refrigerating apparatus 10 is an apparatus dedicated to cooling, and is controlled by the control device 40 so that the indoor temperature becomes a set temperature. In the refrigeration apparatus 10, in order to prevent the liquid refrigerant from being drawn into the compressor 31, for example, the refrigerant drawn into the compressor 31 is controlled to be substantially in the superheated state. Here, the term "superheated state" means that the gas-liquid two-phase state may temporarily be allowed, but the gas-liquid two-phase state is not always established. In the refrigeration apparatus 10 shown in FIG. 1, the degree of superheat of the refrigerant discharged from the compressor 31 is controlled to maintain an appropriate range. The controller 40 controls the number of rotations of the compressor 31 and / or the number of rotations of the outdoor fan 34 in order to set the degree of superheat of the refrigerant to the target degree of superheat. The control for changing the number of rotations of the compressor 31 and / or the number of rotations of the outdoor fan 34 in this case is, for example, a control that changes the number of rotations stepwise. Alternatively, a period in which the rotational speed of the outdoor fan 34 is constant tends to occur.
 また、制御装置40は、室内温度センサ23により検出される室内温度と設定温度との差が大きいときには圧縮機31の回転数を大きくし、室内温度と設定温度との差が小さいときには圧縮機31の回転数を小さくする制御を行う。圧縮機31の回転数が大きくなると冷房能力が大きくなるので、冷房負荷が大きくても室内温度を設定温度に近づけることができる。例えば、室内温度と設定温度との差に応じて圧縮機31の回転数が変化したときには、圧縮機31の回転数と室外空気の温度(雰囲気温度)に応じて室外ファン34の回転数が変更されるように制御される。 Further, when the difference between the indoor temperature detected by the indoor temperature sensor 23 and the set temperature is large, the control device 40 increases the rotational speed of the compressor 31, and when the difference between the indoor temperature and the set temperature is small, the compressor 31 Control to reduce the rotation speed of Since the cooling capacity increases as the rotation speed of the compressor 31 increases, the room temperature can be brought close to the set temperature even if the cooling load is large. For example, when the rotation speed of the compressor 31 changes according to the difference between the indoor temperature and the set temperature, the rotation speed of the outdoor fan 34 changes according to the rotation speed of the compressor 31 and the temperature of the outdoor air (ambient temperature). To be controlled.
 (3-1)弁開度の調整動作
 通常運転では、冷凍装置10は、制御装置40に記憶されている第1テーブルに従って吐出過熱度を目標過熱度に合わせるように、制御装置40が例えば圧縮機31の回転数などを制御するように構成されている。制御装置40に記憶されている第1テーブルには、設定温度、室内温度(室内温度センサ23の検出値)及び吐出温度(吐出温度センサ35の検出値)などと圧縮機31の回転数との関係が記述されている。制御装置40は、この関係の記述を読み取って、状況に応じて圧縮機31の回転数を変更する。
(3-1) Adjustment Operation of Valve Opening In the normal operation, for example, the control device 40 compresses the refrigeration apparatus 10 so that the discharge superheat degree matches the target superheat degree according to the first table stored in the control device 40. The rotation speed of the machine 31 is controlled. In a first table stored in the control device 40, the set temperature, the indoor temperature (the detection value of the indoor temperature sensor 23), the discharge temperature (the detection value of the discharge temperature sensor 35), etc. The relationship is described. The control device 40 reads the description of this relation, and changes the rotation speed of the compressor 31 according to the situation.
 例えば、設定温度と室内部屋の温度の差がある第1の値になっていて差圧式膨張弁33に流れる流量がFR0の場合には、適切な冷凍サイクルで運転されていれば、差圧式膨張弁33に掛かる差圧がDP1(図5参照)の近傍で安定しており、制御装置40は、所定圧力範囲SC1(図5参照)から外れない範囲で、冷凍装置10の運転を制御できる。 For example, if the difference between the set temperature and the temperature of the indoor room is a first value and the flow rate flowing to the differential pressure type expansion valve 33 is FR0, the differential pressure type expansion is operated if it is operated in an appropriate refrigeration cycle. The differential pressure applied to the valve 33 is stable in the vicinity of DP1 (see FIG. 5), and the controller 40 can control the operation of the refrigeration system 10 without departing from the predetermined pressure range SC1 (see FIG. 5).
 そして、冷凍装置10の運転を続けることによって室内温度が設定温度に近づいてきて、設定温度と室内部屋の温度の差がある第2の値まで小さくなった場合には、冷房能力を小さくする方が好ましいので、制御装置40は、圧縮機31の回転数を低下させて冷媒回路11に流れる冷媒の循環量を小さくする。この場合、適切な冷凍サイクルで運転されていれば、差圧式膨張弁33に掛かる差圧がDP2(図5参照)の近傍で安定しており、制御装置40は、圧縮機31の回転数に合わせて変更された所定圧力範囲SC2(図5参照)から外れない範囲で、冷凍装置10の運転を制御できる。 Then, if the room temperature approaches the set temperature by continuing the operation of the refrigeration system 10 and the temperature decreases to a second value where there is a difference between the set temperature and the room temperature, the cooling capacity is reduced. Therefore, the control device 40 reduces the rotational speed of the compressor 31 to reduce the circulation amount of the refrigerant flowing to the refrigerant circuit 11. In this case, if operating in an appropriate refrigeration cycle, the differential pressure applied to the differential pressure type expansion valve 33 is stable in the vicinity of DP2 (see FIG. 5), and the controller 40 controls the rotational speed of the compressor 31 to The operation of the refrigeration system 10 can be controlled without departing from the predetermined pressure range SC2 (see FIG. 5) which is also changed.
 また、例えば、冷凍装置10の運転開始直後で、室内温度と設定温度の差が大きいある第3の値になっている場合には、制御装置40は、圧縮機31の回転数を大きく上昇させて、冷房能力を大きくする。この場合、適切な冷凍サイクルで運転されていれば、差圧式膨張弁33に掛かる差圧がDP3(図5参照)の近傍で安定しており、制御装置40は、圧縮機31の回転数に合わせて変更された所定圧力範囲SC3(図5参照)から外れない範囲で、冷凍装置10の運転を制御できる。 Further, for example, immediately after the start of operation of the refrigeration apparatus 10, when the difference between the room temperature and the set temperature is a third value that is large, the control device 40 increases the number of revolutions of the compressor 31 significantly. Increase the cooling capacity. In this case, if operating in an appropriate refrigeration cycle, the differential pressure applied to the differential pressure type expansion valve 33 is stable in the vicinity of DP3 (see FIG. 5), and the controller 40 controls the rotational speed of the compressor 31 to The operation of the refrigeration system 10 can be controlled without departing from the predetermined pressure range SC3 (see FIG. 5) which is also changed.
 通常運転で上述のような制御を制御装置40が行うことにより、差圧式膨張弁33の弁開度は、圧縮機31の回転数に基づいて設定されている所定圧力範囲SC1,SC2,SC3の範囲内に収まるように設定されている。従って、冷凍装置10の運転が安定している状態における差圧式膨張弁33の差圧は、所定圧力範囲SC1,SC2,SC3の中の差圧になる。 When the control device 40 performs the control as described above in the normal operation, the valve opening degree of the differential pressure type expansion valve 33 is set to a predetermined pressure range SC1, SC2, SC3 set based on the rotational speed of the compressor 31. It is set to fit within the range. Therefore, the differential pressure of the differential pressure type expansion valve 33 in the state where the operation of the refrigeration system 10 is stable becomes the differential pressure in the predetermined pressure range SC1, SC2, SC3.
 (3-2)異常時の弁開度の調整動作
 しかしながら、差圧式膨張弁33の差圧は、冷凍装置10が置かれた環境、特に室内温度及び室外温度に大きく影響される。差圧式膨張弁33の差圧が環境の影響を受けるため、冷凍装置10の置かれた環境によって差圧式膨張弁33の差圧を圧縮機31の回転数によって制御するには困難な場合が生じることがある。このように圧縮機31の回転数によっては差圧式膨張弁33の差圧を十分に制御できないときが異常時である。
(3-2) Adjustment Operation of Valve Opening at Abnormal Time However, the differential pressure of the differential pressure type expansion valve 33 is greatly influenced by the environment in which the refrigeration system 10 is placed, particularly the indoor temperature and the outdoor temperature. Since the differential pressure of the differential pressure type expansion valve 33 is affected by the environment, it may be difficult to control the differential pressure of the differential pressure type expansion valve 33 by the rotational speed of the compressor 31 depending on the environment where the refrigeration system 10 is placed. Sometimes. As described above, when the differential pressure of the differential pressure type expansion valve 33 can not be sufficiently controlled depending on the rotational speed of the compressor 31, it is an abnormal time.
 (3-2-1)差圧が小さくなり過ぎるケース
 冷房運転において、空調対象空間である室内の室内温度が、熱源側空間である室外の室外温度と同じ程度の場合かまたは高い場合、差圧式膨張弁33の差圧が所定圧力範囲に対して小さくなり過ぎることがある。例えば、設定温度が18℃で室内温度が27℃の場合が上述の設定温度と室内温度の差が第3の値になっている場合であるとすると、適正な冷凍サイクルで冷凍装置10が運転されていれば、差圧式膨張弁33の差圧がDP3の近傍で安定して、所定圧力範囲SC3の範囲内で制御できるものとする。ところが、例えば、設定温度が18℃の冷房運転時に室内温度と室外温度がともに27℃であると、差圧が適切な所定圧力範囲SC3から外れる程小さくなることがある。例えば、差圧式膨張弁33の差圧が図5に示されている差圧DP4になると、弁開度が小さくなって冷媒回路11の冷媒流量がFR1まで小さくなる。このときの圧縮機31の回転数では冷媒回路11を循環する冷媒の流量がRA1の範囲であれば適切であるところ、冷媒流量がFR1まで小さくなると、室内熱交換器21が乾き易くなって室内熱交換器21から出て圧縮機31に吸い込まれる冷媒の過熱度が大きくなり、圧縮機31から吐出される冷媒の吐出温度が高くなって圧縮機31が運転できなくなる。
(3-2-1) The case where the differential pressure becomes too small In the cooling operation, when the indoor temperature of the room which is the air conditioning target space is the same degree as or higher than the outdoor temperature of the outdoor which is the heat source side space, differential pressure type The differential pressure of the expansion valve 33 may be too small for a predetermined pressure range. For example, assuming that the set temperature is 18 ° C. and the room temperature is 27 ° C. is the case where the difference between the set temperature and the room temperature described above is the third value, the refrigeration apparatus 10 operates in an appropriate refrigeration cycle. If so, the differential pressure of the differential pressure type expansion valve 33 is stabilized in the vicinity of DP3 and can be controlled within the range of the predetermined pressure range SC3. However, for example, when the indoor temperature and the outdoor temperature are both 27 ° C. during the cooling operation at the set temperature of 18 ° C., the differential pressure may become so small that it deviates from the appropriate predetermined pressure range SC3. For example, when the differential pressure of the differential pressure type expansion valve 33 reaches the differential pressure DP4 shown in FIG. 5, the valve opening degree decreases and the refrigerant flow rate of the refrigerant circuit 11 decreases to FR1. The rotational speed of the compressor 31 at this time is appropriate as long as the flow rate of the refrigerant circulating through the refrigerant circuit 11 is in the range RA1. However, when the flow rate of the refrigerant decreases to FR1, the indoor heat exchanger 21 becomes dry easily and the room The degree of superheat of the refrigerant coming out of the heat exchanger 21 and sucked into the compressor 31 becomes large, the discharge temperature of the refrigerant discharged from the compressor 31 becomes high, and the compressor 31 can not be operated.
 例えば、同じ条件で図1の冷媒回路11の差圧式膨張弁33を電動弁に置き換えた場合には、電動弁に掛かる差圧に関係なく電動弁の弁開度を制御できるため、圧縮機31から吐出される冷媒の吐出温度は約58℃になる。しかし、差圧式膨張弁33を用いて同じ条件で運転された場合には、圧縮機31から吐出される冷媒の吐出温度は約103℃になる。 For example, when the differential pressure type expansion valve 33 of the refrigerant circuit 11 of FIG. 1 is replaced with a motor operated valve under the same conditions, the valve opening degree of the motor operated valve can be controlled regardless of the differential pressure applied to the motored valve. The discharge temperature of the refrigerant discharged from the nozzle is about 58.degree. However, when the differential pressure type expansion valve 33 is operated under the same conditions, the discharge temperature of the refrigerant discharged from the compressor 31 is about 103 ° C.
 制御装置40は、後述する(3-3)に記載されている方法などによって、所定圧力範囲SC3を差圧式膨張弁33の差圧が外れたことを検出しまたは推定する。制御装置40は、所定圧力範囲SC3を差圧式膨張弁33の差圧が外れたと判断すると、差圧式膨張弁33の差圧を所定圧力範囲SC3に向けて変化させる制御を行う。上述の場合には、制御装置40は、所定圧力範囲SC3の下限値LDPを下回るので、差圧式膨張弁33の差圧をDP3に向って上昇させる制御を行う。例えば、制御装置40は、差圧式膨張弁33の差圧をDP3に向って上昇させるために、室外ファン34の回転数を下げる制御を行う。 The control device 40 detects or estimates that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range SC3 by a method described in (3-3) described later or the like. When determining that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range SC3, the control device 40 performs control to change the differential pressure of the differential pressure type expansion valve 33 toward the predetermined pressure range SC3. In the case described above, the control device 40 performs control to raise the differential pressure of the differential pressure type expansion valve 33 toward DP3 because the value falls below the lower limit LDP of the predetermined pressure range SC3. For example, in order to raise the differential pressure of the differential pressure type expansion valve 33 toward DP 3, the control device 40 performs control to lower the rotational speed of the outdoor fan 34.
 図6には、室外ファン34の回転数を変化させたときの差圧の変化を示す曲線C1と吐出温度の変化を示す曲線C2とが示されている。例えば、図6に示されている特性がある場合には、所定圧力範囲SC3の下限値LDPを差圧式膨張弁33の差圧が下回ったことを制御装置40が検出した時点で吐出温度が約103℃で室外ファン34の回転数が890rpmであるとすると、制御装置40は、室外ファン34の回転数を340rpmに下げることによって吐出温度を約66℃まで下げることができる。 FIG. 6 shows a curve C1 showing a change in differential pressure when the rotation speed of the outdoor fan 34 is changed, and a curve C2 showing a change in discharge temperature. For example, in the case where the characteristics shown in FIG. 6 are present, the discharge temperature is about at the point when the control device 40 detects that the differential pressure of the differential pressure type expansion valve 33 falls below the lower limit LDP of the predetermined pressure range SC3. Assuming that the rotational speed of the outdoor fan 34 is 890 rpm at 103 ° C., the controller 40 can lower the discharge temperature to about 66 ° C. by reducing the rotational speed of the outdoor fan 34 to 340 rpm.
 冷凍装置10が所定の吐出温度以上になると圧縮機31を保護するために圧縮機31の回転数の上昇を制限するように構成されている点について検討する。同じの環境条件(例えば室内温度及び室外温度が27℃、設定温度18℃)において冷凍装置10の圧縮機31の吐出温度が上限に到達する圧縮機31の回転数は、室外ファン34の回転数が890rpmの場合に比べて340rpmでは約2倍になる。つまり、冷凍装置10にとって厳しい環境条件の場合に、制御装置40は、室外ファン34の回転数を下げることにより、圧縮機31の運転可能範囲を広げることができる。 It is considered that the system is configured to limit the increase in the rotational speed of the compressor 31 in order to protect the compressor 31 when the refrigeration system 10 reaches a predetermined discharge temperature or more. The rotation speed of the compressor 31 at which the discharge temperature of the compressor 31 of the refrigeration apparatus 10 reaches the upper limit under the same environmental conditions (for example, the indoor temperature and the outdoor temperature is 27 ° C. and the set temperature 18 ° C.) Is approximately doubled at 340 rpm compared to the case of 890 rpm. That is, in the case of a severe environmental condition for the refrigeration apparatus 10, the control device 40 can widen the operable range of the compressor 31 by reducing the rotational speed of the outdoor fan 34.
 (3-2-2)差圧が大きくなり過ぎるケース
 冷房運転において、熱源側空間である室外の室外温度が、空調対象空間である室内の室内温度に対して非常に高い場合、差圧式膨張弁33の差圧が所定圧力範囲に対して大きくなり過ぎることがある。例えば、設定温度が18℃で室内温度が23℃の場合が上述の設定温度と室内温度の差が第2の値になっている場合であり、適正な冷凍サイクルで冷凍装置10が運転されていれば、差圧式膨張弁33の差圧がDP2の近傍で安定して、所定圧力範囲SC2の範囲内で制御できるものとする。ところが、例えば、設定温度が18℃の冷房運転時に室内温度が21℃であるのに室外温度が46℃になっているとき、差圧が適切な所定圧力範囲SC2から外れる程大きくなることがある。例えば、差圧式膨張弁33の差圧が図5に示されている差圧DP5になると、弁開度が大きくなって冷媒回路11の冷媒流量がFR2まで大きくなる。このときの圧縮機31の回転数では冷媒回路11を循環する冷媒の流量がRA2の範囲であれば適切であるところ、冷媒流量がFR2まで大きくなると、室内熱交換器21から出て圧縮機31に吸い込まれる冷媒の過熱度が小さくなり過ぎて、圧縮機31に液戻りが起こり易くなる。例えば、同じ条件で図1の冷媒回路11の差圧式膨張弁33を電動弁に置き換えた場合には、電動弁に掛かる差圧に関係なく電動弁の弁開度を制御できるため、吐出過熱度は約32degであるのに対し、差圧式膨張弁33を用いて同じ条件で運転された場合の吐出過熱度は約17degになる。
(3-2-2) The case where the differential pressure becomes too large In the cooling operation, if the outdoor temperature outside the heat source space is very high with respect to the room temperature inside the air conditioning target space, the differential pressure type expansion valve The differential pressure of 33 may be too high for a given pressure range. For example, when the set temperature is 18 ° C. and the room temperature is 23 ° C., the difference between the set temperature and the room temperature described above is the second value, and the refrigeration system 10 is operated in an appropriate refrigeration cycle. Then, the differential pressure of the differential pressure type expansion valve 33 can be stably controlled in the vicinity of DP2 and can be controlled within the range of the predetermined pressure range SC2. However, for example, when the room temperature is 21 ° C. and the outdoor temperature is 46 ° C. during the cooling operation at a set temperature of 18 ° C., the differential pressure may become so large that it deviates from the appropriate predetermined pressure range SC2. . For example, when the differential pressure of the differential pressure type expansion valve 33 reaches the differential pressure DP5 shown in FIG. 5, the valve opening degree is increased and the refrigerant flow rate of the refrigerant circuit 11 is increased to FR2. The rotational speed of the compressor 31 at this time is appropriate as long as the flow rate of the refrigerant circulating through the refrigerant circuit 11 is in the range of RA2, but when the flow rate of the refrigerant increases to FR2, the indoor heat exchanger 21 exits the indoor heat exchanger 21 and the compressor 31 The degree of superheat of the refrigerant drawn into the air becomes so small that liquid return to the compressor 31 easily occurs. For example, when the differential pressure type expansion valve 33 of the refrigerant circuit 11 of FIG. 1 is replaced with a motor operated valve under the same conditions, the valve opening degree of the motor operated valve can be controlled regardless of the differential pressure applied to the motored valve. Is approximately 32 deg, while the discharge superheat degree is approximately 17 deg when the differential pressure type expansion valve 33 is operated under the same conditions.
 制御装置40は、差圧式膨張弁33の差圧が所定圧力範囲SC2の上限値UDPを上回ると、差圧式膨張弁33の差圧をDP2に向って下降させる制御を行う。例えば、制御装置40は、差圧式膨張弁33の差圧をDP2に向って下降させるために、室外ファン34の回転数を上げる制御を行う。 When the differential pressure of the differential pressure type expansion valve 33 exceeds the upper limit value UDP of the predetermined pressure range SC2, the control device 40 performs control to lower the differential pressure of the differential pressure type expansion valve 33 toward DP2. For example, the control device 40 performs control to increase the rotational speed of the outdoor fan 34 in order to lower the differential pressure of the differential pressure type expansion valve 33 toward DP2.
 なお、(3-2-1)及び(3-2-2)では、所定圧力範囲SC2,SC3から差圧が外れる場合について説明したが、所定圧力範囲SC1から差圧が外れる場合もあり得る。所定圧力範囲SC1から差圧が外れた場合にも、(3-2-1)及び(3-2-2)で説明したように室外ファン34の回転数を変更して、所定圧力範囲SC1の範囲内に差圧が収まるように制御装置40が制御を行うように構成してもよい。また、所定圧力範囲SC3を外れて差圧が大きくなる場合、所定圧力範囲SC2を外れて差圧が小さくなる場合も同様に室外ファン34の回転数を変更して、所定圧力範囲SC1の範囲内に差圧が収まるように制御装置40が制御を行うように構成してもよい。 Although (3-2-1) and (3-2-2) have described the case where the differential pressure deviates from the predetermined pressure range SC2, SC3, the differential pressure may deviate from the predetermined pressure range SC1. Even when the differential pressure deviates from the predetermined pressure range SC1, as described in (3-2-1) and (3-2-2), the rotational speed of the outdoor fan 34 is changed to set the predetermined pressure range SC1. The control device 40 may perform control so that the differential pressure falls within the range. Further, when the differential pressure is increased outside the predetermined pressure range SC3 and the differential pressure is decreased outside the predetermined pressure range SC2, the number of rotations of the outdoor fan 34 is similarly changed to fall within the predetermined pressure range SC1. The controller 40 may be configured to perform control so that the differential pressure is contained.
 また、放熱器用ファン及び/または蒸発器用ファンの回転数を調整することにより差圧を所定圧力範囲に向けて変化させる制御を行う場合として、所定圧力範囲SC1~SC3の3つの場合について説明したが、通常は、例えば、差圧DP1から差圧DP2までの間及び、差圧DP1から差圧DP3の間も含めて、図5に二点差線で示したように連続的な所定圧力範囲SCが設定される。この二点差線は直線でもよいが、所定圧力範囲の幅が差圧の大きさによって変わるように二点鎖線が曲線または階段状になっていてもよい。なお、全体ではなくて、部分的に前述の制御が行われるように構成してもよく、例えば差圧DP1から差圧DP3の間だけ放熱器用ファン及び/または蒸発器用ファンの回転数を調整することにより差圧を所定圧力範囲に向けて変化させる制御を行わせ、差圧DP1から差圧DP2までの間は前述の制御を行わせないように構成してもよい。 Also, three cases of the predetermined pressure range SC1 to SC3 have been described as the case of performing control to change the differential pressure toward the predetermined pressure range by adjusting the number of rotations of the radiator fan and / or the evaporator fan. Usually, for example, between the differential pressure DP1 and the differential pressure DP2 and also between the differential pressure DP1 and the differential pressure DP3, as shown by a two-dot chain line in FIG. It is set. The two-dot chain line may be a straight line, but the two-dot chain line may be curved or stepped so that the width of the predetermined pressure range changes depending on the magnitude of the differential pressure. The above-described control may be partially performed instead of the whole. For example, the number of rotations of the radiator fan and / or the evaporator fan may be adjusted only between the differential pressure DP1 and the differential pressure DP3. Thus, control may be performed to change the differential pressure toward a predetermined pressure range, and the above-described control may not be performed between the differential pressure DP1 and the differential pressure DP2.
 (3-3)差圧を所定圧力範囲に戻すための判断
 (3-3-1)室内温度を用いた判断
 制御装置40は、例えば、所定圧力範囲SCから差圧式膨張弁33の差圧が外れたことを室内温度センサ23と室外温度センサ36の検出値の差、つまり室内温度と室外温度の温度差を用いて判断する。上述の(3-1)で説明したように、室外温度と室内温度が同じ温度である場合または室内温度が室外温度よりも高い場合に所定圧力範囲SC3の下限値LDPよりも差圧が小さくなることがある。しかしながら、例えば、室内温度と室外温度が同じになった場合に常に所定圧力範囲SC3の下限値LDPよりも差圧が小さくなるとは限らない。例えば冷房運転時の設定温度及び機器の性能及び設計によっても下限値LDPよりも差圧が小さくなるか否かは違ってくる。そこで、例えば、実機またはシミュレーションを使って所定圧力範囲SC3の下限値LDPよりも差圧が小さくなる条件を予め調べておく。そして、その事前の調査結果に基づくデータを制御装置40に記憶させておく。このようなデータを用いたプログラムに基づいて特定の機器の特定の条件において室内温度と室外温度の温度差が所定条件を満たせば、制御装置40は、下限値LDPよりも差圧が小さくなったと判断して差圧を上昇させるために室外ファン34の回転数を予め定められている回転数まで低下させる。
(3-3) Judgment for returning differential pressure to predetermined pressure range (3-3-1) Judgment using indoor temperature The control device 40 has, for example, the differential pressure of the differential pressure type expansion valve 33 from the predetermined pressure range SC. It is determined using the difference between the detection values of the indoor temperature sensor 23 and the outdoor temperature sensor 36, that is, the temperature difference between the indoor temperature and the outdoor temperature. As described in (3-1) above, the differential pressure is smaller than the lower limit LDP of the predetermined pressure range SC3 when the outdoor temperature and the indoor temperature are the same temperature or when the indoor temperature is higher than the outdoor temperature Sometimes. However, for example, when the indoor temperature and the outdoor temperature become equal, the differential pressure is not always smaller than the lower limit LDP of the predetermined pressure range SC3. For example, whether the differential pressure is smaller than the lower limit LDP also differs depending on the set temperature during cooling operation and the performance and design of the device. Therefore, for example, conditions under which the differential pressure is smaller than the lower limit LDP of the predetermined pressure range SC3 are previously examined using an actual machine or simulation. Then, data based on the preliminary examination result is stored in the control device 40. If the temperature difference between the indoor temperature and the outdoor temperature satisfies a predetermined condition under a specific condition of a specific device based on a program using such data, the control device 40 determines that the differential pressure is smaller than the lower limit LDP. In order to judge and raise the differential pressure, the number of rotations of the outdoor fan 34 is reduced to a predetermined number of rotations.
 同様に、室外温度が室内温度に対して非常に高い場合についても、例えば、実機またはシミュレーションを使って所定圧力範囲SC2の上限値UDPよりも差圧が高くなる条件を予め調べておく。そして、その事前の調査結果に基づくデータを制御装置40に記憶させておく。このようなデータを用いたプログラムに基づいて特定の機器の特定の条件において室内温度と室外温度の温度差が所定条件を満たせば、制御装置40は、上限値UDPよりも差圧が大きくなったと判断して差圧を下降させるために室外ファン34の回転数を予め定められている回転数まで上昇させる。 Similarly, also in the case where the outdoor temperature is very high relative to the indoor temperature, for example, conditions that make the differential pressure higher than the upper limit value UDP of the predetermined pressure range SC2 are examined in advance using a real machine or simulation. Then, data based on the preliminary examination result is stored in the control device 40. If the temperature difference between the indoor temperature and the outdoor temperature satisfies a predetermined condition under a specific condition of a specific device based on a program using such data, the control device 40 determines that the differential pressure is larger than the upper limit value UDP. In order to lower the differential pressure, the number of rotations of the outdoor fan 34 is increased to a predetermined number of rotations.
 なお、室外温度は、例えば、既に説明したように圧縮機31の回転数とともに室外ファン34の回転数の決定に用いられている。このように室外ファン34の回転数の決定に既に室外温度が用いられていることから、室外温度と室内温度の温度差を用いる代わりに、従来の圧縮機31の回転数と室外温度による室外ファン34の回転数の決定方法にさらに室内温度を加味して室外ファン34の回転数を決定するように構成してもよい。室内温度を加味して室外ファン34の回転数を決定する方法には、例えば、室内温度で室外ファン34の回転数の決定値を補正する方法などがある。 In addition, outdoor temperature is used for determination of the rotation speed of the outdoor fan 34 with the rotation speed of the compressor 31, as already demonstrated, for example. As described above, since the outdoor temperature is already used to determine the rotational speed of the outdoor fan 34, instead of using the temperature difference between the outdoor temperature and the indoor temperature, the outdoor fan according to the conventional rotational speed of the compressor 31 and the outdoor temperature The rotational speed of the outdoor fan 34 may be determined in consideration of the room temperature in addition to the method of determining the rotational speed of 34. As a method of determining the rotation speed of the outdoor fan 34 in consideration of the room temperature, there is, for example, a method of correcting the determined value of the rotation speed of the outdoor fan 34 based on the room temperature.
 (3-3-2)差圧関連の検出値を用いた判断
 上述の(3-3-1)では、所定圧力範囲SCに差圧を戻すための室外ファン34の回転数の制御に室内温度を用いる場合について説明したが、それに代えてまたはそれと合わせて差圧関連の検出値を用いて室外ファン34の回転数が制御されてもよい。そのために、制御装置40は、室外熱交換器32の凝縮温度及び室内熱交換器21の蒸発温度から差圧式膨張弁33の冷媒入口61と冷媒出口62の間の差圧を推定して、推定された差圧を用いて所定圧力範囲SCから外れたか否かを判断して制御をするように構成されてもよい。
(3-3-2) Judgment Using Detection Value Related to Differential Pressure In the above (3-3-1), the room temperature is used to control the rotational speed of the outdoor fan 34 for returning the differential pressure to the predetermined pressure range SC. However, alternatively or additionally, the rotational speed of the outdoor fan 34 may be controlled using a differential pressure related detection value. Therefore, the control device 40 estimates the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 from the condensation temperature of the outdoor heat exchanger 32 and the evaporation temperature of the indoor heat exchanger 21 to estimate it. The control may be performed by determining whether or not the pressure difference is out of the predetermined pressure range SC using the pressure difference.
 図1に示されている冷媒回路11においては、図2の点Bと点Cの間の気液二相状態の冷媒が室外熱交換器32の中で出現する。制御装置40は、室外熱交換器32の中の気液二相状態になっている冷媒の温度を室外熱交換器用温度センサ37により測定する。点Bと点Cの間の気液二相状態の冷媒の温度が凝縮温度であるから、特定の冷媒の凝縮温度と圧力の関係から図2に示されている圧力P1が求まる。また、冷媒回路11においては、図2の点Dと点Aの間の気液二相状態の冷媒が室内熱交換器21の中で出現する。制御装置40は、室内熱交換器21の中の気液二相状態になっている冷媒の温度を室内熱交換器用温度センサ24により測定する。点Dと点Aの間の気液二相状態の冷媒の温度が蒸発温度であるから、特定の冷媒の蒸発温度と圧力の関係から図2に示されている圧力P2が求まる。差圧式膨張弁33の冷媒入口61と冷媒出口62の間の差圧は、実質的に点Cと点Dの間の圧力差(P1-P2)である。この場合には、室外熱交換器用温度センサ37及び室内熱交換器用温度センサ24の両方により、凝縮温度及び蒸発温度を検出するための第3センサが構成される。 In the refrigerant circuit 11 shown in FIG. 1, the refrigerant in the gas-liquid two-phase state between the point B and the point C in FIG. 2 appears in the outdoor heat exchanger 32. The controller 40 measures the temperature of the refrigerant in the gas-liquid two-phase state in the outdoor heat exchanger 32 by the outdoor heat exchanger temperature sensor 37. Since the temperature of the refrigerant in the gas-liquid two-phase state between the point B and the point C is the condensation temperature, the pressure P1 shown in FIG. 2 can be obtained from the relationship between the condensation temperature of the specific refrigerant and the pressure. Further, in the refrigerant circuit 11, the refrigerant in the gas-liquid two-phase state between the point D and the point A in FIG. 2 appears in the indoor heat exchanger 21. The controller 40 measures the temperature of the refrigerant in the gas-liquid two-phase state in the indoor heat exchanger 21 by the temperature sensor 24 for the indoor heat exchanger. Since the temperature of the refrigerant in the gas-liquid two-phase state between the point D and the point A is the evaporation temperature, the pressure P2 shown in FIG. 2 can be obtained from the relationship between the evaporation temperature and the pressure of a specific refrigerant. The differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 is substantially the pressure difference (P1-P2) between the point C and the point D. In this case, both the outdoor heat exchanger temperature sensor 37 and the indoor heat exchanger temperature sensor 24 constitute a third sensor for detecting the condensation temperature and the evaporation temperature.
 従って、制御装置40が内部メモリ(図示せず)に凝縮温度及び蒸発温度から圧力を求める第2テーブルを記憶しているように構成されていれば、室外熱交換器用温度センサ37及び室内熱交換器用温度センサ24が検出する温度を用いて、制御装置40は、差圧式膨張弁33の差圧を監視することができる。制御装置40は、このような監視を行って、下限値LDPよりも差圧が小さくなったと判断すれば、差圧を上昇させるために室外ファン34の回転数を予め定められている回転数まで低下させる。また、制御装置40は、このような監視の下で上限値UDPよりも差圧が大きくなったと判断すれば、差圧を下降させるために室外ファン34の回転数を予め定められている回転数まで上昇させる。 Therefore, if the control device 40 is configured to store the second table for obtaining the pressure from the condensation temperature and the evaporation temperature in the internal memory (not shown), the temperature sensor 37 for outdoor heat exchanger and the indoor heat exchange The controller 40 can monitor the differential pressure of the differential pressure type expansion valve 33 using the temperature detected by the instrumental temperature sensor 24. If the control device 40 performs such monitoring and determines that the differential pressure has become smaller than the lower limit LDP, the rotational speed of the outdoor fan 34 is increased to a predetermined rotational speed in order to increase the differential pressure. Reduce. Further, if the control device 40 determines that the differential pressure becomes larger than the upper limit value UDP under such monitoring, the number of rotations of the outdoor fan 34 is set in advance to lower the differential pressure. Raise to.
 (3-3-3)吐出温度を用いた判断
 上述の(3-3-1)では、所定圧力範囲SC3に差圧を戻すための室外ファン34の回転数の制御に室内温度を用いる場合について説明し、上述の(3-3-2)では、所定圧力範囲SC2に差圧を戻すための室外ファン34の回転数の制御に差圧関連の検出値を用いる場合について説明したが、それらに代えてまたはそれらと合わせて吐出温度を用いて室外ファン34の回転数が制御されてもよい。そのために、制御装置40は、吐出温度を用いて所定圧力範囲SCから外れたか否かを判断して制御をするように構成されてもよい。
(3-3-3) Judgment Using Discharge Temperature In the case of (3-3-1) described above, the case where the indoor temperature is used to control the rotational speed of the outdoor fan 34 for returning the differential pressure to the predetermined pressure range SC3 In the above (3-3-2), the control of the rotational speed of the outdoor fan 34 for returning the differential pressure to the predetermined pressure range SC2 has been described using differential pressure related detection values. Alternatively or additionally, the discharge temperature may be used to control the rotational speed of the outdoor fan 34. To that end, the control device 40 may be configured to perform control by determining whether or not it has deviated from the predetermined pressure range SC using the discharge temperature.
 上述の(3-2-1)では、差圧が小さくなり過ぎるケースについて説明した。この説明から分かるように、所定圧力範囲SCの下限値LDPを下回るように差圧が外れたときには、結果として圧縮機31から吐出される冷媒の吐出温度が異常に上昇する。逆に、冷媒の吐出温度の異常な上昇から所定圧力範囲SCの下限値LDPを差圧が下回ったと判断するように制御装置40が構成されてもよい。 The above (3-2-1) has described the case where the differential pressure becomes too small. As can be understood from this description, when the differential pressure deviates so as to fall below the lower limit LDP of the predetermined pressure range SC, the discharge temperature of the refrigerant discharged from the compressor 31 as a result rises abnormally. Conversely, the control device 40 may be configured to determine that the differential pressure falls below the lower limit LDP of the predetermined pressure range SC due to an abnormal increase in the discharge temperature of the refrigerant.
 (4)変形例
 (4-1)変形例1A
 上記実施形態では、冷凍装置10が冷房専用である場合について説明したが、図7に示されているような暖房専用の冷凍装置10Aに対しても上記実施形態の考え方を適用することができる。
(4) Modification (4-1) Modification 1A
Although the case where the refrigeration system 10 is dedicated to cooling is described in the above embodiment, the concept of the above embodiment can be applied to the refrigeration system 10A dedicated to heating as shown in FIG. 7.
 (4-1-1)全体構成
 図7に示されている冷凍装置10Aは、利用ユニット20と利用ユニット20に接続された熱源ユニット30とを備えている。利用ユニット20は、室内熱交換器21と室内ファン22とを備えている。熱源ユニット30は、圧縮機31と室外熱交換器32と差圧式膨張弁33と室外ファン34とを備えている。利用ユニット20と熱源ユニット30とは冷媒配管で接続されており、利用ユニット20と熱源ユニット30の間で冷媒を循環させる冷媒回路11Aが形成されている。この冷媒回路11Aを冷媒が循環することによって、冷凍装置10Aは、蒸気圧縮式冷凍サイクルを行うことができる。
(4-1-1) Overall Configuration The refrigeration system 10A shown in FIG. 7 includes a utilization unit 20 and a heat source unit 30 connected to the utilization unit 20. The usage unit 20 includes an indoor heat exchanger 21 and an indoor fan 22. The heat source unit 30 includes a compressor 31, an outdoor heat exchanger 32, a differential pressure type expansion valve 33, and an outdoor fan 34. The utilization unit 20 and the heat source unit 30 are connected by a refrigerant pipe, and a refrigerant circuit 11A that circulates the refrigerant between the utilization unit 20 and the heat source unit 30 is formed. By circulating the refrigerant through the refrigerant circuit 11A, the refrigeration system 10A can perform a vapor compression refrigeration cycle.
 冷媒回路11Aは、圧縮機31、室内熱交換器21、差圧式膨張弁33及び室外熱交換器32の順に冷媒が循環するように構成されている。圧縮機31は、ガス冷媒(図2に示された点Aの状態の冷媒)を圧縮する。圧縮機31の吐出口から出た高温高圧の冷媒(図2に示された点Bの状態の冷媒)は、室内熱交換器21の流入口に流入する。室内熱交換器21において室内空気との間で熱交換された液冷媒(図2に示された点Cの状態の冷媒)は、室内熱交換器21の流出口から流出し、差圧式膨張弁33の流入口に流入する。差圧式膨張弁33で膨張されて減圧された冷媒(図2に示された点Dの状態の冷媒)は、差圧式膨張弁33の流出口から流出し、室外熱交換器32の流入口に流入する。室外熱交換器32において室外空気との間で熱交換されたガス冷媒(図2に示された点Aの状態の冷媒)は、室外熱交換器32の流出口から流出し、圧縮機31の吸入口に流入する。 The refrigerant circuit 11A is configured such that the refrigerant circulates in the order of the compressor 31, the indoor heat exchanger 21, the differential pressure type expansion valve 33, and the outdoor heat exchanger 32. The compressor 31 compresses a gas refrigerant (the refrigerant in the state of point A shown in FIG. 2). The high-temperature and high-pressure refrigerant (refrigerant in the state of point B shown in FIG. 2) that has exited from the discharge port of the compressor 31 flows into the inlet of the indoor heat exchanger 21. The liquid refrigerant (refrigerant in the state of point C shown in FIG. 2) heat-exchanged with the indoor air in the indoor heat exchanger 21 flows out from the outlet of the indoor heat exchanger 21, and the differential pressure type expansion valve Flow into the 33 inlet. The refrigerant expanded and reduced in pressure by the differential pressure type expansion valve 33 (the refrigerant in the state of point D shown in FIG. 2) flows out from the outlet of the differential pressure type expansion valve 33 and flows to the inlet of the outdoor heat exchanger 32. To flow. The gas refrigerant (refrigerant in the state of point A shown in FIG. 2) heat-exchanged with the outdoor air in the outdoor heat exchanger 32 flows out from the outlet of the outdoor heat exchanger 32, and It flows into the suction port.
 図7に示されている冷凍装置10Aでは、空調対象空間である室内の暖房が行われる。このような冷凍装置10Aでは、室内熱交換器21が放熱器(または凝縮器)として機能し、室外熱交換器32が蒸発器として機能する。 In the refrigeration system 10A shown in FIG. 7, heating of the room which is the space to be air conditioned is performed. In such a refrigeration system 10A, the indoor heat exchanger 21 functions as a radiator (or a condenser), and the outdoor heat exchanger 32 functions as an evaporator.
 (4-1-2)冷凍装置10Aの動作
 冷凍装置10Aは、暖房専用の装置であり、室内温度が設定温度になるように制御装置40により制御される。冷凍装置10Aでは、圧縮機31に液冷媒が吸入されるのを防止するために、例えば圧縮機31に吸入される冷媒が実質的に過熱状態になるように制御される。図7に示されている冷凍装置10Aでは、吐出温度センサ35で検出される冷媒の過熱度が目標過熱度になるように制御装置40が制御することによって、圧縮機31から吸入される冷媒の吐出過熱度が適切な範囲を維持するように制御される。冷媒の温度を目標過熱度にするために、制御装置40は、圧縮機31の回転数及び/または室外ファン34の回転数を制御する。
(4-1-2) Operation of Refrigeration Apparatus 10A The refrigeration apparatus 10A is an apparatus dedicated to heating, and is controlled by the control device 40 so that the indoor temperature becomes a set temperature. In the refrigeration apparatus 10A, in order to prevent the liquid refrigerant from being drawn into the compressor 31, for example, the refrigerant drawn into the compressor 31 is controlled so as to be substantially in a superheated state. In the refrigeration apparatus 10A shown in FIG. 7, the control device 40 controls the degree of superheat of the refrigerant detected by the discharge temperature sensor 35 to be the target degree of superheat, so that the refrigerant sucked from the compressor 31 The degree of discharge superheat is controlled to maintain an appropriate range. The controller 40 controls the number of revolutions of the compressor 31 and / or the number of revolutions of the outdoor fan 34 in order to bring the temperature of the refrigerant to the target degree of superheat.
 また、制御装置40は、室内温度センサ23により検出される室内温度と設定温度との差が大きいときには圧縮機31の回転数を大きくし、室内温度と設定温度との差が小さいときには圧縮機31の回転数を小さくする制御を行う。圧縮機31の回転数が大きくなると暖房能力が大きくなるので、暖房負荷が大きくても室内温度を設定温度に近づけることができる。 Further, when the difference between the indoor temperature detected by the indoor temperature sensor 23 and the set temperature is large, the control device 40 increases the rotational speed of the compressor 31, and when the difference between the indoor temperature and the set temperature is small, the compressor 31 Control to reduce the rotation speed of Since the heating capacity increases as the rotation speed of the compressor 31 increases, the indoor temperature can be brought close to the set temperature even if the heating load is large.
 (4-1-3)弁開度の調整動作
 通常運転では、冷凍装置10Aも冷凍装置10と同様に、制御装置40に記憶されている第3テーブルに従って吐出過熱度を目標過熱度に合わせるように、制御装置40が例えば圧縮機31の回転数を制御するように構成されている。制御装置40に記憶されている第3テーブルには、設定温度、室内温度(室内温度センサ23の検出値)及び吐出温度(吐出温度センサ35の検出値)などと圧縮機31の回転数との関係が記述されている。制御装置40は、この関係の記述を読み取って、状況に応じて圧縮機31の回転数を変更する。
(4-1-3) Adjustment Operation of Valve Opening In the normal operation, the refrigeration apparatus 10A also adjusts the discharge superheat degree to the target superheat degree according to the third table stored in the control device 40, similarly to the refrigeration apparatus 10 In addition, the control device 40 is configured to control, for example, the number of rotations of the compressor 31. In a third table stored in the control device 40, the set temperature, the indoor temperature (the detected value of the indoor temperature sensor 23), the discharge temperature (the detected value of the discharge temperature sensor 35), etc. The relationship is described. The control device 40 reads the description of this relation, and changes the rotation speed of the compressor 31 according to the situation.
 (4-1-4)異常時の弁開度の調整動作
 暖房運転においても、差圧式膨張弁33の差圧が所定圧力範囲に対して小さくなり過ぎることがある。所定圧力範囲を差圧式膨張弁33の差圧が外れたことを検出しまたは推定する制御装置40は、所定圧力範囲を差圧式膨張弁33の差圧が外れたと判断すると、差圧式膨張弁33の差圧を所定圧力範囲に向けて変化させる制御を行う。制御装置40は、所定圧力範囲の下限値を下回った場合には、差圧式膨張弁33の差圧を上昇させる制御を行う。例えば、制御装置40は、差圧式膨張弁33の差圧を上昇させるために、室外ファン34の回転数を下げる制御を行う。
(4-1-4) Adjustment Operation of Valve Opening at Abnormal Time Even in the heating operation, the differential pressure of the differential pressure type expansion valve 33 may be too small relative to the predetermined pressure range. The control device 40 that detects or estimates that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range determines that the differential pressure of the differential pressure type expansion valve 33 has deviated, the differential pressure type expansion valve 33 Control of changing the differential pressure of the pressure sensor to a predetermined pressure range. The control device 40 performs control to increase the differential pressure of the differential pressure type expansion valve 33 when the pressure falls below the lower limit value of the predetermined pressure range. For example, in order to raise the differential pressure of the differential pressure type expansion valve 33, the control device 40 performs control to lower the rotational speed of the outdoor fan 34.
 暖房運転において、差圧式膨張弁33の差圧が所定圧力範囲に対して大きくなり過ぎることがある。制御装置40は、差圧式膨張弁33の差圧が所定圧力範囲の上限値を上回った場合には、差圧式膨張弁33の差圧を下降させる制御を行う。例えば、制御装置40は、差圧式膨張弁33の差圧を下降させるために、室外ファン34の回転数を上げる制御を行う。 In the heating operation, the differential pressure of the differential pressure type expansion valve 33 may be too large for a predetermined pressure range. The control device 40 performs control to lower the differential pressure of the differential pressure type expansion valve 33 when the differential pressure of the differential pressure type expansion valve 33 exceeds the upper limit value of the predetermined pressure range. For example, in order to lower the differential pressure of the differential pressure type expansion valve 33, the control device 40 performs control to increase the rotational speed of the outdoor fan 34.
 なお、暖房運転における差圧を所定圧力範囲に戻すための判断は、制御装置40において、上述の(3-3)で説明した冷房運転における差圧を所定圧力範囲に戻すための判断と同様に行うことができる。 The determination for returning the differential pressure in the heating operation to the predetermined pressure range is the same as the determination for returning the differential pressure in the cooling operation described in (3-3) above to the predetermined pressure range in the control device 40. It can be carried out.
 (4-2)変形例1B
 上記実施形態の冷凍装置10及び変形例1Aの冷凍装置10Aの説明では、1台の熱源ユニット30に対して1台の利用ユニット20が接続されるペア型である場合について説明したが、冷凍装置の構成はペア型には限られず、上記実施形態の考え方は、熱源ユニットに複数の利用ユニットが接続されるマルチ型にも適用することができる。
(4-2) Modified Example 1B
In the description of the refrigeration system 10 of the above embodiment and the refrigeration system 10A of the modification 1A, the pair type in which one utilization unit 20 is connected to one heat source unit 30 has been described, but the refrigeration system The configuration of is not limited to the pair type, and the concept of the above embodiment can be applied to a multi type in which a plurality of utilization units are connected to the heat source unit.
 (4-3)変形例1C
 上記実施形態及び変形例1Aでは、熱源ユニット30に差圧式膨張弁33が設けられる場合について説明したが、差圧式膨張弁33は、利用ユニット20に設けられてもよく、利用ユニット20と熱源ユニット30以外の冷媒回路11,11Aの中に配置されてもよい。
(4-3) Modified Example 1C
Although the case where the differential pressure type expansion valve 33 is provided in the heat source unit 30 has been described in the embodiment and the modified example 1A, the differential pressure type expansion valve 33 may be provided in the usage unit 20, and the usage unit 20 and the heat source unit It may be disposed in refrigerant circuits 11 and 11A other than 30.
 (4-4)変形例1D
 上記実施形態及び変形例1Aでは、冷凍装置10が冷房専用である場合または冷凍装置10Aが暖房専用である場合について説明したが、冷房と暖房の両方ができるように構成された冷凍装置にも上記実施形態の考え方を適用することができる。
(4-4) Modified Example 1D
Although the case where the refrigeration apparatus 10 is dedicated to cooling or the refrigeration apparatus 10A is dedicated to heating has been described in the above embodiment and modification 1A, the above description also applies to a refrigeration apparatus configured to perform both cooling and heating. The idea of the embodiment can be applied.
 (4-5)変形例1E
 上記実施形態では、付勢部材としてコイルバネ53を例に挙げて説明したが、付勢部材に用いられるバネはコイルバネ53には限られない。また、付勢部材としてコイルバネ53のようなバネを例に挙げて説明したが、付勢部材はバネに限られず、例えばゴムなどの他の弾性部材を付勢部材として用いることもできる。また、例えば磁石を付勢部材として用いることもできる。磁石と磁石の間に生じる斥力または引力を付勢力として用いたり、磁石と金属の間に生じる引力を付勢力として用いたりすることができる。
(4-5) Modified Example 1E
In the above embodiment, the coil spring 53 is described as an example of the biasing member, but the spring used for the biasing member is not limited to the coil spring 53. Further, although a spring such as a coil spring 53 has been described as an example of the biasing member, the biasing member is not limited to a spring, and another elastic member such as rubber can be used as the biasing member. Also, for example, a magnet can be used as the biasing member. The repulsive force or attractive force generated between the magnet and the magnet can be used as a biasing force, or the attractive force generated between the magnet and the metal can be used as a biasing force.
 (4-6)変形例1F
 上記実施形態及び変形例1Aでは、差圧式膨張弁33について設定されている所定圧力範囲から差圧が外れたときに、冷房専用の冷凍装置10では、放熱器用ファンである室外ファン34の回転数を調整することにより、また暖房専用の冷凍装置10Aでは、蒸発器用ファンである室外ファン34の回転数を調整することにより、差圧を所定圧力範囲に向けて変化させて差圧式膨張弁33の弁開度を変化させる場合を例に挙げて説明した。
(4-6) Modified Example 1F
In the embodiment and the modification 1A, when the differential pressure deviates from the predetermined pressure range set for the differential pressure type expansion valve 33, the number of revolutions of the outdoor fan 34 serving as a radiator fan in the refrigeration apparatus 10 exclusively for cooling. Of the differential pressure type expansion valve 33 by changing the differential pressure toward a predetermined pressure range by adjusting the rotational speed of the outdoor fan 34 which is a fan for the evaporator, in the refrigeration system 10A for heating only. The case of changing the valve opening has been described as an example.
 しかし、冷房専用の冷凍装置10では、蒸発器用ファンである室内ファン22の回転数を調整することにより、また暖房専用の冷凍装置10Aでは、放熱器用ファンである室内ファン22の回転数を調整することにより、差圧を所定圧力範囲に向けて変化させて差圧式膨張弁33の弁開度を変化させるように構成してもよい。また、冷凍装置10,10Aにおいて放熱器用ファン及び蒸発器用ファンである室外ファン34及び室内ファン22の両方の回転数を調整することにより、差圧を所定圧力範囲に向けて変化させて差圧式膨張弁33の弁開度を変化させるように構成してもよい。 However, in the refrigeration system 10 exclusively for cooling, by adjusting the rotation speed of the indoor fan 22 which is a fan for the evaporator, and in the refrigeration system 10A exclusively for heating, the rotation speed of the indoor fan 22 which is a radiator fan is adjusted. Thus, the differential pressure may be changed toward a predetermined pressure range to change the valve opening degree of the differential pressure type expansion valve 33. Further, the differential pressure is changed toward a predetermined pressure range by adjusting the rotational speeds of both the outdoor fan 34 and the indoor fan 22 which are the fan for the radiator and the fan for the evaporator in the refrigerating apparatus 10, 10A, and the differential pressure type expansion You may comprise so that the valve-opening degree of the valve 33 may be changed.
 (4-7)変形例1G
 上記実施形態及び上記変形例では、吐出過熱度が適切な範囲内に収まるように制御することで例えば圧縮機31が吸入する冷媒が液冷媒とならないなど適切な冷凍サイクルで冷凍装置10が運転できるように制御している。しかし、上記実施形態の考え方が適用できる冷凍装置は、前述のような制御を行う冷凍装置10に限られるものではなく、例えば圧縮機31の吸入過熱度が適切な範囲内に収まるように制御することで圧縮機31が吸入する冷媒が液冷媒とならないようするなど適切な冷凍サイクルで冷凍装置が運転されるような制御をしているものにも上記実施形態の考え方を適用することができる。
(4-7) Modified Example 1G
In the above embodiment and the above modification, the refrigeration apparatus 10 can be operated in an appropriate refrigeration cycle, for example, the refrigerant sucked by the compressor 31 does not become a liquid refrigerant by controlling the discharge superheat degree to fall within an appropriate range. I am in control. However, the refrigeration system to which the concept of the above embodiment can be applied is not limited to the refrigeration system 10 that performs the control as described above, and controls, for example, the suction superheat degree of the compressor 31 within an appropriate range. Thus, the concept of the above-described embodiment can be applied to a system in which the refrigeration system is operated in an appropriate refrigeration cycle such that the refrigerant sucked by the compressor 31 does not become a liquid refrigerant.
 (4-8)変形例1H
 上記実施形態及び上記変形例では、所定圧力範囲の上限から外れたときも下限から外れたときも所定圧力範囲に戻すために放熱器用ファン及び/または蒸発器用ファンの回転数を調整することにより差圧を所定圧力範囲に向けて変化させて差圧式膨張弁の弁開度を変化させる構成されているが、所定圧力範囲の上限から外れたときのみ、または下限から外れたときのみに、所定圧力範囲に戻すために放熱器用ファン及び/または蒸発器用ファンの回転数を調整することによりように差圧を所定圧力範囲に向けて変化させて差圧式膨張弁の弁開度を変化させる構成されてもよい。
(4-8) Modified Example 1H
In the above embodiment and the above modification, the difference is achieved by adjusting the number of rotations of the radiator fan and / or the evaporator fan to return to the predetermined pressure range both when it deviates from the upper limit and the lower limit of the predetermined pressure range. Although the pressure is changed toward the predetermined pressure range to change the valve opening degree of the differential pressure type expansion valve, the predetermined pressure only when it deviates from the upper limit of the predetermined pressure range or only when it deviates from the lower limit By adjusting the rotational speed of the radiator fan and / or the evaporator fan to return to the range, the differential pressure is changed toward the predetermined pressure range to change the valve opening degree of the differential pressure type expansion valve. It is also good.
 (4-9)変形例1I
 差圧式膨張弁33の差圧が所定圧力範囲から外れるか否かを推定するために、圧縮機31の電流値を用いてもよい。例えば、冷房運転時に、吐出過熱度が所定値以下になるように制御されながら冷凍装置10が運転される場合に、吐出過熱度が所定値よりも高くなっているような過熱度が高すぎる状態を考える。吐出過熱度は、例えば、吐出温度センサ35の検出値(吐出温度)から室外熱交換器用温度センサ37の検出値(凝縮温度)を差し引くことにより求められる。
(4-9) Modified Example 1I
The current value of the compressor 31 may be used to estimate whether the differential pressure of the differential pressure type expansion valve 33 deviates from the predetermined pressure range. For example, when the refrigeration system 10 is operated while the discharge superheat degree is controlled to be a predetermined value or less during the cooling operation, the superheat degree is too high such that the discharge superheat degree is higher than the predetermined value think of. The degree of discharge superheat is determined, for example, by subtracting the detection value (condensing temperature) of the outdoor heat exchanger temperature sensor 37 from the detection value (discharge temperature) of the discharge temperature sensor 35.
 室外温度が低く、室内温度が高い場合に、吐出過熱度が高すぎる状態が発生していると、冷凍装置10の制御装置40は、吐出過熱度を下げるために冷媒の循環量を増やす制御を行う。このとき、室外温度が低くて凝縮温度が低いため凝縮圧力も低く、また室外温度が高いため蒸発温度が高くて蒸発圧力も高くなっているので、差圧式膨張弁33の差圧も小さくなっていて差圧式膨張弁33の開度が小さくなっている。このような場合、吐出過熱度が高すぎる状態でもあり、制御装置40は、圧縮機31の回転数を大きくするような制御を行い難い。 When the outdoor temperature is low and the indoor temperature is high, if the discharge superheat degree is too high, the control device 40 of the refrigeration system 10 performs control to increase the circulation amount of the refrigerant to lower the discharge superheat degree. Do. At this time, since the outdoor temperature is low and the condensation temperature is low, the condensation pressure is low, and since the outdoor temperature is high, the evaporation temperature is high and the evaporation pressure is also high, so the differential pressure of the differential pressure type expansion valve 33 is also small. As a result, the opening degree of the differential pressure type expansion valve 33 is reduced. In such a case, the degree of discharge superheat is also too high, and the control device 40 does not perform control to increase the number of revolutions of the compressor 31.
 このような場合に、制御装置40は、冷媒の循環量を増やすために、室外ファン34の回転数を下げて凝縮温度を上昇させる。凝縮温度が上昇すると、凝縮圧力が上昇して差圧式膨張弁33の差圧が大きくなる。差圧式膨張弁33の差圧が大きくなると、差圧式膨張弁33が開いて冷媒の循環量を増やすことができる。 In such a case, in order to increase the circulation amount of the refrigerant, the control device 40 reduces the rotational speed of the outdoor fan 34 to raise the condensation temperature. When the condensation temperature rises, the condensation pressure rises and the differential pressure of the differential pressure type expansion valve 33 becomes large. When the differential pressure of the differential pressure type expansion valve 33 becomes large, the differential pressure type expansion valve 33 can be opened to increase the circulation amount of the refrigerant.
 このような制御をする場合に、制御装置40は、圧縮機31の電流値を監視している。そのため、制御装置40は、圧縮機31の電流値の検知機能を有している。差圧式膨張弁33の差圧が小さくなり過ぎていると、冷媒の循環量も少ないため、圧縮機31の電流値も小さくなる。従って、制御装置40は、圧縮機31の電流値から差圧式膨張弁33の差圧を推定することができる。制御装置40は、圧縮機31の電流値から差圧を推定して、吐出過熱度が高すぎる状態において、室外ファン34の回転数を下げる制御を行うことができる。この場合、制御装置40が圧縮機31の電流値から差圧式膨張弁33の差圧を推定するのではなく、制御装置40は、吐出過熱度が高すぎる状態と圧縮機31の電流値が所定電流値より小さくなっているという条件が揃うことで、室外ファン34の回転数を下げるという判断を直接行い、室外ファン34の回転数を下げる制御を行ってもよい。言い換えると、制御装置40は、所定圧力範囲から差圧式膨張弁33の差圧が外れたことを、圧縮機31の電流値を用いて直接判断してもよいということである。 When performing such control, the control device 40 monitors the current value of the compressor 31. Therefore, the control device 40 has a function of detecting the current value of the compressor 31. If the differential pressure of the differential pressure type expansion valve 33 is too small, the circulation amount of the refrigerant is also small, so the current value of the compressor 31 also becomes small. Therefore, the control device 40 can estimate the differential pressure of the differential pressure type expansion valve 33 from the current value of the compressor 31. The control device 40 can estimate the differential pressure from the current value of the compressor 31 and can perform control to reduce the rotational speed of the outdoor fan 34 in a state where the degree of discharge superheat is too high. In this case, the controller 40 does not estimate the differential pressure of the differential pressure type expansion valve 33 from the current value of the compressor 31, but the controller 40 determines that the discharge superheat degree is too high and the current value of the compressor 31 is predetermined. When the condition that the current value is smaller is satisfied, it may be determined to decrease the rotation speed of the outdoor fan 34 directly, and control may be performed to reduce the rotation speed of the outdoor fan 34. In other words, the control device 40 may directly determine that the differential pressure of the differential pressure type expansion valve 33 has deviated from the predetermined pressure range using the current value of the compressor 31.
 なお、上記の説明では、吐出過熱度について説明したが、例えば、冷房運転時に、吸入過熱度が所定値以下になるように制御されながら冷凍装置10が運転される場合についても、上述のように圧縮機31の電流値を用いた制御を行うことができる。吸入過熱度は、圧縮機31の吸込温度から蒸発温度を差し引くことにより求められる。このような制御を行うためには、例えば、圧縮機31の吸込温度を検出する吸込温度センサを設け、制御装置40が、吸込温度センサの検出値から室内熱交換器用温度センサ24の検出値(蒸発温度)を差し引く計算機能が与えられる。 In the above description, although the discharge superheat degree is described, for example, also in the case where the refrigeration apparatus 10 is operated while the suction superheat degree is controlled to be a predetermined value or less during the cooling operation, as described above. Control using the current value of the compressor 31 can be performed. The degree of suction superheat is determined by subtracting the evaporation temperature from the suction temperature of the compressor 31. In order to perform such control, for example, a suction temperature sensor for detecting the suction temperature of the compressor 31 is provided, and the control device 40 detects the detection value of the indoor heat exchanger temperature sensor 24 from the detection value of the suction temperature sensor A calculation function is provided which subtracts the evaporation temperature).
 (4-10)変形例1J
 上記実施形態及び変形例では、室内ファン22及び室外ファン34が回転数を調整できる場合について説明したが、室内ファン22及び室外ファン34は、回転数を調整できずにオンとオフだけを切り替えることができるタイプのものであってもよい。
(4-10) Modified Example 1J
Although the above-mentioned embodiment and modification explained the case where indoor fan 22 and outdoor fan 34 can adjust number of rotations, indoor fan 22 and outdoor fan 34 switch only ON and OFF without adjusting number of rotations. May be of the type that can
 例えば、室外ファン34の風量を小さくするように変更する場合には室外ファン34をオフする場合が含まれ、室内ファン22の風量を小さくするように変更する場合には室内ファン22をオフする場合が含まれる。また、室外ファン34が複数台設けられている場合には、オンしている室外ファン34の台数を減らすことが風量を小さくするように変更する場合に含まれ、オンしている室外ファン34の台数を増やすことが風量を大きくするように変更する場合に含まれる。同様に、室内ファン22が複数台設けられている場合には、オンしている室内ファン22の台数を減らすことが風量を小さくするように変更する場合に含まれ、オンしている室内ファン22の台数を増やすことが風量を大きくするように変更する場合に含まれる。 For example, changing the air volume of the outdoor fan 34 to a smaller value includes the case where the outdoor fan 34 is turned off, and changing the air volume of the indoor fan 22 so as to reduce the air volume. Is included. Further, in the case where a plurality of outdoor fans 34 are provided, reducing the number of outdoor fans 34 that are on is included in the case where the air volume is changed to be smaller. This is included when changing the number to increase the air volume. Similarly, in the case where a plurality of indoor fans 22 are provided, reducing the number of indoor fans 22 being turned on is included when changing the air volume to be smaller, and the indoor fans 22 being turned on are included. In the case of changing to increase the air volume, it is included in the case of increasing the number of.
 例えば、室外温度が低く、室内温度が高い場合に、吐出過熱度が高すぎる状態が発生していると、冷凍装置10の制御装置40は、吐出過熱度を下げるために冷媒の循環量を増やす制御を行う。このような場合に、制御装置40は、冷媒の循環量を増やすために、室外ファン34をオフ状態にして凝縮温度を上昇させる。このような制御をする場合に、制御装置40は、例えば、凝縮温度(室外熱交換器用温度センサ37の検出値)と蒸発温度(室内熱交換器用温度センサ24の検出値)から差圧式膨張弁33の差圧を推定することができる。制御装置40は、凝縮温度と蒸発温度から差圧を推定して、吐出過熱度が高すぎる状態において、室外ファン34のオフする制御を行うことができる。この場合、制御装置40が凝縮温度と蒸発温度から差圧式膨張弁33の差圧を推定するのではなく、制御装置40は、吐出過熱度が高すぎる状態と凝縮温度と蒸発温度の温度差が所定温度差よりも小さいという条件が揃うことで、室外ファン34をオフするという判断を直接行い、室外ファン34のオフする制御を行ってもよい。言い換えると、制御装置40は、所定圧力範囲から差圧式膨張弁33の差圧が外れたことを、凝縮温度と蒸発温度の温度差を用いて直接判断してもよいということである。 For example, when the outdoor temperature is low and the indoor temperature is high, if the discharge superheat degree is too high, the control device 40 of the refrigeration system 10 increases the circulation amount of the refrigerant to lower the discharge superheat degree. Take control. In such a case, the controller 40 turns off the outdoor fan 34 to increase the condensation temperature in order to increase the circulating amount of the refrigerant. When performing such control, for example, the control device 40 is a differential pressure type expansion valve from the condensation temperature (the detection value of the outdoor heat exchanger temperature sensor 37) and the evaporation temperature (the detection value of the indoor heat exchanger temperature sensor 24). 33 differential pressures can be estimated. The control device 40 can estimate the differential pressure from the condensation temperature and the evaporation temperature, and can perform control to turn off the outdoor fan 34 in a state where the degree of discharge superheat is too high. In this case, the controller 40 does not estimate the differential pressure of the differential pressure type expansion valve 33 from the condensation temperature and the evaporation temperature, but the controller 40 determines that the discharge superheat degree is too high and the temperature difference between the condensation temperature and the evaporation temperature If the condition that the difference is smaller than the predetermined temperature difference is satisfied, it may be determined that the outdoor fan 34 is to be turned off directly, and the control to turn off the outdoor fan 34 may be performed. In other words, the control device 40 may directly determine that the differential pressure of the differential pressure type expansion valve 33 deviates from the predetermined pressure range using the temperature difference between the condensing temperature and the evaporation temperature.
 (4-11)変形例1K
 上記実施形態では、制御装置40が、メモリに格納された実行可能なプログラムデータをCPUよって解釈実行することで制御を行う場合について説明した。このプログラムデータは、記録媒体を介してメモリ内に導入されてもよいし、記録媒体上から直接実行されてもよい。また、記録媒体からメモリへのデータの導入は、電話回線や搬送路等を介して行ってもよい。しかし、制御装置40は、CPUとメモリを用いて行うのと同様の制御を行うことができる集積回路(IC)を用いて構成されてもよい。ここで、ICは、LSI(large-scale integrated circuit)、ASIC(application-specific integrated circuit)、ゲートアレイ、FPGA(field programmable gate array)等を含む。
(4-11) Modified Example 1K
In the above embodiment, the case where the control device 40 performs control by interpreting and executing executable program data stored in the memory by the CPU has been described. The program data may be introduced into the memory via the recording medium, or may be executed directly from the recording medium. Further, the introduction of data from the recording medium to the memory may be performed via a telephone line, a transport path, or the like. However, the control device 40 may be configured using an integrated circuit (IC) that can perform the same control as that performed using the CPU and the memory. Here, the IC includes a large-scale integrated circuit (LSI), an application-specific integrated circuit (ASIC), a gate array, a field programmable gate array (FPGA), and the like.
 (5)特徴
 (5-1)
 上述の実施形態、変形例1A及び変形例1Fで説明したように冷凍装置10,10Aは、差圧式膨張弁33の冷媒入口61と冷媒出口62との間の差圧が所定圧力範囲SCから外れたときに、放熱器用ファン及び/または蒸発器用ファンの回転数を調整して放熱器用ファン及び/または蒸発器用ファンの風量を変更することにより差圧を所定圧力範囲SCに向けて変化させて差圧式膨張弁33の弁開度を変化させることから、所定圧力範囲SCから差圧が外れて差圧が大きくなりすぎたり逆に小さくなりすぎたりすることが防がれている。その結果、冷凍装置10,10Aにおいて、圧縮機31に係る冷媒の過熱度が適正値より大きくなったり、逆に過熱度が適正値よりも小さくなったりすることによる不具合が抑制されている。
(5) Characteristics (5-1)
As described in the above embodiment, modification 1A and modification 1F, in the refrigeration apparatuses 10 and 10A, the differential pressure between the refrigerant inlet 61 and the refrigerant outlet 62 of the differential pressure type expansion valve 33 deviates from the predetermined pressure range SC At the same time, the differential pressure is changed toward the predetermined pressure range SC by adjusting the number of rotations of the radiator fan and / or the evaporator fan and changing the air volume of the radiator fan and / or the evaporator fan. Since the valve opening degree of the pressure type expansion valve 33 is changed, it is prevented that the differential pressure deviates from the predetermined pressure range SC and the differential pressure becomes too large or too small. As a result, in the refrigeration apparatuses 10 and 10A, problems caused by the degree of superheat of the refrigerant related to the compressor 31 becoming larger than the appropriate value or the degree of superheat becoming smaller than the appropriate value are suppressed.
 なお、冷凍装置10においては、室外熱交換器32が放熱器(または凝縮器)として機能し、室内熱交換器21が蒸発器として機能し、室外ファン34が放熱器用ファンとして機能し、室内ファン22が蒸発器用ファンとして機能している。また、冷凍装置10Aにおいては、室外熱交換器32が蒸発器として機能し、室内熱交換器21が放熱器として機能し、室外ファン34が蒸発器用ファンとして機能し、室内ファン22が放熱器用ファンとして機能している。 In the refrigeration apparatus 10, the outdoor heat exchanger 32 functions as a radiator (or condenser), the indoor heat exchanger 21 functions as an evaporator, the outdoor fan 34 functions as a radiator fan, and the indoor fan 22 functions as a fan for the evaporator. Further, in the refrigeration system 10A, the outdoor heat exchanger 32 functions as an evaporator, the indoor heat exchanger 21 functions as a radiator, the outdoor fan 34 functions as an evaporator fan, and the indoor fan 22 is a radiator fan Acts as.
 例えば、冷凍装置10においては、差圧が所定圧力範囲SCの上限値を上回ったときには室外ファン34の回転数を上げて風量を大きくし、差圧が所定圧力範囲SCの下限値を下回ったときには室外ファン34の回転数を下げて風量を小さくすることから、室外ファン34の回転数を下げることで放熱器である室外熱交換器32での熱交換効率が低下して所定圧力範囲SCを外れたときに差圧を所定圧力範囲SCに向けて変化させることができる。 For example, in the refrigeration apparatus 10, when the differential pressure exceeds the upper limit value of the predetermined pressure range SC, the rotational speed of the outdoor fan 34 is increased to increase the air volume, and when the differential pressure falls below the lower limit value of the predetermined pressure range SC Since the number of rotations of the outdoor fan 34 is reduced to reduce the air volume, the number of rotations of the outdoor fan 34 is reduced to lower the heat exchange efficiency in the outdoor heat exchanger 32 which is a radiator and deviate from the predetermined pressure range SC. When this occurs, the differential pressure can be changed toward the predetermined pressure range SC.
 (5-2)
 冷凍装置10は、放熱器用ファンである室外ファン34の回転数の調整で差圧が所定圧力範囲SCに入るように制御されることから、差圧の調整に束縛されずに蒸発器用ファンである室内ファン22の回転数を制御することができる。差圧が所定圧力範囲SCから外れないような制御を行うことによって蒸発器用ファンである室内ファン22による空調対象空間である室内の空調が制限されるのを防ぐことができている。
(5-2)
Since the differential pressure is controlled to be within the predetermined pressure range SC by adjusting the rotational speed of the outdoor fan 34 which is a radiator fan, the refrigeration apparatus 10 is a fan for an evaporator without being bound by the adjustment of the differential pressure. The rotation speed of the indoor fan 22 can be controlled. By performing control such that the differential pressure does not deviate from the predetermined pressure range SC, it is possible to prevent the air conditioning of the room which is the air conditioning target space by the indoor fan 22 which is the evaporator fan from being restricted.
 なお、冷凍装置10Aにおいては、蒸発器用ファンである室外ファン34の回転数の調整で差圧が所定圧力範囲SCに入るように制御されるように構成すると、差圧の調整に束縛されずに放熱器用ファンである室内ファン22の回転数を制御することができる。この場合、差圧が所定圧力範囲SCから外れないような制御を行うことによって室内ファン22による空調対象空間である室内の空調が制限されるのを防ぐことができる。 In the refrigeration apparatus 10A, when the differential pressure is controlled to be within the predetermined pressure range SC by adjusting the rotational speed of the outdoor fan 34, which is a fan for the evaporator, it is not bound by the adjustment of the differential pressure. The number of rotations of the indoor fan 22, which is a radiator fan, can be controlled. In this case, by performing control such that the differential pressure does not deviate from the predetermined pressure range SC, it is possible to prevent the air conditioning of the room which is the air conditioning target space by the indoor fan 22 from being restricted.
 (5-3)
 上述の冷凍装置10,10Aにおいて、放熱器及び蒸発器である室外熱交換器32及び室内熱交換器21は、一方が空調対象空間である室内に設置され、他方が熱源側空間である室外に設置され、空調対象空間の空間温度である室内温度を検出するために設けられている第1センサである室内温度センサ23を備えている。そして、冷凍装置10,10Aは、室外で送風する室外ファン34の回転数の調整であって差圧を所定圧力範囲に向けて変化させるための調整に少なくとも室内温度センサ23を使って検出される室内温度を用いている。それにより、室内温度が高かったり低かったりする状況に合わせて差圧式膨張弁33の弁開度を大きくしたり小さくしたりすることができる。例えば、冷凍装置10では、少なくとも室内温度を用いて室外ファン34の回転数を調整して、室内温度が高くて蒸発器で冷媒が蒸発し易い状況及び室内温度が低くて蒸発器で冷媒が蒸発し難い状況の発生に合わせて差圧式膨張弁33の弁開度を大きくしたり小さくしたりすることができる。その結果、差圧式膨張弁33において弁開度が小さくなり過ぎたり大きくなり過ぎたりするのを室内の送風に影響を与えることなく抑制して適正な過熱度を維持することができる。
(5-3)
In the above-described refrigeration systems 10 and 10A, the outdoor heat exchanger 32 and the indoor heat exchanger 21 which are radiators and evaporators are installed indoors, one of which is a space to be air conditioned, and the other is outdoor, the heat source side space. The indoor temperature sensor 23 which is installed and is provided in order to detect the indoor temperature which is space temperature of air-conditioning object space is provided. The refrigeration apparatuses 10 and 10A are adjustment of the rotational speed of the outdoor fan 34 blowing air outside, and are detected using at least the indoor temperature sensor 23 for adjustment for changing the differential pressure toward the predetermined pressure range. The room temperature is used. Thereby, the valve opening degree of the differential pressure type expansion valve 33 can be made larger or smaller in accordance with the situation where the room temperature is high or low. For example, in the refrigeration apparatus 10, the rotation speed of the outdoor fan 34 is adjusted using at least the room temperature, the room temperature is high, the refrigerant is easily evaporated in the evaporator, and the room temperature is low. The valve opening degree of the differential pressure type expansion valve 33 can be made larger or smaller in accordance with the occurrence of the difficult situation. As a result, it is possible to suppress the valve opening degree from becoming too small or too large in the differential pressure type expansion valve 33 without affecting the air flow in the room and maintain an appropriate degree of superheat.
 (5-4)
 上述の冷凍装置10,10Aにおいては、熱源側空間の雰囲気温度である室外温度を検出するために設けられている第2センサである室外温度センサ36を備えている。この冷凍装置10,10Aは、室外ファン34の回転数の調整であって差圧を所定圧力範囲SCに向けて変化させるための調整に、室内温度センサ23と室外温度センサ36を使って検出される温度差を用いている。このような冷凍装置10,10Aは、室内温度と室外温度の温度差に基づいて差圧を所定圧力範囲SCに向けて変化させるための調整を行うことから、冷凍サイクルの高圧値と低圧値の差に応じた制御を行うことができ、適正な過熱度を精度良く維持することができる。
(5-4)
The above-described refrigeration systems 10 and 10A include the outdoor temperature sensor 36, which is a second sensor provided to detect the outdoor temperature that is the ambient temperature of the heat source side space. The refrigeration apparatuses 10 and 10A are detected by using the indoor temperature sensor 23 and the outdoor temperature sensor 36 in adjustment for adjusting the rotational speed of the outdoor fan 34 and changing the differential pressure toward the predetermined pressure range SC. Temperature difference is used. Such refrigeration apparatuses 10 and 10A perform adjustment for changing the differential pressure toward the predetermined pressure range SC based on the temperature difference between the indoor temperature and the outdoor temperature. Control can be performed according to the difference, and an appropriate degree of superheat can be maintained with high accuracy.
 (5-5)
 上述の実施形態の冷凍装置10,10Aは、放熱器の凝縮温度及び蒸発器の蒸発温度を検出するために冷媒回路11,11Aに設けられている第3センサである室内熱交換器用温度センサ24及び室外熱交換器用温度センサ37のペアを備えている。差圧式膨張弁33の差圧を所定圧力範囲SCに向けて変化させるための室外ファン34及び/または室内ファン22の回転数の調整に少なくとも室内熱交換器用温度センサ24及び室外熱交換器用温度センサ37を使って検出される凝縮温度及び蒸発温度を用いていることから、冷凍サイクルの高圧値と低圧値の差が小さかったり大きかったりする状況に合わせて差圧式膨張弁33の弁開度を大きくしたり小さくしたりすることができるので、差圧式膨張弁33において弁開度が小さくなり過ぎたり大きくなり過ぎたりするのを抑制して適正な過熱度を維持することができる。例えば、冷凍装置10では、蒸発器である室内熱交換器21で冷媒が蒸発し易い状況及び冷凍サイクルの高圧値と低圧値の差が大きくて室内熱交換器21で冷媒が蒸発し難い状況の発生に合わせて差圧式膨張弁の弁開度を大きくしたり小さくしたりすることができる。
(5-5)
The refrigeration apparatus 10, 10A according to the above-described embodiment is a temperature sensor 24 for an indoor heat exchanger, which is a third sensor provided in the refrigerant circuit 11, 11A to detect the condensation temperature of the radiator and the evaporation temperature of the evaporator. And a pair of outdoor heat exchanger temperature sensors 37. At least the temperature sensor 24 for indoor heat exchangers and the temperature sensor for outdoor heat exchangers for adjusting the rotational speed of the outdoor fan 34 and / or the indoor fan 22 to change the differential pressure of the differential pressure type expansion valve 33 toward the predetermined pressure range SC. Since the condensation temperature and the evaporation temperature detected using 37 are used, the valve opening degree of the differential pressure type expansion valve 33 is made large according to the situation where the difference between the high pressure value and the low pressure value of the refrigeration cycle is small or large. Since the differential pressure type expansion valve 33 can be made smaller or smaller, it is possible to maintain an appropriate degree of superheat by suppressing the valve opening degree from becoming too small or too large. For example, in the refrigeration apparatus 10, the refrigerant is easily evaporated in the indoor heat exchanger 21 which is an evaporator, and the difference between the high pressure value and the low pressure value of the refrigeration cycle is large and the refrigerant is hardly evaporated in the indoor heat exchanger 21. The degree of opening of the differential pressure type expansion valve can be increased or decreased according to the occurrence.
 (5-6)
 上述の冷凍装置10,10Aは、圧縮機31から吐出される冷媒の吐出温度を検出するために冷媒回路11,11Aに設けられている第4センサである吐出温度センサ35を備えている。差圧を所定圧力範囲SCに向けて変化させるための室外ファン34及び/または室内ファン22の回転数の調整に少なくとも吐出温度センサ35を使って検出される吐出温度を用いることから、吐出温度が高くなって安全機構が働く前でも差圧式膨張弁33の弁開度を大きくすることができる。その結果、差圧式膨張弁33において弁開度が小さくなり過ぎて安全機構が働くのを防止しつつ適正な過熱度を維持することができる。
(5-6)
The above-described refrigeration apparatus 10, 10A includes a discharge temperature sensor 35 which is a fourth sensor provided in the refrigerant circuit 11, 11A to detect the discharge temperature of the refrigerant discharged from the compressor 31. Since the discharge temperature detected using at least the discharge temperature sensor 35 is used to adjust the rotational speed of the outdoor fan 34 and / or the indoor fan 22 to change the differential pressure toward the predetermined pressure range SC, the discharge temperature is The valve opening degree of the differential pressure type expansion valve 33 can be made large even before the safety mechanism works. As a result, in the differential pressure type expansion valve 33, it is possible to maintain an appropriate degree of superheat while preventing the safety mechanism from working due to the valve opening becoming too small.
 (5-7)
 上述の冷凍装置10,10Aは、蒸発器及び放熱器である室内熱交換器21及び室外熱交換器32の一方が空調対象空間である室内に設置され、他方が熱源側空間である室外に設置され、熱源側空間の雰囲気温度である室外温度を検出するために設けられている第2センサである室外温度センサ36を備えている。そして、冷凍装置10,10Aは、室外ファン34の回転数を、さらに圧縮機31の回転数と室外温度センサ36を用いて検出される室外温度とに基づいて調整する。例えば、冷凍装置10は、通常運転時には、室外ファン34の回転数を、圧縮機31の回転数と室外温度とに基づいて調整している。圧縮機31の回転数と室外温度とに基づいて調整することから、所定圧力範囲SCの範囲内においても適切に室外ファン34の回転数を調整することができる。
(5-7)
One of the indoor heat exchanger 21 and the outdoor heat exchanger 32, which are the evaporator and the radiator, is installed in the room which is the air conditioning target space, and the other is installed in the outdoor where the heat source side space is installed. And an outdoor temperature sensor 36, which is a second sensor provided to detect the outdoor temperature which is the ambient temperature of the heat source side space. Then, the refrigeration apparatuses 10 and 10A further adjust the number of rotations of the outdoor fan 34 based on the number of rotations of the compressor 31 and the outdoor temperature detected using the outdoor temperature sensor 36. For example, the refrigeration apparatus 10 adjusts the number of rotations of the outdoor fan 34 based on the number of rotations of the compressor 31 and the outdoor temperature during normal operation. Since the adjustment is performed based on the rotation speed of the compressor 31 and the outdoor temperature, the rotation speed of the outdoor fan 34 can be appropriately adjusted even within the predetermined pressure range SC.
 (5-8)
 冷凍装置10,10Aの差圧式膨張弁33は、本体51と弁体52とを有し、本体51は、冷媒入口61、冷媒出口62及び弁体52を支持する付勢部材であるコイルバネ53を持っている。この差圧式膨張弁33では、コイルバネ53の付勢力に逆らって弁体52と本体51との位置関係を維持するための静止摩擦が弁体52と本体51との間に発生している。弁体52は、冷媒入口61と冷媒出口62との間に配置され、移動せずに静止状態を保つ限界圧力を差圧が超えて変化することにより移動して弁開度を変化させるが、室外ファン34及び/または室内ファン22の回転数を調整することによる所定圧力範囲SCに向けての差圧の変化は、限界圧力を超える変化である。
(5-8)
The differential pressure type expansion valve 33 of the refrigeration system 10, 10A has a main body 51 and a valve body 52, and the main body 51 is a coil spring 53 which is a biasing member supporting the refrigerant inlet 61, the refrigerant outlet 62 and the valve body 52. have. In the differential pressure type expansion valve 33, static friction for maintaining the positional relationship between the valve body 52 and the main body 51 against the biasing force of the coil spring 53 is generated between the valve body 52 and the main body 51. The valve body 52 is disposed between the refrigerant inlet 61 and the refrigerant outlet 62 and moves to change the valve opening degree by the differential pressure exceeding the limit pressure which keeps the stationary state without moving. The change of the differential pressure toward the predetermined pressure range SC by adjusting the rotation speed of the outdoor fan 34 and / or the indoor fan 22 is a change exceeding the limit pressure.
 (5-9)
 制御装置40が、室内温度、室外温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて所定圧力範囲から差圧が外れたことを直接判断する場合には、制御装置40が、差圧を推定する処理を省くことができる。また、このような冷凍装置10によれば、制御装置40が、室内温度、室外温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値の少なくとも1つを用いて差圧を推定して判断する場合には、差圧に沿って精度の良い制御がし易くなる。予めシミュレーションまたは実機での試験を行ってデータを得ておくことで次のような制御を行ってもよい。例えば、冷房運転時に、蒸発温度があまり変化しない状況においては、凝縮温度から直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。逆に、例えば、冷房運転時に、凝縮温度があまり変化しない状況においては、蒸発温度から直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。例えば、冷房運転時に、換気のために室外の空気を室内に取り入れて室内温度が室外温度と同じになるような場合に、室内温度の変化から直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。例えば、冷房運転時に、夕刻に急に室外温度が低下する場合に、室外温度の変化に応じて直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。例えば、冷房運転時に、差圧が小さい場合に吐出温度が異常に変化する状況においては、吐出温度から直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。圧縮機31の電流値については変形例1Iにおいて説明したように、圧縮機31の電流値から直接または差圧を推定して室外ファン34の風量を小さくするか否かを判断し、制御を行ってもよい。そして、室内温度、室外温度、凝縮温度、蒸発温度、吐出温度、圧縮機の電流値を単独で用いて直接または差圧を推定して風量の制御を行ってもよいが、これらの内の幾つかを組み合わせて直接または差圧を推定して風量の制御を行ってもよい。
(5-9)
In the case where the control device 40 directly determines that the differential pressure has deviated from the predetermined pressure range using at least one of the room temperature, the outside temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor, The control device 40 can omit the process of estimating the differential pressure. Further, according to such a refrigeration apparatus 10, the control device 40 estimates the differential pressure using at least one of the indoor temperature, the outdoor temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor. In the case of determination, accurate control can be facilitated along the differential pressure. The following control may be performed by performing a simulation or a test on a real machine in advance and obtaining data. For example, in a cooling operation, in a situation where the evaporation temperature does not change much, it may be determined whether the air volume of the outdoor fan 34 is to be reduced by estimating the differential pressure directly or from the condensation temperature. Conversely, for example, in a cooling operation, in a situation where the condensation temperature does not change much, it is determined whether to reduce the air volume of the outdoor fan 34 directly or by estimating the differential pressure from the evaporation temperature and performing control Good. For example, in the cooling operation, when the outdoor air is taken into the room for ventilation and the indoor temperature becomes the same as the outdoor temperature, the air volume of the outdoor fan 34 is estimated directly or from the differential pressure estimated from the change in the indoor temperature. It may be determined whether or not to reduce. For example, when the outdoor temperature suddenly falls in the evening at the time of cooling operation, it is determined whether the air volume of the outdoor fan 34 is to be reduced directly or by estimating the differential pressure according to the change in the outdoor temperature. You may go. For example, in a cooling operation, in a situation where the discharge temperature changes abnormally when the differential pressure is small, it is judged whether the air volume of the outdoor fan 34 is to be reduced directly or by estimating the differential pressure from the discharge temperature. You may With regard to the current value of the compressor 31, as described in the modification 1I, it is determined whether the air volume of the outdoor fan 34 is to be reduced directly or by estimating the differential pressure from the current value of the compressor 31 and performing control. May be The air volume may be controlled directly or by estimating the differential pressure using the room temperature, the outdoor temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor alone, but some of these may be used. Alternatively, the air volume may be controlled by directly or by estimating a differential pressure.
 (5-10)
 冷凍装置10は、冷房運転時に、差圧式膨張弁33の差圧が小さすぎると、差圧式膨張弁33の弁開度小さすぎて十分な冷媒の流量が得られない状態になる。流量が十分でない状態で過熱度が高すぎる状態では、圧縮機31の回転数を大きくするのが難しい。このような状態でも、冷凍装置10は、制御装置40が室外ファン34を止めるという簡単な制御で、放熱器として機能している室外熱交換器32の中を通過する気液二相状態の冷媒の温度(凝縮温度)を上昇させることができる。それにより、差圧式膨張弁33の差圧を大きくして差圧式膨張弁33の弁開度を大きくし、冷媒の流量を増加させることで過熱度が高すぎる状態を解消し易くすることができる。
(5-10)
When the differential pressure of the differential pressure type expansion valve 33 is too small during the cooling operation, the refrigeration apparatus 10 is in a state where a sufficient refrigerant flow rate can not be obtained because the valve opening degree of the differential pressure type expansion valve 33 is too small. If the flow rate is not sufficient and the degree of superheat is too high, it is difficult to increase the number of revolutions of the compressor 31. Even in such a state, the refrigeration apparatus 10 is a simple control in which the control device 40 stops the outdoor fan 34, and the refrigerant in the gas-liquid two-phase state passes through the outdoor heat exchanger 32 functioning as a radiator. Temperature (condensing temperature) can be raised. Thereby, the differential pressure of the differential pressure type expansion valve 33 is increased to increase the valve opening degree of the differential pressure type expansion valve 33, and the flow rate of the refrigerant is increased, so that the state of the superheat degree can be easily eliminated. .
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments of the present disclosure have been described above, it will be understood that various changes in form and detail can be made without departing from the spirit and scope of the present disclosure as set forth in the claims. .
10,10A  冷凍装置
11,11A  冷媒回路
20  利用ユニット
21  室内熱交換器(蒸発器の例、または放熱器の例)
22  室内ファン(蒸発器用ファンの例、または放熱器用ファンの例)
23  室内温度センサ(第1センサの例)
24  室内熱交換器用温度センサ(室外熱交換器用温度センサ37とともに第3センサを構成)
30  熱源ユニット
31  圧縮機
32  室外熱交換器(放熱器の例、または蒸発器の例)
33  差圧式膨張弁
34  室外ファン(放熱器用ファンの例、または蒸発器用ファンの例)
35  吐出温度センサ(第4センサの例)
36  室外温度センサ(第2センサの例)
37  室外熱交換器用温度センサ(室内熱交換器用温度センサ24とともに第3センサを構成)
43  タイマ
51  本体
52  弁体
53  コイルバネ(付勢部材の例)
10, 10A Refrigerating Apparatus 11, 11A Refrigerant Circuit 20 Utilization Unit 21 Indoor Heat Exchanger (Example of Evaporator or Example of Radiator)
22 Indoor fan (example of an evaporator fan or example of a radiator fan)
23 Indoor temperature sensor (example of first sensor)
24 Temperature sensor for indoor heat exchanger (constitutes third sensor with temperature sensor 37 for outdoor heat exchanger)
30 heat source unit 31 compressor 32 outdoor heat exchanger (example of a radiator or example of an evaporator)
33 Differential pressure type expansion valve 34 Outdoor fan (example of fan for radiator or example of fan for evaporator)
35 Discharge temperature sensor (example of the 4th sensor)
36 Outdoor temperature sensor (example of second sensor)
37 Temperature sensor for outdoor heat exchanger (constitutes the third sensor with the temperature sensor 24 for indoor heat exchanger)
43 timer 51 main body 52 valve body 53 coil spring (example of biasing member)
特開2004-218918号公報JP 2004-218918 A

Claims (13)

  1.  圧縮機(31)と、放熱器(32,21)と、差圧式膨張弁(33)と、蒸発器(21,32)と、前記放熱器に空気流を生じさせる放熱器用ファン(34,22)と、前記蒸発器に空気流を生じさせる蒸発器用ファン(22,34)とを備え、
     前記圧縮機、前記放熱器、前記差圧式膨張弁及び前記蒸発器の順に冷媒が循環し、前記差圧式膨張弁の冷媒入口と冷媒出口との間の差圧に応じて変わる弁開度により冷媒流量が変わる冷媒回路(11,11A)が構成され、
     所定圧力範囲から前記差圧が外れたときに、前記放熱器用ファン及び/または前記蒸発器用ファンの風量を変更することにより前記差圧を前記所定圧力範囲に向けて変化させて前記差圧式膨張弁の弁開度を変化させる、冷凍装置。
    Compressor fan (31), radiator (32, 21), differential pressure type expansion valve (33), evaporator (21, 32), fan for radiator (34, 22) that generates an air flow in the radiator And an evaporator fan (22, 34) for generating an air flow in the evaporator;
    The refrigerant circulates in the order of the compressor, the radiator, the differential pressure type expansion valve, and the evaporator, and the refrigerant is changed according to the valve opening degree which changes according to the differential pressure between the refrigerant inlet and the refrigerant outlet of the differential pressure type expansion valve. A refrigerant circuit (11, 11A) whose flow rate changes is configured,
    When the differential pressure deviates from the predetermined pressure range, the differential pressure is changed toward the predetermined pressure range by changing the air volume of the radiator fan and / or the evaporator fan to change the differential pressure type expansion valve. A refrigeration system that changes the degree of valve opening.
  2.  前記放熱器用ファン及び/または前記蒸発器用ファンの前記風量の変更が、前記放熱器用ファン及び/または前記蒸発器用ファンの回転数の調整により行われる、
    請求項1に記載の冷凍装置。
    The change of the air volume of the radiator fan and / or the evaporator fan is performed by adjusting the number of rotations of the radiator fan and / or the evaporator fan.
    The refrigeration apparatus according to claim 1.
  3.  前記所定圧力範囲は、前記圧縮機の回転数に基づいて変更される、
    請求項1または請求項2に記載の冷凍装置。
    The predetermined pressure range is changed based on the number of revolutions of the compressor.
    The freezing apparatus of Claim 1 or Claim 2.
  4.  前記蒸発器(21)は、空調対象空間に設置され、
     前記差圧が前記所定圧力範囲に入るように前記放熱器用ファン(34)の前記風量を変更する、
    請求項1から3のいずれか一項に記載の冷凍装置。
    The evaporator (21) is installed in an air conditioning target space,
    Changing the air volume of the radiator fan (34) so that the differential pressure falls within the predetermined pressure range;
    The refrigeration apparatus according to any one of claims 1 to 3.
  5.  前記放熱器及び前記蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、
     前記空調対象空間の空間温度を検出するために設けられている第1センサ(23)をさらに備え、
     前記放熱器用ファン及び前記蒸発器用ファンのうちの前記熱源側空間で送風する方の前記風量の変更であって前記差圧を前記所定圧力範囲に向けて変化させるための前記風量の変更に少なくとも前記第1センサを使って検出される前記空間温度を用いる、
    請求項1から3のいずれか一項に記載の冷凍装置。
    One of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space,
    It further comprises a first sensor (23) provided to detect the space temperature of the air conditioning target space,
    It is a change of the air volume of one of the fan for the radiator and the fan for the evaporator which blows in the heat source side space, and at least the change of the air volume for changing the differential pressure toward the predetermined pressure range. Using the space temperature detected using a first sensor,
    The refrigeration apparatus according to any one of claims 1 to 3.
  6.  前記熱源側空間の雰囲気温度を検出するために設けられている第2センサ(36)をさらに備え、
     前記放熱器用ファン及び前記蒸発器用ファンのうちの前記熱源側空間で送風する方の前記風量の変更であって前記差圧を前記所定圧力範囲に向けて変化させるための前記風量の変更に前記第1センサと前記第2センサを使って検出される温度差を用いる、
    請求項5に記載の冷凍装置。
    It further comprises a second sensor (36) provided for detecting the ambient temperature of the heat source side space,
    It is a change of the air volume of one of the fan for the radiator and the fan for the evaporator which blows in the heat source side space, and the air volume change for changing the differential pressure toward the predetermined pressure range Using a temperature difference detected using one sensor and the second sensor,
    The refrigeration apparatus according to claim 5.
  7.  前記放熱器の凝縮温度及び前記蒸発器の蒸発温度を検出するために前記冷媒回路に設けられている第3センサ(24,37)をさらに備え、
     前記差圧を前記所定圧力範囲に向けて変化させるための前記放熱器用ファン及び/または前記蒸発器用ファンの前記風量の変更に少なくとも前記第3センサを使って検出される前記凝縮温度及び前記蒸発温度を用いる、
    請求項1から4のいずれか一項に記載の冷凍装置。
    The system further comprises a third sensor (24, 37) provided in the refrigerant circuit to detect the condensation temperature of the radiator and the evaporation temperature of the evaporator.
    The condensing temperature and the evaporation temperature detected by using at least the third sensor for changing the air flow rate of the radiator fan and / or the evaporator fan for changing the differential pressure toward the predetermined pressure range Using
    The refrigeration apparatus according to any one of claims 1 to 4.
  8.  前記圧縮機から吐出される冷媒の吐出温度を検出するために前記冷媒回路に設けられている第4センサ(35)をさらに備え、
     前記差圧を前記所定圧力範囲に向けて変化させるための前記放熱器用ファン及び/または前記蒸発器用ファンの前記風量の変更に少なくとも前記第4センサを使って検出される前記吐出温度を用いる、
    請求項1から4のいずれか一項に記載の冷凍装置。
    And a fourth sensor (35) provided in the refrigerant circuit to detect the discharge temperature of the refrigerant discharged from the compressor.
    The discharge temperature detected using at least the fourth sensor is used to change the air volume of the radiator fan and / or the evaporator fan for changing the differential pressure toward the predetermined pressure range.
    The refrigeration apparatus according to any one of claims 1 to 4.
  9.  前記放熱器及び前記蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、
     前記熱源側空間の雰囲気温度を検出するために設けられている第2センサ(36)をさらに備え、
     前記放熱器用ファン及び前記蒸発器用ファンのうちの前記熱源側空間に送風する方の前記風量を、さらに前記圧縮機の回転数と前記第2センサを用いて検出される前記雰囲気温度とに基づいて変更する、
    請求項1から4のいずれか一項に記載の冷凍装置。
    One of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space,
    It further comprises a second sensor (36) provided for detecting the ambient temperature of the heat source side space,
    The air volume of one of the fan for the radiator and the fan for the evaporator, which is blown to the heat source side space, and the number of revolutions of the compressor and the ambient temperature detected using the second sensor. change,
    The refrigeration apparatus according to any one of claims 1 to 4.
  10.  前記差圧式膨張弁は、本体(51)と弁体(52)とを有し、
     前記本体は、前記冷媒入口、前記冷媒出口及び前記弁体を支持する付勢部材(53)を持ち、
     前記差圧式膨張弁は、前記付勢部材の付勢力に逆らって前記弁体と前記本体との位置関係を維持するための静止摩擦が前記弁体と前記本体との間に発生しており、
     前記弁体は、前記冷媒入口と前記冷媒出口との間に配置され、移動せずに静止状態を保つ限界圧力を前記差圧が超えて変化することにより移動して弁開度を変化させ、
     前記放熱器用ファン及び/または前記蒸発器用ファンの前記風量を変更することによる前記所定圧力範囲に向けての前記差圧の変化は、前記限界圧力を超える変化である、
    請求項1から9のいずれか一項に記載の冷凍装置。
    The differential pressure type expansion valve has a main body (51) and a valve body (52),
    The main body has the refrigerant inlet, the refrigerant outlet, and a biasing member (53) for supporting the valve body.
    In the differential pressure type expansion valve, a static friction for maintaining the positional relationship between the valve body and the main body against the biasing force of the biasing member is generated between the valve body and the main body,
    The valve body is disposed between the refrigerant inlet and the refrigerant outlet and moves to change the valve opening degree by changing the differential pressure exceeding the limit pressure for keeping the stationary state without moving.
    The change in the differential pressure toward the predetermined pressure range by changing the air volume of the radiator fan and / or the evaporator fan is a change exceeding the limit pressure.
    The refrigeration apparatus according to any one of claims 1 to 9.
  11.  前記差圧が前記所定圧力範囲の上限値を上回ったときには前記放熱器用ファンの前記風量を大きくし、前記差圧が前記所定圧力範囲の下限値を下回ったときには前記放熱器用ファンの前記風量を小さくする、
    請求項1から10のいずれか一項に記載の冷凍装置。
    When the differential pressure exceeds the upper limit of the predetermined pressure range, the air volume of the radiator fan is increased, and when the differential pressure is lower than the lower limit of the predetermined pressure range, the air volume of the radiator fan is decreased. Do,
    The refrigeration apparatus according to any one of claims 1 to 10.
  12.  前記圧縮機、前記放熱器用ファン及び前記蒸発器用ファンを制御する制御装置(40)をさらに備え、
     前記放熱器及び前記蒸発器は、一方が空調対象空間に設置され、他方が熱源側空間に設置され、
     前記制御装置は、前記所定圧力範囲から前記差圧が外れたことを、前記空調対象空間の空間温度、前記熱源側空間の雰囲気温度、凝縮温度、蒸発温度、吐出温度、前記圧縮機の電流値の少なくとも1つを用いて直接判断し、あるいは、前記空間温度、前記雰囲気温度、凝縮温度、蒸発温度、吐出温度、前記圧縮機の電流値の少なくとも1つを用いて前記差圧を推定して判断し、前記所定圧力範囲から前記差圧が外れたと判断された場合に前記差圧を前記所定圧力範囲に向けて変化させるように前記放熱器用ファン及び/または前記蒸発器用ファンの前記風量を変更する制御を行えるように構成されている、
    請求項1から3のいずれか一項に記載の冷凍装置。
    And a controller (40) for controlling the compressor, the radiator fan, and the evaporator fan.
    One of the radiator and the evaporator is installed in the air conditioning target space, and the other is installed in the heat source side space,
    The controller determines that the differential pressure has deviated from the predetermined pressure range, the space temperature of the air conditioning target space, the ambient temperature of the heat source side space, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor Directly, or at least one of the space temperature, the atmosphere temperature, the condensation temperature, the evaporation temperature, the discharge temperature, and the current value of the compressor to estimate the differential pressure. If it is determined that the differential pressure is deviated from the predetermined pressure range, the air flow of the radiator fan and / or the evaporator fan is changed so as to change the differential pressure toward the predetermined pressure range. Are configured to be able to control
    The refrigeration apparatus according to any one of claims 1 to 3.
  13.  前記所定圧力範囲から前記差圧が外れる場合が、冷房運転時に、前記所定圧力範囲を外れて前記差圧が小さくなり過ぎていて前記圧縮機が吸入または吐出する冷媒の過熱度が所定値を超えて過熱度が高すぎる状態になっている場合を含み、
     前記放熱器用ファンの前記風量を変更することにより前記差圧を前記所定圧力範囲に向けて変化させることが、前記放熱器用ファンを止めることにより前記差圧を大きくして前記所定圧力範囲内に戻すことを含む、
    請求項1から12のいずれか一項に記載の冷凍装置。
    When the differential pressure is out of the predetermined pressure range, the differential pressure is too small during the cooling operation, and the differential pressure is too small, and the degree of superheat of the refrigerant sucked or discharged by the compressor exceeds a predetermined value. If the degree of superheat is too high,
    Changing the differential pressure toward the predetermined pressure range by changing the air volume of the radiator fan increases the differential pressure by stopping the radiator fan and returns the pressure within the predetermined pressure range. Including
    The refrigeration apparatus according to any one of claims 1 to 12.
PCT/JP2018/023975 2017-06-26 2018-06-25 Refrigerating device WO2019004112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-124386 2017-06-26
JP2017124386A JP2020139632A (en) 2017-06-26 2017-06-26 Freezer unit

Publications (1)

Publication Number Publication Date
WO2019004112A1 true WO2019004112A1 (en) 2019-01-03

Family

ID=64741567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023975 WO2019004112A1 (en) 2017-06-26 2018-06-25 Refrigerating device

Country Status (2)

Country Link
JP (1) JP2020139632A (en)
WO (1) WO2019004112A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414064A (en) * 2020-04-16 2020-07-14 湖南警察学院 Self-adaptive protection early warning device for cloud computing equipment
JP2020122626A (en) * 2019-01-31 2020-08-13 株式会社富士通ゼネラル Air conditioner
JP7139031B1 (en) 2022-02-15 2022-09-20 日立ジョンソンコントロールズ空調株式会社 air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218918A (en) * 2003-01-14 2004-08-05 Fuji Koki Corp Differential pressure expansion valve
JP2007115096A (en) * 2005-10-21 2007-05-10 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine
JP2008025862A (en) * 2006-07-18 2008-02-07 Denso Corp Ejector type refrigerating cycle
JP2012067958A (en) * 2010-09-22 2012-04-05 Aisin Seiki Co Ltd Air conditioning device
JP2012072920A (en) * 2010-09-27 2012-04-12 Hitachi Appliances Inc Refrigeration apparatus
JP2014119154A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2017072352A (en) * 2015-10-09 2017-04-13 ダイキン工業株式会社 Refrigerating device
WO2017098670A1 (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Refrigeration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218918A (en) * 2003-01-14 2004-08-05 Fuji Koki Corp Differential pressure expansion valve
JP2007115096A (en) * 2005-10-21 2007-05-10 Fuji Electric Retail Systems Co Ltd Cooling device and vending machine
JP2008025862A (en) * 2006-07-18 2008-02-07 Denso Corp Ejector type refrigerating cycle
JP2012067958A (en) * 2010-09-22 2012-04-05 Aisin Seiki Co Ltd Air conditioning device
JP2012072920A (en) * 2010-09-27 2012-04-12 Hitachi Appliances Inc Refrigeration apparatus
JP2014119154A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2017072352A (en) * 2015-10-09 2017-04-13 ダイキン工業株式会社 Refrigerating device
WO2017098670A1 (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Refrigeration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122626A (en) * 2019-01-31 2020-08-13 株式会社富士通ゼネラル Air conditioner
CN111414064A (en) * 2020-04-16 2020-07-14 湖南警察学院 Self-adaptive protection early warning device for cloud computing equipment
CN111414064B (en) * 2020-04-16 2022-08-26 湖南警察学院 Self-adaptive protection early warning device for cloud computing equipment
JP7139031B1 (en) 2022-02-15 2022-09-20 日立ジョンソンコントロールズ空調株式会社 air conditioner
JP2023118170A (en) * 2022-02-15 2023-08-25 日立ジョンソンコントロールズ空調株式会社 air conditioner

Also Published As

Publication number Publication date
JP2020139632A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US9599379B2 (en) Integral air conditioning system for heating and cooling
JP5446064B2 (en) Heat exchange system
JP4999529B2 (en) Heat source machine and refrigeration air conditioner
WO2012077275A1 (en) Air-conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
WO2019004112A1 (en) Refrigerating device
JP3835453B2 (en) Air conditioner
US20040221593A1 (en) Method for controlling air conditioner
JP2014029247A (en) Container refrigerating apparatus
KR20180069599A (en) Apparatus for controlling the discharge temperature of an air conditioner
JP2017121818A (en) Control device for cooling device
JP2011144996A (en) Air conditioner
JP5404231B2 (en) Air conditioner
CN109084502B (en) Refrigerating device
JP2018071864A (en) Air conditioner
JP4084915B2 (en) Refrigeration system
JP4552721B2 (en) Refrigeration equipment
JP7258129B2 (en) air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
WO2023067807A1 (en) Binary refrigeration device
JP7491334B2 (en) Air conditioners
JP2000146315A (en) Refrigerating device and air conditioner
JP7331806B2 (en) refrigeration cycle equipment
JP4420393B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP