JP2008022702A - Htlv−i特異的t細胞応答検定方法 - Google Patents

Htlv−i特異的t細胞応答検定方法 Download PDF

Info

Publication number
JP2008022702A
JP2008022702A JP2004317378A JP2004317378A JP2008022702A JP 2008022702 A JP2008022702 A JP 2008022702A JP 2004317378 A JP2004317378 A JP 2004317378A JP 2004317378 A JP2004317378 A JP 2004317378A JP 2008022702 A JP2008022702 A JP 2008022702A
Authority
JP
Japan
Prior art keywords
tax
htlv
specific
protein
cell response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317378A
Other languages
English (en)
Inventor
Mari Kanaki
真理 神奈木
Kiyoshi Kurihara
清 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Medical and Dental University NUC
Original Assignee
Tokyo Medical and Dental University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Medical and Dental University NUC filed Critical Tokyo Medical and Dental University NUC
Priority to JP2004317378A priority Critical patent/JP2008022702A/ja
Priority to PCT/JP2005/019887 priority patent/WO2006046693A1/ja
Publication of JP2008022702A publication Critical patent/JP2008022702A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56988HIV or HTLV

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】ヒトでのHTLV−I特異的T細胞応答を追跡したり、種々の病態を示す患者のT細胞応答を調べるための、検査室レベルで簡便に測定できるHTLV−I特異的T細胞応答検定方法やそのための試薬を提供すること。
【解決手段】グルタチオン−S−トランスフェラーゼ(GST)−Tax融合タンパク質を用いる簡便なHTLV−I特異的T細胞応答の検出系を試作した。Taxはそれ自身が細胞増殖やアポトーシス抑制活性を持つためTaxタンパク質を3分割するようデザインした。HTLV−I感染者の末梢血単核球にGST−Tax融合タンパク質を添加して培養し、培養上清中のIFNγを測定することにより、HTLV−I特異的細胞性免疫応答を主要エピトープの部位に応じて感度良く測定する。
【選択図】図1

Description

本発明は、HTLV−I特異的細胞性免疫応答を主要エピトープの部位に応じて感度良く測定できるHTLV−I特異的T細胞応答検定方法や、該検定方法に用いられるヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬に関する。
ヒトT細胞白血病ウイルスI型(HTLV−I)は終生持続感染し、感染者の大部分は無症候キャリアであるが、一部は成人T細胞白血病(ATL)を発症する(例えば、非特許文献1,2参照)。感染者の別の一部はHTLV−I随伴脊髄症/熱帯性痙性対麻痺(HAM/TSP)その他の炎症性疾患を発症する。ATLは、HTLV−I感染T細胞クローンの悪性増殖による腫瘍性疾患である。HTLV−Iのコードする調節タンパク質Taxは、細胞増殖やアポトーシス抑制に関与する種々の細胞因子を活性化させることが知られており、感染細胞の維持と腫瘍化に貢献すると考えられている(例えば、非特許文献3参照)。
一方、HAM−TSP患者や無症候HTLV−Iキャリア末梢血リンパ球から、試験管内でHTLV−I特異的細胞傷害性T細胞(CTL)が誘導できることが知られている。このCTLの主要標的抗原はHTLV−I Taxである(例えば、非特許文献4,5参照)。ATL患者からCTLが誘導されることは稀であるが、造血幹細胞移植後のATL患者ではTax特異的CTL応答が著しく活性化する例が報告されている(例えば、非特許文献6参照)。また、ラットのHTLV−I感染腫瘍モデルでは、Taxを抗原とするワクチンは抗腫瘍免疫を誘導できることも知られている(例えば、非特許文献7,8参照)。これらのことから、HTLV−I感染において、Tax特異的CTLは抗腫瘍免疫監視機構として働いていると考えられる。
Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 1980;77(12):7415-9. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, et al. Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A 1981;78(10):6476-80. Yoshida M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol2001;19:475-96. Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature1990;348(6298):245-8. Kannagi M, Harada S, Maruyama I, Inoko H, Igarashi H, Kuwashima G, et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int Immunol1991;3(8):761-7. Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Hanabuchi S, Masuda M, et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res 2004;64(1):391-9. Ohashi T, Hanabuchi S, Kato H, Tateno H, Takemura F, Tsukahara T, et al. Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine. J Virol 2000;74(20):9610-6. Hanabuchi S, Ohashi T, Koya Y, Kato H, Hasegawa A, Takemura F, et al. Regression of human T-cell leukemia virus type I (HTLV-I)-associated lymphomas in a rat model: peptide-induced T-cell immunity. J Natl Cancer Inst 2001;93(23):1775-83.
何故、ATL患者でCTL誘導率が低いのか、ずっと低いままなのか、発症後に低下したのか、詳細はわかっていない。これを明らかにすることは、ATLの発症予防や治療に免疫学的なアプローチを行うために不可欠である。本発明の課題は、ヒトでのHTLV−I特異的T細胞応答を追跡したり、種々の病態を示す患者のT細胞応答を調べるための、検査室レベルで簡便に測定できるHTLV−I特異的T細胞応答検定方法やそのための試薬を提供することにある。
T細胞応答はその機能が組織適合性抗原(MHC−I,II)に拘束されるため、抗原抗体反応のような液相の反応系では検出できない。これまで、HTLV−I特異的T細胞応答を調べるために用いられてきた方法のうち、最も確実なのは、自己のHTLV−I感染細胞株を樹立して抗原として用いる方法である。しかし、細胞株の樹立は難しく成功率が低いうえ樹立できたとしても時間がかかりすぎる。2番目に挙げられるものは、オリゴペプチドを抗原とする方法である。オリゴペプチドはMHC−I、IIに提示されるエピトープ部位が分かっている場合には良い抗原となり得る。しかし、遺伝的に雑多な集団であるヒトでは提示部位の予測が難しいため、結局、標的タンパク質の全領域を網羅するためには何十から何百もの重複する連続オリゴペプチドライブラリーを作製しなければならない。3番目にはMHC/ペプチド複合体のテトラマーが挙げられる。テトラマーは、血液中のCTLを特異的に定量的に測ることができる。しかし、既知のCTLエピトープの数が限られているため、HTLV−I特異的T細胞応答の全体に対して検出できる部分は非常に少ない。
HTLV−I特異的細胞性免疫の低下は、HTLV−IキャリアのATL発症リスクの指標の一つである。しかしT細胞応答はMHC拘束を受けるため、検定方法は非常に煩雑である。そこで、本発明者らは、上記課題を解決するため鋭意研究し、グルタチオン−S−トランスフェラーゼ(GST)−Tax融合タンパク質を用いる簡便なHTLV−I特異的T細胞応答の検出系を試作した。Taxはそれ自身が細胞増殖やアポトーシス抑制活性を持つためTaxタンパク質を3分割するようデザインした。このことは融合タンパク質の収量を向上させ、また、Taxのどの部分にT細胞が強く反応するかを区別するのにも役立つ。そして、HTLV−I感染者の末梢血単核球にGST−Tax融合タンパク質を添加して培養することにより、HTLV−I特異的細胞性免疫応答を主要エピトープの部位に応じて感度良く測定できることを見い出した。また、このGST−Tax融合タンパク質など、2〜10個に分割されたTaxタンパク質を用いたアッセイ系が、免疫ラットやヒトHTLV−I感染者のTax特異的T細胞応答を検出するに有効であることを見い出し、本発明を完成するに至った。
すなわち本発明は、(1)HTLV−I感染者の末梢血単核球に、2〜10個に分割されたTaxタンパク質を添加して培養し、ヒトHTLV−I感染者のTax特異的T細胞応答を検出することを特徴とするHTLV−I特異的T細胞応答検定方法や、(2)2〜10個に分割されたTaxタンパク質が、Taxタンパク質のN末端側と中央部とC末端側の3分割されたTaxタンパク質であることを特徴とする前記(1)記載のHTLV−I特異的T細胞応答検定方法や、(3)Taxタンパク質として、融合タンパク質を用いることを特徴とする前記(1)又は(2)記載のHTLV−I特異的T細胞応答検定方法や、(4)融合タンパク質として、タグタンパク質との融合タンパク質を用いることを特徴とする前記(3)記載のHTLV−I特異的T細胞応答検定方法や、(5)タグタンパク質として、グルタチオン−S−トランスフェラーゼ(GST)を用いることを特徴とする前記(4)記載のHTLV−I特異的T細胞応答検定方法や、(6)ヒトHTLV−I感染者のTax特異的T細胞応答を、培養上清中に産生されたIFNγ量を測定することにより検出することを特徴とする前記(1)〜(5)のいずれか記載のHTLV−I特異的T細胞応答検定方法に関する。
また本発明は、(7)2〜10個に分割されたTaxタンパク質を備えたことを特徴とするヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(8)2〜10個に分割されたTaxタンパク質が、Taxタンパク質のN末端側と中央部とC末端側の3分割されたTaxタンパク質であることを特徴とする前記(7)記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(9)Taxタンパク質が、融合タンパク質であることを特徴とする前記(7)又は(8)記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(10)融合タンパク質が、タグタンパク質との融合タンパク質であることを特徴とする前記(9)記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(11)タグタンパク質が、グルタチオン−S−トランスフェラーゼ(GST)であることを特徴とする前記(10)記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(12)さらに、末梢血単核球培養用の培地を含むことを特徴とする前記(7)〜(11)のいずれか記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬や、(13)さらに、IFNγ測定用のELISAキットを含むことを特徴とする前記(7)〜(12)のいずれか記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬に関する。
本発明によると、ヒトでのHTLV−I特異的T細胞応答を追跡したり、種々の病態を示す患者のT細胞応答を調べるに際し、検査室レベルで簡便に、HTLV−I特異的細胞性免疫応答を主要エピトープの部位に応じて感度良く測定できる。また、主要エピトープ部位が含まれる領域を決定することにより、HTLV−I特異的CTL誘導活性ペプチドの検索を容易にすることができ、個々のHTLV−I感染者に特異的な免疫応答誘導用ワクチンの開発が可能となる。
本発明のHTLV−I特異的T細胞応答検定方法としては、2〜10個に分割されたTaxタンパク質を添加して培養し、ヒトHTLV−I感染者のTax特異的T細胞応答を検出する方法であれば特に制限されず、また、本発明のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬としては、2〜10個に分割されたTaxタンパク質を備えた試薬であれば特に制限されるものではなく、上記2〜10個に分割されたTaxタンパク質としては、例えば3個など、2〜5個に分割されたTaxタンパク質が好ましい。10個を越えて分割されたTaxタンパク質を用いる場合、主要エピトープ部位が分割される可能性があり好ましくなく、他方、未分割の完全長のTaxタンパク質を用いる場合、T細胞等の免疫細胞が非特異的に活性化され、Tax特異的T細胞応答の精確な検出が妨げられることから好ましくない。また、上記2〜10個に分割されたTaxタンパク質としては、分割された各々のTaxタンパク質(断片)をつなぎあわせた場合、Taxタンパク質のN末端からC末端までの全領域をカバーするものが好ましく、一部重複部分を有するものであってもよい。また、その大きさ(アミノ酸残基数)がほぼ等しいものから構成することが好ましい。なかでも、Taxタンパク質のN末端からC末端までの全領域をカバーする、GST−Tax(N末端側)融合タンパク質とGST−Tax(中央部)融合タンパク質とGST−Tax(C末端側)融合タンパク質とからなるGST−Tax融合タンパク質を好適に例示することができる。
上記2〜10個に分割されたTaxタンパク質は、融合タンパク質(融合ペプチドも含む)としても用いることができる。2〜10個に分割されたTaxタンパク質と融合しうるタンパク質としては、T細胞等の免疫細胞が刺激を受けないタンパク質が好ましく、GST、マルトース結合タンパク質、ビオチン化ペプチド、オリゴヒスチジン等の親和性タグやHA、FLAG、Myc等のエピトープタグなどのタグタンパク質(タグペプチドも含む)や、抗体のFc領域や、アルカリフォスファターゼ等のマーカータンパク質を挙げることができる。そして、本発明の検定方法や検出試薬を用いる場合においては、2〜10個に分割されたTaxタンパク質や融合タンパク質を個別にすべて使用することやこれらの混合物を使用することもできるが、これらの混合物をまず使用し、次いで個別に順次使用して主要エピトープ部位が含まれる領域を決定することもできる。
上記2〜10個に分割されたTaxタンパク質は、バキュロウイルスベクターなどを用いて発現精製したTaxタンパク質をプロテアーゼで分解することによりうることができるが、例えばTaxcDNA(アクセッションナンバーJ02029)に分割数に等しいプライマーセットを用いて所望数の分割Taxタンパク質をコードするDNAを作製し、発現ベクターにインフレームで組み込み大腸菌等の宿主細胞に導入し、かかる宿主細胞を培養することにより調製することができる。また、2〜10個に分割されたTaxタンパク質を融合タンパク質として用いる場合は、TaxcDNA(アクセッションナンバーJ02029)に分割数に等しいプライマーセットを用いて所望数の分割Taxタンパク質をコードするDNAを作製し、これらのDNAをGST遺伝子等のタグタンパク質などの3’側にそれぞれインフレームで連結することにより発現ベクターを構築し、大腸菌等の宿主細胞に導入し、かかる宿主細胞を培養することにより調製することができる。かかるGST−Tax融合タンパク質を細胞培養物から回収し精製するには、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、HPLCを含めた公知の方法を適宜組み合わせて用いることができる。
上記HTLV−I感染者の末梢血単核球は、例えばヘパリン添加静脈血を、Ficoll-PaqueTMPLUS (アマシャムバイオサイエンス社)を用いた密度勾配遠心分離により単離するなど、常法により調製することができる。かかる末梢血単核球、好ましくは未培養の末梢血単核球にGST−Tax融合タンパク質を添加して培養する際の培地としては、末梢血単核球の培養に用いることができる培地であれば特に制限されず、例えば10%牛胎児血清添加RPMI1640培地を好適に例示することができる。また、培養温度は37℃が好ましい。
上記のヒトHTLV−I感染者のTax特異的T細胞応答を検出する方法としては、GST−Tax融合タンパク質により誘導されるHTLV−I特異的T細胞活性を検出する方法であれば特に制限されず、例えば培養上清中のγインターフェロン(IFNγ)、TNFα、IL−2などの産生量をELISA法により測定する方法や、反応した免疫T細胞の細胞数をELISPOT法やフローサイトメーターにより測定する方法を具体的に例示することができる。
本発明のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬は、上記本発明のHTLV−I特異的T細胞応答検定方法に好適に用いることができ、GST−Tax融合タンパク質の他、末梢血単核球培養用の培地や、IFNγ、TNFα、IL−2測定用のELISAキットを備えたものを好適に例示することができる。
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
(GST−Tax融合タンパク質の作製)
HTLV−I Tax−GST融合タンパク質を作製するため、図1に示すように、Tax cDNAを含むpβMT−2Tax(Matsumoto K, Akashi K, Shibata H, Yutsudo M, Hakura A. Single amino acid substitution (58Pro-->Ser) in HTLV-I tax results in loss of ras cooperative focus formation in rat embryo fibroblasts. Virology 1994;200(2):813-5)から3種類のプライマーセット(矢印)を用いて3種類のDNA断片(白四角)を得た。それぞれをTax−A(N末側)、Tax−B(中央部)、Tax−C(C末側)と名付け、BamH1とEcoR1リンカーを介してGST発現ベクターpGEX−2T(アマシャムバイオサイエンス株式会社)中に挿入した。これを大腸菌DH5に導入し、封入体中のGST−Tax融合タンパク質を抽出しGS4Bカラム吸着分画をHPLCで精製した。プライマーとしては、Bam-TS: 5’-TTGGATCCATGGCCCACTTCCCAGGGTT-3’(配列番号1)、 Eco-TAR: 5’-TTGAATTCCGTGCTGCCCAAGGGTGGGTT-3’ (配列番号2)、 Bam-TBS: 5’-TTGGATCCTCCCCCTTCCGAAATGGATA-3’ (配列番号3)、 Eco-TBR: 5’-TTGAATTCCGAACGGAAGGAGGCCGTTTT-3’ (配列番号4)、 Bam-TCS: 5’-TTGGATCCCCCGTCACGCTAACAGCCTG-3’ (配列番号5)、 Eco-TR: 5’-TTGAATTCCTCAGACTTCTGTTTCTCGGA-3’ (配列番号6)を用いた。
(免疫細胞の調整)
ラットの免疫細胞として、pβMT−2Taxプラスミドを遺伝子銃で2回免疫したラットの脾細胞を未培養で用いた。対照としてTaxを含まないベクタープラスミドを免疫したラットの脾細胞を用いた。ヒト由来の免疫細胞として、造血幹細胞移植後のATL患者末梢血単核球分画を未培養で用いた。対照として非感染者の末梢血単核球分画を未培養で用いた。用いたpβMT−2Tax免疫ラットT細胞と移植後ATL患者T細胞は、いずれも、自家HTLV−I感染細胞と混合培養すればHTLV−I Tax特異的T細胞が誘導されることが確認されている。
(IFNγおよび細胞増殖アッセイ)
10%牛胎児血清添加RPMI1640培地にT細胞を浮遊させ、96ウエルプレートに分注し(2×10/well)、種々の濃度のGST−Tax融合タンパク質あるいは合成ペプチドカクテルを添加したのち37℃で培養した。4日目および7日目の上清中IFNγ量はELISAで測定した。
(ペプチドカクテルの調製)
Taxのアミノ酸配列に従い、アミノ酸5個ずつの重複を持たせ、合計35個の連続オリゴペプチド(各15mer)を合成した。N末端から12個のオリゴペプチドを混合したものをTaxp1−12カクテル、13−22個目までのオリゴペプチドを混合したものをTax p13−22カクテル、22個目からC末端までのオリゴペプチドを混合したものをTaxp23−35カクテルとした。Tax p1−12、p13−22、p23−35がカバーする領域は、GST−Tax−A、−B、−Cにそれぞれ相当する。
(免疫ラット脾T細胞のGST−Tax反応特異性)
pβMT−2Tax免疫ラット脾細胞に、GST−Tax−A、−B、−Cの各単独を0.078、 0.3125、 1.25μg/wellの3段階の濃度で、3種の混合物を0.234、0.938、3.75μg/wellの3段階の濃度で添加し、培養4日目の上清中に産生されたIFNγ量を測定した。結果を図2に示す。その結果、GST−Tax−A、−B、−Cの混合物を添加した場合に最も高いIFNγ産生を示した。それぞれを単独で添加した場合は、GST−Tax−A、−B、−CのうちGST−Tax−Bに対して最も高い反応を示した。しかし、GSTタンパク質のみを加えてもほとんど反応しなかった。また、GST−Taxに対するT細胞のIFNγ産生は量依存性であった。
(GST−Taxとペプチドカクテルの比較)
pβbMT−2Tax免疫ラット脾細胞に、GST−Taxと同濃度(最終濃度0.075〜1.3μg/well)のペプチドカクテルを添加し、培養4日目の上清中に産生されたIFNγ量を測定したところ、ほとんど反応が認められなかった。そこで、ペプチドカクテルの濃度を上げ、1.625、6.25、26μg/wellの3段階の濃度のペプチドカクテルを用いた。結果を図3に示す。その結果、1.625〜26μg/wellの3段階の濃度のペプチドカクテル添加した場合に、有意なレベルのIFNγ産生が認められた。ところが、GST−Taxの場合には、GST−Tax−Bが最も反応性が高かったのに対して、これに相当するペプチドカクテルp13−22にはほとんど反応しなかった。以上のように、GST−Taxを用いた場合のT細胞反応性はペプチドカクテルを用いた場合より感度が良く、反応部位には解離が認められた。
(ヒトHTLV−I感染者末梢血からのTax特異的T細胞応答の検出)
造血幹細胞移植後緩解に至ったATL患者の末梢血単核球分画(2×10/well)にGST−Tax−A、−B、−Cの各単独を1.25μg/wellの濃度で、3種の混合物を3.75μg/wellの濃度で添加し、培養4日目及び7日目の上清中に産生されたIFNγ量をELISA法により定量した。結果を図4に示す。非感染者の末梢血単核球分画はほとんど反応しないのに対し、HTLV−I感染者(造血幹細胞移植後のATL患者)ではGST−Taxに対し高いレベルのIFNγ産生が認められた。ラットの場合と同様にGST−Tax−A、−B、−Cの混合物を添加した時に高い反応性が認められたが、単独で添加した場合はGST−Tax−Aが最も反応性が高かった。GSTのみでは反応せず、Tax特異性が確認された。
(まとめ)
以上のことから、GST−Tax融合タンパク質を用いてTax特異的T細胞応答を検出できることが分かった。HTLV−I感染自家細胞株はMHC−I、−IIとも豊富でTax以外にも多くのHTLV−I抗原を発現している。GST−Taxを用いたアッセイで検出できるのはその一部であると考えられる。しかし、今回の実験データから、GST−Tax融合タンパク質は末梢血単核球分画中の抗原提示細胞にプロセスおよび提示され、感染個体のHTLV−I特異的T細胞に認識され得ることがわかった。
これまで、HTLV−I感染自家細胞株を樹立することが難しいために、ATL発症リスクの一つである感染者のHTLV−I特異的T細胞応答を測定することは、容易ではなかった。しかし、本発明方法では、細胞株の樹立は不要であり、MHC(ヒトではHLA型)を調べる必要もなく、末梢血単核球分画に直接GST−Taxを添加して培養するだけでT細胞応答を調べることができる。
ペプチドカクテルを用いたアッセイも類似のT細胞応答を検出できる。しかし、免疫ラットT細胞が融合タンパク質GST−Tax−Bに強く反応したのに対し、相当する領域のペプチドカクテルp13−22には反応が乏しかった。これは、今回用いた5個のアミノ酸の重複をもつ連続ペプチドでは、実際に細胞内でプロセスされるペプチドを完全に網羅できない可能性を示唆している。また、反応に要求されるタンパク質量はペプチドカクテルの方が高かった。
Taxの全体を3つの領域に分割した理由は、Tax自体の生理活性の影響をさけること、GST−Tax融合タンパク質の収量を向上させることに加え、T細胞の主要エピトープの存在領域を知るためである。免疫ラットのT細胞は、GST−Tax−Bと特に強く反応したが, このラットの系統ではCD8陽性細胞傷害性T細胞(CTL)のメジャーエピトープはTax180−188であることが分かっている。これは、GST−Tax−Bの領域に含まれている。また、実験で用いたヒト感染者サンプルはGST−Tax−Aに強く反応したが、このサンプルは以前の解析でTax11−19エピトープを認識するCD8陽性CTLを多く含むことが分かっている。この領域はGST−Tax−Aに含まれている。
GST−Taxのようなタンパク質抗原を用いた方法ではMHC−IよりMHC−IIに強く抗原提示されると考えられており、いわゆる “cross presentation”により一部の抗原はMHC-Iに提示されると考えられている。また、ヘルパーエピトープとキラーエピトープが近傍に存在することも報告されている。従って、今回の結果は、GST−Tax−A、−B、−Cに対する反応性が、T細胞エピトープの位置予測にも役立つことを示している。
GST−Tax融合タンパク質作製に用いたTax遺伝子断片とプライマーの位置を示す図である。 GST−Taxに対する免疫ラットのT細胞応答の結果を示す図である。 ペプチドカクテルに対する免疫ラットのT細胞応答の結果を示す図である。 ヒトHTLV−I感染者のT細胞応答の検出結果を示す図である。

Claims (13)

  1. HTLV−I感染者の末梢血単核球に、2〜10個に分割されたTaxタンパク質を添加して培養し、ヒトHTLV−I感染者のTax特異的T細胞応答を検出することを特徴とするHTLV−I特異的T細胞応答検定方法。
  2. 2〜10個に分割されたTaxタンパク質が、Taxタンパク質のN末端側と中央部とC末端側の3分割されたTaxタンパク質であることを特徴とする請求項1記載のHTLV−I特異的T細胞応答検定方法。
  3. Taxタンパク質として、融合タンパク質を用いることを特徴とする請求項1又は2記載のHTLV−I特異的T細胞応答検定方法。
  4. 融合タンパク質として、タグタンパク質との融合タンパク質を用いることを特徴とする請求項3記載のHTLV−I特異的T細胞応答検定方法。
  5. タグタンパク質として、グルタチオン−S−トランスフェラーゼ(GST)を用いることを特徴とする請求項4記載のHTLV−I特異的T細胞応答検定方法。
  6. ヒトHTLV−I感染者のTax特異的T細胞応答を、培養上清中に産生されたIFNγ量を測定することにより検出することを特徴とする請求項1〜5のいずれか記載のHTLV−I特異的T細胞応答検定方法。
  7. 2〜10個に分割されたTaxタンパク質を備えたことを特徴とするヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  8. 2〜10個に分割されたTaxタンパク質が、Taxタンパク質のN末端側と中央部とC末端側の3分割されたTaxタンパク質であることを特徴とする請求項7記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  9. Taxタンパク質が、融合タンパク質であることを特徴とする請求項7又は8記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  10. 融合タンパク質が、タグタンパク質との融合タンパク質であることを特徴とする請求項9記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  11. タグタンパク質が、グルタチオン−S−トランスフェラーゼ(GST)であることを特徴とする請求項10記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  12. さらに、末梢血単核球培養用の培地を含むことを特徴とする請求項7〜11のいずれか記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
  13. さらに、IFNγ測定用のELISAキットを含むことを特徴とする請求項7〜12のいずれか記載のヒトHTLV−I感染者のTax特異的T細胞応答の検出試薬。
JP2004317378A 2004-10-29 2004-10-29 Htlv−i特異的t細胞応答検定方法 Pending JP2008022702A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004317378A JP2008022702A (ja) 2004-10-29 2004-10-29 Htlv−i特異的t細胞応答検定方法
PCT/JP2005/019887 WO2006046693A1 (ja) 2004-10-29 2005-10-28 Htlv-i特異的t細胞応答検定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317378A JP2008022702A (ja) 2004-10-29 2004-10-29 Htlv−i特異的t細胞応答検定方法

Publications (1)

Publication Number Publication Date
JP2008022702A true JP2008022702A (ja) 2008-02-07

Family

ID=36227932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317378A Pending JP2008022702A (ja) 2004-10-29 2004-10-29 Htlv−i特異的t細胞応答検定方法

Country Status (2)

Country Link
JP (1) JP2008022702A (ja)
WO (1) WO2006046693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167094A1 (ja) 2020-02-20 2021-08-26 陽子 末廣 末梢血原料の採取/凍結融解工程における単球純化法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152488A (zh) * 2017-12-22 2018-06-12 太原瑞盛生物科技有限公司 一种人类t淋巴细胞白血病病毒抗体的磁微粒化学发光检测试剂盒及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021167094A1 (ja) 2020-02-20 2021-08-26 陽子 末廣 末梢血原料の採取/凍結融解工程における単球純化法

Also Published As

Publication number Publication date
WO2006046693A1 (ja) 2006-05-04

Similar Documents

Publication Publication Date Title
van der Burg et al. Natural T‐helper immunity against human papillomavirus type 16 (hpv16) e7–derived peptide epitopes in patients with hpv16‐positive cervical lesions: identification of 3 human leukocyte antigen class ii–restricted epitopes
US8481051B2 (en) Cytotoxic T-cell epitope peptides that specifically attack epstein-barr virus-infected cells and uses thereof
Peace et al. T cell recognition of transforming proteins encoded by mutated ras proto-oncogenes.
EP2087904B1 (en) Therapeutic use of peptides derived from Bcl-XL protein in cancer patients
JP5478260B2 (ja) 癌ワクチン組成物
JP2702911B2 (ja) 合成ペプチド、並びにそれを用いたエイズおよびプリ・エイズの検出方法
US20090142363A1 (en) Cytotoxic t-cell epitope peptide and use thereof
Liu et al. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development
US20130011424A1 (en) Polyepitope constructs and methods for their preparation and use
Heukamp et al. Identification of three non‐VNTR MUC1‐derived HLA‐A* 0201‐restricted T‐cell epitopes that induce protective anti‐tumor immunity in HLA‐A2/Kb‐transgenic mice
Bioley et al. Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers
Melief et al. Potential immunogenicity of oncogene and tumor suppressor gene products
EP2433964A1 (en) Peptide inducing xage-1b-specific immune reaction and utilization of same
JP2005512517A (ja) 誘導性Hsp70由来のポリペプチドとこのポリペプチドを含有する医薬組成物
Lippolis et al. Functional analysis of amino acid residues encompassing and surrounding two neighboring H-2Db-restricted cytotoxic T-lymphocyte epitopes in simian virus 40 tumor antigen
Neumann et al. Identification of an HLA‐DR‐restricted peptide epitope with a promiscuous binding pattern derived from the cancer testis antigen HOM‐MEL‐40/SSX2
Morel et al. A tyrosinase peptide presented by HLA‐B35 is recognized on a human melanoma by autologous cytotoxic T lymphocytes
Neumann et al. A peptide epitope derived from the cancer testis antigen HOM-MEL-40/SSX2 capable of inducing CD4+ and CD8+ T-cell as well as B-cell responses
JP2003533175A (ja) Ny−eso−1ペプチド誘導体およびその使用
Smyth et al. Cd8 T‐cell recognition of human 5T4 oncofetal antigen
JP2008022702A (ja) Htlv−i特異的t細胞応答検定方法
CA2114849C (en) Multideterminant peptide antigens that stimulate helper t lymphocyte response to hiv in a range of human subjects
JP5999703B2 (ja) HLA−DR1拘束性Tax特異的CD4+T細胞エピトープ
Harashima et al. Identification of two new HLA-A* 1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation
Nagamata et al. Identification of CD4 and H-2Kd-restricted cytotoxic T lymphocyte epitopes on the human herpesvirus 6B glycoprotein Q1 protein