JP2008025113A - Aseismic control structure - Google Patents

Aseismic control structure Download PDF

Info

Publication number
JP2008025113A
JP2008025113A JP2006195579A JP2006195579A JP2008025113A JP 2008025113 A JP2008025113 A JP 2008025113A JP 2006195579 A JP2006195579 A JP 2006195579A JP 2006195579 A JP2006195579 A JP 2006195579A JP 2008025113 A JP2008025113 A JP 2008025113A
Authority
JP
Japan
Prior art keywords
columns
rise building
damping
building
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195579A
Other languages
Japanese (ja)
Other versions
JP4771160B2 (en
Inventor
Hiroshi Takahashi
啓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006195579A priority Critical patent/JP4771160B2/en
Publication of JP2008025113A publication Critical patent/JP2008025113A/en
Application granted granted Critical
Publication of JP4771160B2 publication Critical patent/JP4771160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cope with flexural deformation by suppressing the shake of a high-rise building by a low-cost structure. <P>SOLUTION: This aseismic control structure 1 comprises a plurality of aseismic control columns 10 laterally lined up in the high-rise building 2; friction dampers 6 interposed between the aseismic control columns 10, 10 in the upper floors n of the high-rise building 2; and prestressed concrete steel bars 7 connecting the plurality of aseismic control columns 10 in the interposed state of the friction dampers 6 compressively in an approximately horizontal direction. When the high-rise building 2 receives external force by a large-scale earthquake, slip action occurs between the aseismic control columns 10, 10, and a damping effect is exhibited by the resistance force of the friction dampers 6 to absorb seismic energy. The shake of the high-rise building 2 is thereby reduced to suppress flexural deformation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超高層ビルや塔状の構造物において、地震などにより発生する建物の曲げ変形を抑制する制震構造に関する。   The present invention relates to a vibration control structure that suppresses bending deformation of a building caused by an earthquake or the like in a skyscraper or a tower-like structure.

従来、超高層構造物では、地震や強風などを受けたときの変形に対する十分な設計が必要であった。すなわち、かかる従来の高層建物にあっては、高層化して細長く(アスペクト比が大)なると、曲げ変形の割合がせん断変形の割合に比べて大きくなり、この曲げ変形を抑制するために鋼材量を増す等の対策が行われ、建設コストの増大を招いていた。
また、この曲げ変形に対応する制震装置には、チューンドマスダンパ(以下、「TMD」と略称する)がある。このTMDの装置は、おもり(マス)が建物の揺れと同じ周期に同調(チューン)して動くことにより建物の振動エネルギーを吸収して揺れを低減させる機能を有する構造であるが、TMDは主に中小規模の地震や風の居住性の向上を目的としたものであり、大地震時において大きな応答低減効果は期待できなかった。
そこで、曲げ変形が支配的な高層建物の全体に曲げ変形が生じないようにすることで、高層建物の揺れを抑制する制震構造物の発明が、例えば特許文献1に開示されている。
特許文献1は、高層建物の外側に補助柱を設け、高層建物の外郭に位置する柱と補助柱との間を連結する制震ダンパーを、各層毎に設けるように構成した制震構造物である。
特開平8−218680号公報
Conventionally, a high-rise structure has to be sufficiently designed to be deformed when subjected to an earthquake or strong wind. That is, in such a conventional high-rise building, when it is made taller and elongated (the aspect ratio is large), the rate of bending deformation becomes larger than the rate of shear deformation, and the amount of steel material is set to suppress this bending deformation. Measures such as an increase were taken, leading to an increase in construction costs.
In addition, there is a tuned mass damper (hereinafter abbreviated as “TMD”) as a vibration control device corresponding to this bending deformation. This TMD device has a function of absorbing the vibration energy of the building and reducing the shaking by moving the weight in synchronization with the same period as the shaking of the building. The aim was to improve the habitability of small and medium-sized earthquakes and winds, and a large response reduction effect could not be expected during a large earthquake.
Thus, for example, Patent Document 1 discloses an invention of a vibration control structure that suppresses the shaking of a high-rise building by preventing the bending deformation from occurring in the entire high-rise building where bending deformation is dominant.
Patent Document 1 is a seismic control structure in which an auxiliary pillar is provided outside a high-rise building, and a vibration-damping damper that connects between the pillar located on the outer wall of the high-rise building and the auxiliary pillar is provided for each layer. is there.
JP-A-8-218680

しかしながら、特許文献1の制震構造物では以下のような問題があった。
特許文献1は、補助柱と高層建物との間に連結配置される制震ダンパーが、高層建物の基礎から上層階までの各層に設けられている構成である。そして、各階での上下方向相対変形が制震ダンパーに伝達されることになるが、低層階での相対変形はそれほど大きくないため、各制震ダンパーの性能が十分に発揮されていないという問題があった。
また、各層に制震ダンパーを設置するため、高層建物の場合に設置台数が多くなること、また、補助柱の軸剛性が大きくないと制震装置が有効に働かないことから制震構造としてのコストが大きくなるといった欠点があった。
However, the vibration control structure of Patent Document 1 has the following problems.
Patent document 1 is the structure by which the damping damper connected and arrange | positioned between an auxiliary pillar and a high-rise building is provided in each layer from the foundation of a high-rise building to an upper floor. And the vertical relative deformation at each floor is transmitted to the vibration control damper, but the relative deformation at the lower floor is not so large, so the performance of each vibration control damper is not fully demonstrated. there were.
In addition, since damping dampers are installed in each layer, the number of installations increases in the case of high-rise buildings, and the damping device does not work effectively unless the axial rigidity of the auxiliary column is large. There was a drawback that the cost increased.

本発明は、上述する問題点に鑑みてなされたもので、低コストとなる構造により、高層建物の揺れを抑制して曲げ変形に対応できる制震構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a vibration control structure capable of suppressing bending of a high-rise building and responding to bending deformation by a low-cost structure.

上記目的を達成するため、本発明に係る制震構造では、建物内で横方向に連ねて配置された複数の制震柱と、建物の上層階で、制震柱同士の間に介装された摩擦ダンパーと、摩擦ダンパーを介した状態の複数の制震柱を、略水平方向に圧縮連結する張力導入部材とが設けられていることを特徴としている。
本発明では、曲げ変形の大きな上層階において、制震柱間に摩擦ダンパーを設け、張力導入部材によって大規模地震に相当する外力に対して制震柱間にすべり作用が生じるように設定しておくことができる。そして、建物が中小規模の地震による外力を受けたときには、制震柱間にすべりが生じず建物と一体化された状態で、剛性を保って外力に抵抗し、建物の揺れを低減させることで曲げ変形を抑制することができる。また、建物が大規模の地震による外力を受けたときには、制震柱間にすべり作用が生じると共に、摩擦ダンパーの抵抗力により減衰効果を発揮して地震エネルギーを吸収し、建物の揺れを低減させて曲げ変形を抑制することができる。
In order to achieve the above object, in the vibration control structure according to the present invention, a plurality of vibration control columns arranged side by side in the building and the upper floors of the building are interposed between the vibration control columns. And a tension introducing member for compressing and connecting a plurality of damping columns in a state of being interposed via the friction damper in a substantially horizontal direction.
In the present invention, a friction damper is provided between the vibration control columns on the upper floor where the bending deformation is large, and the tension introducing member is set so that a sliding action is generated between the vibration control columns against an external force corresponding to a large-scale earthquake. I can leave. And when the building is subjected to external forces from small and medium-sized earthquakes, no slip occurs between the vibration control columns, and it is integrated with the building, maintaining rigidity and resisting external forces, thereby reducing the shaking of the building Bending deformation can be suppressed. In addition, when the building is subjected to an external force from a large-scale earthquake, a sliding action occurs between the vibration control columns, and the damping effect is exerted by the resistance of the friction damper to absorb the seismic energy and reduce the shaking of the building. Thus, bending deformation can be suppressed.

また、本発明に係る制震構造では、制震柱同士が接する面には、分離介装部材が設けられていることが好ましい。
本発明では、各制震柱が分離介装部材を介して互いに接した状態であり、非固定状態で分断されているため、制震柱同士が接する面ですべり移動が可能とされる。
In the vibration control structure according to the present invention, it is preferable that a separation intervention member is provided on a surface where the vibration control columns are in contact with each other.
In the present invention, since the seismic control columns are in contact with each other via the separation intervention member and are separated in an unfixed state, sliding movement is possible on the surface where the seismic control columns are in contact with each other.

また、本発明に係る制震構造では、張力導入部材の定着部には、張力導入部材の張力を調整する張力調整部材が設けられていることが好ましい。
本発明では、張力調整部材として、皿バネ等を用いることで、張力導入部材のゆるみ等による導入張力の減少を抑制でき、複数の制震柱を圧縮連結する張力導入部材の張力を一定に保つことができる。
In the damping structure according to the present invention, it is preferable that the fixing portion of the tension introducing member is provided with a tension adjusting member that adjusts the tension of the tension introducing member.
In the present invention, by using a disc spring or the like as the tension adjusting member, it is possible to suppress a decrease in the introduced tension due to the looseness of the tension introducing member, and to maintain a constant tension of the tension introducing member that compressively connects a plurality of damping columns. be able to.

本発明の制震構造によれば、曲げ変形の大きな上層階の数層において、制震柱間に摩擦ダンパーを設け、張力導入部材によって大規模地震に相当する外力に対して制震柱間にすべり作用が生じるように設定しておくことができる。
そして、建物が中小規模の地震による外力を受けたときには、制震柱間にすべりが生じず建物と一体化された状態となり、剛性を保って外力に抵抗し、建物の揺れを低減させて曲げ変形を抑制することができる。
また、建物が大規模の地震による外力を受けたときには、制震柱間にすべり作用が生じると共に、摩擦ダンパーの抵抗力により減衰効果を発揮して地震エネルギーを吸収し、建物の揺れを低減させて曲げ変形を抑制することができる。このように、中小規模から大規模な地震などの揺れ(外力)による曲げ変形に対応できる構成であるため、超高層構造物に適用することが可能となる。
また、本制震構造では、制震柱を建物内に組み込み、上層階のみに摩擦ダンパーを備えた構成であることから、構造にかかるコスト低減を図ることができる。
According to the vibration control structure of the present invention, friction dampers are provided between the vibration control columns in several layers on the upper floor where bending deformation is large, and the tension introducing member prevents the external force corresponding to a large-scale earthquake between the vibration control columns. It can be set so that a sliding action occurs.
When the building is subjected to external forces from small and medium-scale earthquakes, no slip occurs between the seismic control columns, and the building is integrated with the building, maintaining rigidity and resisting external forces, reducing the shaking of the building and bending Deformation can be suppressed.
In addition, when the building is subjected to an external force from a large-scale earthquake, a sliding action occurs between the vibration control columns, and the damping effect is exerted by the resistance of the friction damper to absorb the seismic energy and reduce the shaking of the building. Thus, bending deformation can be suppressed. Thus, since it is the structure which can respond to bending deformation by shaking (external force), such as a small-scale to large-scale earthquake, it becomes possible to apply to a super-high-rise structure.
Moreover, in this damping structure, since it is the structure which incorporated the damping column in the building and was equipped with the friction damper only in the upper floor, it can aim at the cost reduction concerning a structure.

以下、本発明の実施の形態による制震構造について、図1乃至図5に基づいて説明する。
図1は本発明の実施の形態による制震構造の概略構成を示す立面図、図2は図1に示す制震構造のA−A線断面図あるいはA−A線断面図、図3は図1に示す制震構造のB−B線断面図、図4は制震構造の摩擦ダンパーの取り付け状態を示す要部拡大図、図5は摩擦ダンパーが設けられた制震柱間の構造を示す拡大図、図6は地震時における制震柱の揺れの状態を示す図であって、(a)は中小規模地震時の立面図、(b)は大規模地震時の立面図である。
Hereinafter, a vibration control structure according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 is an elevation view showing a schematic configuration of a vibration control structure according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line A 1 -A 1 or A 2 -A 2 of the vibration control structure shown in FIG. 3 is a cross-sectional view of the damping structure shown in FIG. 1, taken along the line B-B, FIG. 4 is an enlarged view of a main part showing a mounting state of the friction damper of the damping structure, and FIG. 5 is a damping column provided with the friction damper. Fig. 6 is a diagram showing the state of the control column swinging during the earthquake, (a) is an elevation view during a small-scale earthquake, and (b) is a diagram during a large-scale earthquake. FIG.

図1に示すように、本実施の形態による制震構造1は、例えばアスペクト比(建物の幅に対する高さの比率)が4以上と大きく、鉄筋コンクリート(RC)造柱で柱3と梁4からなるラーメン構造の高層建物2(建物)に適用されている。
図1において、符号3、3、・・・は柱、4、4、・・・は梁を示し、符号nは高層建物2の上層階(本実施の形態では上部3層)を示している。なお、以下の説明では、「層」という用語を使用する場合があるが、「階」と同意義である。
ここで、上層階nとは、最上階から高層建物全層数の1/10〜1/3程度の階のことである。
As shown in FIG. 1, the damping structure 1 according to the present embodiment has a large aspect ratio (the ratio of the height to the building width) of, for example, 4 or more, and is composed of reinforced concrete (RC) columns and the columns 3 and 4. It is applied to a high-rise building 2 (building) with a ramen structure.
In FIG. 1, reference numerals 3, 3,... Indicate columns, 4, 4,... Indicate beams, and reference numeral n indicates an upper floor of the high-rise building 2 (upper three layers in the present embodiment). . In the following description, the term “layer” may be used, but is equivalent to “floor”.
Here, the upper floor n is a floor about 1/10 to 1/3 of the total number of high-rise buildings from the top floor.

図1乃至図3に示すように、制震構造1は、高層建物2内で横方向に連ねて互いに接した状態で配置された複数のRC柱からなる制震柱10と、上層階nにおいて各制震柱10の間に介装された摩擦ダンパー6と、これら複数の制震柱10を略水平方向に貫通させて締め付けるPC鋼棒7(張力導入部材)とから概略構成されている。   As shown in FIGS. 1 to 3, the seismic control structure 1 includes a seismic control column 10 composed of a plurality of RC columns arranged in contact with each other in a horizontal direction in a high-rise building 2, and an upper floor n. A friction damper 6 interposed between the vibration control columns 10 and a PC steel rod 7 (tension introducing member) that penetrates and tightens the plurality of vibration control columns 10 in a substantially horizontal direction.

複数の制震柱10は、基礎から最上層(屋上)まで連続した状態で組み込まれている。ここで、本実施の形態では、複数(5本)の制震柱10を、図1の左側から順に符号10A〜10Eとする。そして、両端の制震柱10A、10Eは、層毎に梁4、4に固定され、地震などで外力を受けたときに梁4及び柱3と一体に動くようになっている。なお、各制震柱10、10同士が接する面を、すべり面Tとする。   The plurality of seismic control columns 10 are incorporated in a continuous state from the foundation to the top layer (rooftop). Here, in the present embodiment, a plurality (5) of damping columns 10 are denoted by reference numerals 10A to 10E in order from the left side of FIG. The seismic control columns 10A and 10E at both ends are fixed to the beams 4 and 4 for each layer, and move integrally with the beam 4 and the columns 3 when receiving external force due to an earthquake or the like. A surface where the seismic control columns 10 and 10 are in contact with each other is referred to as a slip surface T.

図2に示すように、制震柱10、10同士の間には、制震柱10、10を互いに分離させる分離介装部材5が設けられている。この分離介装部材5は、例えばスタイロフォーム(登録商標、ザ・ダウ・ケミカル・カンパニー製)等のコンクリートに比べて十分剛性の低い材料からなり、制震柱10、10同士の間に挟み込まれると共に、周囲のスラブコンクリート(図示省略)に接する制震柱10の範囲に貼り付けられている。
各制震柱10A、10B、…は、分離介装部材5を介して互いに接した状態とされるが、非固定状態で分断されているため、すべり面Tにおいて制震柱10の軸方向へのすべり移動が可能とされる。
As shown in FIG. 2, a separation intervention member 5 that separates the damping columns 10 and 10 from each other is provided between the damping columns 10 and 10. The separation intervention member 5 is made of a material having a sufficiently low rigidity as compared with concrete such as Styrofoam (registered trademark, manufactured by The Dow Chemical Company), and is sandwiched between the vibration control columns 10 and 10. , It is affixed to the range of the vibration control column 10 in contact with the surrounding slab concrete (not shown).
The seismic control columns 10A, 10B,... Are in contact with each other via the separating intervention member 5, but are separated in an unfixed state, so that the seismic control column 10 extends in the axial direction on the sliding surface T. Sliding movement is possible.

図3、図4及び図5に示すように、摩擦ダンパー6は、アルミウム、ステンレスなどの鋼材を用いて薄板状に形成され、上層階n(図1参照)の各層に夫々配置されている。そして、この薄板状の摩擦ダンパー6の摩擦面6aを制震柱10の側面10aからわずかに突出した状態で組み込まれている。そして、隣り合う制震柱10、10の夫々に設けられた摩擦ダンパー6,6は、その摩擦面6a、6aが接触した状態となっている。したがって、制震柱10、10の側面10a、10a面はわずかに離間しており、そこに分離介装部材5が設けられている。すなわち、すべり面Tには、摩擦ダンパー6または分離介装部材5のみが存在し、すべり面Tでは摩擦ダンパー6以外に摩擦が生じない構成となっている。
高層建物2(図1参照)に水平方向の外力が加わり、制震柱10、10間(すべり面T)ですべり作用が発生すると、摩擦ダンパー6がこのすべりに対して抵抗、即ち減衰力を発揮する構成となっている。
As shown in FIGS. 3, 4 and 5, the friction damper 6 is formed in a thin plate shape using a steel material such as aluminum or stainless steel, and is disposed in each layer of the upper floor n (see FIG. 1). Then, the friction surface 6 a of the thin plate-like friction damper 6 is incorporated in a state of slightly protruding from the side surface 10 a of the vibration control column 10. The friction dampers 6 and 6 provided in the adjacent seismic control columns 10 and 10 are in contact with the friction surfaces 6a and 6a. Therefore, the side surfaces 10a and 10a of the damping columns 10 and 10 are slightly separated from each other, and the separation intervention member 5 is provided there. That is, only the friction damper 6 or the separation interposed member 5 exists on the sliding surface T, and the sliding surface T is configured to generate no friction other than the friction damper 6.
When a horizontal external force is applied to the high-rise building 2 (see FIG. 1) and a sliding action occurs between the damping columns 10 and 10 (sliding surface T), the friction damper 6 resists this sliding, that is, a damping force. It is the composition which demonstrates.

図4に示すように、PC鋼棒7は、その両端部7a、7bに雄ネジ(図示省略)を形成したものである。そして、摩擦ダンパー6、6、…および分離介装部材5、5、…を挟み込んだ状態の制震柱10A〜10Eを摩擦ダンパー6が配置されている位置においてPC鋼棒7で水平方向に貫通させ、PC鋼棒7の端部7a、7bの雄ネジにナット7A、7Bを締め付けることで、PC鋼棒7の軸方向に張力を発生させて制震柱10A〜10Eを圧縮連結させている。このように、図5の構成とすることで、PC鋼棒7への張力導入により摩擦ダンパー6に圧縮力を生じさせる際には、摩擦ダンパー6の部分以外に圧縮力が作用しないようになっている。
なお、このときのPC鋼棒7の設置本数は、層毎に上下方向に3本、水平方向に2本とされるが、この数量は任意とされ、高層建物2の構造条件や制震柱10の本数などによって適宜設定されるものである。
As shown in FIG. 4, the PC steel rod 7 has male screws (not shown) formed at both ends 7a and 7b. Then, through the damping columns 10A to 10E with the friction dampers 6, 6,... And the separation interposed members 5, 5,. The nuts 7A and 7B are fastened to the male threads of the end portions 7a and 7b of the PC steel rod 7, thereby generating tension in the axial direction of the PC steel rod 7 and compressing and connecting the damping columns 10A to 10E. . As described above, with the configuration shown in FIG. 5, when a compressive force is generated on the friction damper 6 by introducing a tension to the PC steel rod 7, the compressive force does not act on any part other than the friction damper 6. ing.
The number of PC steel bars 7 installed at this time is three in the vertical direction and two in the horizontal direction for each layer, but this number is arbitrary, and the structural conditions and damping columns of the high-rise building 2 The number is appropriately set according to the number of ten.

そして、PC鋼棒7は、ナット7A、7Bを締め付けることで、複数の制震柱10A〜10Eに水平方向の圧縮力を導入した状態で緊張させる構成をなしている。すなわち、この張力によって摩擦ダンパー6の抵抗力(摩擦力)を調整することができる。なお、ナット7A、7Bの締め付けが緩まないようにするため、例えばダブルナット、戻り止めピンなどを使用することが好ましいとされる。
ここで、このときのPC鋼棒7の張力は、大規模の地震に相当する外力を受けた時に、上記摩擦ダンパー6の摩擦力を超えて制震柱10、10間(すべり面T)ですべるように設定しておく。したがって、中規模の地震程度の外力を受けた時には、摩擦ダンパー6の抵抗力によってすべり作用が発生しない。
And the PC steel bar 7 has comprised the structure which is made to tension in the state which introduced the compressive force of the horizontal direction to several damping column 10A-10E by tightening nut 7A, 7B. That is, the resistance force (friction force) of the friction damper 6 can be adjusted by this tension. In order to prevent the nuts 7A and 7B from being loosened, it is preferable to use, for example, a double nut or a detent pin.
Here, the tension of the PC steel bar 7 at this time exceeds the frictional force of the friction damper 6 and receives the external force corresponding to a large-scale earthquake between the damping columns 10 and 10 (sliding surface T). Set to slip. Therefore, when an external force such as a medium-scale earthquake is applied, the sliding action is not generated by the resistance force of the friction damper 6.

また、PC鋼棒7の一方の定着端部7aは、張力調整部材8を介してナット7Aで固定されている。
この張力調整部材8は、例えば図示しない鋼製の皿バネ等を板座金で挟み、張力導入部材8に多少のゆるみ等が生じても軸力を一定に保つことを目的としたものであり、複数の制震柱10A〜10Eを圧縮連結するPC鋼棒7の張力を一定に保つことができる。
Further, one fixing end portion 7 a of the PC steel rod 7 is fixed with a nut 7 </ b> A via a tension adjusting member 8.
The tension adjusting member 8 is intended to keep the axial force constant even if a loose spring or the like is sandwiched between plate washer, not shown, and a slight slack or the like is generated in the tension introducing member 8. The tension | tensile_strength of the PC steel rod 7 which carries out the compression connection of the some damping columns 10A-10E can be kept constant.

次に、このように構成される制震構造1の作用について図6などを参照して説明する。
図6(a)に示すように、中小規模の地震時において高層建物2に外力が入力されるときには、高層建物2の揺れに伴って制震柱10には曲げ変形の作用が生じる。このとき、摩擦ダンパー6は、上述したようにPC鋼棒7(図1参照)の張力が調整されていて、中小規模程度の地震による外力に抵抗してすべり作用が生じないようになっている。そのため、すべての制震柱10A〜10Eが高層建物2と一体となることで剛性を保ち、地震エネルギーに抵抗することができる。したがって、本高層建物2は、揺れが低減されると共に曲げ変形が抑制されることになる。
Next, the effect | action of the damping structure 1 comprised in this way is demonstrated with reference to FIG.
As shown in FIG. 6A, when an external force is input to the high-rise building 2 during a small and medium-scale earthquake, the seismic control column 10 is subjected to bending deformation as the high-rise building 2 shakes. At this time, the friction damper 6 has the tension of the PC steel rod 7 (see FIG. 1) adjusted as described above, and resists the external force caused by the small and medium-scale earthquake so that no sliding action occurs. . Therefore, since all the seismic control columns 10A to 10E are integrated with the high-rise building 2, the rigidity can be maintained and the seismic energy can be resisted. Therefore, in the high-rise building 2, the shaking is reduced and the bending deformation is suppressed.

一方、図6(b)に示すように、大地震時において高層建物2に外力が入力されるときには、高層建物2の揺れに伴う曲げ変形の作用により制震柱10、10間ですべり作用が生じ、摩擦ダンパー6で減衰力を発揮することで地震エネルギーが吸収される。
さらに具体的には、両端の制震柱10A、10Eは梁4、4(図1参照)に一体に固定されている関係上、これら両端の制震柱10A、10Eと梁4や柱3は同じ周期で揺れることになる。そして、高層建物2に曲げ変形の作用が働いたときに、両端の制震柱10A、10Eの間に挟まれて配置される制震柱10B、10C、10Dは、夫々が分離した状態であることから、すべり面Tにおいて制震柱10の軸方向に相対変形力が作用してすべり作用が生じる。
それと同時に、制震柱10に組み込まれている摩擦ダンパー6は、これら制震柱10に生じる相対変形に伴う力に対する抵抗力(摩擦力)が生じる。そのため、本高層建物2では、摩擦ダンパー6の抵抗力(摩擦力)により減衰力が発揮されて地震エネルギーが吸収され、高層建物2の揺れが効果的に低減されると共に、曲げ変形が抑制されることになる。
なお、このときの高層建物2の剛性が低下することになり、地震エネルギーを受け流す効果も期待できる。
On the other hand, as shown in FIG. 6 (b), when an external force is input to the high-rise building 2 in the event of a large earthquake, the sliding action between the damping columns 10 and 10 is caused by the bending deformation caused by the shaking of the high-rise building 2. The seismic energy is absorbed by the damping force generated by the friction damper 6.
More specifically, since the damping columns 10A and 10E at both ends are integrally fixed to the beams 4 and 4 (see FIG. 1), the damping columns 10A and 10E at both ends and the beams 4 and 3 are It will shake at the same cycle. When the bending deformation acts on the high-rise building 2, the vibration control columns 10B, 10C, and 10D disposed between the vibration control columns 10A and 10E at both ends are separated from each other. For this reason, a relative deformation force acts on the sliding surface T in the axial direction of the vibration control column 10 to generate a sliding action.
At the same time, the friction damper 6 incorporated in the vibration control column 10 generates a resistance force (friction force) against the force accompanying the relative deformation generated in the vibration control column 10. Therefore, in this high-rise building 2, the damping force is exerted by the resistance force (friction force) of the friction damper 6 to absorb the seismic energy, the vibration of the high-rise building 2 is effectively reduced, and bending deformation is suppressed. Will be.
In addition, the rigidity of the high-rise building 2 at this time will fall, and the effect of receiving seismic energy can also be expected.

上述のように本実施の形態による制震構造では、曲げ変形の大きな上層階nの数層において、制震柱10、10間に摩擦ダンパー6を設け、PC鋼棒7によって大規模地震に相当する外力に対して制震柱10、10間にすべり作用が生じるように設定しておくことができる。
高層建物2が中小規模の地震による外力を受けたときには、制震柱10が高層建物2と一体化された状態で、剛性を保って外力に抵抗し、高層建物2の揺れを低減させて曲げ変形を抑制することができる。
また、高層建物2が大規模の地震による外力を受けたときには、制震柱10、10間にすべり作用が生じると共に、摩擦ダンパー6の抵抗力により減衰効果を発揮して地震エネルギーを吸収し、高層建物2の揺れを低減させて曲げ変形を抑制することができる。
このように、中小規模から大規模な地震などの揺れ(外力)による曲げ変形に対応できる構成であるため、超高層構造物に適用することが可能となる。
また、本制震構造1では、制震柱10を高層建物2内に組み込み、上層階nのみに摩擦ダンパー6を備えた構成であることから、構造にかかるコスト低減を図ることができる。
As described above, in the damping structure according to the present embodiment, the friction damper 6 is provided between the damping columns 10 and 10 in several layers of the upper floor n where bending deformation is large, and the PC steel rod 7 corresponds to a large-scale earthquake. It can be set so that a sliding action occurs between the seismic control columns 10 and 10 with respect to the external force to be generated.
When the high-rise building 2 receives external force due to a small-to-medium-scale earthquake, the damping column 10 is integrated with the high-rise building 2, resists the external force while maintaining rigidity, reduces the shaking of the high-rise building 2, and bends Deformation can be suppressed.
In addition, when the high-rise building 2 receives an external force due to a large-scale earthquake, a sliding action occurs between the vibration control columns 10 and 10, and a damping effect is exerted by the resistance force of the friction damper 6 to absorb the earthquake energy. Bending deformation can be suppressed by reducing the shaking of the high-rise building 2.
Thus, since it is the structure which can respond to bending deformation by shaking (external force), such as a small-scale to large-scale earthquake, it becomes possible to apply to a super-high-rise structure.
Further, in the present damping structure 1, since the damping column 10 is incorporated in the high-rise building 2 and the friction damper 6 is provided only on the upper floor n, the cost for the structure can be reduced.

以上、本発明による制震構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では制震柱10の設置数を5本としているが、設置本数はこの数量に限定されることはない。要は、複数本の制震柱10が設けられていて、その制震柱10、10間に摩擦ダンパー6を介装できればよいのである。
また、制震柱10をプレキャストコンクリート柱とし、柱下部スリーブジョイントのグラウト前に、張力導入部材に所定の張力を導入し、摩擦ダンパーに均等な圧縮力を導入した後に、柱下部スリーブジョイントにモルタル等をグラウトすることも可能である。
また、摩擦ダンパー6は、高層建物2における上層階nに加えて、中間層に設けるようにしてもかまわない。さらに、高層建物2の下層階には、層間変形に対して有効な間柱型、ブレース型、壁型などの制震装置を組み込むようにすることも可能である。
さらにまた、本実施の形態では制震柱10、10同士の間に分離介装部材5を設けているが、この材質、構成に限定されるものではなく、また分離介装部材5を設けないものであってもかまわない。要は、制震柱10、10同士が分離状態とされ、この互いのすべり面Tですべり作用が生じるように構成されていればよいのである。
勿論、摩擦ダンパー6やPC鋼棒7の数量、取り付け位置、設置階など具体的な構成その他は、採用するべき高層建物2の階数(高さ)や構造条件を考慮して最適設計すれば良い。
また、上層階nの階数設定は全体の設計内容に応じて適宜変更することは言うまでも無い。つまり、本実施の形態では上層階nの3層に摩擦ダンパー6を配置した例を示しているが、これに限定されるものではなく、2層或いは4層以上の範囲に摩擦ダンパー6を配置してもよく、要は、本発明において所期の機能が得られればよいのである。
As mentioned above, although embodiment of the damping structure by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the present embodiment, the number of installed seismic control columns 10 is five, but the number of installed columns is not limited to this number. In short, it is only necessary that a plurality of damping columns 10 are provided and the friction damper 6 be interposed between the damping columns 10 and 10.
Moreover, the seismic control column 10 is a precast concrete column, a predetermined tension is introduced into the tension introducing member and a uniform compressive force is introduced into the friction damper before grouting of the column lower sleeve joint, and then a mortar is applied to the column lower sleeve joint. It is also possible to grout etc.
Further, the friction damper 6 may be provided in an intermediate layer in addition to the upper floor n in the high-rise building 2. Furthermore, it is also possible to incorporate seismic control devices such as a stud type, brace type, and wall type effective for interlayer deformation on the lower floor of the high-rise building 2.
Furthermore, in this embodiment, the separation intervention member 5 is provided between the vibration control columns 10 and 10, but is not limited to this material and configuration, and the separation intervention member 5 is not provided. It does not matter if it is a thing. The point is that the seismic control columns 10 and 10 are separated from each other, and the sliding action may be generated on the sliding surfaces T of each other.
Of course, the specific configuration such as the number of friction dampers 6 and PC steel rods 7, mounting positions, installation floors, etc. may be optimally designed in consideration of the number of floors (height) of the high-rise building 2 to be adopted and the structural conditions. .
Needless to say, the floor setting of the upper floor n is appropriately changed according to the entire design content. That is, in the present embodiment, an example is shown in which the friction dampers 6 are arranged in the three layers of the upper floor n, but the present invention is not limited to this, and the friction dampers 6 are arranged in the range of two layers or four layers or more. In short, the point is that the desired function can be obtained in the present invention.

本発明の実施の形態による制震構造の概略構成を示す立面図である。1 is an elevation view showing a schematic configuration of a vibration control structure according to an embodiment of the present invention. 図1に示す制震構造のA−A線断面図あるいはA−A線断面図である。It is A 1 -A 1 cross-sectional view taken along line or A 2 -A 2 cross-sectional view taken along a line seismic control structure shown in FIG. 図1に示す制震構造のB−B線断面図である。It is a BB line sectional view of the damping structure shown in FIG. 制震構造の摩擦ダンパーの取り付け状態を示す要部拡大図である。It is a principal part enlarged view which shows the attachment state of the friction damper of a damping structure. 摩擦ダンパーが設けられた制震柱間の構造を示す拡大図である。It is an enlarged view which shows the structure between the damping columns provided with the friction damper. 地震時における制震柱の揺れの状態を示す図であって、(a)は中小規模地震時の立面図、(b)は大規模地震時の立面図である。It is a figure which shows the state of the vibration suppression column at the time of an earthquake, Comprising: (a) is an elevation view at the time of a medium-scale earthquake, (b) is an elevation view at the time of a large-scale earthquake.

符号の説明Explanation of symbols

1 制震構造
2 高層建物(建物)
3 柱
4 梁
5 分離介装部材
6 摩擦ダンパー
7 PC鋼棒(張力導入部材)
8 張力調整部材
10 制震柱
n 上層階
T すべり面

1 Seismic control structure 2 High-rise building (building)
3 Column 4 Beam 5 Separation member 6 Friction damper 7 PC steel bar (Tension introducing member)
8 Tension adjusting member 10 Damping column n Upper floor T Sliding surface

Claims (3)

建物内で横方向に連ねて配置された複数の制震柱と、
前記建物の上層階で、前記制震柱同士の間に介装された摩擦ダンパーと、
前記摩擦ダンパーを介した状態の前記複数の制震柱を、略水平方向に圧縮連結する張力導入部材と、
が設けられていることを特徴とする制震構造。
A plurality of seismic control columns arranged side by side in the building,
On the upper floor of the building, a friction damper interposed between the vibration control columns,
A tension introducing member that compressively couples the plurality of vibration control columns in a state through the friction damper in a substantially horizontal direction;
A seismic control structure characterized by
前記制震柱同士が接する面には、分離介装部材が設けられていることを特徴とする請求項1に記載の制震構造。   The seismic control structure according to claim 1, wherein a separation intervention member is provided on a surface where the seismic control columns contact each other. 前記張力導入部材の定着部には、前記張力導入部材の張力を調整する張力調整部材が設けられていることを特徴とする請求項1又は2に記載の制震構造。   The damping structure according to claim 1, wherein a tension adjusting member that adjusts a tension of the tension introducing member is provided in the fixing portion of the tension introducing member.
JP2006195579A 2006-07-18 2006-07-18 Damping structure Active JP4771160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195579A JP4771160B2 (en) 2006-07-18 2006-07-18 Damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195579A JP4771160B2 (en) 2006-07-18 2006-07-18 Damping structure

Publications (2)

Publication Number Publication Date
JP2008025113A true JP2008025113A (en) 2008-02-07
JP4771160B2 JP4771160B2 (en) 2011-09-14

Family

ID=39116038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195579A Active JP4771160B2 (en) 2006-07-18 2006-07-18 Damping structure

Country Status (1)

Country Link
JP (1) JP4771160B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209520A (en) * 2008-02-29 2009-09-17 Sumitomo Rubber Ind Ltd Damping member and damping panel
JP2010249224A (en) * 2009-04-15 2010-11-04 Ohbayashi Corp Base isolation bearing member and base isolating layer
JP2011052422A (en) * 2009-09-01 2011-03-17 Kajima Corp Seismic structure
GR1007296B (en) * 2008-09-25 2011-06-03 Νικολαος Γεωργιου Δρουγος Aseismic structure-locking mechanism.
JP2011190634A (en) * 2010-03-16 2011-09-29 Ikkyu Kenchikushi Jimusho Nbas:Kk Damping panel and seismic strengthening structure using the same
JP2013060754A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Vibration control column and its structure
JP2013060757A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Friction damper and its installation method, and collection column using the same
JP2020200879A (en) * 2019-06-10 2020-12-17 勉 水野 Friction member and structure including the same
CN115853113A (en) * 2022-12-29 2023-03-28 东南大学 Multi-safety redundancy self-reset structure system and self-reset method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209520A (en) * 2008-02-29 2009-09-17 Sumitomo Rubber Ind Ltd Damping member and damping panel
GR1007296B (en) * 2008-09-25 2011-06-03 Νικολαος Γεωργιου Δρουγος Aseismic structure-locking mechanism.
JP2010249224A (en) * 2009-04-15 2010-11-04 Ohbayashi Corp Base isolation bearing member and base isolating layer
JP2011052422A (en) * 2009-09-01 2011-03-17 Kajima Corp Seismic structure
JP2011190634A (en) * 2010-03-16 2011-09-29 Ikkyu Kenchikushi Jimusho Nbas:Kk Damping panel and seismic strengthening structure using the same
JP2013060754A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Vibration control column and its structure
JP2013060757A (en) * 2011-09-14 2013-04-04 Ohbayashi Corp Friction damper and its installation method, and collection column using the same
JP2020200879A (en) * 2019-06-10 2020-12-17 勉 水野 Friction member and structure including the same
CN115853113A (en) * 2022-12-29 2023-03-28 东南大学 Multi-safety redundancy self-reset structure system and self-reset method
CN115853113B (en) * 2022-12-29 2024-04-16 东南大学 Multi-safety redundancy self-resetting structure system and self-resetting method

Also Published As

Publication number Publication date
JP4771160B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4771160B2 (en) Damping structure
US10352058B2 (en) Rigid sub structure damping system and method for protecting structures subjected to dynamic forces
JP6437685B1 (en) Seismic reinforcement device for existing buildings
JP2008045393A (en) Composite energy absorbing structure and method for forming composite structure of building including one or plural floor slabs
JP4419088B2 (en) Seismic reinforcement structure for buildings
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP4070117B2 (en) Vibration control device
JP4664997B2 (en) Buildings with joint hardware
JP2005139770A (en) Vibration control reinforcing frame for existing building and vibration control building using it
JP2009013683A (en) Damping structure of building
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP2010216611A (en) Seismic response control metallic plate
JP2012207389A (en) Seismic strengthening construction method for existing building
JP2019027194A (en) Earthquake resistance reinforcing structure for bridge
JP4546620B2 (en) Self-isolated construction method and self-isolated structure of RC structure
JP5808570B2 (en) building
JP2004300912A (en) Vibration control damper coping with habitability
JP5290786B2 (en) Damping structure
JP2005090101A (en) Seismic response control structure
JP2007132125A (en) Vibration control method for small-scale building
JP2006083545A (en) PCaPC FRAMING
JP7409969B2 (en) Lifting mechanism and reinforced concrete columns and reinforced concrete structures equipped with the same
JP2005290774A (en) Aseismic reinforcing structure
JP2019019656A (en) Roof earthquake-resistant structure
JP7363000B2 (en) building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150