JP2008136954A - Magnetic crushing machine - Google Patents

Magnetic crushing machine Download PDF

Info

Publication number
JP2008136954A
JP2008136954A JP2006326494A JP2006326494A JP2008136954A JP 2008136954 A JP2008136954 A JP 2008136954A JP 2006326494 A JP2006326494 A JP 2006326494A JP 2006326494 A JP2006326494 A JP 2006326494A JP 2008136954 A JP2008136954 A JP 2008136954A
Authority
JP
Japan
Prior art keywords
crushing
magnetic
container
sample
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326494A
Other languages
Japanese (ja)
Inventor
Michio Shibatani
三千雄 柴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006326494A priority Critical patent/JP2008136954A/en
Publication of JP2008136954A publication Critical patent/JP2008136954A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/005Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls the charge being turned over by magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/10Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with one or a few disintegrating members arranged in the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/14Mills in which the charge to be ground is turned over by movements of the container other than by rotating, e.g. by swinging, vibrating, tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic crushing machine for reducing a sample by magnetically causing motion of a crushing medium while cooling a tube containing the sample of a crushing object and the crushing medium. <P>SOLUTION: When the tube 5 containing the sample and the crushing medium 6 is inserted into a container containing cylinder 10 including a refrigerant circulation part 31 for circulating a refrigerant, a magnetic pole 36 of a plurality of electromagnetic poles 11 to 14 is subjected to advance drive to press the container containing cylinder 10 from the surroundings, thereby holding the tube 5. The crushing medium 6 mainly formed of a strong magnetic material is subjected to rotary motion or vertical motion to grind and crush the sample by controlling excitation of the electromagnetic poles 11 to 14 disposed at a plurality of steps in a perpendicular direction of the container containing cylinder 10. Since the container containing cylinder 10 is maintained with cooling, the heat of the sample the temperature of which is elevated by frictional heat or the like is radiated through the tube 5 and the container containing cylinder 10, thereby enabling a crushing treatment causing no deterioration of the sample due to the elevated temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分析、検査、実験等に供する試料を収容した容器中に投入した破砕媒体を磁気駆動することによって破砕処理する磁気破砕装置に関するものである。   The present invention relates to a magnetic crushing apparatus for crushing by crushing a crushing medium put into a container containing a sample to be used for analysis, inspection, experiment, and the like.

分析や検査などの場において、対象とする試料を破砕あるいは乳化することが求められる。例えば、DNA分析を行うためには、分析対象とする試料の細胞を破砕する前処理が不可欠である。この細胞破砕処理を行う装置として多様な方式のものが知られているが、大別すると、次のような方式のものがある。 It is required to crush or emulsify the target sample in a place such as analysis or inspection. For example, in order to perform DNA analysis, pretreatment for crushing cells of a sample to be analyzed is indispensable. Various devices for performing this cell disruption treatment are known, but broadly divided into the following methods.

(1)試料を収容した容器に挿入した攪拌子をモータによって回転駆動し、摩擦あるいは剪断によって細胞破砕する攪拌破砕方式のもの。
(2)容器中に試料と共にビーズ等の破砕媒体を収容し、容器を上下左右に往復振動させて破砕媒体により試料を摩砕あるいは圧砕する振動破砕方式のもの。
(3)試料に超音波や圧力を加えることにより細胞を破裂させる外力破砕方式のもの。
(1) A stirring and crushing method in which a stirrer inserted into a container containing a sample is rotationally driven by a motor and the cells are crushed by friction or shear.
(2) A vibration crushing method in which a crushing medium such as beads is accommodated in a container together with the sample, and the sample is ground or crushed by the crushing medium by reciprocating the container up and down and left and right.
(3) An external force crushing method in which cells are ruptured by applying ultrasonic waves or pressure to the sample.

これらの細胞破砕装置には、それぞれ一長一短がある。前記攪拌破砕方式のものでは、摩擦熱等により温度上昇しやすく、温度上昇により蛋白質が失活したりRNAが壊れてしまうことを防止するため、容器を氷水などに浸けて冷却しながら破砕処理する必要がある。また、モータからの回転駆動軸を容器中に通す必要があるため、容器の口は開放状態にあり、異物等が混入してコンタミネーションを発生させる恐れがある。また、前記振動破砕方式や外力破砕方式のものでは、装置が大型化したり取り扱いが難しい課題があり、振動破砕方式では攪拌破砕方式と同様に摩擦熱等による温度上昇が避けられないが、激しく往復運動する容器を冷却することが困難であるため、破砕に時間を要するときには途中で容器を取り出して冷却するような手間を必要とする。   Each of these cell disruptors has advantages and disadvantages. In the stirring and crushing method, the temperature is likely to rise due to frictional heat, etc., and the crushing treatment is performed while cooling the container by immersing the container in ice water or the like in order to prevent the protein from being inactivated or the RNA from being broken due to the temperature rise. There is a need. Further, since it is necessary to pass the rotational drive shaft from the motor through the container, the opening of the container is in an open state, and foreign matter or the like may be mixed to cause contamination. In addition, the vibration crushing method and the external force crushing method have problems that the apparatus is large and difficult to handle. In the vibration crushing method, the temperature rise due to frictional heat is inevitable as in the stirring crushing method, Since it is difficult to cool the moving container, it takes time and effort to take out and cool the container halfway when time is required for crushing.

即ち、生体試料を破砕処理する細胞破砕装置においては、異物が混入しない密閉空間で破砕処理できること、温度上昇を抑えて破砕処理できること、取り扱いが容易でコンパクトであること、処理目的に合った破砕状態を選択できることが備えるべき要件となる。   That is, in a cell crushing device that crushes biological samples, it can be crushed in a sealed space where no foreign matter is mixed in, it can be crushed while suppressing temperature rise, it is easy to handle and compact, and it is in a crushing state suitable for the purpose of processing. It is a requirement to be prepared to be able to select.

本願発明者は、これらの要件を満たすことができる細胞破砕の新方式を研究した結果、所定位置に保持した密閉容器を冷却しながら容器中に収容した破砕媒体を容器の外部から印加する磁界によって回転運動を含む三次元方向に運動させ、容器中に収容した試料を破砕媒体によって破砕する磁気破砕装置の開発に至った。   As a result of studying a new method of cell disruption that can satisfy these requirements, the inventor of the present application has applied a magnetic field applied from the outside of the container to the disruption medium accommodated in the container while cooling the sealed container held in place. We have developed a magnetic crushing device that moves in a three-dimensional direction including rotational movement and crushes the sample contained in the container with a crushing medium.

容器中に収容した磁性体などを外部磁界によって運動させる磁気駆動技術として、マグネットスターラ等の磁気攪拌装置が知られているが、あくまで液体の攪拌装置であって試料を破砕処理できるものではない。 A magnetic stirrer such as a magnet stirrer is known as a magnetic drive technique for moving a magnetic body accommodated in a container by an external magnetic field. However, the magnetic stirrer is a liquid stirrer and cannot crush a sample.

容器中に収容した破砕媒体を磁気駆動して試料を破砕処理する従来技術としては、試料に微細な磁気球や金属球を混合し、容器の外部から印加する磁界により試料を破砕する細胞破砕方法が提案されている(特許文献1参照)。この細胞破砕方法は、微細な磁気球や金属球を混合した試料を収容した円筒形容器の直径方向に対向させて2方向あるいは4方向に電磁石を配し、電磁石にランダムなタイミングで通電し、必要に応じて通電方向を切り換えて磁極を反転させることにより、磁気球や金属球に不規則な移動や回転を生じさせ、試料を破砕するとしている。 A conventional technique for crushing a sample by magnetically driving a crushing medium contained in a container is a cell crushing method in which fine magnetic spheres or metal spheres are mixed with the sample and the sample is crushed by a magnetic field applied from outside the container. Has been proposed (see Patent Document 1). In this cell disruption method, electromagnets are arranged in two or four directions facing the diameter direction of a cylindrical container containing a sample mixed with fine magnetic spheres and metal spheres, and the electromagnets are energized at random timing. By switching the energization direction as necessary and reversing the magnetic pole, irregular movement and rotation are caused in the magnetic sphere and metal sphere, and the sample is crushed.

また、円筒形容器の外部から印加する磁界により容器内に収容した磁性体を円筒形容器の軸心方向に往復移動させて試料を破砕する加振機構が提案されている(特許文献2参照)。この装置では、上下に配設された第1及び第2の各ソレノイドの内側に取り付けた容器に投入した磁性体を第1及び第2の各ソレノイドをオン・オフ制御することにより往復直動させて試料を破砕する。容器の底部には予め質量体が収容され、その上に試料を置き、容器内に磁性体を投入して第1及び第2の各ソレノイドを交互に励磁すると、磁性体は往復直動して質量体に衝突するので、試料は質量体と磁性体との間で圧砕される。
特開2003−000226号公報 特開2005−111358号公報
In addition, there has been proposed an excitation mechanism that crushes a sample by reciprocating a magnetic material housed in the container in the axial direction of the cylindrical container by a magnetic field applied from the outside of the cylindrical container (see Patent Document 2). . In this apparatus, a magnetic body put in a container attached to the inside of each of the first and second solenoids arranged up and down is linearly reciprocated by controlling on and off of the first and second solenoids. Crush the sample. A mass body is previously stored in the bottom of the container, and a sample is placed on the mass body. When the magnetic body is placed in the container and the first and second solenoids are alternately excited, the magnetic body moves back and forth. Since the sample collides with the mass body, the sample is crushed between the mass body and the magnetic body.
Japanese Patent Laid-Open No. 2003-000226 JP 2005-111358 A

上記従来技術として示した細胞破砕方式においては、試料中に混合する破砕媒体は微細な磁気球や金属球としており、それを磁界方向の切り換えによって円筒容器内で移動させるだけなので、質量が小さい破砕媒体によって植物などの繊維質の試料や硬質の試料の破砕に対応させることはできない。また、試料中に破砕媒体を混合して破砕処理するとしているので、開示されているように白血球、細菌、ウイルス等の液体又は軟質の試料あるいは微粉状の試料に限定される。また、破砕媒体は円筒容器の中で励磁された電磁石の側に移動する往復運動や周回運動を行うだけなので、破砕媒体が試料を所要の破砕状態にまで破砕処理するのに時間を要するものと考えられる。破砕処理に時間を要すると試料の温度上昇は避けられず、温度上昇に伴って試料に変質が生じる恐れがある。   In the cell crushing method shown as the above prior art, the crushing medium mixed in the sample is a fine magnetic sphere or metal sphere, and it is simply moved within the cylindrical container by switching the magnetic field direction, so that the mass is crushed. The medium cannot cope with the crushing of a fibrous sample such as a plant or a hard sample. In addition, since the crushing medium is mixed in the sample and the crushing process is performed, the sample is limited to liquid or soft samples such as leukocytes, bacteria, and viruses, or fine powder samples as disclosed. In addition, since the crushing medium only reciprocates and revolves around the excited electromagnet in the cylindrical container, it takes time for the crushing medium to crush the sample to the required crushing state. Conceivable. If time is required for the crushing process, the temperature of the sample is inevitably increased, and the sample may be altered as the temperature increases.

また、従来技術として示した加振機構では、電磁駆動により磁性体を直動させて質量体に衝突させ、磁性体と質量体との間に収容した試料を圧縮破砕するもので、凍結させた試料や硬質の試料を叩き潰す圧砕の作用は得られるものの、試料を磨り潰す摩砕の作用は得られない。従って、破砕する試料の種類が限定され、従来から知られている凍結試料を金属容器中に収容して外部から打撃を加えて圧砕する凍結破砕の装置を電動駆動に代えたものとしか考えられない。   Further, in the vibration mechanism shown as the prior art, the magnetic body is moved linearly by electromagnetic drive to collide with the mass body, and the sample accommodated between the magnetic body and the mass body is compressed and crushed and frozen. Although the crushing action of crushing and crushing the sample and the hard sample is obtained, the crushing action of crushing the sample cannot be obtained. Therefore, the types of samples to be crushed are limited, and it can only be considered that the freeze-fracture device for storing a frozen sample that has been known in the past in a metal container and crushing it by external impact is replaced with an electric drive. Absent.

本発明が目的とするところは、容器中に収容した破砕媒体を磁気的に運動させて容器中に収容した試料を摩砕及び圧砕の作用により破砕し、破砕処理に伴う温度上昇を抑えることを可能とした磁気破砕装置を提供することにある。   The purpose of the present invention is to magnetically move the crushing medium accommodated in the container to crush the sample accommodated in the container by the action of grinding and crushing, and to suppress the temperature rise associated with the crushing process. An object of the present invention is to provide a magnetic crushing apparatus that can be used.

上記目的を達成するための本願第1発明に係る磁気破砕装置は、強磁性体を主体として形成された破砕媒体と破砕対象とする試料とが投入された容器を収容する容器収容筒と、前記容器収容筒を囲む複数位置に配設された複数の電磁極と、各電磁極の磁極又は全体を容器収容筒に対して進退駆動する磁極進退駆動手段と、各電磁極の励磁を制御する励磁制御手段と、前記容器収容筒を冷却する冷却手段とを備えてなることを特徴とするものである。   In order to achieve the above object, a magnetic crushing apparatus according to the first invention of the present application includes a container housing cylinder for housing a container into which a crushing medium formed mainly of a ferromagnetic material and a sample to be crushed are placed, A plurality of electromagnetic poles disposed at a plurality of positions surrounding the container housing cylinder, a magnetic pole advance / retreat driving means for driving the magnetic pole of each electromagnetic pole or the whole to move forward and backward with respect to the container housing cylinder, and an excitation for controlling the excitation of each electromagnetic pole Control means and cooling means for cooling the container housing cylinder are provided.

上記構成によれば、容器収容筒に試料と破砕媒体とを投入した容器を挿入すると、磁極進退駆動手段により進出移動した複数の電磁極の各磁極が容器収容筒を押圧して容器収容筒と容器とを密着させるので、容器が保持されると共に冷却手段により容器が冷却され、電磁極からの磁界は至近位置から破砕媒体に印加される。励磁制御手段により各電磁極の励磁を制御すると、破砕媒体を容器中で三次元方向に運動させることができ、容器内壁と擦れ合う回転などの運動により試料は摩砕され、上方に移動させた破砕媒体が容器の底部に落下する運動により試料は圧砕される。試料の種類や状態に応じて摩砕や圧砕の作用が効果的になされる励磁制御を行うことにより、試料は温度上昇を抑えた状態を維持して破砕処理される。   According to the above configuration, when the container into which the sample and the crushing medium are put is inserted into the container housing cylinder, the magnetic poles of the plurality of electromagnetic poles advanced and moved by the magnetic pole advance / retreat driving means press the container housing cylinder and Since the container is brought into close contact, the container is held and the container is cooled by the cooling means, and the magnetic field from the electromagnetic pole is applied to the crushing medium from the nearest position. If the excitation of each electromagnetic pole is controlled by the excitation control means, the crushing medium can be moved in a three-dimensional direction in the container, and the sample is ground by the movement of rubbing with the inner wall of the container and moved upward. The sample is crushed by the movement of the media to the bottom of the container. By performing excitation control in which the action of grinding and crushing is effectively performed according to the type and state of the sample, the sample is crushed while maintaining a state in which the temperature rise is suppressed.

上記構成において、任意の電磁極を容器収容筒の軸方向に移動させる電磁極軸方向駆動手段を設けることが好適である。使用する容器のサイズあるいは試料の種類や状態に応じて電磁極軸方向駆動手段により任意の電磁極は容器の軸方向所定高さ方向に移動させることができるので、高さ位置が異なる複数の電磁極から磁界が印加され、破砕媒体は容器中で三次元方向の自在位置に運動させることができ、試料の種類や状態に応じた摩砕や圧砕の作用が効果的になされる。   In the above configuration, it is preferable to provide electromagnetic pole axial direction drive means for moving an arbitrary electromagnetic pole in the axial direction of the container housing cylinder. Since any electromagnetic pole can be moved in a predetermined height direction in the axial direction of the container by the electromagnetic pole axial direction driving means according to the size of the container to be used or the type and condition of the sample, a plurality of electromagnetic poles having different height positions can be obtained. A magnetic field is applied from the pole, and the crushing medium can be moved to a free position in the three-dimensional direction in the container, so that the action of grinding and crushing according to the type and state of the sample is effectively performed.

また、容器収容筒の底部に磁極先端が当接し、励磁制御手段によって励磁制御される吸引電磁極を配設することが好適である。容器中の上方に移動させた破砕媒体が落下するとき、吸引電磁極を励磁すると、破砕媒体は磁気吸着により容器の底に激しく衝突するので、容器の底にある試料を圧砕する効果が増大する。また、破砕媒体が回転運動している状態で吸引電磁極を弱く励磁すると、破砕媒体は容器の底に押し付けられた状態で回転するので、試料を磨り潰す効果が増加する。   In addition, it is preferable to arrange an attracting electromagnetic pole whose magnetic tip is in contact with the bottom of the container housing cylinder and which is excited and controlled by the excitation control means. When the crushing medium moved upward in the container falls, if the suction electromagnetic pole is excited, the crushing medium collides violently with the bottom of the container by magnetic adsorption, so the effect of crushing the sample at the bottom of the container increases. . Further, if the attracting electromagnetic pole is weakly excited while the crushing medium is rotating, the crushing medium rotates while being pressed against the bottom of the container, so that the effect of grinding the sample increases.

上記吸引電磁極は、容器収容筒方向に進退移動可能に配設することが好適で、使用する容器のサイズが変り、容器収容筒を変更したときにも容器の底部に磁極が当接した状態を保つことができる。 The suction electromagnetic pole is preferably disposed so as to be movable back and forth in the direction of the container housing cylinder, and the magnetic pole is in contact with the bottom of the container even when the size of the container used is changed and the container housing cylinder is changed. Can keep.

また、容器収容筒は、有底円筒形に形成された容器の外面に接する内径、内形状に形成することが好適で、挿入された容器と密着させやすく、容器の冷却効果及び磁界印加の効率化を向上させることができる。 In addition, the container housing cylinder is preferably formed to have an inner diameter and an inner shape that are in contact with the outer surface of the container formed in a bottomed cylindrical shape, and is easily brought into close contact with the inserted container, and the cooling effect of the container and the efficiency of magnetic field application Can be improved.

この容器収容筒は、着脱可能に設けることが好適であり、容器のサイズ変更に対応でき、劣化したときの交換や洗浄、滅菌消毒にも対応でき、バイオハザード対策上でも有効となる。 The container housing cylinder is preferably provided so as to be detachable, can respond to a change in the size of the container, can be replaced, cleaned and sterilized when it deteriorates, and is effective for biohazard measures.

また、冷却手段は、容器収容筒に形成された冷媒流通部に所要温度に冷却された冷媒を循環させるように構成するのが好適で、冷媒流通部に循環する冷媒により冷却される容器収容筒は密着した容器を冷却するので、摩擦熱等によって温度上昇した試料の熱を速やかに放散することができ、冷媒の温度管理によって試料を所定温度に維持して破砕処理を行うことができる。 In addition, the cooling means is preferably configured to circulate the refrigerant cooled to a required temperature in the refrigerant circulation part formed in the container accommodation cylinder, and is cooled by the refrigerant circulating in the refrigerant circulation part. Because the container cools closely, the heat of the sample whose temperature has increased due to frictional heat or the like can be quickly dissipated, and the sample can be maintained at a predetermined temperature by the temperature control of the refrigerant to perform the crushing process.

この冷却手段は、容器収容筒及びそれに形成された放熱フィンに冷風を送風するように構成することもでき、冷却手段を簡易に構成できると同時にランニングコストも低減することができる。 This cooling means can also be configured to blow cool air to the container housing cylinder and the radiating fins formed thereon, and the cooling means can be simply configured and at the same time the running cost can be reduced.

また、冷却手段は、冷媒流通部に充填した蓄冷材を凍結させるように構成することにより、予め容器収容筒を冷凍庫等に保管しておくだけで使用時に装着すると、所定回数の破砕処理の間の冷却を簡易に行うことができる。 In addition, the cooling means is configured to freeze the regenerator material filled in the refrigerant circulation section, so that the container storage cylinder is stored in a freezer or the like in advance, and is attached at the time of use. Can be easily cooled.

また、破砕媒体は、強磁性体を着磁して構成することにより、破砕媒体に自転運動を生じさせることができ、摩砕作用の向上を図ることができる。 In addition, the crushing medium can be formed by magnetizing a ferromagnetic material, thereby causing the crushing medium to rotate, and improving the grinding action.

また、破砕媒体は、強磁性体の径方向断面が容器を囲む一周面に配設された電磁極の数より少ない数の突出部を設けた形状に形成することによっても、破砕媒体に自転運動を生じさせることができ、摩砕作用の向上を図ることができる。 In addition, the crushing medium rotates in a crushing medium by forming a shape in which the radial cross section of the ferromagnetic material has a smaller number of protrusions than the number of electromagnetic poles disposed on the circumferential surface surrounding the container. Can be produced, and the grinding action can be improved.

また、破砕媒体は、強磁性体を非磁性体中の偏心位置に封止して構成することにより、破砕媒体が振れ運動しながら回転する作用が生じるので、容器の周壁と擦れ合う状態が増加し、試料を磨り潰す作用が増大する。 In addition, the crushing medium is configured by sealing the ferromagnetic material at an eccentric position in the non-magnetic material, thereby causing the crushing medium to rotate while swinging, thereby increasing the state of rubbing with the peripheral wall of the container. The action of grinding the sample is increased.

また、破砕媒体は、清浄化されて軸方向に整列するように清浄化された円筒中に複数個が収容され、円筒の開放端から1個ずつ排出される破砕媒体供給筒に収容することが好適で、容器中に投入する際に手などで触れることなく投入作業を行うことができ、破砕媒体を手などで触れることによって容器中に異物が混入することによる汚染を防止し、作業効率の向上を図ることができる。また、破砕媒体を着磁した場合には、互いに吸着して1個ずつ分離させることが困難になる問題が解消される。   Further, a plurality of crushing media may be accommodated in a cylinder that has been cleaned and cleaned so as to be aligned in the axial direction, and stored in a crushing medium supply cylinder that is discharged one by one from the open end of the cylinder. It is suitable and can be put into the container without touching it by hand, and by touching the crushing medium with hand etc., contamination due to foreign matter entering the container is prevented, and work efficiency is improved. Improvements can be made. Further, when the crushing medium is magnetized, the problem that it is difficult to adsorb each other and separate them one by one is solved.

本発明によれば、密閉された容器中に収容した試料は、容器を容器収容筒内に保持して冷却を維持しながら至近位置からの磁界印加により破砕媒体が効率よく運動して破砕処理される。容器が一定位置に保持されているので冷却が容易であるため、温度上昇により試料に失活等の変質が生じさせることがなく、コンパクトに構成できるのでDNA解析等の作業を行うクリーンベンチ等の中に設置することも可能となる。また、破砕媒体を運動させる磁界制御を多彩に変化させることができるので、試料の種類や状態に応じた破砕媒体の運動を自在に選択することができる。   According to the present invention, the sample accommodated in the sealed container is crushed by the crushing medium efficiently moving by applying the magnetic field from the nearest position while maintaining the cooling in the container accommodating cylinder. The Since the container is held in a fixed position, it is easy to cool, so it does not cause deterioration such as inactivation in the sample due to temperature rise, and it can be made compact so that it can be used for DNA analysis etc. It can also be installed inside. In addition, since the magnetic field control for moving the crushing medium can be variously changed, the movement of the crushing medium according to the type and state of the sample can be freely selected.

以下、添付図面を参照して本発明の実施形態について説明し本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は、実施形態に係る磁気破砕装置1の外観構成を示すもので、破砕処理する試料Xと破砕媒体6とを投入して開口部をキャップ7で閉じたチューブ(容器)5を破砕処理装置1の容器挿入穴に挿入することにより、チューブ5を冷却した状態を維持して設定操作部40から設定入力された条件で試料Xに対する破砕処理が実行されるように構成されている。   FIG. 1 shows an external configuration of a magnetic crushing apparatus 1 according to an embodiment. A crushing process is performed on a tube (container) 5 in which a sample X to be crushed and a crushing medium 6 are introduced and an opening is closed with a cap 7. By inserting into the container insertion hole of the apparatus 1, the tube 5 is maintained in a cooled state, and the crushing process for the sample X is executed under the conditions set and input from the setting operation unit 40.

図2は、上記磁気破砕装置1の要部構成を水平方向断面図として示している。中心位置に破砕容器とするチューブ5を収容する容器収容筒10が配設され、この容器収容筒10を取り囲む直径方向の4箇所に電磁極11,12,13,14が配設されている。各電磁極11〜14は、励磁コイル35と、この励磁コイル35中に進退移動可能に嵌挿された磁極36とを備えて構成され、各電磁極11〜14の磁極36はヨーク37によって外方側で磁気的に連結されている。 FIG. 2 shows a configuration of a main part of the magnetic crushing apparatus 1 as a horizontal sectional view. A container housing cylinder 10 that houses the tube 5 serving as a crushing container is disposed at the center position, and electromagnetic poles 11, 12, 13, and 14 are disposed at four diametrical positions surrounding the container housing cylinder 10. Each of the electromagnetic poles 11 to 14 includes an exciting coil 35 and a magnetic pole 36 inserted into the exciting coil 35 so as to be movable back and forth. The magnetic pole 36 of each of the electromagnetic poles 11 to 14 is externally attached by a yoke 37. It is magnetically connected on the side.

前記容器収容筒10は、使用するチューブ5の周面に接触する内径になるよう熱伝導性に優れた材料、例えば熱伝導性樹脂によって形成され、中心部分である容器収容筒10の外周面に各電磁極11〜14それぞれの磁極36の先端部分が当接することができるように凹部を設けて冷媒流通部31が形成されている。冷媒流通部31に外部から所定温度に管理されて供給される冷媒を循環させることにより、容器収容筒10を介してチューブ5を冷却し、摩擦熱等による試料Xの温度上昇を抑えて破砕処理が実施できるように構成している。   The container housing cylinder 10 is formed of a material having excellent thermal conductivity such as a heat conductive resin so as to have an inner diameter that contacts the circumferential surface of the tube 5 to be used. Refrigerant circulation portions 31 are formed by providing recesses so that the tip portions of the magnetic poles 36 of the respective electromagnetic poles 11 to 14 can come into contact with each other. By circulating a refrigerant that is supplied to the refrigerant circulation portion 31 while being controlled to a predetermined temperature from the outside, the tube 5 is cooled via the container housing cylinder 10, and the temperature rise of the sample X due to frictional heat or the like is suppressed and the crushing process is performed. It can be implemented.

図3(a)(b)は、上記磁気破砕装置1の要部構成を垂直方向断面図で示している。図2で示した電磁極11〜14の下方に同様の構成にして電磁極15〜18が配設されている。各電磁極11〜18は、図3(b)に示すように、任意の電磁極11〜18を容器収容筒10の円筒軸方向の任意高さ位置に昇降移動可能である。また、容器収容筒10の底部に対応する位置には、吸引電磁極9が配設されている。   3 (a) and 3 (b) show the main configuration of the magnetic crushing apparatus 1 in a vertical cross-sectional view. Electromagnetic poles 15 to 18 having the same configuration are disposed below the electromagnetic poles 11 to 14 shown in FIG. As shown in FIG. 3B, each of the electromagnetic poles 11 to 18 can move the arbitrary electromagnetic poles 11 to 18 up and down to an arbitrary height position in the cylindrical axis direction of the container housing cylinder 10. An attracting electromagnetic pole 9 is disposed at a position corresponding to the bottom of the container housing cylinder 10.

図示省略しているが、各電磁極11〜18それぞれの磁極36は磁極進退駆動手段43により進退駆動され、待機時では後退移動して容器収容筒10へのチューブ5の挿入を容易にし、容器収容筒10にチューブ5が挿入されたとき図示する前進位置に進出移動して容器収容筒10をチューブ5に密着させ、周囲から押圧してチューブ5を保持すると共に、容器収容筒10を介したチューブ5の冷却を維持する。また、吸引電磁極9は吸引電磁極昇降駆動手段45により昇降駆動され、チューブ5のサイズに対応する容器収容筒10の高さ変化に応じて容器収容筒10の底部に磁極が当接する位置まで上昇移動する。尚、吸引電磁極9は、上方に付勢された状態に配設することにより、挿入された容器収容筒10の高さ寸法変化に応じて下方に押圧されて後退移動するので、吸引電磁極昇降駆動手段45を設けることなく、常に容器収容筒10の底部に磁極36を当接した状態とすることもできる。   Although not shown, the magnetic poles 36 of the respective electromagnetic poles 11 to 18 are driven forward and backward by the magnetic pole advance / retreat driving means 43 and move backward during standby to facilitate the insertion of the tube 5 into the container housing cylinder 10. When the tube 5 is inserted into the housing cylinder 10, the container 5 moves forward to the illustrated forward position so that the container housing cylinder 10 is brought into close contact with the tube 5, and is pressed from the periphery to hold the tube 5. Maintain cooling of tube 5. The suction electromagnetic pole 9 is driven up and down by the suction electromagnetic pole raising / lowering drive means 45 to a position where the magnetic pole comes into contact with the bottom of the container housing cylinder 10 according to the height change of the container housing cylinder 10 corresponding to the size of the tube 5. Move up. In addition, since the attracting electromagnetic pole 9 is disposed in a state of being biased upward, the attracting electromagnetic pole 9 is pushed downward in accordance with the height dimension change of the inserted container housing cylinder 10 and moves backward. Without providing the raising / lowering drive means 45, the magnetic pole 36 can always be in contact with the bottom of the container housing cylinder 10.

また、各電磁極11〜18は電磁極昇降駆動手段(電磁極軸方向駆動手段)44により昇降移動させることができ、使用するチューブ5のサイズや破砕処理方法などの変化に対応して、図3(b)に示すように、任意高さ位置に昇降移動する。前記磁極進退駆動手段43、電磁極昇降駆動手段44、吸引電磁極電磁極昇降駆動手段45は、カム機構あるいはボールネジ機構などによって構成することができ、前記磁極進退駆動手段43、電磁極昇降駆動手段44、吸引電磁極昇降駆動手段45の動作は、後述する制御装置30により駆動制御される。 Further, each of the electromagnetic poles 11 to 18 can be moved up and down by an electromagnetic pole raising / lowering drive means (electromagnetic pole axial direction drive means) 44, corresponding to changes in the size of the tube 5 to be used, the crushing processing method, etc. As shown in 3 (b), it moves up and down to an arbitrary height position. The magnetic pole advance / retreat driving means 43, the electromagnetic pole raising / lowering driving means 44, and the attracting electromagnetic pole electromagnetic pole raising / lowering driving means 45 can be constituted by a cam mechanism or a ball screw mechanism, and the magnetic pole advance / retreat driving means 43, electromagnetic pole raising / lowering driving means. 44. The operation of the attracting electromagnetic pole raising / lowering driving means 45 is driven and controlled by the control device 30 described later.

図4は、制御装置30の構成を示すもので、前記磁極進退駆動手段43、電磁極昇降駆動手段44、吸引電磁極昇降駆動手段45の動作を制御する位置制御部41と、各電磁極11〜18及び吸引電磁極9の励磁を制御する励磁制御部42とを備え、これら位置制御部41及び励磁制御部42による制御動作は、設定操作部40から入力される設定入力に基づいて実行される。   FIG. 4 shows the configuration of the control device 30. The position control unit 41 controls the operations of the magnetic pole advance / retreat drive means 43, the electromagnetic pole elevating drive means 44, and the attracting electromagnetic pole elevating drive means 45, and each electromagnetic pole 11. And the excitation control unit 42 for controlling the excitation of the attraction electromagnetic pole 9, and the control operations by the position control unit 41 and the excitation control unit 42 are executed based on the setting input input from the setting operation unit 40. The

容器収容筒10は使用するチューブ5の形状寸法に対応させて交換する。容器収容筒10の交換時には、各電磁極11〜18の磁極36を後退移動させ、吸引電磁極9は下降移動する。容器収容筒10は上方に引き出して取り出すことができ、使用するチューブ5の形状寸法に適合するものに交換できる他、劣化した場合には交換することができる。また、取り外して洗浄、滅菌消毒することができるので、バイオハザード対策にも有効である。   The container housing cylinder 10 is replaced in accordance with the shape and dimensions of the tube 5 to be used. When the container housing cylinder 10 is replaced, the magnetic poles 36 of the electromagnetic poles 11 to 18 are moved backward, and the attracting electromagnetic pole 9 is moved downward. The container housing cylinder 10 can be pulled out and taken out, and can be replaced with one that conforms to the shape and dimensions of the tube 5 to be used, and can be replaced when it is deteriorated. In addition, since it can be removed, cleaned and sterilized, it is also effective for biohazard countermeasures.

使用するチューブ5に対応する容器収容筒10を装着し、破砕処理する試料Xと破砕媒体6とを収容したチューブ5を容器収容筒10に挿入し、設定操作部40から試料Xの種類や処理方法などの条件を設定入力すると、吸引電磁極昇降駆動手段45により吸引電磁極9は上昇移動し、その磁極を容器収容筒10の底部に当接させる。位置制御部41は設定入力に応じて電磁極昇降駆動手段44により任意の電磁極11〜18の高さ位置を変更する。次いで、磁極進退駆動手段43により各電磁極11〜18の磁極36を進出駆動し、磁極36の先端が容器収容筒10を押圧して容器収容筒10とチューブ5とを密着させてチューブ5を保持する。また、励磁制御部42は設定操作部40からの設定入力に応じて各電磁極11〜18及び吸引電磁極9の励磁コイル35への励磁電流の供給を制御する。 A container housing cylinder 10 corresponding to the tube 5 to be used is mounted, the tube 5 housing the sample X to be crushed and the crushed medium 6 is inserted into the container housing cylinder 10, and the type and processing of the sample X from the setting operation unit 40. When conditions such as the method are set and inputted, the attracting electromagnetic pole 9 is moved upward by the attracting electromagnetic pole raising / lowering driving means 45 and the magnetic pole is brought into contact with the bottom of the container housing cylinder 10. The position control unit 41 changes the height positions of the arbitrary electromagnetic poles 11 to 18 by the electromagnetic pole raising / lowering drive means 44 in accordance with the setting input. Next, the magnetic pole 36 of each of the electromagnetic poles 11 to 18 is driven to advance by the magnetic pole advance / retreat driving means 43, and the tip of the magnetic pole 36 presses the container housing cylinder 10 to bring the container housing cylinder 10 and the tube 5 into close contact with each other. Hold. Further, the excitation control unit 42 controls the supply of excitation current to the excitation coils 35 of the electromagnetic poles 11 to 18 and the suction electromagnetic pole 9 in accordance with the setting input from the setting operation unit 40.

チューブ5は、図5に示すように、一般に遠心チューブあるいはサンプルチューブ等と称されている汎用のチューブ5を適用することができる。チューブ5は、ポリプロピレン、フッ素樹脂等によりキャップ7付き容器に形成したものが好適で、破砕処理などでは1.2mlから5.0mlのものが多く使用されている。ここでは2.0mlのチューブ5を基本サイズとして、サイズ変更に対応可能としている。また、破砕媒体6は軟鋼等の強磁性体を主体として形成したもので、チューブ5の内径より小さい直径で、チューブ5の底部に向く一端をチューブ5の内底部形状に対応する形状に形成したものを基本形状とする。この破砕媒体6の形状、寸法、構造は、後述するように試料Xの種類や処理方法などに応じて最適に構成することができる。   As shown in FIG. 5, a general-purpose tube 5 generally called a centrifuge tube or a sample tube can be applied to the tube 5. The tube 5 is preferably formed in a container with a cap 7 using polypropylene, fluororesin, or the like, and in a crushing process, a tube having a capacity of 1.2 ml to 5.0 ml is often used. Here, a 2.0 ml tube 5 is used as a basic size, and it is possible to cope with the size change. The crushing medium 6 is formed mainly of a ferromagnetic material such as mild steel, and has a diameter smaller than the inner diameter of the tube 5 and one end facing the bottom of the tube 5 formed into a shape corresponding to the shape of the inner bottom of the tube 5. A thing is a basic shape. The shape, size, and structure of the crushing medium 6 can be optimally configured according to the type of sample X, the processing method, and the like, as will be described later.

各電磁極11〜18の励磁順序は、励磁制御部42によって自在に制御でき、試料Xの種類や状態、破砕処理程度に応じた破砕媒体6の運動を制御できる。例えば、電磁極15と電磁極16の励磁コイル35に互いに異なる方向に励磁電流を供給して磁気回路が形成されるように両電磁極15,16を励磁すると、強磁性体で形成された破砕媒体6は両電磁極15,16の磁極36の間のチューブ5の内壁に吸引される。次いで、同様に電磁極16と電磁極17とを励磁すると、破砕媒体6はチューブ5の内壁に沿って移動し、両電磁極16,17の磁極36の間の内壁に吸引される。このような励磁の切り換えを時計回りあるいは反時計回りに制御すると、破砕媒体6はチューブ5の内壁を擦るように回転するので、破砕媒体6とチューブ5の内壁との間に挟まれた試料Xは磨り潰される。   The excitation order of the electromagnetic poles 11 to 18 can be freely controlled by the excitation control unit 42, and the movement of the crushing medium 6 according to the type and state of the sample X and the degree of crushing treatment can be controlled. For example, when the electromagnetic poles 15 and 16 are excited so that an excitation current is supplied to the excitation coils 35 of the electromagnetic pole 15 and the electromagnetic pole 16 in different directions to form a magnetic circuit, the crush formed of a ferromagnetic material. The medium 6 is attracted to the inner wall of the tube 5 between the magnetic poles 36 of both electromagnetic poles 15 and 16. Next, when the electromagnetic pole 16 and the electromagnetic pole 17 are similarly excited, the crushing medium 6 moves along the inner wall of the tube 5 and is attracted to the inner wall between the magnetic poles 36 of both the electromagnetic poles 16 and 17. When such excitation switching is controlled clockwise or counterclockwise, the crushing medium 6 rotates so as to rub against the inner wall of the tube 5, and therefore the sample X sandwiched between the crushing medium 6 and the inner wall of the tube 5. Is crushed.

ここでは電磁極11〜18はチューブ5の高さ方向に4個ずつ2段に配設されているので、励磁を上段の電磁極11〜14に切り換えると、破砕媒体6はチューブ5内を上昇移動する。下段の電磁極15〜18の励磁切り換えと同様に電磁極11〜14の励磁切り換え制御を行うと、破砕媒体6をチューブ5内の高い位置で回転させることができる。破砕媒体6が上昇位置にある状態で、上段の電磁極11〜14の励磁を停止すると同時に、吸引電磁極9を励磁すると、破砕媒体6は落下して吸引電磁極9に吸引されるので、破砕媒体6はチューブ5の底部に激しく衝突する。この破砕媒体6の衝突によりチューブ5の底部にある試料Xは圧縮されて砕かれる。   Here, since four electromagnetic poles 11 to 18 are arranged in two stages in the height direction of the tube 5, the crushing medium 6 rises in the tube 5 when the excitation is switched to the upper electromagnetic poles 11 to 14. Moving. When the excitation switching control of the electromagnetic poles 11 to 14 is performed similarly to the excitation switching of the lower electromagnetic poles 15 to 18, the crushing medium 6 can be rotated at a high position in the tube 5. When the excitation of the upper electromagnetic poles 11 to 14 is stopped at the same time as the crushing medium 6 is in the raised position, and the excitation electromagnetic pole 9 is excited, the crushing medium 6 falls and is attracted to the suction electromagnetic pole 9. The crushing medium 6 strikes the bottom of the tube 5 violently. The sample X at the bottom of the tube 5 is compressed and crushed by the collision of the crushing medium 6.

従って、破砕媒体6の回転及び上昇落下が所要の頻度でなされるように電磁極11〜18及び吸引電磁極9の励磁を制御すると、チューブ5内に収容された試料Xには破砕媒体6の回転に伴う摩砕作用と上昇落下に伴う圧砕作用とが及び、試料Xは所要の破砕状態に破砕処理される。   Therefore, when the excitation of the electromagnetic poles 11 to 18 and the suction electromagnetic pole 9 is controlled so that the crushing medium 6 rotates and rises and falls at a required frequency, the sample X accommodated in the tube 5 contains the crushing medium 6. The grinding action associated with the rotation and the crushing action associated with the rising and falling are performed, and the sample X is crushed into a required crushed state.

各電磁極11〜17の高さ位置の変更、吸引電磁極9に対する励磁状態、各電磁極11〜18の励磁切り換え順序は自在に制御できるので、試料Xの種類に応じた様々な破砕処理が可能である。例えば、植物の葉のように嵩高い繊維質の試料Xを破砕処理する場合、電磁極昇降駆動手段44により各電磁極11〜17の高さ位置を、図3(b)に示すように、電磁極15を最下位置とし電磁極14が最上位置となるように、各電磁極11〜18の高さ位置が順に高くなる螺旋状に配置し、励磁制御部42の制御により電磁極15と電磁極16、電磁極16と電磁極17、電磁極17と電磁極18…電磁極13と電磁極14の順にパルス状に励磁し、最上部に位置する電磁極13と電磁極14の励磁を停止すると同時に吸引電磁極9を励磁すると、破砕媒体6は、図6に示すように、チューブ5の内周壁に沿って螺旋状に上昇し、最上昇位置から落下して吸引電磁極9に吸引されてチューブ5の底に衝突する。この破砕媒体6の螺旋上昇して落下する運動が所要回数繰り返されるように制御することにより試料Xは効果的に破砕処理される。   Since the change of the height position of each electromagnetic pole 11-17, the excitation state with respect to the attraction electromagnetic pole 9, and the excitation switching order of each electromagnetic pole 11-18 can be freely controlled, various crushing processes according to the type of the sample X can be performed. Is possible. For example, when crushing a bulky fibrous sample X like a leaf of a plant, as shown in FIG. The electromagnetic poles 11 to 18 are arranged in a spiral shape so that the electromagnetic pole 15 is in the lowest position and the electromagnetic pole 14 is in the highest position, and the electromagnetic pole 15 is controlled by the excitation control unit 42. Electromagnetic pole 16, electromagnetic pole 16 and electromagnetic pole 17, electromagnetic pole 17 and electromagnetic pole 18... Are excited in the order of pulses in the order of electromagnetic pole 13 and electromagnetic pole 14, and excitation of electromagnetic pole 13 and electromagnetic pole 14 located at the top is performed. When the attracting electromagnetic pole 9 is excited simultaneously with the stop, the crushing medium 6 ascends spirally along the inner peripheral wall of the tube 5 as shown in FIG. And hits the bottom of the tube 5. The sample X is effectively crushed by controlling the crushing medium 6 so that the spiral rising and falling motion is repeated a required number of times.

この破砕媒体6の運動は、位置制御部41により電磁極昇降駆動手段22を制御して電磁極11〜17の高さ位置を変更すると共に、励磁制御部42により各電磁極11〜18の励磁順序を切り換えることにより自在に変化させることができる。試料Xが軟質のものである場合ではチューブ5の底部付近で破砕媒体6を重点的に回転させることが好適であり、破砕媒体6の上昇して落下する動作頻度を多くすると、圧砕の作用が増加するので硬質の試料Xを破砕処理するのに好適となる。   The movement of the crushing medium 6 is controlled by the position controller 41 to control the electromagnetic pole lifting / lowering drive means 22 to change the height positions of the electromagnetic poles 11 to 17, and the excitation controller 42 excites the electromagnetic poles 11 to 18. It can be changed freely by switching the order. In the case where the sample X is soft, it is preferable to rotate the crushing medium 6 intensively in the vicinity of the bottom of the tube 5, and if the operation frequency of the crushing medium 6 rising and falling is increased, the crushing action is increased. Since it increases, it becomes suitable for crushing the hard sample X.

また、吸引電磁極9に対する励磁電流量を制御すると、破砕媒体6をチューブ5の底部に吸引する吸引力を調整することができる。破砕媒体6をチューブ5の底部側で回転させている間に吸引電磁極9を弱く励磁すると、破砕媒体6はチューブ5の底部に押し付けられた状態で回転し、チューブ5の底部にある試料Xを磨り潰す摩砕作用を増加させることができる。 Further, by controlling the amount of exciting current for the attracting electromagnetic pole 9, the attracting force that attracts the crushing medium 6 to the bottom of the tube 5 can be adjusted. If the attracting electromagnetic pole 9 is weakly excited while the crushing medium 6 is rotated on the bottom side of the tube 5, the crushing medium 6 rotates while being pressed against the bottom of the tube 5, and the sample X at the bottom of the tube 5 is rotated. The grinding action to grind can be increased.

上記励磁制御方法では、破砕媒体6の回転はチューブ5の内周壁に沿って移動する公転運動である。破砕媒体6を自転運動させることを加味することによって摩砕作用を大きくでき、破砕媒体6を自転運動させた方が好適な試料Xもある。破砕媒体6を自転運動させるには、破砕媒体6の形状又は構造と電磁極11〜18の励磁制御を変える必要がある。 In the excitation control method, the rotation of the crushing medium 6 is a revolving motion that moves along the inner peripheral wall of the tube 5. Considering that the crushing medium 6 is rotated, the grinding action can be increased, and there is also a sample X in which the crushing medium 6 is preferably rotated. In order to rotate the crushing medium 6, it is necessary to change the shape or structure of the crushing medium 6 and the excitation control of the electromagnetic poles 11 to 18.

電磁極11〜18の励磁制御を前述したように、隣り合う電磁極15,16、電磁極16,17、電磁極17,18…の順序で励磁する場合、図7に示すように、水平方向断面形状が半円形の強磁性体49をセラミック等の非磁性体48の中に封止し、強磁性体の位置に偏りがある構造の破砕媒体6とすることにより破砕媒体6に自転運動を与えることができる。しかし、試料Xの抵抗やチューブ5と接触する際の抵抗などによって円滑な自転運動が得難い場合もあり得る。そこで、自転運動を確実に得るための破砕媒体6の構造及び励磁制御の方法は次のようにするのが好適である。 As described above, when the excitation control of the electromagnetic poles 11 to 18 is performed in the order of the adjacent electromagnetic poles 15 and 16, the electromagnetic poles 16 and 17, the electromagnetic poles 17, 18,..., As shown in FIG. A ferromagnetic material 49 having a semicircular cross-sectional shape is sealed in a non-magnetic material 48 such as a ceramic, and the crushing medium 6 has a structure in which the position of the ferromagnetic material is biased. Can be given. However, it may be difficult to obtain a smooth rotation due to the resistance of the sample X or the resistance when contacting the tube 5. Therefore, it is preferable that the structure of the crushing medium 6 and the excitation control method for reliably obtaining the rotation motion are as follows.

図8に示すように、破砕媒体6の水平方向断面を円形でなく、直径方向の一方向を長手方向とする長方形状、即ち直径方向の両側が突出した形状に形成すると共に、電磁極11〜18の励磁は直径方向に対向する磁極36が互いに逆極となる励磁電流方向になるよう切り換え制御する。図8においてA,B,C,Dは各電磁極11〜18の磁極36の配設位置を示し、図8(a)に示すように、AがN極、CがS極となるように励磁すると、破砕媒体6は図示するように長手方向がA−C方向となる。次いで、BがN極、DがS極となるように励磁すると、破砕媒体6は90度回転して長手方向がB−D方向となる。A−C、B−Dの励磁を交互に行うことにより、破砕媒体6は励磁切り換え速度に応じた回転速度で自転運動する。 As shown in FIG. 8, the horizontal cross section of the crushing medium 6 is not circular, but is formed in a rectangular shape in which one direction in the diametric direction is a longitudinal direction, that is, in a shape in which both sides in the diametrical direction protrude. The excitation of 18 is controlled so that the magnetic poles 36 opposed in the diametric direction are in the exciting current directions opposite to each other. In FIG. 8, A, B, C, and D indicate the arrangement positions of the magnetic poles 36 of the respective electromagnetic poles 11 to 18, and as shown in FIG. 8A, A is an N pole and C is an S pole. When excited, the longitudinal direction of the crushing medium 6 is the AC direction as shown. Next, when excitation is performed so that B is an N pole and D is an S pole, the crushing medium 6 rotates 90 degrees and the longitudinal direction becomes the BD direction. By alternately performing excitation of AC and BD, the crushing medium 6 rotates at a rotation speed corresponding to the excitation switching speed.

しかし、図8(a)に示す破砕媒体6の形状では、チューブ5の内周壁に接触する面積が小さくなるので、摩砕作用の低下は避けられない。そこで、図8(b)に示すように、セラミック等の非磁性体48を円柱形に形成した中に断面が長方形状の強磁性体49を封止した構造に破砕媒体6を形成すると、自転運動の挙動は図8(a)に示す構造と同様でありながら、外形は円柱形なので摩砕作用の低下はない。また、自転運動を主に行う場合の破砕媒体6の直径は、チューブ5の内径より僅かに小さい寸法とすることが好ましく、チューブ5の内周壁と擦れ合うことによる摩砕作用を大きく得ることができる。   However, in the shape of the crushing medium 6 shown in FIG. 8A, the area in contact with the inner peripheral wall of the tube 5 is small, so a reduction in the grinding action is inevitable. Therefore, as shown in FIG. 8B, when the crushing medium 6 is formed in a structure in which a non-magnetic material 48 such as ceramic is formed in a cylindrical shape and a ferromagnetic material 49 having a rectangular cross section is sealed, Although the motion behavior is the same as the structure shown in FIG. 8A, the outer shape is a cylindrical shape, so that the grinding action is not reduced. Moreover, it is preferable that the diameter of the crushing medium 6 in the case of mainly performing the rotation motion is slightly smaller than the inner diameter of the tube 5, so that a large grinding action by rubbing against the inner peripheral wall of the tube 5 can be obtained. .

破砕媒体6の自転運動は、定まった回転軸がなく、試料Xやチューブ5内に収容した液体(緩衝液など)の抵抗があるため振れ運動しながら回転するので、チューブ5の内周壁と擦れ合う度合いは大きいが、対向磁極の磁界強度が拮抗しているときチューブ5の中心位置で内周壁に接触することなく回転する場合もあり得る。そこで、図8(c)に示すように、非磁性体48内に強磁性体49を偏心した状態に封止すると、磁気吸引力にアンバランスが生じるので、破砕媒体6が振れ運動しながら自転する状態を確実に得ることができる。   Since the rotation of the crushing medium 6 does not have a fixed rotation axis and there is resistance of the sample X and the liquid (buffer solution, etc.) contained in the tube 5, it rotates while swinging and rubs against the inner peripheral wall of the tube 5. Although the degree is large, when the magnetic field strengths of the opposing magnetic poles are antagonizing, there is a possibility that the tube 5 rotates without contacting the inner peripheral wall at the center position. Therefore, as shown in FIG. 8C, when the ferromagnetic body 49 is sealed in the non-magnetic body 48 in an eccentric state, an unbalance occurs in the magnetic attractive force, so that the crushing medium 6 rotates while swinging. The state to do can be obtained reliably.

上記のように強磁性体49を非磁性体48の中に封止した破砕媒体6の構造は、金属や鉄成分に触れることが好ましくない試料Xに好適なものとなる。非磁性体48はセラミックでなく、フッ素樹脂などの樹脂やガラスであってもよい。   The structure of the crushing medium 6 in which the ferromagnetic material 49 is sealed in the non-magnetic material 48 as described above is suitable for the sample X that is not preferable to be in contact with a metal or iron component. The nonmagnetic material 48 may not be a ceramic but may be a resin such as a fluororesin or glass.

自転運動する破砕媒体6の構造は、図9(a)に示すように、直径方向に着磁させた破砕媒体6とすることによっても前述と同様の励磁制御で破砕媒体6を自転運動させることができる。この破砕媒体6を着磁した構造の場合も、図9(b)に示すように表面を非磁性体48で被覆した構造、図9(c)に示すように、非磁性体48の中に偏心させた状態に封止する構造を適用することができる。このように破砕媒体6を着磁した場合、その保管状態において、破砕媒体6が互いに磁気吸着して取り扱いし難いことになる。この着磁した破砕媒体6の取り扱いを容易にする方策については後述する。   As shown in FIG. 9A, the structure of the crushing medium 6 that rotates is to rotate the crushing medium 6 with the same excitation control as described above by using the crushing medium 6 magnetized in the diameter direction. Can do. In the case of a structure in which the crushing medium 6 is magnetized, a structure in which the surface is covered with a nonmagnetic material 48 as shown in FIG. 9B, and a nonmagnetic material 48 as shown in FIG. A structure for sealing in an eccentric state can be applied. When the crushing medium 6 is thus magnetized, the crushing media 6 are magnetically attracted to each other and are difficult to handle in the storage state. A measure for facilitating the handling of the magnetized crushing medium 6 will be described later.

以上説明した磁気破砕装置1の構成は比較的小型のチューブ5に対応するものであるが、図10及び図11に示す第2の実施形態に係る構成のように電磁極11〜18の数を増加させることにより、より大型のチューブ5に対応させることが可能になると同時に、より多彩で円滑な破砕媒体6の運動を得ることが可能となる。この構成では、18個の電磁極11〜28を6個ずつ3段重ねに配設した例を示している。   The configuration of the magnetic crushing device 1 described above corresponds to a relatively small tube 5, but the number of electromagnetic poles 11 to 18 is set as in the configuration according to the second embodiment shown in FIGS. 10 and 11. By increasing the number, it becomes possible to cope with a larger tube 5 and at the same time, it is possible to obtain a more colorful and smooth movement of the crushing medium 6. In this configuration, an example is shown in which sixteen electromagnetic poles 11 to 28 are arranged in a three-tiered manner, six by six.

この第2の実施形態に係る構成では、電磁極11〜28の配設数が多いため、電磁極昇降駆動手段44を設けることなく、各電磁極11〜28の励磁を切り換えることにより破砕媒体6の昇降運動を容易に行わせることができる。また、容器収容筒10の一周面に配設された電磁極11〜28の数も多いので、破砕媒体6に多様な運動を加えることが可能となり、励磁制御もより多様に実施することができる。   In the configuration according to the second embodiment, since the number of the electromagnetic poles 11 to 28 is large, the crushing medium 6 is switched by switching the excitation of the electromagnetic poles 11 to 28 without providing the electromagnetic pole raising / lowering drive means 44. Can be easily moved up and down. In addition, since the number of electromagnetic poles 11 to 28 arranged on one circumferential surface of the container housing cylinder 10 is large, various movements can be applied to the crushing medium 6 and excitation control can be more variously performed. .

上記第2の実施形態の構成において破砕媒体6に自転運動を生じさせるための構成として、図12に示すように、破砕媒体6はその径方向断面形状が十字形になるように形成し、各電磁極11〜28の励磁が対極間でなされるように制御することにより、より強力な自転運動を期待することができる。また、このように周面を凹凸形状とすることにより、試料Xを剪断する作用が増し、植物、筋肉などの繊維質の試料Xを破砕処理するのに効果的である。   In the configuration of the second embodiment, as shown in FIG. 12, the crushing medium 6 is formed so that its radial cross-sectional shape is a cross shape as a configuration for causing the crushing medium 6 to rotate. By controlling so that the electromagnetic poles 11 to 28 are excited between the counter electrodes, a stronger rotation motion can be expected. Further, by making the peripheral surface uneven as described above, the action of shearing the sample X is increased, and it is effective for crushing the fiber sample X such as plants and muscles.

この破砕媒体6の断面形状は、チューブ5を囲む一周面に6個の電磁極11〜28が3段重ねに配設されていることに対応するもので、1段当たりの電磁極11〜28の数(ここでは6個)より少ない数の突出部を設けることにより、チューブ5を中心として対向する磁極36に対峙する突出部が一対だけになるようにする。ここでは磁極の数が6個であるのに対して、それより少ない4箇所の突出部を形成すると、図示するような十字形の断面となる。図12(a)において、磁極A,Dが互いに逆極となるように励磁すると、破砕媒体6は図示するような状態となり、次いで磁極C,Fを同様に励磁すると、破砕媒体6は30度回転する。次に磁極B,Eを励磁すると、破砕媒体6は更に30度回転する。この励磁順序がなされるように励磁制御を行うことにより、破砕媒体6を任意の速度で自転させることができる。また、図12(b)に示すように、断面十字形の強磁性体49をセラミック等の非磁性体48の中に偏心させて封止することにより、振れ運動しながら自転する効果を得て、摩砕作用の増加を図ることができる。   The cross-sectional shape of the crushing medium 6 corresponds to that six electromagnetic poles 11 to 28 are arranged in a three-tiered manner on a circumferential surface surrounding the tube 5, and the electromagnetic poles 11 to 28 per stage. By providing a smaller number of protrusions than the number (here, 6), only one pair of protrusions facing the magnetic pole 36 facing the tube 5 as a center is provided. Here, although the number of magnetic poles is six, if four projecting portions having a smaller number are formed, a cross-shaped cross section as shown in the figure is obtained. In FIG. 12A, when the magnetic poles A and D are excited so as to be opposite to each other, the crushing medium 6 is in the state shown in the figure, and then when the magnetic poles C and F are similarly excited, the crushing medium 6 is 30 degrees. Rotate. Next, when the magnetic poles B and E are excited, the crushing medium 6 is further rotated 30 degrees. By performing excitation control so that this excitation sequence is performed, the crushing medium 6 can be rotated at an arbitrary speed. Further, as shown in FIG. 12B, the effect of rotating while swinging is obtained by sealing the ferromagnet 49 having a cross-shaped cross section in a non-magnetic material 48 such as ceramic. The grinding action can be increased.

第1及び第2の実施形態に共通して、摩砕及び圧砕の作用を向上させる破砕媒体6の構成例について説明する。図13に示すように、チューブ5の内底部形状に対応する先端形状で非磁性体により形成した台座53の上に、強磁性体を円筒形に形成した回転昇降体54を配して破砕媒体6とする。台座53と回転昇降体54との対向面を粗面とすることにより、回転昇降体54を回転させたときの試料Xを磨り潰す摩砕作用を向上させると同時に、回転昇降体54の回転に追従する台座53の回転による摩砕作用が得られる。また、回転昇降体54を上昇位置から落下させたときに台座53上にある試料Xを圧砕する効果を増加させることができる。台座53に設けたガイド軸55は特に必要なものではないが、破砕媒体6が単一部材でないとチューブ5に投入する作業手間が増加するので、回転昇降体54が台座53上で自由に運動できるように、台座53と回転昇降体54とを一体化している。回転昇降体54の中心穴の内径はガイド軸55の直径より充分に大きく、回転昇降体54の運動の障害とならないようにすることが望ましい。   A configuration example of the crushing medium 6 that improves the action of grinding and crushing in common with the first and second embodiments will be described. As shown in FIG. 13, a crushing medium is provided by placing a rotary lifting body 54 in which a ferromagnetic body is formed in a cylindrical shape on a pedestal 53 formed of a nonmagnetic body in a tip shape corresponding to the inner bottom portion shape of the tube 5. 6. By making the facing surface of the pedestal 53 and the rotary lift 54 a rough surface, the grinding action of grinding the sample X when the rotary lift 54 is rotated is improved, and at the same time, the rotary lift 54 is rotated. The grinding action by rotation of the following pedestal 53 is obtained. Further, the effect of crushing the sample X on the pedestal 53 when the rotary elevating body 54 is dropped from the raised position can be increased. The guide shaft 55 provided on the pedestal 53 is not particularly necessary. However, if the crushing medium 6 is not a single member, the labor required to be put into the tube 5 is increased, so that the rotary lift 54 freely moves on the pedestal 53. The pedestal 53 and the rotary elevating body 54 are integrated so that they can be made. It is desirable that the inner diameter of the central hole of the rotary elevator 54 is sufficiently larger than the diameter of the guide shaft 55 so as not to obstruct the movement of the rotary elevator 54.

破砕媒体6の運動による試料Xの破砕処理においては摩擦熱の発生は避けられない。また、装置の発熱や磁界印加に伴う発熱による影響も少なからずある。試料Xの温度上昇は、蛋白質の失活など試料Xに変質を及ぼすので、試料Xの温度上昇を抑えて破砕処理することが要求される。ここでは、前述したように、容器収容筒10の冷媒流通部31に所要温度に冷却された冷媒を循環させることにより容器収容筒10を介してチューブ5を冷却し、試料Xの温度上昇を抑えるように構成している。   In the crushing process of the sample X by the movement of the crushing medium 6, the generation of frictional heat is inevitable. In addition, there are not a few influences caused by the heat generated by the apparatus and the heat generated by applying a magnetic field. Since the temperature rise of the sample X changes the sample X such as protein deactivation, it is required to suppress the temperature rise of the sample X and to perform the crushing treatment. Here, as described above, the refrigerant cooled to the required temperature is circulated through the refrigerant circulation portion 31 of the container housing cylinder 10 to cool the tube 5 via the container housing cylinder 10 and suppress the temperature rise of the sample X. It is configured as follows.

容器収容筒10はチューブ5の周壁に接触する内径に形成され、各電磁極11〜18の磁極36が進出駆動されてチューブ5に密着するので、容器収容筒10により冷却されているチューブ5に接している試料Xの熱は速やかに放散されて温度上昇が抑えられる。容器収容筒10の冷媒流通部31に設けられた冷媒供給口32及び冷媒排出口33は冷却装置と配管接続され、所要温度に冷却された冷媒が冷媒供給口32に供給され、冷却された冷媒は冷媒注入パイプ34から冷媒流通部31の底部に注入される。冷媒流通部31に形成された複数の冷媒流通空間は上下で連通しているので、冷媒注入パイプ34から注入された冷媒は各冷媒流通空間内を流通して容器収容筒10を冷却し、チューブ5と熱交換して温度上昇した冷媒は冷媒排出口33から外部の冷却装置に戻される。この冷媒の循環を継続すると共に冷媒温度を管理することによってチューブ5の温度、ひいては試料Xの温度を一定に維持することが可能となる。   The container housing cylinder 10 is formed to have an inner diameter that comes into contact with the peripheral wall of the tube 5, and the magnetic poles 36 of the electromagnetic poles 11 to 18 are driven forward to come into close contact with the tube 5, so that the tube 5 cooled by the container housing cylinder 10 The heat of the sample X in contact is quickly dissipated and the temperature rise is suppressed. The refrigerant supply port 32 and the refrigerant discharge port 33 provided in the refrigerant circulation part 31 of the container housing cylinder 10 are connected to a cooling device by piping, and the refrigerant cooled to a required temperature is supplied to the refrigerant supply port 32 and cooled. Is injected from the refrigerant injection pipe 34 to the bottom of the refrigerant circulation part 31. Since the plurality of refrigerant circulation spaces formed in the refrigerant circulation portion 31 communicate with each other in the upper and lower directions, the refrigerant injected from the refrigerant injection pipe 34 circulates in each refrigerant circulation space to cool the container housing cylinder 10, and the tube The refrigerant whose temperature has increased through heat exchange with the refrigerant 5 is returned from the refrigerant outlet 33 to the external cooling device. By continuing the circulation of the refrigerant and managing the refrigerant temperature, the temperature of the tube 5 and thus the temperature of the sample X can be kept constant.

冷媒流通部31に供給する冷媒は、必ずしも液体である必要はなく低温空気などの気体であってもよい。冷媒として低温空気を使用する場合、圧縮空気からマイナス温度の空気を生成する超低温空気発生器などを採用すると、冷却構造を簡易に構成することができる。冷媒として冷却空気を用いる場合には、冷媒流通部31は放熱フィンを形成した構造とし、容器収容筒10の下方から冷却空気を吹き付けることによって冷却することもできる。   The refrigerant supplied to the refrigerant circulation part 31 does not necessarily need to be a liquid, and may be a gas such as low-temperature air. When using low-temperature air as a refrigerant, a cooling structure can be easily configured by employing an ultra-low temperature air generator that generates negative temperature air from compressed air. When cooling air is used as the refrigerant, the refrigerant circulation portion 31 has a structure in which heat radiating fins are formed, and can be cooled by blowing cooling air from below the container housing cylinder 10.

容器収容筒10の冷却は、次のように簡易に実施することもできる。即ち、冷媒流通部31の冷媒流通空間内に蓄冷材を封入し、蓄冷材が凍結するように予め冷凍庫等に保管しておき、使用時に磁気破砕装置1に装着する。この冷却方法であれば、外部に冷却装置を設ける必要がなく、少ない数のチューブ5に対する破砕処理に簡易に対応させることができる。   The cooling of the container housing cylinder 10 can also be easily performed as follows. That is, the regenerator material is enclosed in the refrigerant distribution space of the refrigerant distribution unit 31 and stored in a freezer or the like in advance so that the regenerator material freezes, and is mounted on the magnetic crushing apparatus 1 at the time of use. With this cooling method, it is not necessary to provide a cooling device outside, and it is possible to easily cope with the crushing process for a small number of tubes 5.

以上説明した構成では複数サイズのチューブ5に対して多様な励磁制御が可能であるが、通常の分析や検査等の場においては、決まったサイズのチューブ5を使用して特定の試料Xに対して決まった破砕処理を行うことが多いので、そのような使途のための特定処理専用機として構成する場合には、電磁極11〜28や吸引電磁極9を昇降駆動するための駆動構造や制御構成は必要でなく、特定の試料Xを破砕処理するのに必要な数の電磁極11〜28を所要位置に配設するだけで済むので、制御構成も簡単になり、磁気破砕装置1を簡易に且つ安価に構成することができる。   In the configuration described above, various excitation controls can be performed on a plurality of sizes of tubes 5. However, in the case of normal analysis or inspection, a specific size X tube 5 is used for a specific sample X. Therefore, when it is configured as a special processing dedicated machine for such use, a drive structure and control for driving the electromagnetic poles 11 to 28 and the suction electromagnetic pole 9 up and down. No configuration is required, and only the necessary number of electromagnetic poles 11 to 28 for crushing a specific sample X need to be arranged at a required position, so that the control configuration is simplified and the magnetic crushing apparatus 1 is simplified. In addition, it can be configured at low cost.

チューブ5に投入する破砕媒体6は、滅菌消毒されて汚染されていない清浄な状態で保管し、投入時にも汚染されないようにすることが要求される。また、着磁した破砕媒体6の場合、多数個が同じ保管場所に入れられていると、互いに吸着して1個だけを取り出す作業が難しく、作業効率が低下する。   The crushing medium 6 put into the tube 5 is required to be stored in a clean state that is sterilized and not polluted so that it is not polluted at the time of loading. Further, in the case of the magnetized crushing medium 6, if many pieces are put in the same storage place, it is difficult to take out only one piece by attracting each other, and work efficiency is lowered.

そこで、図14に示すように、破砕媒体6の製造工程において、清浄化した複数個の破砕媒体6を清浄化した破砕媒体供給筒50中に軸方向に整列させて収容し、レバー52の操作によって破砕媒体収容筒50の一端をシャッタ51によってより、1個の破砕媒体6が落下するように構成することが好適となる。また、破砕媒体供給筒50に所定個数の破砕媒体6を収容した状態で滅菌消毒処理を行うことも、破砕媒体6を着磁させることも可能である。この構成により破砕媒体6が原因となるコンタミネーションの発生を防止することができると共に、破砕処理のための作業効率の向上を図ることができる。 Therefore, as shown in FIG. 14, in the manufacturing process of the crushing medium 6, the plurality of cleaned crushing media 6 are accommodated in the axial direction in the cleaned crushing medium supply cylinder 50, and the lever 52 is operated. Therefore, it is preferable that one end of the crushing medium accommodating cylinder 50 is configured so that one crushing medium 6 falls by the shutter 51. Further, it is possible to perform sterilization and disinfection with a predetermined number of the crushing media 6 stored in the crushing media supply cylinder 50 or to magnetize the crushing media 6. With this configuration, it is possible to prevent the occurrence of contamination caused by the crushing medium 6 and to improve the work efficiency for the crushing process.

以上説明した各実施形態の構成において、容器収容筒10の底部側に吸引電磁極9を配しているが、上昇位置にある破砕媒体6を底部に吸引する作用は、下方位置にある電磁極11〜28を励磁することによっても可能であり、強い吸引が必要でない場合は吸引電磁極9を廃止することもできる。また、各実施形態の構成において電磁極11〜28は、その磁極36を進退駆動させるように構成しているが、電磁極11〜28全体を進退駆動させるように構成することもできる。   In the configuration of each embodiment described above, the suction electromagnetic pole 9 is arranged on the bottom side of the container housing cylinder 10, but the action of sucking the crushing medium 6 in the raised position to the bottom is the electromagnetic pole in the lower position. It is also possible to excite 11 to 28, and when the strong attraction is not required, the attraction electromagnetic pole 9 can be eliminated. Moreover, in the structure of each embodiment, although the electromagnetic poles 11-28 are comprised so that the magnetic pole 36 may be advanced / retracted, it can also be comprised so that the electromagnetic poles 11-28 whole may be advanced / retreated.

また、各実施形態の構成において、電磁極11〜28及び吸引電磁極9は直流励磁が基本であるが、低い周波数で交流励磁することにより、回転磁界の発生による破砕媒体6の回転駆動や、吸引電磁極9を交流励磁することにより破砕媒体6を微振動させることも可能となる。   Further, in the configuration of each embodiment, the electromagnetic poles 11 to 28 and the attracting electromagnetic pole 9 are basically DC excitation, but by alternating current excitation at a low frequency, rotation driving of the crushing medium 6 due to generation of a rotating magnetic field, It is also possible to slightly vibrate the crushing medium 6 by exciting the attracting electromagnetic pole 9 with alternating current.

また、各実施形態の構成では、チューブ5を垂直方向に配置しているが、磁気駆動ではチューブ5の配置方向は自由であり、また、チューブ5の開口部をキャップ7で密閉できるので、チューブ5が斜め方向あるいは横方向になるように構成することもできる。 Moreover, in the structure of each embodiment, although the tube 5 is arrange | positioned at the perpendicular direction, since the arrangement direction of the tube 5 is free by magnetic drive and the opening part of the tube 5 can be sealed with the cap 7, tube It can also comprise so that 5 may become a diagonal direction or a horizontal direction.

以上の説明の通り本発明によれば、密閉容器中で試料を破砕処理することができ、容器は所定位置に保持されているので冷却することが容易であり、試料の温度上昇を抑えて破砕できるので時間を要する破砕処理であっても試料に変質を生じさせることがない。また、破砕対象とする試料の種類や状態、破砕処理程度に応じて破砕媒体のチューブ内での運動が最適になるような励磁制御と磁極配設位置とが設定でき、破砕媒体の形状、寸法、構造を最適なものに選択することにより取り扱いが容易な破砕装置に構成できる。また、クリーンベンチ等の中にも設置可能な小型装置として、DNA解析、BSE検査等を効率よく実施できる磁気破砕装置を提供することができる。   As described above, according to the present invention, the sample can be crushed in the sealed container, and since the container is held at a predetermined position, it is easy to cool, and the temperature rise of the sample is suppressed and crushed. Therefore, even if the crushing process requires time, the sample is not altered. In addition, excitation control and magnetic pole placement position that optimize the movement of the crushing medium in the tube according to the type and state of the sample to be crushed and the crushing process can be set, and the shape and dimensions of the crushing medium By selecting the optimum structure, it is possible to construct a crushing apparatus that is easy to handle. In addition, as a small apparatus that can be installed in a clean bench or the like, a magnetic crushing apparatus that can efficiently perform DNA analysis, BSE inspection, and the like can be provided.

第1の実施形態に係る磁気破砕装置の外観構成を示す斜視図。The perspective view which shows the external appearance structure of the magnetic crushing apparatus which concerns on 1st Embodiment. 同上装置の要部構成を水平方向断面として示す断面図。Sectional drawing which shows the principal part structure of an apparatus same as the above as a horizontal direction cross section. 同上装置の要部構成を垂直方向断面として示し、(a)は電磁極を下方寄りに配置した状態、(b)は電磁極を螺旋状に配置した例を示す断面図。The principal part structure of an apparatus same as the above is shown as a cross section in the vertical direction, (a) is a state in which electromagnetic poles are arranged closer to the lower side, and (b) is a sectional view showing an example in which electromagnetic poles are arranged in a spiral. 同上装置の制御構成を示すブロック図。The block diagram which shows the control structure of an apparatus same as the above. チューブの構成例を示す1/2断面図。The 1/2 sectional view showing the example of composition of a tube. 破砕媒体の運動例を示す斜視図。The perspective view which shows the example of a motion of a crushing medium. 破砕媒体の変形例を示す断面図。Sectional drawing which shows the modification of a crushing medium. 破砕媒体を自転運動させる各種形態を示す断面図。Sectional drawing which shows the various forms which make a crushing medium rotate. 破砕媒体を着磁構造とした各種形態を示す断面図。Sectional drawing which shows the various forms which made the crushing medium the magnetization structure. 第2の実施形態に係る磁気破砕装置の要部構成を水平方向断面として示す断面図。Sectional drawing which shows the principal part structure of the magnetic crushing apparatus which concerns on 2nd Embodiment as a horizontal direction cross section. 同上装置の要部構成を垂直方向断面として示す断面図。Sectional drawing which shows the principal part structure of an apparatus same as the above as a vertical direction cross section. 第2の実施形態の構成に対応する破砕媒体の構成を示す断面図。Sectional drawing which shows the structure of the crushing medium corresponding to the structure of 2nd Embodiment. 破砕媒体の変形例を示す斜視図。The perspective view which shows the modification of a crushing medium. 破砕媒体供給筒の構成を示す模式図。The schematic diagram which shows the structure of a crushing medium supply cylinder.

符号の説明Explanation of symbols

1 磁気破砕装置
5 チューブ(容器)
6 破砕媒体
9 吸引電磁極
10 容器収容筒
11〜28 電磁極
30 制御装置
31 冷媒流通部(冷却手段)
35 励磁コイル
36 磁極
41 位置制御部
42 励磁制御部
43 磁極進退駆動手段
44 電磁極昇降駆動手段
45 吸引磁極電磁極昇降駆動手段
48 非磁性体
49 強磁性体
50 破砕媒体供給筒
1 Magnetic crusher 5 Tube (container)
6 Crushing medium 9 Suction electromagnetic pole 10 Container accommodating cylinder 11-28 Electromagnetic pole 30 Control device 31 Refrigerant circulation part (cooling means)
35 Exciting coil 36 Magnetic pole 41 Position control unit 42 Excitation control unit 43 Magnetic pole advance / retreat driving means 44 Electromagnetic pole elevating / lowering driving means 45 Suction magnetic pole Electromagnetic pole elevating / lowering driving means 48 Non-magnetic material 49 Ferromagnetic material 50 Crushing medium supply cylinder

Claims (13)

強磁性体を主体として形成された破砕媒体と破砕対象とする試料とが投入された容器を収容する容器収容筒と、前記容器収容筒を囲む複数位置に配設された複数の電磁極と、各電磁極の磁極又は全体を容器収容筒に対して進退駆動する磁極進退駆動手段と、各電磁極の励磁を制御する励磁制御手段と、前記容器収容筒を冷却する冷却手段と、を備えてなることを特徴とする磁気破砕装置。   A container housing cylinder for housing a container into which a crushing medium formed mainly of a ferromagnetic material and a sample to be crushed are charged; a plurality of electromagnetic poles disposed at a plurality of positions surrounding the container housing cylinder; Magnetic pole advance / retreat drive means for driving the magnetic poles of the electromagnetic poles or the whole to move forward and backward with respect to the container housing cylinder, excitation control means for controlling excitation of each electromagnetic pole, and cooling means for cooling the container housing cylinder. The magnetic crushing apparatus characterized by becoming. 任意の電磁極を容器収容筒の軸方向に移動させる電磁極軸方向駆動手段が設けられてなる請求項1に記載の磁気破砕装置。   2. The magnetic crushing apparatus according to claim 1, further comprising electromagnetic pole axial drive means for moving an arbitrary electromagnetic pole in the axial direction of the container housing cylinder. 容器収容筒の底部に磁極先端が当接し、励磁制御手段によって励磁制御される吸引電磁極が配設されてなる請求項1又は2に記載の磁気破砕装置。   The magnetic crushing apparatus according to claim 1 or 2, wherein a magnetic pole tip is in contact with the bottom of the container housing cylinder, and an attraction electromagnetic pole that is excited and controlled by excitation control means is provided. 吸引電磁極は、容器収容筒方向に進退移動可能に配設されてなる請求項3に記載の磁気破砕装置。   The magnetic crushing device according to claim 3, wherein the attracting electromagnetic pole is disposed so as to be movable back and forth in the container housing cylinder direction. 容器収容筒は、有底円筒形に形成された容器の外面に接する内径、内形状に形成されてなる請求項1〜4いずれか一項に記載の磁気破砕装置。   5. The magnetic crushing apparatus according to claim 1, wherein the container housing cylinder is formed to have an inner diameter and an inner shape in contact with an outer surface of the container formed in a bottomed cylindrical shape. 容器収容筒は、着脱可能に設けられてなる請求項1〜5いずれか一項に記載の磁気破砕装置。   The magnetic crushing apparatus according to claim 1, wherein the container housing cylinder is detachably provided. 冷却手段は、容器収容筒に形成された冷媒流通部に所要温度に冷却された冷媒を循環させるように構成されてなる請求項1〜6いずれか一項に記載の磁気破砕装置。   The magnetic crushing device according to any one of claims 1 to 6, wherein the cooling means is configured to circulate the refrigerant cooled to a required temperature through a refrigerant circulation portion formed in the container housing cylinder. 冷却手段は、容器収容筒及びそれに形成された放熱フィンに冷風を送風するように構成されてなる請求項1〜6いずれか一項に記載の磁気破砕装置。   The magnetic crushing device according to any one of claims 1 to 6, wherein the cooling means is configured to blow cold air to the container housing cylinder and the heat radiation fin formed thereon. 冷却手段は、冷媒流通部に充填した蓄冷材を凍結させるように構成されてなる請求項1〜6いずれか一項に記載の磁気破砕装置。   The magnetic crushing apparatus according to any one of claims 1 to 6, wherein the cooling means is configured to freeze the regenerator material filled in the refrigerant circulation part. 破砕媒体は、強磁性体が着磁されてなる請求項1〜4いずれか一項に記載の磁気破砕装置。   The magnetic crushing apparatus according to any one of claims 1 to 4, wherein the crushing medium is formed by magnetizing a ferromagnetic material. 破砕媒体は、強磁性体の径方向断面が容器を囲む一周面に配設された電磁極の数より少ない数の突出部を設けた形状に形成されてなる請求項1,2,3,4,10いずれか一項に記載の磁気破砕装置。   The crushed medium is formed in a shape in which the radial cross section of the ferromagnetic material is provided with a number of protrusions smaller than the number of electromagnetic poles disposed on the circumferential surface surrounding the container. , 10 Magnetic shredding device. 破砕媒体は、強磁性体が非磁性体中の偏心位置に封止されてなる請求項1,2,3,4,10,11いずれか一項に記載の磁気破砕装置。   The magnetic crushing apparatus according to any one of claims 1, 2, 3, 4, 10, and 11, wherein the crushing medium is formed by sealing a ferromagnetic material at an eccentric position in a non-magnetic material. 破砕媒体は、清浄化されて軸方向に整列するように清浄化された円筒中に収容され、円筒の開放端から1個ずつ排出される破砕媒体供給筒に収容されてなる請求項1〜12いずれか一項に記載の磁気破砕装置。
The crushing medium is housed in a cylinder that has been cleaned and cleaned so as to be aligned in the axial direction, and is accommodated in a crushing medium supply cylinder that is discharged one by one from the open end of the cylinder. The magnetic crushing apparatus as described in any one.
JP2006326494A 2006-12-04 2006-12-04 Magnetic crushing machine Pending JP2008136954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326494A JP2008136954A (en) 2006-12-04 2006-12-04 Magnetic crushing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326494A JP2008136954A (en) 2006-12-04 2006-12-04 Magnetic crushing machine

Publications (1)

Publication Number Publication Date
JP2008136954A true JP2008136954A (en) 2008-06-19

Family

ID=39598971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326494A Pending JP2008136954A (en) 2006-12-04 2006-12-04 Magnetic crushing machine

Country Status (1)

Country Link
JP (1) JP2008136954A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046089A1 (en) * 2010-10-04 2012-04-12 Dna-Technology Jsc Magnetic tissue grinding
CN105642410A (en) * 2016-01-18 2016-06-08 武汉科技大学 Magnetic ball mill for magnetite
CN107096612A (en) * 2017-05-23 2017-08-29 上海化工研究院有限公司 A kind of magnetic force vibration and sway impact type ball mill device
CN112058410A (en) * 2020-08-07 2020-12-11 邱芳 Multi-station ball milling mechanism for recycling neodymium iron boron waste and implementation method thereof
CN112076874A (en) * 2020-08-31 2020-12-15 徐长金 Traditional chinese medicine heating agitating unit based on speech control
CN113680464A (en) * 2021-08-03 2021-11-23 嘉兴学院 Broken ball-milling all-in-one of ceramic decorative board raw materials processing usefulness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046089A1 (en) * 2010-10-04 2012-04-12 Dna-Technology Jsc Magnetic tissue grinding
WO2012046131A1 (en) * 2010-10-04 2012-04-12 Dna-Technology Jsc Magnetic tissue homogenizing
CN105642410A (en) * 2016-01-18 2016-06-08 武汉科技大学 Magnetic ball mill for magnetite
CN107096612A (en) * 2017-05-23 2017-08-29 上海化工研究院有限公司 A kind of magnetic force vibration and sway impact type ball mill device
CN112058410A (en) * 2020-08-07 2020-12-11 邱芳 Multi-station ball milling mechanism for recycling neodymium iron boron waste and implementation method thereof
CN112058410B (en) * 2020-08-07 2021-12-03 包头市英思特稀磁新材料股份有限公司 Multi-station ball milling mechanism for recycling neodymium iron boron waste and implementation method thereof
CN112076874A (en) * 2020-08-31 2020-12-15 徐长金 Traditional chinese medicine heating agitating unit based on speech control
CN113680464A (en) * 2021-08-03 2021-11-23 嘉兴学院 Broken ball-milling all-in-one of ceramic decorative board raw materials processing usefulness

Similar Documents

Publication Publication Date Title
JP4903419B2 (en) Crushing method, crushing apparatus and crushing processing apparatus using the same
JP2008136954A (en) Magnetic crushing machine
JP2007237008A (en) Crushing method and crusher
JP2007203244A (en) Crushing and agitating method
CN112041069B (en) Magnetically-based actuation mechanism and method for actuating magnetically-reactive microcolumns in a reaction chamber
US10030895B2 (en) Magnetic regenerator unit and magnetic cooling system with the same
US7552592B2 (en) Magnetic refrigerator
US4134557A (en) Device for propelling grinding bodies in a grinding mill
CN114938126A (en) Magnetic coupling assembly and magnetic coupling stirring device
JP2008023504A (en) Magnetic crushing method, magnetic crushing device, and crushing medium used for it
KR20120085807A (en) Heating, shaking, and magnetizing apparatus and method of operating the same
JP2004283728A (en) Magnetic separator for magnetic particulate
JP2009513318A (en) Apparatus and method for separating magnetic or magnetizable particles from a liquid
JP2007229701A (en) Crushing method and crushing apparatus
CN101994093A (en) Magnetron sputtering device
US11474006B2 (en) Methods for grinding of samples using a combination of rotational and linear motion
WO2019078673A1 (en) Magnetic labeling device using magnetic nanoparticles
KR101335339B1 (en) Apparatus for pulverization with reciprocating mill
JP2000005525A (en) Superconducting magnetic separator
JP2020038026A (en) Magnetic refrigeration device
EP4306874A1 (en) Magnetic refrigeration device and refrigeration device
EP4306876A1 (en) Magnetic refrigeration device and refrigeration device
JP2019188289A (en) Crusher and container
JP2024048521A (en) Refrigeration equipment and refrigerator
EP4306875A1 (en) Magnetic refrigeration device and regrigeration device