JP2008023504A - Magnetic crushing method, magnetic crushing device, and crushing medium used for it - Google Patents

Magnetic crushing method, magnetic crushing device, and crushing medium used for it Download PDF

Info

Publication number
JP2008023504A
JP2008023504A JP2006202317A JP2006202317A JP2008023504A JP 2008023504 A JP2008023504 A JP 2008023504A JP 2006202317 A JP2006202317 A JP 2006202317A JP 2006202317 A JP2006202317 A JP 2006202317A JP 2008023504 A JP2008023504 A JP 2008023504A
Authority
JP
Japan
Prior art keywords
crushing
sample
cylindrical container
crushing medium
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202317A
Other languages
Japanese (ja)
Inventor
Michio Shibatani
三千雄 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006202317A priority Critical patent/JP2008023504A/en
Publication of JP2008023504A publication Critical patent/JP2008023504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic crushing method crushing a sample by setting a cylindrical vessel containing the sample at rest with magnetic drive, a magnetic crushing device, and a crushing medium used for it. <P>SOLUTION: The crushing medium A formed of mainly a ferromagnetic body is charged into the cylindrical vessel P containing the sample U, the vessel P is inserted into the magnetic crushing device 1, and the sample U is crushed by moving the crushing medium A formed of mainly the ferromagnetic body in the three-dimensional directions including rotary movement by variable magnetic field applied from the magnetic crushing device 1. The crushing medium A is formed to have a size. a shape, structure and mass corresponding to the kind or a state of the sample U, to efficiently crush the sample U with high quality. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、DNA解析するための前処理として生体試料を細胞破砕する場合や試料を粉砕処理する場合など、円筒容器中に試料と共に収容した破砕媒体を磁気的に運動させて試料を破砕する磁気破砕方法及び磁気破砕装置とそれに用いる破砕媒体に関するものである。   The present invention provides a magnetic material for crushing a sample by magnetically moving a crushing medium accommodated together with the sample in a cylindrical container, such as when crushing a biological sample as a pretreatment for DNA analysis or crushing the sample. The present invention relates to a crushing method, a magnetic crushing apparatus, and a crushing medium used therefor.

例えば、生体試料をDNA解析するためには、前処理として試料中の細胞を破砕する細胞破砕処理が必要となる。細胞破砕は古くから在る乳鉢−乳棒によっても可能であるが、長時間にわたる労力が必要であり、開放空間での作業であるため異物が混入する恐れが多分にある。この乳鉢−乳棒の破砕作業を機械的に行う装置として振動破砕装置が知られている。図13は振動破砕装置の構造例を示すもので、モータにより回転軸102を回転駆動することにより、破砕容器100を保持した環状保持体103をその円周方向に高速に往復振動させると共に上下方向に高速に往復振動させる。この破砕容器100の振動により、破砕容器100中に収容した破砕媒体101が回転しながら容器内壁に激しく衝突し、摺接するので、破砕容器100が乳鉢、破砕媒体101が乳棒のように作用して破砕容器100中に収容した試料が摩砕あるいは圧砕される。   For example, in order to perform DNA analysis on a biological sample, a cell crushing process for crushing cells in the sample is necessary as a pretreatment. Although cell disruption is possible with an old mortar-pestle, it requires labor for a long time, and since it is an open space work, there is a possibility that foreign matter may be mixed. A vibration crushing device is known as a device that mechanically performs this mortar-pestle crushing operation. FIG. 13 shows an example of the structure of a vibration crushing device. By rotating the rotating shaft 102 by a motor, the annular holder 103 holding the crushing container 100 is reciprocally vibrated at a high speed in the circumferential direction and vertically. To reciprocate at high speed. Due to the vibration of the crushing container 100, the crushing medium 101 accommodated in the crushing container 100 collides with the inner wall of the container while rotating, and comes into sliding contact, so that the crushing container 100 acts like a mortar and the crushing medium 101 acts like a pestle. The sample stored in the crushing container 100 is ground or crushed.

このような振動破砕に適用される破砕媒体は、一般的にはガラス、ジルコニア、ステンレス等による直径0.1〜5.0mmのビーズが用いられるが、破砕効果をより向上させるべく破砕容器100中に単一の破砕媒体101を収容する試料破砕具が知られている(特許文献1参照)。また、破砕容器100の内径より僅かに小さい直径の単一の破砕媒体101を用いて細胞破砕する装置及び方法が提案されている(特許文献2参照)。   As a crushing medium applied to such vibration crushing, beads having a diameter of 0.1 to 5.0 mm made of glass, zirconia, stainless steel or the like are generally used, but in the crushing container 100 in order to further improve the crushing effect. In addition, a sample crushing tool that accommodates a single crushing medium 101 is known (see Patent Document 1). In addition, an apparatus and a method for crushing cells using a single crushing medium 101 having a diameter slightly smaller than the inner diameter of the crushing container 100 have been proposed (see Patent Document 2).

これらの破砕媒体101は、図14に示すように、有底円筒形の破砕容器100に試料120と共に収容され、振動破砕装置によって破砕容器100に往復振動が加えられることにより破砕媒体101は三次元運動して試料120を破砕する。破砕媒体101の形状寸法及び質量が規定されており、図示破砕媒体101の場合では、円筒形の破砕容器100の軸心にほぼ沿った姿勢を維持してほぼ軸心方向に相対移動できる円柱形で、一方の端部が破砕容器100の底面形状に対応する形状としている。   As shown in FIG. 14, these crushing media 101 are accommodated in a bottomed cylindrical crushing vessel 100 together with a sample 120, and the crushing media 101 are three-dimensionally applied by reciprocating vibration to the crushing vessel 100 by a vibration crushing device. Exercise to crush sample 120. The shape size and mass of the crushing medium 101 are defined. In the case of the illustrated crushing medium 101, a cylindrical shape that can be relatively moved substantially in the axial direction while maintaining a posture substantially along the axis of the cylindrical crushing container 100. Thus, one end has a shape corresponding to the bottom shape of the crushing container 100.

しかし、振動破砕装置においては、破砕容器100の中で破砕媒体101を激しく運動させるためには破砕容器100を激しく振り回す必要があり、破砕容器100が激しい往復運動によっても脱落しないように装置に強固に固定しなければならない。そのため、破砕容器100を装置に固定し、破砕処理後には固定状態を解除して取り出す作業工数が多くなり、試料を破砕処理する作業に大きな手間を要する。   However, in the vibration crushing apparatus, in order to vigorously move the crushing medium 101 in the crushing container 100, it is necessary to vigorously shake the crushing container 100, and the apparatus is strong so that the crushing container 100 does not fall off due to a severe reciprocating motion. Must be fixed to. For this reason, the number of work steps for fixing the crushing container 100 to the apparatus and releasing the fixed state after the crushing process is increased, and the work for crushing the sample requires a large amount of work.

また、摩擦熱や装置の温度上昇により試料が温度上昇し、試料の種類によっては熱による変質が生じ、DNA解析等の作業に支障を来たす問題があり、温度上昇を抑えるために破砕容器100を冷却することが要求される。しかし、激しく往復運動する破砕容器100を冷却することは容易でない。 In addition, the temperature of the sample rises due to frictional heat and the temperature of the apparatus, and depending on the type of the sample, there is a problem that alteration due to heat occurs, which hinders work such as DNA analysis. It is required to cool. However, it is not easy to cool the crushing container 100 that reciprocates vigorously.

望ましくは、破砕容器100は一定位置に静止状態とし、破砕媒体101だけを破砕容器100内で運動させた方が好適であり、破砕容器100を乳鉢、破砕媒体101を乳棒として作用させることができる。破砕媒体101だけを運動させるには、破砕媒体101を強磁性体あるいは着磁体で形成することにより、破砕容器100の外部から印加する磁界により破砕媒体101を回転させたり任意方向に移動させたりすることができる。   Desirably, it is preferable that the crushing container 100 is stationary at a fixed position and only the crushing medium 101 is moved in the crushing container 100, and the crushing container 100 can act as a mortar and the crushing medium 101 can act as a pestle. . In order to move only the crushing medium 101, the crushing medium 101 is formed of a ferromagnetic material or a magnetized material, and the crushing medium 101 is rotated or moved in an arbitrary direction by a magnetic field applied from the outside of the crushing container 100. be able to.

このような容器中に収容した強磁性体や着磁体を磁力によって容器内で運動させる構造は、ビーカや試験管に入れた液体を攪拌する小型の攪拌装置から反応促進のための攪拌や溶融金属の攪拌など工業的な大型攪拌装置まで多くの提案がなされている。しかし、このような攪拌装置は液体や粉体、溶融体などを攪拌するのに好適なものであるが、試料を磨り潰す摩砕作用や試料を圧縮破砕する圧砕作用は得られず、試料を破砕する用に供することはできない。   The structure in which a ferromagnetic material or a magnetized body contained in such a container is moved in the container by magnetic force is used for stirring or molten metal for promoting the reaction from a small stirring device that stirs a liquid placed in a beaker or a test tube. Many proposals have been made up to an industrial large-sized stirring apparatus such as agitation. However, such a stirring device is suitable for stirring liquids, powders, melts, etc., but does not provide a grinding action to grind the sample or a crushing action to compress and crush the sample. It cannot be used for crushing.

容器内に収容した破砕媒体を磁気駆動して試料を破砕処理する技術としては、試料に微細な磁気球や金属球を混合して容器中に収容し、容器の外部から印加される磁界により試料を破砕する破砕方法が提案されている(特許文献3参照)。この破砕方法は、図15に示すように、微細な磁気球や金属球を混合した試料110を収容した円筒形容器111の直径方向に対向させて2方向あるいは4方向に電磁石112,113を配し、複数の電磁石112,113にランダムなタイミングで通電し、必要に応じて通電方向を切り換えて磁極を反転させることにより、磁気球や金属球に不規則な移動や回転を生じさせ、試料110を破砕するとしている。 As a technique for crushing the sample by magnetically driving the crushing medium contained in the container, the sample is mixed with a fine magnetic sphere or metal sphere and accommodated in the container, and the sample is applied by a magnetic field applied from the outside of the container. The crushing method which crushes is proposed (refer patent document 3). In this crushing method, as shown in FIG. 15, electromagnets 112 and 113 are arranged in two or four directions facing a diameter direction of a cylindrical container 111 containing a sample 110 mixed with fine magnetic spheres and metal spheres. Then, by energizing the plurality of electromagnets 112 and 113 at random timing and switching the energization direction as necessary to reverse the magnetic poles, the magnetic sphere and the metal sphere are irregularly moved and rotated, and the sample 110 It is supposed to crush.

また、円筒形容器の外部から印加される磁界により容器内に収容した磁性体を円筒形容器の軸心方向に往復直動させて試料を破砕する加振機構が知られている(特許文献4参照)。この装置では、図16に示すように、上下に配設された第1及び第2の各ソレノイド141,142の内側に取り付けた容器148に投入した磁性体143を第1及び第2の各ソレノイド141,142をオン・オフ制御することにより往復直動させて試料とする検体144を破砕する。容器148の底部には予め質量体145が収容され、その上に検体144を置き、容器148内に磁性体143を投入して第1及び第2の各ソレノイド141,142を交互に励磁すると、磁性体143は往復直動して質量体145に衝突するので、検体144は質量体145と磁性体143との間で圧砕される。
特開2006−051505号公報 特開2005−237381号公報 特開2003−000226号公報 特開2005−111358号公報
Further, there is known an excitation mechanism that crushes a sample by reciprocatingly moving a magnetic body accommodated in the container by a magnetic field applied from the outside of the cylindrical container in the axial direction of the cylindrical container (Patent Document 4). reference). In this apparatus, as shown in FIG. 16, the magnetic body 143 put into the container 148 attached to the inside of the first and second solenoids 141 and 142 disposed above and below is used as the first and second solenoids. By subjecting 141 and 142 to ON / OFF control, the specimen 144 as a sample is crushed by reciprocating linear movement. A mass body 145 is accommodated in advance in the bottom of the container 148, a specimen 144 is placed thereon, a magnetic body 143 is inserted into the container 148, and the first and second solenoids 141 and 142 are alternately excited. Since the magnetic body 143 moves back and forth and collides with the mass body 145, the specimen 144 is crushed between the mass body 145 and the magnetic body 143.
JP 2006-051505 A Japanese Patent Application Laid-Open No. 2005-237381 Japanese Patent Laid-Open No. 2003-000226 JP 2005-111358 A

従来技術である振動破砕における破砕媒体の挙動は、破砕容器が往復振動する挙動に係っており、振動破砕装置により破砕容器を往復振動させる振動周期と振動振幅に左右される。従って、特許文献1,2に示した従来技術に係る破砕媒体は、振動破砕装置の構造、動作に対応する破砕媒体の形状や寸法を決定する必要がある。一方、磁気的に破砕媒体だけを静止状態にある容器の中で運動させる磁気破砕装置においては、磁界の印加位置、磁界強度、磁界の種類などによって破砕媒体の運動を自在制御することができるので、破砕媒体の形状や寸法、容器中に投入する数は破砕対象とする試料の種類や状態に合わせて任意に設定することができる。   The behavior of the crushing medium in vibration crushing, which is the prior art, is related to the behavior of the crushing container reciprocally vibrating, and depends on the vibration period and vibration amplitude of reciprocating vibration of the crushing container by the vibration crushing apparatus. Therefore, it is necessary to determine the shape and size of the crushing medium corresponding to the structure and operation of the vibration crushing apparatus for the crushing medium according to the prior art shown in Patent Documents 1 and 2. On the other hand, in a magnetic crushing device that magnetically moves only the crushing medium in a stationary container, the movement of the crushing medium can be freely controlled by the application position of the magnetic field, the magnetic field strength, the type of the magnetic field, etc. The shape and size of the crushing medium, and the number of the crushing medium charged in the container can be arbitrarily set according to the type and state of the sample to be crushed.

しかし、特許文献3として示した従来技術の磁気破砕方式における破砕媒体は、微細な磁気球や金属球であって、それを磁界方向の切り換えによって円筒容器内で移動させるだけなので、質量が小さい破砕媒体によって植物など繊維質の試料や骨や歯など硬質の試料の破砕に対応させることができない。また、試料中に破砕媒体を混入して破砕処理するとしているので、開示されているように白血球、細菌、ウイルス等のような液状の試料や軟質の試料、微粉状の試料に限定される。また、破砕媒体は円筒形容器の中で電磁石の側に移動する往復移動や周回移動を行うだけなので、破砕媒体が試料を破砕するまでに時間を要するものと考えられる。   However, the crushing medium in the conventional magnetic crushing method shown as Patent Document 3 is a fine magnetic sphere or metal sphere, which is simply moved in the cylindrical container by switching the magnetic field direction, so that the crushing is small in mass. Depending on the medium, it is not possible to cope with crushing of fibrous samples such as plants and hard samples such as bones and teeth. Further, since the crushing process is performed by mixing the crushing medium in the sample, it is limited to liquid samples such as white blood cells, bacteria, viruses, soft samples, and fine powder samples as disclosed. In addition, since the crushing medium only reciprocates and moves around the electromagnet in the cylindrical container, it is considered that it takes time for the crushing medium to crush the sample.

また、特許文献4に示した従来技術では、電磁駆動により磁性体を直動させて質量体に衝突させ、その間に収容した試料を圧縮破砕するもので、凍結した試料や硬質の試料を叩き潰す圧砕作用は得られるものの、試料を磨り潰す摩砕作用は得られない。従って、試料の種類が限定され、従来から知られている凍結試料を金属容器内に収容して外部から打撃を加えて圧砕する凍結破砕装置を電動駆動に代えたもとしか考えられない。   Moreover, in the prior art shown in Patent Document 4, a magnetic material is linearly moved by electromagnetic driving to collide with a mass body, and a sample accommodated in the meantime is compressed and crushed, and a frozen sample or a hard sample is crushed. Although a crushing action can be obtained, a crushing action for grinding the sample cannot be obtained. Therefore, the types of samples are limited, and it can only be considered that a freeze crushing apparatus that accommodates a conventionally known frozen sample in a metal container and blows and crushes it from the outside is replaced with an electric drive.

本発明は目的とするところは、容器中に収容した破砕媒体を磁気的に運動させて試料に摩砕及び圧砕の作用を加えて破砕するのに適した磁気破砕方法及び磁気破砕装置とそれに用いる破砕媒体を提供することにある。   An object of the present invention is to provide a magnetic crushing method and a magnetic crushing apparatus suitable for crushing a sample by subjecting the crushing medium accommodated in the container to magnetic movement so as to crush and crush the sample. It is to provide a crushing medium.

上記目的を達成するための本願第1発明は、破砕対象とする試料と共に円筒容器内に収容された破砕媒体を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する磁気破砕方法であって、前記破砕媒体の運動は、円筒容器の内周に沿って回転する公転運動、自らの回転軸を中心に回転する自転運動、円筒容器の径方向に振れ動く振れ運動、円筒容器の軸方向に往復移動する杵搗き運動、上昇位置から加速度落下する叩き運動、微細に振動する微細動運動のうち任意の運動を選択組み合わせることを特徴とする。   The first invention of the present application for achieving the above object is a magnetic crushing method in which a crushing medium housed in a cylindrical container together with a sample to be crushed is moved by a variable magnetic field applied from the outside of the cylindrical container to crush the sample. The movement of the crushing medium includes a revolving motion that rotates along the inner periphery of the cylindrical container, a rotational motion that rotates about its own rotation axis, a wobbling motion that swings in the radial direction of the cylindrical container, and the axis of the cylindrical container. It is characterized by selectively combining arbitrary movements among a whirling movement that reciprocates in the direction, a tapping movement that accelerates and drops from an ascending position, and a fine dynamic movement that vibrates finely.

上記磁気破砕方法によれば、可変磁界によって円筒容器内で破砕媒体を運動させて試料を破砕処理するとき、試料の種類や状態に応じて破砕媒体を最適の状態に運動させることができる。破砕対象とする試料は硬質のものから軟質のもの、繊維質のもの、液体中での破砕が要求されるものなど多様であるため、破砕媒体の運動を試料の種類や状態に応じて選択組み合わせることにより、より効率的な破砕処理が可能である。また、円筒容器は一定位置に静止させて破砕媒体だけを試料に適応する挙動に運動させることができるので、円筒容器を冷却して温度上昇により試料が変質することを防止する冷却構造の構築が容易であり、破砕処理途中で円筒容器を取り出して破砕状態を確認することも容易に行い得る。   According to the magnetic crushing method, when the sample is crushed by moving the crushing medium in the cylindrical container with a variable magnetic field, the crushing medium can be moved to an optimum state according to the type and state of the sample. Samples to be crushed vary from hard to soft, fibrous, and those that require crushing in liquids. Select and combine the movement of crushing media according to the type and condition of the sample. Therefore, a more efficient crushing process is possible. In addition, since the cylindrical container can be stopped at a fixed position and only the crushing medium can be moved to adapt to the sample, it is possible to construct a cooling structure that cools the cylindrical container and prevents the sample from being altered due to temperature rise. It is easy, and it can be easily performed by taking out the cylindrical container during the crushing process and confirming the crushing state.

また、本願第2発明は、破砕対象とする試料と共に円筒容器内に収容された破砕媒体を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する磁気破砕装置であって、前記可変磁界は、破砕媒体を回転運動させる回転磁界発生手段、破砕媒体を円筒容器の軸方向に移動させる直動磁界発生手段、破砕媒体を円筒容器の任意方向に吸引する吸引磁界発生手段、破砕媒体を微細振動させる交番磁界発生手段のうち任意の磁界発生手段を選択組み合わせて構成されてなることを特徴とする。 The second invention of the present application is a magnetic crushing apparatus for crushing a sample by moving a crushing medium accommodated in a cylindrical container together with a sample to be crushed by a variable magnetic field applied from the outside of the cylindrical container. The magnetic field includes rotating magnetic field generating means for rotating the crushing medium, linear motion magnetic field generating means for moving the crushing medium in the axial direction of the cylindrical container, suction magnetic field generating means for sucking the crushing medium in any direction of the cylindrical container, and crushing medium. It is characterized by being configured by selectively combining arbitrary magnetic field generating means among the alternating magnetic field generating means for fine vibration.

上記破砕装置によれば、可変磁界を発生させるための磁界発生手段を試料の種類や状態に応じて破砕媒体を最も効果的に運動させることができるものに構成することができる。可変磁界による破砕媒体の運動は、機械的な駆動構造がない破砕装置に構成することが可能であり、装置としての耐久性や小型化、低騒音化などを実現することができる。また、円筒容器は静止状態にして破砕処理できるので、円筒容器の装置への着脱が極めて容易である。 According to the crushing apparatus, the magnetic field generating means for generating the variable magnetic field can be configured to be able to move the crushing medium most effectively according to the type and state of the sample. The movement of the crushing medium by the variable magnetic field can be configured in a crushing apparatus that does not have a mechanical drive structure, and it is possible to realize durability, miniaturization, low noise, and the like as the apparatus. In addition, since the cylindrical container can be crushed in a stationary state, the cylindrical container can be easily attached to and detached from the apparatus.

上記構成において、磁界発生手段は、少なくとも円筒容器の底部側外周を囲むように複数の磁極を配して構成することにより、破砕媒体を回転運動を中心として円筒容器の底部側にある試料を摩砕することができ、磁界発生手段を円筒容器の軸方向に移動させると、試料を叩き潰す圧砕作用も得ることができる。 In the above configuration, the magnetic field generating means is configured by arranging a plurality of magnetic poles so as to surround at least the outer periphery on the bottom side of the cylindrical container, thereby grinding the sample on the bottom side of the cylindrical container around the rotational motion. When the magnetic field generating means is moved in the axial direction of the cylindrical container, a crushing action of crushing the sample can be obtained.

また、磁界発生手段は、円筒容器の周囲に配した複数の磁極からの磁界印加を切り換える用に構成することにより、破砕媒体を回転運動を含む三次元方向に運動させることができる。 Further, the magnetic field generating means can be configured to switch the application of magnetic fields from a plurality of magnetic poles arranged around the cylindrical container, thereby moving the crushing medium in a three-dimensional direction including rotational movement.

また、本願第3発明は、破砕対象とする試料と共に円筒容器内に収容された単一又は複数の部材を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する破砕媒体であって、前記部材は強磁性体を主体として形成され、運動により円筒容器内壁に摺接あるいは衝突し、複数部材同士が摺接あるいは衝突することができる寸法、形状、構造と、摺接あるいは衝突により試料を摩砕、圧砕することができる質量に形成されてなることを特徴とする。 The third invention of the present application is a crushing medium for crushing a sample by moving a single or a plurality of members housed in the cylindrical container together with the sample to be crushed by a variable magnetic field applied from the outside of the cylindrical container. The member is formed mainly of a ferromagnetic material, and slidably contacts or collides with the inner wall of the cylindrical container by movement, and the sample can be slidably contacted or collided. It is formed in the mass which can be ground and crushed.

上記破砕媒体は強磁性体を主体として形成されているので、可変磁界により円筒容器内で自在に運動させ、その運動により円筒容器内に収容した試料を破砕処理することができる。破砕媒体の回転運動により円筒容器の内壁に摺接することによって試料が磨り潰される摩砕作用が得られ、破砕媒体が円筒容器の内壁に衝突する運動により試料が叩き潰される圧砕作用が得られる。破砕媒体を複数部材により構成すれば、複数部材が摺接あるいは衝突することによる摩砕及び圧砕の作用が加味される。この摩砕や圧砕の作用は破砕媒体の形状寸法や構造によって試料の種類や状態に適応させることができ、質量が充分に大きいものであることが摩砕や圧砕の作用を増大させる。 Since the crushing medium is formed mainly of a ferromagnetic material, it can be freely moved in the cylindrical container by a variable magnetic field, and the sample accommodated in the cylindrical container can be crushed by the movement. A crushing action is obtained in which the sample is ground by sliding against the inner wall of the cylindrical container by the rotational movement of the crushing medium, and a crushing action is obtained in which the sample is crushed by the movement of the crushing medium colliding with the inner wall of the cylindrical container. If the crushing medium is composed of a plurality of members, the action of grinding and crushing due to the sliding contact or collision of the plurality of members is taken into account. The action of this grinding or crushing can be adapted to the type and state of the sample depending on the shape and structure of the crushing medium, and the fact that the mass is sufficiently large increases the action of grinding and crushing.

上記破砕媒体は、円柱状の軸方向又は径方向に着磁することにより、回転運動を与えることが容易になり、磁気反発による運動を与えることも可能となる。 When the crushing medium is magnetized in a cylindrical axial direction or radial direction, it becomes easy to give a rotational motion, and it is also possible to give a motion by magnetic repulsion.

また、円柱状の径方向に複数の突出部を形成することにより、回転運動を与えることが容易となるばかりでなく、突出部により試料を剪断する作用が得られ、繊維質の試料の破砕に有効となる。 In addition, by forming a plurality of protrusions in the cylindrical radial direction, it is not only easy to give a rotational movement, but also the action of shearing the sample by the protrusions can be obtained, so that the fibrous sample can be crushed. It becomes effective.

また、少なくとも円筒容器の底部側に向く端部は円筒容器の内底面形状に対応する形状に形成することが好適で、破砕媒体と円筒容器の内底面との接触面積が増すため、円筒容器を縦位置にして破砕処理するとき、円筒容器の内底面にある試料を効果的に摩砕あるいは圧砕することができる。 In addition, it is preferable that at least the end facing the bottom side of the cylindrical container is formed in a shape corresponding to the shape of the inner bottom surface of the cylindrical container, and the contact area between the crushing medium and the inner bottom surface of the cylindrical container is increased. When crushing in the vertical position, the sample on the inner bottom surface of the cylindrical container can be effectively ground or crushed.

また、任意周面に溝を形成することにより、試料を剪断する作用が増大するので、繊維質の試料の破砕に効果的である。 Further, by forming the groove on the arbitrary peripheral surface, the action of shearing the sample is increased, which is effective for crushing the fibrous sample.

また、強磁性体の外側を樹脂、セラミクス、ガラス質、非磁性体金属のいずれか又はそれら任意の組み合わせにより被覆することにより、主には鉄素材である強磁性体と接触することが好ましくない試料の場合や、試料と共に円筒容器中に注入された緩衝液等の液体と鉄素材との反応などを防止したい場合などに有効である。また、試料を破砕するのに適した表面材質を選択することが可能である。 Also, it is not preferable to contact the ferromagnetic material mainly made of iron by coating the outside of the ferromagnetic material with any of resin, ceramics, glassy material, non-magnetic metal, or any combination thereof. This is effective in the case of a sample or when it is desired to prevent a reaction between a liquid such as a buffer solution injected into a cylindrical container together with a sample and an iron material. It is also possible to select a surface material suitable for crushing the sample.

また、中空構造の内部に蓄冷剤を封入して構成することにより、予め破砕媒体を冷却して蓄冷材を冷却あるいは冷凍しておくと、試料を直接的に冷却しながら破砕処理することができ、温度上昇により変質する恐れがある試料の破砕に有効である。 In addition, by constructing the hollow structure with a cool storage agent sealed, if the cooling medium is cooled in advance and the cool storage material is cooled or frozen in advance, the sample can be shredded while being cooled directly. It is effective for crushing samples that may be altered by temperature rise.

また、円柱状に形成した中心部材の外周上にリング状に形成した円筒部材を遊嵌して構成することにより、中心部材と円筒部材との間で試料が破砕される効果を加味することができる。このとき、中心部材と円筒部材とは、強磁性体と非磁性体との組み合わせとすることにより、両部材の挙動差が大きくなるので、試料の種類や状態によって破砕効果を向上させることができる。また、円筒部材に複数のスリットを形成することにより、中心部材の回転により試料がスリットから外方に噴出する作用が得られ、液状試料や液体中での破砕に有効である。 In addition, the cylindrical member formed in a ring shape on the outer periphery of the central member formed in a columnar shape can be freely fitted to take into account the effect that the sample is crushed between the central member and the cylindrical member. it can. At this time, the central member and the cylindrical member are made of a combination of a ferromagnetic material and a non-magnetic material, so that the difference in behavior between the two members increases, so that the crushing effect can be improved depending on the type and state of the sample. . In addition, by forming a plurality of slits in the cylindrical member, the effect that the sample is ejected outward from the slit by rotation of the central member is obtained, which is effective for crushing in a liquid sample or liquid.

また、円筒容器の軸方向又は径方向に複数に分割した複数部材によって構成することにより、部材間での摩砕作用や圧砕作用を増加させることができる。このとき、複数分割された各部材の材質又は形状を異なるものとすることにより、各部材の挙動差が大きくなるので破砕効果を増加させることができる。 Moreover, the grinding action and crushing action between members can be increased by comprising by the several member divided | segmented into plurality in the axial direction or radial direction of a cylindrical container. At this time, by making the material or shape of each of the divided members different, the difference in behavior of each member increases, so that the crushing effect can be increased.

また、強磁性体を主体として中空の容器に形成され、容器の運動に伴って運動する媒体を試料と共に容器内に収容して構成することにより、試料とそれを破砕するための媒体とを収容した容器を円筒容器内に投入して可変磁界により回転運動を含む三次元方向に運動させると、機械的な振動破砕と同様の破砕効果を得ることができる。 In addition, it is formed in a hollow container mainly composed of a ferromagnetic material, and a medium that moves with the movement of the container is housed in the container together with the sample, thereby accommodating the sample and a medium for crushing it. If the container is put into a cylindrical container and moved in a three-dimensional direction including rotational movement by a variable magnetic field, the same crushing effect as that of mechanical vibration crushing can be obtained.

本発明に係る破砕方法によれば、試料の種類や状態に応じて最適の破砕媒体の運動を選択することができ、円筒容器を一定位置に静止させた状態でも破砕媒体の運動により試料を効果的に破砕処理することができる。   According to the crushing method according to the present invention, it is possible to select the optimal movement of the crushing medium according to the type and state of the sample, and the effect of the sample by the movement of the crushing medium even when the cylindrical container is stationary at a fixed position. Can be crushed automatically.

また、本発明に係る破砕装置によれば、試料の種類や状態に応じて最適の破砕媒体の運動を発生させる磁界発生手段を選択し、円筒容器を一定位置に静止させた状態で破砕処理できるので、円筒容器の装置からの出し入れが容易で、試料の温度上昇を抑制する円筒容器の冷却も容易に構成することができる。   Further, according to the crushing apparatus according to the present invention, the magnetic field generating means for generating the optimal crushing medium motion can be selected according to the type and state of the sample, and the crushing process can be performed with the cylindrical container stationary at a fixed position. Therefore, the cylindrical container can be easily taken in and out of the apparatus, and the cooling of the cylindrical container that suppresses the temperature rise of the sample can be easily configured.

また、本発明に係る破砕媒体によれば、試料を破砕する円筒容器内壁との摺接や衝突あるいは複数部材間の摺接や衝突を効果的に発生させる形状寸法や、質量、構造により試料の破砕処理を効率よく実施することができる。   Further, according to the crushing medium according to the present invention, the shape of the sample, the mass, and the structure can effectively generate the sliding contact or collision with the inner wall of the cylindrical container that crushes the sample or the sliding contact or collision between a plurality of members. The crushing process can be carried out efficiently.

図1は、実施形態に係る磁気破砕装置1の構成例を示すもので、円筒容器Pに試料Uと破砕媒体Aとを投入し、この円筒容器Pを磁気破砕装置1に挿入することにより、磁気破砕装置1から印加される可変磁界により破砕媒体Aは円筒容器P内で三次元方向に運動し、破砕媒体Aの運動により試料Uは破砕処理される。この磁気破砕装置1を用いた試料Uの破砕処理においては、円筒容器Pは静止状態にして破砕媒体Aのみを運動させることができるので、試料Uの温度上昇を抑えるための冷却構造の構築が容易で、破砕に伴う温度上昇によって変質が生じやすい試料Uにも対応させることができる。また、円筒容器Pの装置への着脱が極めて簡単で、破砕途中であっても破砕状態を確認することができる。   FIG. 1 shows a configuration example of a magnetic crushing apparatus 1 according to an embodiment. By inserting a sample U and a crushing medium A into a cylindrical container P and inserting the cylindrical container P into the magnetic crushing apparatus 1, The crushing medium A moves in the three-dimensional direction in the cylindrical container P by the variable magnetic field applied from the magnetic crushing apparatus 1, and the sample U is crushed by the movement of the crushing medium A. In the crushing process of the sample U using the magnetic crushing apparatus 1, the cylindrical container P can be kept stationary and only the crushing medium A can be moved, so that a cooling structure for suppressing the temperature rise of the sample U can be constructed. It can be easily applied to a sample U that easily changes in quality due to a temperature rise caused by crushing. Moreover, the cylindrical container P can be easily attached to and detached from the apparatus, and the state of crushing can be confirmed even during crushing.

図2に示すように、円筒容器Pは、遠心チューブやサンプルチューブ等と称される樹脂製(ポリプロピレン等)の汎用チューブを用いることができ、有底円筒形の開口部を蓋Qで密閉できるものが試料Uの飛散や異物の侵入がなく好ましいものとなる。また、破砕媒体Aは円筒容器Pの寸法、形状や破砕対象とする試料Uの種類や状態に応じて、その寸法、形状、質量、構造が選択されるが、強磁性体を主体として構成することにより、磁気破砕装置1から印加される可変磁界によって所望の運動を生じさせることができる。 As shown in FIG. 2, the cylindrical container P can be a resin-made (polypropylene or the like) general-purpose tube called a centrifuge tube or a sample tube, and the bottomed cylindrical opening can be sealed with a lid Q. The sample is preferable because the sample U is not scattered and no foreign matter enters. Further, the size, shape, mass, and structure of the crushing medium A are selected according to the size and shape of the cylindrical container P and the type and state of the sample U to be crushed. Thus, a desired motion can be generated by the variable magnetic field applied from the magnetic crushing apparatus 1.

可変磁界による破砕媒体Aの運動は、円筒容器Pの内周面に沿って回転する公転運動、自らの回転軸を中心に回転する自転運動、円筒容器Pの径方向に振れ動く振れ運動、円筒容器Pの軸方向に往復移動する杵搗き運動、上昇位置から円筒容器Pの内底面に加速度落下する叩き運動、微細に振動する微細動運動を試料Uの種類や状態、あるいは選択した破砕媒体Aの種類に応じて任意の運動を選択組み合わせることができる。破砕媒体Aの運動により、破砕媒体Aが円筒容器Pの内壁と摺接あるいは衝突し、複数部材で構成した破砕媒体Aの部材が摺接あるいは衝突することから、試料Uに摩砕作用あるいは圧砕作用、更には剪断作用を加えて破砕する。   The movement of the crushing medium A by the variable magnetic field includes a revolving motion that rotates along the inner peripheral surface of the cylindrical container P, a rotational motion that rotates about its own rotation axis, a wobbling motion that swings in the radial direction of the cylindrical container P, a cylinder The type and state of the sample U, or the selected crushing medium A, such as a whirling movement that reciprocates in the axial direction of the container P, a tapping movement that accelerates and drops from the rising position to the inner bottom surface of the cylindrical container P, Any kind of exercise can be selected and combined depending on the type. Due to the movement of the crushing medium A, the crushing medium A slides or collides with the inner wall of the cylindrical container P, and the members of the crushing medium A composed of a plurality of members slide or collide with each other. It crushes by applying an action and further a shearing action.

前記摩砕作用は、破砕媒体Aが自転運動することにより破砕媒体Aと円筒容器Pとの間で試料Uを磨り潰したり、定まった回転軸がない破砕媒体Aが円筒容器Pの内周壁に沿って公転運動したり、破砕媒体Aが円筒容器Pの径方向に振れ運動したりすることなどにより破砕媒体Aと円筒容器Pとの間で試料Uを磨り潰すことから得られる。また、前記圧砕作用は、破砕媒体Aを円筒容器Pの軸方向に往復移動させることにより円筒容器Pの底部にある試料Uに繰り返し圧縮力を加える杵搗き運動や、上昇位置にある破砕媒体Aを円筒容器Pの底部側に吸引することなどにより試料Uに大きな圧縮圧力を加えることなどから得られる。   The grinding action is performed by grinding the sample U between the crushing medium A and the cylindrical container P by the rotation of the crushing medium A, or the crushing medium A having no fixed rotation axis is applied to the inner peripheral wall of the cylindrical container P. The sample U is obtained by grinding the sample U between the crushing medium A and the cylindrical container P by revolving along, or the crushing medium A swinging in the radial direction of the cylindrical container P. In addition, the crushing action is performed by reciprocating the crushing medium A in the axial direction of the cylindrical container P to repeatedly apply a compressive force to the sample U at the bottom of the cylindrical container P or the crushing medium A in the ascending position. This is obtained by applying a large compression pressure to the sample U by, for example, sucking the gas toward the bottom side of the cylindrical container P.

これらの摩砕作用や圧砕作用は、必ずしも単独の運動から得られるものでもなく、破砕媒体Aの回転運動を含む三次元方向の運動により両作用が併せて得られるものである。また、破砕媒体Aの形状、構造によって試料Uを切り刻む剪断作用を加えることも可能である。また、図1、図2に示す態様においては、破砕媒体Aは単一部材で構成しているが、後述するように複数部材によって構成することもでき、複数部材が互いに衝突、摺接することに伴う摩砕作用や圧砕作用、剪断作用を加味することが可能である。   These grinding action and crushing action are not necessarily obtained from a single movement, but both actions can be obtained together by a three-dimensional movement including the rotational movement of the crushing medium A. It is also possible to apply a shearing action for chopping the sample U depending on the shape and structure of the crushing medium A. Moreover, in the aspect shown in FIG. 1, FIG. 2, although the crushing medium A is comprised with the single member, it can also be comprised with multiple members so that it may mention later, and multiple members collide and slidably contact each other. It is possible to take into account the accompanying grinding action, crushing action and shearing action.

次に、上記磁気破砕方法に示したように破砕媒体Aを運動させるための磁気破砕装置1の可変磁界発生構造について説明する。図3(a)(b)は、実施形態に係る磁気破砕装置1の要部構成を示すもので、リング状に形成された下部及び上部の各回転磁界発生器11、12を備え、リング内に挿入された円筒容器Pに収容された破砕媒体Aに回転磁界を印加できるように構成されている。   Next, the variable magnetic field generating structure of the magnetic crushing apparatus 1 for moving the crushing medium A as shown in the magnetic crushing method will be described. FIGS. 3 (a) and 3 (b) show the main configuration of the magnetic crushing apparatus 1 according to the embodiment, which includes lower and upper rotary magnetic field generators 11 and 12 formed in a ring shape, It is comprised so that a rotating magnetic field can be applied to the crushing medium A accommodated in the cylindrical container P inserted in.

下部及び上部の各回転磁界発生器11,12は、図3(b)に示すように、円周上に複数(ここでは、6極)の電磁極22を配し、各電磁極22にはそれぞれ励磁巻線23が設けられている。制御部10によって制御される励磁電源24から励磁巻線23に励磁電流が供給されることによって各電磁極22から印加される磁界により、強磁性体(例えば、軟鉄)によって形成された破砕媒体Aを回転運動を含む三次元方向に運動させることができる。   As shown in FIG. 3B, the lower and upper rotating magnetic field generators 11, 12 have a plurality of (here, 6 poles) electromagnetic poles 22 arranged on the circumference, Excitation windings 23 are respectively provided. A crushing medium A formed of a ferromagnetic material (for example, soft iron) by a magnetic field applied from each electromagnetic pole 22 by supplying an excitation current from the excitation power source 24 controlled by the control unit 10 to the excitation winding 23. Can be moved in a three-dimensional direction including rotational movement.

制御部10の制御により励磁電源24から下部回転磁界発生器12に回転磁界が発生するように交流励磁電流を供給すると、回転磁界により破砕媒体Aに渦電流が流れることによる回転駆動力が発生し、破砕媒体Aは回転する。上部及び下部の各回転磁界発生器11,12に印加する交流励磁電流は、インバータ制御による三相交流とするのが好適で、破砕媒体Aを自在に回転制御することができる。 When an AC excitation current is supplied from the excitation power source 24 to the lower rotating magnetic field generator 12 under the control of the control unit 10, a rotational driving force is generated due to an eddy current flowing through the crushing medium A by the rotating magnetic field. The crushing medium A rotates. The AC excitation current applied to the upper and lower rotating magnetic field generators 11 and 12 is preferably a three-phase AC by inverter control, and the crushing medium A can be freely rotated.

この交流磁界による破砕媒体Aの回転駆動は、トルクモータにおける塊状鉄心ロータをステータからの回転磁界によって回転させる原理と類似であるが、破砕媒体Aはモータのロータと異なり回転軸によって支持されていないため、振れ運動しながら回転する挙動を呈する。即ち、破砕媒体Aの回転は、円筒容器Pの内部で径方向に振れ運動しながら内周壁に沿って公転運動すると共に自転運動する。従って、破砕媒体Aの下端形状が円筒容器Pの底部形状に対応していることと相まって試料Uを磨り潰す乳棒のような摩砕作用が得られる。 The rotational drive of the crushing medium A by the AC magnetic field is similar to the principle of rotating the massive core rotor in the torque motor by the rotating magnetic field from the stator, but the crushing medium A is not supported by the rotating shaft unlike the motor rotor. Therefore, it exhibits a behavior of rotating while swinging. That is, the rotation of the crushing medium A revolves along the inner peripheral wall while rotating in the radial direction inside the cylindrical container P and rotates. Therefore, a grinding action like a pestle for grinding the sample U is obtained in combination with the bottom shape of the crushing medium A corresponding to the bottom shape of the cylindrical container P.

制御部10によって励磁電流の供給を下部回転磁界発生器11から上部回転磁界発生器12に切り換えると、破砕媒体Aは上昇移動して上部回転磁界発生器12のリング内に入り、円筒容器Pの径方向に振れ運動しながら内周壁に沿って公転運動すると共に自転運動する。励磁電流の供給が再び下部回転磁界発生器11に切り換えられると、破砕媒体Aは落下して試料Uに衝突し、試料Uを圧縮破砕する圧砕作用が得られる。この破砕媒体Aの上下移動を繰り返すことにより、試料Uが植物の葉のような嵩高いものであっても満遍なく摩砕することができ、摩砕作用に加えて破砕媒体Aの落下による圧砕作用を併用して破砕効果を増加させることができる。また、試料Uに緩衝液等を加えた液体中での破砕を行う場合でも液面高さ位置まで破砕媒体Aを上下移動させて破砕することができるので、液体中の試料Uを満遍なく破砕することができる。 When the supply of excitation current is switched from the lower rotating magnetic field generator 11 to the upper rotating magnetic field generator 12 by the control unit 10, the crushing medium A moves up and enters the ring of the upper rotating magnetic field generator 12. While revolving in the radial direction, it revolves along the inner wall and rotates. When the supply of the excitation current is switched to the lower rotating magnetic field generator 11 again, the crushing medium A falls and collides with the sample U, and a crushing action for compressing and crushing the sample U is obtained. By repeatedly moving the crushing medium A up and down, even if the sample U is bulky like a plant leaf, it can be ground evenly. In addition to the crushing action, the crushing action caused by the drop of the crushing medium A can be achieved. Can be used in combination to increase the crushing effect. In addition, even when crushing in a liquid in which a buffer solution or the like is added to the sample U, the crushing medium A can be moved up and down to the liquid level, thereby crushing the sample U evenly. be able to.

更に、図3に示すように、円筒容器Pの底部に対応する位置に吸引磁界発生器15を配し、上部回転磁界発生器12に対する励磁電流の供給を遮断すると同時に吸引磁界発生器15に励磁電流を供給すると、落下してくる破砕媒体Aを円筒容器Pの底部に吸引して試料Uを叩き潰す作用が増大するので、破砕媒体Aによる圧砕作用を大きく増加させることができる。 Further, as shown in FIG. 3, an attraction magnetic field generator 15 is disposed at a position corresponding to the bottom of the cylindrical container P, and the supply of the excitation current to the upper rotating magnetic field generator 12 is interrupted, and at the same time, the attraction magnetic field generator 15 is excited. When an electric current is supplied, the action of sucking the crushing medium A falling to the bottom of the cylindrical container P and crushing the sample U increases, so that the crushing action by the crushing medium A can be greatly increased.

また、下部回転磁界発生器11により回転磁界を印加している状態で吸引磁界発生器15から小さい吸引磁界を印加するようにすると、破砕媒体Aは円筒容器Pの底部側に吸引された状態で回転するので、摩砕作用を増加させることができる。また、吸引磁界発生器15に交番励磁電流を印加すると、破砕媒体Aを交番磁界の周波数で微振動させて破砕する効果を得ることもできる。 In addition, when a small magnetic field is applied from the suction magnetic field generator 15 while a rotating magnetic field is applied by the lower rotating magnetic field generator 11, the crushing medium A is attracted to the bottom side of the cylindrical container P. Since it rotates, the grinding action can be increased. Further, when an alternating excitation current is applied to the attraction magnetic field generator 15, it is possible to obtain an effect of crushing the crushing medium A by slightly vibrating it at the frequency of the alternating magnetic field.

上記構成になる磁気破砕装置においては、上部及び下部の各回転磁界発生器11,12に印加する励磁電流は交流としているが、励磁電流を直流として各電磁極22を励磁制御することによっても破砕媒体Aを円筒容器P内で回転運動を含む三次元方向に運動させることができる。 In the magnetic crushing apparatus having the above-described configuration, the excitation current applied to the upper and lower rotating magnetic field generators 11 and 12 is AC, but crushing can also be performed by controlling the excitation of each electromagnetic pole 22 using the excitation current as DC. The medium A can be moved in the three-dimensional direction including the rotational movement in the cylindrical container P.

制御部10の制御により励磁巻線23に直流励磁電流が流されて特定の電磁極22が励磁されると、強磁性体で形成された破砕媒体Aは励磁された電磁極22に吸引される。複数の電磁極22が円周回りの順に励磁されると、破砕媒体Aは円筒容器Pの内周面に沿って回転する公転運動が生じる。また、励磁されている1つの電磁極22に対する励磁を停止すると同時に、他の電磁極22を励磁する制御を任意の順に繰り返すと、破砕媒体Aは円筒容器Pの径方向に移動する。この破砕媒体Aの運動は、あたかも乳棒を乳鉢内で動かして試料3を磨り潰す動作に近似である。この動作を下部回転磁界発生器11と上部回転磁界発生器12との間で切り換えると、破砕媒体Aの位置を上下に移動させることができる。 When a DC exciting current is passed through the exciting winding 23 under the control of the control unit 10 and a specific electromagnetic pole 22 is excited, the crushed medium A formed of a ferromagnetic material is attracted to the excited electromagnetic pole 22. . When the plurality of electromagnetic poles 22 are excited in the order of the circumference, the crushing medium A undergoes a revolving motion that rotates along the inner peripheral surface of the cylindrical container P. Further, when the excitation for one excited electromagnetic pole 22 is stopped and the control for exciting the other electromagnetic pole 22 is repeated in any order, the crushing medium A moves in the radial direction of the cylindrical container P. The movement of the crushing medium A is similar to the operation of grinding the sample 3 by moving the pestle in the mortar. When this operation is switched between the lower rotating magnetic field generator 11 and the upper rotating magnetic field generator 12, the position of the crushing medium A can be moved up and down.

上記直流励磁制御だけでは破砕媒体Aに自転運動は生じ難く、摩砕作用は先の交流励磁制御に比して劣るので、破砕媒体Aに自転運動を生じさせることが望ましい。そのためには、破砕媒体Aは、図4(a)に示すような直径方向に複数の突出部21を設けた構成、あるいは図4(b)(c)に示すような直径方向に着磁した構成,あるいは突出部21を設けると共に着磁した構成にすると、破砕媒体Aは複数の電磁極22の励磁を制御することにより自転運動を発生させることができる。 Since only the direct current excitation control hardly causes the rotation of the crushing medium A and the grinding action is inferior to that of the previous AC excitation control, it is desirable to cause the crushing medium A to generate the rotation. For that purpose, the crushing medium A is magnetized in a configuration in which a plurality of protrusions 21 are provided in the diametrical direction as shown in FIG. 4A or in a diametrical direction as shown in FIGS. If the configuration or the configuration in which the projecting portion 21 is provided and the magnetized configuration is used, the crushing medium A can generate rotation by controlling the excitation of the plurality of electromagnetic poles 22.

破砕媒体Aを運動させる磁界印加は、上述した交流又は直流による電磁界によらず永久磁石からの磁界によって破砕媒体Aを運動させることもできる。図5(a)に示すように、永久磁石17をその磁極が反転するように自転させながら円筒容器Pの外周に沿って公転させると、径方向に着磁した破砕媒体Aは自転しながら円筒容器Pの内周壁に沿って公転する。永久磁石17を円筒容器Pの軸方向に往復移動させると破砕媒体Aも上下に往復移動し、破砕媒体Aに杵搗き運動を生じさせることができる。また、図5(b)に示すように、円筒容器Pの底部に破砕媒体Aを吸引するための永久磁石18をその磁極が反転するように回転、あるいは永久磁石18を出し入れすると、磁気反発や磁気吸引により破砕媒体Aを上下移動させ、あるいは上昇移動した破砕媒体Aを円筒容器Pの内底面に吸引して試料Uを圧砕する効果を向上させることができる。 The application of a magnetic field for moving the crushing medium A can also move the crushing medium A by a magnetic field from a permanent magnet regardless of the above-described AC or DC electromagnetic field. As shown in FIG. 5 (a), when the permanent magnet 17 revolves along the outer periphery of the cylindrical container P while rotating so that the magnetic poles thereof are reversed, the crushed medium A magnetized in the radial direction is rotated while being cylindrical. Revolves along the inner peripheral wall of the container P. When the permanent magnet 17 is reciprocated in the axial direction of the cylindrical container P, the crushing medium A is also reciprocated up and down, and the crushing medium A can be sprinkled. Further, as shown in FIG. 5B, when the permanent magnet 18 for attracting the crushing medium A is rotated at the bottom of the cylindrical container P so that the magnetic pole is reversed, or when the permanent magnet 18 is taken in and out, magnetic repulsion or It is possible to improve the effect of crushing the sample U by moving the crushing medium A up and down by magnetic suction or sucking the crushing medium A that has moved up and down to the inner bottom surface of the cylindrical container P.

上記のように構成される磁気破砕装置によって破砕処理する試料Uは、硬質のものから軟質のものまで多様であり、植物のように繊維質のものもある。また、緩衝液などの液中で試料Uを破砕処理する場合や試料Uそのものが液状である場合もある。従って、破砕媒体Aは、試料Uの種類や処理条件、円筒容器の形状などに応じて、その形状、サイズ、構造、数を最適に選択することが好ましいものとなる。 Samples U to be crushed by the magnetic crushing apparatus configured as described above vary from hard to soft, and some are fibrous like plants. In some cases, the sample U is crushed in a buffer solution or the like, or the sample U itself is liquid. Therefore, it is preferable that the crushing medium A is optimally selected in shape, size, structure, and number in accordance with the type and processing conditions of the sample U and the shape of the cylindrical container.

破砕媒体Aの下端形状は、図2に示したように、基本的に円筒容器Pの内底面の形状に対応していることが好適で、図示するように円筒容器Pの内底面形状が球面である場合には、破砕媒体Aの下端形状は球面とすることが内底面にある試料Uに摩砕作用や圧砕作用を加える上で有効である。汎用の円筒容器Pは、図6に示すように、底部形状が円錐形や平底のものがあり、円錐形状の角度が異なるものがあるので、破砕媒体Aの下端形状は図示するように内底面形状に対応させることが望ましい。 The lower end shape of the crushing medium A preferably corresponds to the shape of the inner bottom surface of the cylindrical container P as shown in FIG. 2, and the inner bottom surface shape of the cylindrical container P is spherical as shown in the figure. In this case, it is effective to apply a grinding action or a crushing action to the sample U on the inner bottom surface by making the bottom shape of the crushing medium A spherical. As shown in FIG. 6, the general-purpose cylindrical container P has a conical shape or a flat bottom shape, and has a conical shape with a different angle. Therefore, the lower end shape of the crushing medium A is an inner bottom surface as illustrated. It is desirable to correspond to the shape.

また、破砕媒体Aの直径は、円筒容器2の内径の1/2〜4/5とするのが好適であるが、円筒容器Pの内底面にある試料Uを摩砕することを重点的に行う場合には、破砕媒体Aの直径は円筒容器Pより僅かに小さいものが好適である。しかし、液体中で試料Uの破砕を行う場合、破砕媒体Aの直径と円筒容器Pの内径との差が小さいと、破砕媒体Aを上下移動させるときに液体が破砕媒体Aの上下移動の抵抗となるので、液体中での破砕を行う場合には、破砕媒体Aの直径は円筒容器Pの内径より充分に小さいものを適用するか、複数個の破砕媒体Aを適用するのが好適である。 Further, the diameter of the crushing medium A is preferably 1/2 to 4/5 of the inner diameter of the cylindrical container 2, but it is important to grind the sample U on the inner bottom surface of the cylindrical container P. When performing, the diameter of the crushing medium A is preferably slightly smaller than the cylindrical container P. However, when crushing the sample U in the liquid, if the difference between the diameter of the crushing medium A and the inner diameter of the cylindrical container P is small, the liquid is resistant to the vertical movement of the crushing medium A when the crushing medium A is moved up and down. Therefore, when crushing in a liquid, it is preferable to apply a crushing medium A having a diameter sufficiently smaller than the inner diameter of the cylindrical container P or a plurality of crushing media A. .

円筒容器P中に投入する破砕媒体Aの数は、必ずしも単一部材のものが最適ではなく、破砕対象とする試料Uの種類に応じて変化させることができる。図7(a)(b)に示すように、円柱形や球形などの複数の破砕媒体Aを円筒容器P中に投入して運動させると、複数の破砕媒体Aが互いに摺接あるいは衝突することによる破砕効果を加味することができる。 The number of crushing media A to be put into the cylindrical container P is not necessarily optimal for a single member, and can be changed according to the type of sample U to be crushed. As shown in FIGS. 7 (a) and 7 (b), when a plurality of crushing media A such as cylinders and spheres are put into a cylindrical container P and moved, the crushing media A slide or collide with each other. The crushing effect by can be added.

複数の破砕媒体Aは、図8に示すように、異なった形状の組み合せにすることも効果的である。図8(a)に示す構成では、先端形状を円筒容器Pの内底面形状に対応させた中心部材31に円環状の円筒部材32を遊嵌させている。中心部材31及び円筒部材32の両方を強磁性体によって形成すると、磁気駆動力を受ける度合いが異なるため、運動に差が生じて両部材間に挟まれた試料Uを摩砕する効果が得られる。また、円筒部材32を非磁性体で形成すると、円筒部材32は中心部材31の運動に追従したり、停止状態になったりする。また、図8(b)に示すように、複数個の円柱形部材33〜35を積み重ねた構成では、上下移動させたときに各部材間に存在する試料Uを圧砕する効果や、各円柱形部材33〜35が個別に回転することによる摩砕効果を向上させることができ、いずれかの部材を非磁性体で構成することによる挙動の変化を得ることもできる。 As shown in FIG. 8, it is also effective to combine the plurality of crushing media A in different shapes. In the configuration shown in FIG. 8A, an annular cylindrical member 32 is loosely fitted to a central member 31 whose tip shape corresponds to the inner bottom shape of the cylindrical container P. When both the central member 31 and the cylindrical member 32 are formed of a ferromagnetic material, the degree of receiving a magnetic driving force is different, so that a difference in motion occurs and the effect of grinding the sample U sandwiched between both members is obtained. . Further, when the cylindrical member 32 is formed of a non-magnetic material, the cylindrical member 32 follows the movement of the central member 31 or enters a stopped state. Moreover, as shown in FIG.8 (b), in the structure which laminated | stacked several cylindrical member 33-35, the effect which crushes the sample U which exists between each member when it moves up and down, and each cylindrical shape It is possible to improve the grinding effect by rotating the members 33 to 35 individually, and it is also possible to obtain a change in behavior by configuring any member with a nonmagnetic material.

また、図9に一例を示すように、径方向に複数に分割して構成することもできる。強磁性体によって形成された回転部材43の円形凹部に非磁性体によって形成された複数の円柱部材44を配した構造に構成することにより、可変磁界による回転部材43の回転運動を含む三次元方向への運動に伴って回転部材43と円柱部材44とは衝突あるいは摺接し、それぞれが円筒容器Pの内周壁に衝突あるいは摺接するので、試料Uを効率的に破砕することができる。 Further, as shown in FIG. 9, it may be configured to be divided into a plurality of parts in the radial direction. A three-dimensional direction including a rotational motion of the rotating member 43 by a variable magnetic field is configured by arranging a plurality of cylindrical members 44 formed of a nonmagnetic material in a circular recess of the rotating member 43 formed of a ferromagnetic material. The rotating member 43 and the columnar member 44 collide or slide in contact with each other, and each collide or slide against the inner peripheral wall of the cylindrical container P, so that the sample U can be efficiently crushed.

また、図10(a)(b)に示すように、1又は複数の球状部材36の上に円柱状部材37を配した構成により、両部材36,37による相乗効果を得ることができ、円筒容器Pの形状に適した破砕媒体Aを得ることができる。この構成は液体中で試料Uを破砕するのに好適で、円柱状部材37の直径を円筒容器Pの内径より僅かに小さいものに形成することにより、軽い試料Uが液体中で浮き上るのを押えて破砕処理することができる。 Further, as shown in FIGS. 10A and 10B, the configuration in which the columnar member 37 is arranged on one or a plurality of spherical members 36 can provide a synergistic effect by both the members 36, 37, and the cylinder. The crushing medium A suitable for the shape of the container P can be obtained. This configuration is suitable for crushing the sample U in the liquid. By forming the cylindrical member 37 so that the diameter of the cylindrical member 37 is slightly smaller than the inner diameter of the cylindrical container P, the light sample U can be lifted in the liquid. It can be pressed and crushed.

また、破砕媒体Aの表面に溝又は突起を形成することにより試料Uを剪断する効果が加味されるので、繊維状の試料を破砕するのに効果的である。また、二重のリング状部材で形成した外側リングにスリットを形成しておくと、内側リング状部材の回転に伴ってスリットから液体又は液状の試料Uが外方に噴出することから対流が生じ、試料Uを攪拌しながら剪断する作用を与えることができる。 In addition, since the effect of shearing the sample U by adding grooves or protrusions on the surface of the crushing medium A is added, it is effective for crushing the fibrous sample. In addition, if a slit is formed in the outer ring formed of a double ring-shaped member, convection occurs because liquid or liquid sample U is ejected outward from the slit as the inner ring-shaped member rotates. The sample U can be sheared while being stirred.

破砕媒体Aによる破砕は摩擦を伴うので、摩擦熱による温度上昇が避けられない。また、磁気印加に伴って破砕媒体Aに電流が発生する状態になると、電流に伴う温度上昇もある。更に、装置運転に伴う温度上昇も見過ごせない。試料Uが熱による変質の恐れがあるものでは、温度上昇を抑えるために円筒容器Pの周囲に冷媒を循環させて冷却する冷却構造を設ける必要がある。冷却構造は装置のコストアップをまねくので、破砕媒体Aを中空構造として、内部に蓄冷材を封入したものを用いると、簡易に試料Uの温度上昇を抑えることができる。予め破砕媒体Aを冷却して蓄冷材を凍結させておくと、試料Uを直接冷却することができ、比較的大型の破砕媒体Aであれば、破砕時間が長くなっても冷却効果を持続させることが可能である。 Since crushing with the crushing medium A involves friction, an increase in temperature due to frictional heat is inevitable. In addition, when a current is generated in the crushing medium A with the application of magnetism, there is a temperature rise associated with the current. Furthermore, the temperature rise accompanying the operation of the device cannot be overlooked. In the case where the sample U may be deteriorated due to heat, it is necessary to provide a cooling structure that circulates a cooling medium around the cylindrical container P in order to suppress a temperature rise. Since the cooling structure increases the cost of the apparatus, the temperature rise of the sample U can be easily suppressed by using the crushing medium A having a hollow structure and a cooling storage material enclosed therein. If the crushing medium A is cooled in advance and the regenerator material is frozen, the sample U can be directly cooled. If the crushing medium A is relatively large, the cooling effect is maintained even if the crushing time is increased. It is possible.

破砕媒体Aを構成する強磁性体は主には鉄素材となるが、鉄に直接触れることを避けたい試料Uに対応させたい場合や、試料Uと共に円筒容器P中に投入される液体によって鉄素材が溶解、腐食するような場合には、鉄素材の表面全体をガラス質、セラミックス、樹脂、非磁性体金属等によって被覆した破砕媒体Aとすることができる。 The ferromagnetic material constituting the crushing medium A is mainly made of iron material. However, when it is desired to correspond to the sample U that is desired to avoid direct contact with the iron, or when the liquid is put into the cylindrical container P together with the sample U. When the material is dissolved or corroded, the crushed medium A in which the entire surface of the iron material is covered with glass, ceramics, resin, nonmagnetic metal, or the like can be used.

また、破砕に伴って円筒容器Pの内表面は破砕媒体Aや試料Uによって削られ、その微粉末が破砕処理した試料Uに混入する。また、試料Uが土砂など鉱物質を含むものである場合には、硬質試料によって円筒容器Pが削られる量は大きくなる。このような円筒容器Pの微粉末の混入が好ましくない場合、図11に示すような構成が有効である。 Further, along with the crushing, the inner surface of the cylindrical container P is scraped by the crushing medium A and the sample U, and the fine powder is mixed into the crushed sample U. In addition, when the sample U includes minerals such as earth and sand, the amount by which the cylindrical container P is shaved by the hard sample increases. When such a mixture of fine powder in the cylindrical container P is not preferable, a configuration as shown in FIG. 11 is effective.

図11において、強磁性体により形成した破砕容器40に破砕媒体Aと試料Uとを投入し、破砕容器40の開口部を蓋41で閉じ、この破砕容器40を円筒容器Pに収容する。円筒容器Pの外部から可変磁界を印加して破砕容器40を回転運動を含む三次元方向に運動させると、破砕容器40の中に投入された破砕媒体Aも三次元方向に運動するので、破砕容器40中の試料Uは破砕される。 In FIG. 11, the crushing medium A and the sample U are put into a crushing container 40 formed of a ferromagnetic material, the opening of the crushing container 40 is closed with a lid 41, and the crushing container 40 is accommodated in the cylindrical container P. When a variable magnetic field is applied from the outside of the cylindrical container P to move the crushing container 40 in a three-dimensional direction including rotational movement, the crushing medium A put in the crushing container 40 also moves in the three-dimensional direction. The sample U in the container 40 is crushed.

以上説明した構成においては、基本的に円筒容器Pをその円筒軸方向が鉛直方向になるようにして破砕処理することとしているが、円筒容器Pの円筒軸が水平方向、即ち横位置になるように磁気破砕装置を設置することもできる。円筒容器Pを横位置にして破砕処理するときには、円筒容器Pはその開口部を蓋Qで密閉できる構造のものを用いる必要があることは言うまでもない。 In the configuration described above, the cylindrical container P is basically crushed so that the cylindrical axis direction is vertical, but the cylindrical axis of the cylindrical container P is horizontal, that is, lateral. It is also possible to install a magnetic crushing device. Needless to say, when the crushing process is performed with the cylindrical container P in the horizontal position, it is necessary to use a cylindrical container P having a structure in which the opening can be sealed with the lid Q.

円筒容器Pを横位置とした場合には、試料U及び破砕媒体Aに加わる重力方向は容器の内周面となり、多くは摩砕作用によって試料Uを破砕することになるので、図12に示すように、破砕媒体Aは縦位置の場合より円筒容器Pの円筒軸方向に長いものが好適である。また、破砕媒体Aの断面形状は必ずしも円形である必要はなく、楕円形、三角形、十字形など下部に溜まる試料Uを回転によって掻き揚げるような作用を伴うものが好適な場合もある。先に図9に断面形状として示した破砕媒体Aは、これを円筒容器Pの軸方向寸法に対応する長さに構成すると、円筒容器Pを横位置にして破砕処理するのに好適なものとなる。 When the cylindrical container P is set in the horizontal position, the direction of gravity applied to the sample U and the crushing medium A is the inner peripheral surface of the container, and most of the sample U is crushed by the grinding action, and therefore is shown in FIG. As described above, it is preferable that the crushing medium A is longer in the cylindrical axis direction of the cylindrical container P than in the vertical position. Further, the cross-sectional shape of the crushing medium A does not necessarily have to be a circular shape, and there may be a case in which an action such as an elliptical shape, a triangular shape, a cross shape, and the like that causes the sample U accumulated in the lower portion to be swept up by rotation. When the crushing medium A previously shown as the cross-sectional shape in FIG. 9 is configured to have a length corresponding to the axial dimension of the cylindrical container P, the crushing medium A is suitable for crushing with the cylindrical container P in the lateral position. Become.

以上の説明の通り本発明によれば、円筒容器の外部から印加される可変磁界によって円筒容器内に収容した破砕媒体を自在に運動させることができ、破砕媒体の形状、寸法、質量、構造と共に試料の種類や状態に対応させることにより、試料を効率よく破砕処理することができる。また、可変磁界により破砕媒体のみを運動させ、円筒容器は一定位置に静止させておくことができ、機械的な作動構造がないので破砕に伴う摩擦熱等により試料が温度上昇することを抑える冷却を容易に実施することができ、破砕媒体及び試料を投入した円筒容器を破砕装置に着脱する作業を迅速且つ容易に実施できる。従って、DNA解析する生体試料などを高品質に効率よく破砕処理する用途などに好適であり、小型化できるので手術中の組織検査などにも対応できる破砕方法、装置を提供することが可能となる。 As described above, according to the present invention, the crushing medium accommodated in the cylindrical container can be freely moved by the variable magnetic field applied from the outside of the cylindrical container, and the shape, size, mass, and structure of the crushing medium are combined. By making it correspond to the kind and state of the sample, the sample can be efficiently crushed. In addition, only the crushing medium can be moved by the variable magnetic field, and the cylindrical container can be kept at a fixed position, and since there is no mechanical operation structure, cooling that suppresses the temperature rise of the sample due to frictional heat accompanying crushing etc. The operation of attaching and detaching the cylindrical container charged with the crushing medium and the sample to and from the crushing device can be carried out quickly and easily. Accordingly, it is suitable for applications such as high-quality and efficient crushing of biological samples for DNA analysis, and can be miniaturized, so that it is possible to provide a crushing method and apparatus that can be used for tissue examination during surgery. .

実施形態に係る磁気破砕装置の構成例を示す斜視図。The perspective view which shows the structural example of the magnetic crushing apparatus which concerns on embodiment. 磁気破砕方法に用いる円筒容器と破砕媒体の構成を示す1/2断面図。The 1/2 sectional view showing composition of a cylindrical container and a crushing medium used for a magnetic crushing method. 実施形態に係る破砕装置の構成を示す(a)は要部構成図、(b)は回転磁界発生器の平面図。(A) which shows the structure of the crushing apparatus which concerns on embodiment, (b) is a top view of a rotating magnetic field generator. 直流励磁に適した破砕媒体の構成例を示す平面図。The top view which shows the structural example of the crushing medium suitable for direct current excitation. 永久磁石による破砕装置の概略構成を示す(a)は平面図、(b)は側面図。(A) which shows schematic structure of the crushing apparatus by a permanent magnet is a top view, (b) is a side view. 円筒容器と破砕媒体との対応を示す断面図。Sectional drawing which shows a response | compatibility with a cylindrical container and a crushing medium. 複数部材による破砕媒体の構成例を示す側面図。The side view which shows the structural example of the crushing medium by a several member. 同上Same as above 同上Same as above 同上Same as above 試料を収容する中空構造とした破砕媒体の断面図。Sectional drawing of the crushing medium made into the hollow structure which accommodates a sample. 円筒容器を横位置にして破砕する磁気破砕装置の構成を示す断面図。Sectional drawing which shows the structure of the magnetic crushing apparatus which crushes by making a cylindrical container into a horizontal position. 機械的振動破砕装置の構成を示す断面図。Sectional drawing which shows the structure of a mechanical vibration crushing apparatus. 同上装置に適用する破砕媒体の従来構成を断面図。Sectional drawing of the conventional structure of the crushing medium applied to an apparatus same as the above. 電磁破砕装置の従来構成を示す概略図。Schematic which shows the conventional structure of an electromagnetic crushing apparatus. ソレノイドによる圧縮破砕の従来構成を示す断面図。Sectional drawing which shows the conventional structure of the compression crushing by a solenoid.

符号の説明Explanation of symbols

A 破砕媒体
P 円筒容器
U 試料
1 磁気破砕装置
11 下部回転磁界発生器(回転磁界発生手段/直動磁界発生手段)
12 上部回転磁界発生器(回転磁界発生手段/直動磁界発生手段)
15 吸引磁界発生器(吸引磁界発生手段)
21 突出部
22 電磁極
23 励磁巻線
25 制御部
31 中心部材
32 円筒部材
33,34,35 円柱形部材


A crushing medium P cylindrical container U sample 1 magnetic crushing device 11 lower rotating magnetic field generator (rotating magnetic field generating means / linear motion magnetic field generating means)
12 Upper rotating magnetic field generator (Rotating magnetic field generating means / linear motion magnetic field generating means)
15 Attraction magnetic field generator (Attraction magnetic field generating means)
DESCRIPTION OF SYMBOLS 21 Protrusion part 22 Electromagnetic pole 23 Excitation winding 25 Control part 31 Central member 32 Cylindrical member 33,34,35 Cylindrical member


Claims (17)

破砕対象とする試料と共に円筒容器内に収容された破砕媒体を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する磁気破砕方法であって、前記破砕媒体の運動は、円筒容器の内周に沿って回転する公転運動、自らの回転軸を中心に回転する自転運動、円筒容器の径方向に振れ動く振れ運動、円筒容器の軸方向に往復移動する杵搗き運動、上昇位置から加速度落下する叩き運動、微細に振動する微細動運動のうち任意の運動を選択組み合わせることを特徴とする磁気破砕方法。   A magnetic crushing method for crushing a sample by moving a crushing medium accommodated in a cylindrical container together with a sample to be crushed by a variable magnetic field applied from the outside of the cylindrical container, the movement of the crushing medium Revolving motion that rotates along the inner circumference, rotational motion that rotates around its own rotation axis, deflection motion that swings in the radial direction of the cylindrical container, whirling motion that reciprocates in the axial direction of the cylindrical container, acceleration from the rising position A magnetic crushing method characterized by selectively combining arbitrary movements among falling tapping movements and fine vibration movements that vibrate finely. 破砕対象とする試料と共に円筒容器内に収容された破砕媒体を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する磁気破砕装置であって、前記可変磁界は、破砕媒体を回転運動させる回転磁界発生手段、破砕媒体を円筒容器の軸方向に移動させる直動磁界発生手段、破砕媒体を円筒容器の任意方向に吸引する吸引磁界発生手段、破砕媒体を微細振動させる交番磁界発生手段のうち任意の磁界発生手段を選択組み合わせて構成されてなることを特徴とする磁気破砕装置。   A magnetic crushing device that crushes a sample by moving a crushing medium accommodated in a cylindrical container together with a sample to be crushed by a variable magnetic field applied from the outside of the cylindrical container, wherein the variable magnetic field rotates the crushing medium. Rotating magnetic field generating means, linear motion magnetic field generating means for moving the crushing medium in the axial direction of the cylindrical container, suction magnetic field generating means for attracting the crushing medium in any direction of the cylindrical container, and alternating magnetic field generating means for finely vibrating the crushing medium A magnetic crushing apparatus comprising a combination of arbitrary magnetic field generating means. 磁界発生手段は、少なくとも円筒容器の底部側外周を囲むように複数の磁極を配してなる請求項2に記載の磁気破砕装置。   The magnetic crushing device according to claim 2, wherein the magnetic field generating means is provided with a plurality of magnetic poles so as to surround at least the outer periphery on the bottom side of the cylindrical container. 磁界発生手段は、円筒容器の周囲に配した複数の磁極からの磁界印加を切り換える請求項2又は3に記載の磁気破砕装置。   The magnetic crushing device according to claim 2 or 3, wherein the magnetic field generating means switches the magnetic field application from a plurality of magnetic poles arranged around the cylindrical container. 破砕対象とする試料と共に円筒容器内に収容された単一又は複数の部材を円筒容器の外部から印加する可変磁界により運動させて試料を破砕する破砕媒体であって、前記部材は強磁性体を主体として形成され、運動により円筒容器内壁に摺接あるいは衝突し、複数部材同士が摺接あるいは衝突することができる寸法、形状、構造と、摺接あるいは衝突により試料を摩砕、圧砕することができる質量に形成されてなることを特徴とする破砕媒体。   A crushing medium for crushing a sample by moving a single or a plurality of members housed in a cylindrical container together with a sample to be crushed by a variable magnetic field applied from the outside of the cylindrical container, the member comprising a ferromagnetic material It is formed as a main body and slidably contacts or collides with the inner wall of the cylindrical container by movement, and the size, shape and structure that allow multiple members to slidably contact or collide with each other, and the sample can be ground and crushed by sliding contact or collision. A crushing medium characterized by being formed into a mass capable of being formed. 円柱状の軸方向又は径方向に着磁されてなる請求項5に記載の破砕媒体。   The crushing medium according to claim 5, wherein the crushing medium is magnetized in a columnar axial direction or radial direction. 円柱状の径方向に複数の突出部が形成されてなる請求項5又は6に記載の破砕媒体。   The crushing medium according to claim 5 or 6, wherein a plurality of protrusions are formed in a cylindrical radial direction. 少なくとも円筒容器の底部側に向く端部は円筒容器の内底面形状に対応する形状に形成されてなる請求項5〜7いずれか一項に記載の破砕媒体。   The crushing medium according to any one of claims 5 to 7, wherein at least an end portion facing the bottom side of the cylindrical container is formed in a shape corresponding to the inner bottom shape of the cylindrical container. 任意周面に溝が形成されてなる請求項5〜8いずれか一項に記載の破砕媒体。   The crushing medium according to any one of claims 5 to 8, wherein a groove is formed on an arbitrary peripheral surface. 強磁性体の外側を樹脂、セラミクス、ガラス質、非磁性体金属のいずれか又はそれら任意の組み合わせにより被覆してなる請求項5〜9いずれか一項に記載の破砕媒体。   The crushing medium according to any one of claims 5 to 9, wherein the outer side of the ferromagnetic material is coated with any one of resin, ceramics, glassy material, nonmagnetic metal, or any combination thereof. 中空構造の内部に蓄冷剤が封入されてなる請求項5〜10いずれか一項に記載の破砕媒体。 The crushing medium according to any one of claims 5 to 10, wherein a regenerator is enclosed in a hollow structure. 円柱状に形成した中心部材の外周上にリング状に形成した円筒部材が遊嵌されてなる請求項5〜11いずれか一項に記載の破砕媒体。   The crushing medium according to any one of claims 5 to 11, wherein a cylindrical member formed in a ring shape is loosely fitted on an outer periphery of a central member formed in a columnar shape. 中心部材と円筒部材とは、強磁性体と非磁性体との組み合わせである請求項12に記載の破砕媒体。   The crushing medium according to claim 12, wherein the central member and the cylindrical member are a combination of a ferromagnetic material and a non-magnetic material. 円筒部材に複数のスリットが形成されてなる請求項12又は13に記載の破砕媒体。 The crushing medium according to claim 12 or 13, wherein a plurality of slits are formed in the cylindrical member. 円筒容器の軸方向又は径方向に複数に分割されてなる請求項5〜11いずれか一項に記載の破砕媒体。   The crushing medium according to any one of claims 5 to 11, wherein the crushing medium is divided into a plurality of parts in an axial direction or a radial direction of the cylindrical container. 複数分割された各部材の材質又は形状が異なる請求項15に記載の破砕媒体。   The crushing medium according to claim 15, wherein a material or a shape of each of the divided members is different. 強磁性体を主体として中空の容器に形成され、容器の運動に伴って運動する媒体を試料と共に容器内に収容してなる請求項5に記載の破砕媒体。

The crushing medium according to claim 5, wherein the medium is formed in a hollow container mainly composed of a ferromagnetic material, and the medium that moves as the container moves is accommodated in the container together with the sample.

JP2006202317A 2006-07-25 2006-07-25 Magnetic crushing method, magnetic crushing device, and crushing medium used for it Pending JP2008023504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202317A JP2008023504A (en) 2006-07-25 2006-07-25 Magnetic crushing method, magnetic crushing device, and crushing medium used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202317A JP2008023504A (en) 2006-07-25 2006-07-25 Magnetic crushing method, magnetic crushing device, and crushing medium used for it

Publications (1)

Publication Number Publication Date
JP2008023504A true JP2008023504A (en) 2008-02-07

Family

ID=39114690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202317A Pending JP2008023504A (en) 2006-07-25 2006-07-25 Magnetic crushing method, magnetic crushing device, and crushing medium used for it

Country Status (1)

Country Link
JP (1) JP2008023504A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201291A (en) * 2009-02-27 2010-09-16 Doshisha Ball milling device
KR101335339B1 (en) 2012-07-31 2013-12-03 케이엠텍 주식회사 Apparatus for pulverization with reciprocating mill
JP2015147170A (en) * 2014-02-05 2015-08-20 安井器械株式会社 Sample crushing tool and sample crushing device
CN107107126A (en) * 2014-10-29 2017-08-29 莱特拉姆有限责任公司 Electromagnetism conveyer
CN109154542A (en) * 2016-03-17 2019-01-04 Sk电信有限公社 Biological sample pre-processing device
CN113617494A (en) * 2021-07-26 2021-11-09 江苏大学 Ball milling and cavitation cooperative two-dimensional nanosheet material preparation device and method
CN117511740A (en) * 2024-01-08 2024-02-06 山东伯桢生物科技有限公司 Tissue dissociation device and control method for tissue dissociation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201291A (en) * 2009-02-27 2010-09-16 Doshisha Ball milling device
KR101335339B1 (en) 2012-07-31 2013-12-03 케이엠텍 주식회사 Apparatus for pulverization with reciprocating mill
JP2015147170A (en) * 2014-02-05 2015-08-20 安井器械株式会社 Sample crushing tool and sample crushing device
CN107107126A (en) * 2014-10-29 2017-08-29 莱特拉姆有限责任公司 Electromagnetism conveyer
CN109154542A (en) * 2016-03-17 2019-01-04 Sk电信有限公社 Biological sample pre-processing device
CN113617494A (en) * 2021-07-26 2021-11-09 江苏大学 Ball milling and cavitation cooperative two-dimensional nanosheet material preparation device and method
CN113617494B (en) * 2021-07-26 2022-09-16 江苏大学 Ball milling and cavitation cooperative two-dimensional nanosheet material preparation device and method
CN117511740A (en) * 2024-01-08 2024-02-06 山东伯桢生物科技有限公司 Tissue dissociation device and control method for tissue dissociation device
CN117511740B (en) * 2024-01-08 2024-05-10 山东伯桢生物科技有限公司 Tissue dissociation device and control method for tissue dissociation device

Similar Documents

Publication Publication Date Title
JP4903419B2 (en) Crushing method, crushing apparatus and crushing processing apparatus using the same
JP2008023504A (en) Magnetic crushing method, magnetic crushing device, and crushing medium used for it
CN108092486B (en) Magnetic coupling assembly and magnetic coupling stirring device
JP2007237008A (en) Crushing method and crusher
US9385578B2 (en) Magnetic spring system for use in a resonant motor
US9962717B1 (en) Instrument for automated sample preparation by combination homogenization and clarification
RU2399486C1 (en) Device for concrete mix mixing
JP2007203244A (en) Crushing and agitating method
RU2292943C1 (en) Turbo-mixer with the electromechanical vibration exciter
JP2007229701A (en) Crushing method and crushing apparatus
US4134557A (en) Device for propelling grinding bodies in a grinding mill
US20180147552A1 (en) Zero gravity process device
JP2008127047A (en) Vibrating-device-having hopper
JPH10314569A (en) Agitating device
JP2008229454A (en) Stirring mixer
JP2008136954A (en) Magnetic crushing machine
JP2017067492A (en) Agitation system, chip and agitation device
JP2003251207A (en) Crusher
US10449500B2 (en) Wine decanter and wine decanting device
KR101335339B1 (en) Apparatus for pulverization with reciprocating mill
JP2003126715A (en) Method and device for crushing
US10843146B2 (en) Laboratory apparatus
CN208043519U (en) A kind of biochip and biochip reaction device vibrate mixing structure
JP2015077079A (en) Crusher of sample related to living body, and extraction and measurement system
JP2017170334A (en) Crushing device and medium for crushing