JP2008020425A - Nondestructive diagnosis method and device for concrete structure - Google Patents

Nondestructive diagnosis method and device for concrete structure Download PDF

Info

Publication number
JP2008020425A
JP2008020425A JP2006216226A JP2006216226A JP2008020425A JP 2008020425 A JP2008020425 A JP 2008020425A JP 2006216226 A JP2006216226 A JP 2006216226A JP 2006216226 A JP2006216226 A JP 2006216226A JP 2008020425 A JP2008020425 A JP 2008020425A
Authority
JP
Japan
Prior art keywords
relationship
vibration
concrete structure
data
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006216226A
Other languages
Japanese (ja)
Inventor
Masaru Ikedo
勝 池戸
Taketoshi Marui
健敏 圓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marui Co Ltd
Original Assignee
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marui Co Ltd filed Critical Marui Co Ltd
Priority to JP2006216226A priority Critical patent/JP2008020425A/en
Publication of JP2008020425A publication Critical patent/JP2008020425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine whether the vibration is caused from a hard object or a soft object to determine the quality of a concrete structure. <P>SOLUTION: The nondestructive diagnosis device is constructed of a vibration acceleration sensor 2, a central processing unit 7 performing Fourier transformation to substitute a relationship between signal intensity and the number of vibrations for a relationship between the signal intensity and the elapsed time for turning the relationship into spectra, a memory part 8 storing respective data such as sampling data, measurement data, and a spectrum of a vibration frequency, a key switch part 9 instructing processing, and a determination part determining the quality of the concrete structure based on comparison with a threshold value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄筋コンクリート或いは無筋コンクリート等の構造物を破壊することなくそのコンクリートの良否を検査する非破壊診断方法に関する。  The present invention relates to a nondestructive diagnostic method for inspecting the quality of concrete without destroying a structure such as reinforced concrete or unreinforced concrete.

コンクリート構造物の様子を調べる方法には基本的に構造物を剥離、破壊する方法と全く構造物を無傷の状態で調べる非破壊方法の二つがある。ここで本発明と対比される手段は後者の非破壊による内部診断に関する先行例を以下に述べる。  There are basically two methods for examining the state of a concrete structure: a method of peeling and destroying the structure, and a non-destructive method of examining the structure in an intact state. Here, the means to be compared with the present invention will be described below as a preceding example regarding the latter non-destructive internal diagnosis.

打音検査物表面を打撃した際の振幅が最大となる振動数を測定し、当該振動数と打音検査物の理想固有振動数とを比較し、打音検査物の健全度を指数化する打音検査物の非破壊検査方法がある(例えば特許文献1参照。)。  Measure the frequency that maximizes the amplitude when the surface of the hammering test object is struck, compare the frequency with the ideal natural frequency of the hammering test object, and index the soundness of the hammering test object There is a non-destructive inspection method for a hitting inspection object (see, for example, Patent Document 1).

又、コンクリート構造物を現地で打音方により検査して得られたデータや検査条件のデータを現地のコンクリート検査装置から現地事務所内の簡易データベースに送信して保存させる。受信した各データが一定量保存されたら一括して現地事務所内のコンピュータから統括センタ内のコンピュータ検査管理大型データベースへ送信する。各データーを受信した統括センター内のコンピュータが各データから補修診断を行って剥離検査計画スケジュールと補修対象表を作成して現地事務所内のコンピュータに送信するコンクリート構造物の検査方法とその方法を用いた検査装置がある(例えば特許文献2参照。)。  In addition, the data obtained by inspecting the concrete structure in the field according to the sound hitting method and the data of the inspection conditions are transmitted from the local concrete inspection apparatus to the simple database in the field office and stored. When a certain amount of each received data is stored, it is sent from the computer in the field office to the large computer inspection management database in the general center. The computer in the control center that received each data performs repair diagnosis from each data, creates a delamination inspection plan schedule and a repair target table, and sends it to the computer in the field office. There is an inspection device (see, for example, Patent Document 2).

又、コンクリート表面を打撃して打音の発生をさせる打音発生手段と、発生した打音の採取をする打音採取手段と、採取した打音に基づいてコンクリートの健全度の評価をする健全度評価手段とを含むコンクリートの健全度評価装置であって、健全度評価手段は、打音の発生から減衰に至る過渡的現象のうち初期の段階における打音の強さの平均値を求め、求めた平均値とあらかじめ設定した基準値との比較により、コンクリートの健全度を評価をする方法及びその装置がある(例えば特許文献3参照。)。  In addition, sound generating means for hitting the concrete surface to generate sound, sound collecting means for collecting the generated sound, and soundness for evaluating the soundness of the concrete based on the collected sound A soundness evaluation device for concrete including a soundness evaluation means, wherein the soundness evaluation means obtains an average value of the strength of percussion sound at an early stage among transient phenomena from occurrence of sound percussion to attenuation, There is a method and an apparatus for evaluating the soundness of concrete by comparing the obtained average value with a preset reference value (see, for example, Patent Document 3).

更に打音装置の柄部に対応する円筒状のケーシングにマイクロホンを配置し、打音を補足し、帯域通過濾波器を介してスペクトラム変換して、表示装置にスペクトラム表示させる打音装置がある(例えば特許文献4参照。)。  Furthermore, there is a sounding device in which a microphone is arranged in a cylindrical casing corresponding to the handle portion of the sounding device, the sounding is captured, spectrum is converted via a band-pass filter, and spectrum display is performed on the display device ( For example, refer to Patent Document 4.)

特開2002−340869(打音検査物の非破壊検査方法、非破壊検査装置及び品質管理方法)JP 2002-340869 (Non-destructive inspection method, non-destructive inspection device and quality control method of hammering test object) 特開2003−004711(コンクリート構造物の検査方法及びその方法を用いた検査装置)JP2003-004711 (inspection method of concrete structure and inspection apparatus using the method) 特開2003−057217(コンクリートの健全度評価方法及びその装置)JP2003-057217 (Concrete soundness evaluation method and apparatus) 特開2003−066014(打音装置)JP2003-0666014 (sounding device)

しかし、上記従来の公知の特許文献には、測定の際重奏されている様々な打撃音の振動周波数を数値解析により分離して硬質の物から発生した振動か或いは軟質の物から発生した振動かを判断したり、或いは予めサンプリングした多くのデータを記憶してこれらのデータを高速演算処理して現場でしきい値を決定し、瞬時に合否の判定結果を出す手段は見られない。本発明の最も要旨とするところは係る問題点の解決を図る処にある。  However, in the above-mentioned conventional well-known patent documents, vibration generated from a hard object or vibration generated from a soft object by separating the vibration frequencies of various striking sounds that have been emphasized during measurement by numerical analysis. There is no means for determining a threshold value on the spot by storing a large amount of pre-sampled data, processing these data at high speed, and determining a threshold value on the spot and instantaneously obtaining a pass / fail judgment result. The gist of the present invention is to solve the problems.

発明が解決するための手段Means for Solving the Invention

振動加速度センサーと、振動加速度センサーにて検知した振動を電圧に変換する電圧増幅器と、出力増幅器とにより聴診器を構成し、聴診器から入力されるサンプリングデータや測定データ等の総ての情報の数値処理に必要なA/D変換器と、デジタル化した信号を収録するメモリー部と、収録した各信号についてフーリエ変換し周波数をスペクトル化することにより前記サンプリングデータからしきい値を決定すると共に、しきい値と測定データとを比較することにより合否を決定する合否判定部と、キースイッチ部からの指示内容に従ってデータを高速処理し瞬時に判定結果を導き出す中央演算処理装置とを主要部としてなる。  A stethoscope is composed of a vibration acceleration sensor, a voltage amplifier that converts the vibration detected by the vibration acceleration sensor into a voltage, and an output amplifier, and all information such as sampling data and measurement data input from the stethoscope is stored. An A / D converter necessary for numerical processing, a memory unit for recording a digitized signal, a Fourier transform for each recorded signal and determining a threshold value from the sampling data by spectrumizing the frequency, The main parts are an acceptance / rejection determination unit that determines acceptance / rejection by comparing the threshold value with measurement data, and a central processing unit that processes data at high speed according to the contents of instructions from the key switch unit and instantaneously derives a determination result. .

通常振動は振動数の多い波と、少ない波とその間に無数の波が一緒に重奏され、例えば音の場合、我々の耳では夫々の振動数の波が一緒に捉えられ、音質に大きく影響している。しかし、特定の振動数の音波のみを識別したり、或いは分離して聞き分けたりすることはできない。そこで本発明では、振動波形を数学的にフーリエ変換(三角級数)することにより合成振動を振動数に分解するものである。  In general, vibrations are a combination of high frequency waves, low frequency waves, and countless waves between them. For example, in the case of sound, our ears capture each frequency wave together, which greatly affects sound quality. ing. However, it is not possible to identify only sound waves having a specific frequency or to separate and distinguish them. Therefore, in the present invention, the synthesized vibration is decomposed into the frequency by mathematically Fourier transforming (triangular series) the vibration waveform.

図2(a)に示す振動波形のグラフは説明のため単純な正弦波を示しており縦方向に信号の強さ、横方向に信号の経過時間を示した周期5の規則正しいサインカーブである。これをフーリエ変換すると、図2(b)に示すように縦方向には(a)と同様に信号の強さを表すが、横方向には(a)とは異なり振動数(周波数)を表す軸なり、周期5の位置で振動数がピークとなるグラフに変換される。  The graph of the vibration waveform shown in FIG. 2A shows a simple sine wave for explanation, and is a regular sine curve with a period of 5 indicating the signal strength in the vertical direction and the elapsed time of the signal in the horizontal direction. When this is Fourier transformed, as shown in FIG. 2 (b), the vertical direction represents the signal strength in the same manner as (a), but the horizontal direction represents the frequency (frequency) unlike (a). The graph is converted into a graph having an axis and a peak frequency at a position of period 5.

また、図3(a)は前記図2(a)と同様のグラフを示しているが、この場合異なるのは周期5と周期10の二つの正弦波を合成した時の振動波形を示し、五個の繰り返し波形ではあるが正弦波ではなく歪波形と成っている。  FIG. 3A shows the same graph as FIG. 2A, except that the difference is a vibration waveform when two sine waves of period 5 and period 10 are combined. Although it is a repetitive waveform, it is not a sine wave but a distorted waveform.

そこで前記図2(b)の場合と同様に図3(a)についてフーリエ変換すると、図3(b)のように周期5と周期10の位置で振動数のピークを示す振動数のグラフとなる。
しかし、実際のコンクリート構造物を現場で打診した時に生ずる振動はこのような単純な振動の合成波形ではなく、周期の異なる多数の振動が複雑に重奏している。
Therefore, when the Fourier transform is performed on FIG. 3A as in FIG. 2B, a frequency graph showing the peak of the frequency at the positions of period 5 and period 10 is obtained as shown in FIG. 3B. .
However, the vibration that occurs when an actual concrete structure is consulted on site is not a composite waveform of such a simple vibration, and a large number of vibrations with different periods are complicatedly overlapped.

発明の効果The invention's effect

信号の強さと時間的変化との関係を、フーリエ変換することにより信号の強さと振動数の関係に変換することができ、高い周波数の振動と低い周波数の振動とがグラフ上で分離して判別可能となり、周波数の高い振動は堅い物から、また周波数の低い振動は柔らかい対象物(低密度物質)からとして特徴付けて処理することができる。  The relationship between signal strength and temporal change can be transformed into the relationship between signal strength and frequency by Fourier transform, and high frequency vibration and low frequency vibration are separated on the graph and discriminated. It is possible to characterize and treat high frequency vibrations from hard objects and low frequency vibrations from soft objects (low density materials).

従って、コンクリート構造物を叩打して得られる打撃音を加速度センサーにて感知した時の振動周波数を数値解析しスペクトル化することにより、その部分の疎密の状況が明瞭に判明でき、しかもこれらの数値処理は多くの機能を組み込んだ中央演算処理装置により迅速な処理が可能となり、しかもこれらの検査は小型で可搬式の装置を検査現場へ持ち込んで実施され結果が瞬時に得られる特徴がある。  Therefore, numerical analysis of the vibration frequency when the impact sound obtained by striking a concrete structure is detected by an acceleration sensor, and the spectrum can be clearly clarified, and these numerical values can be clearly identified. Processing can be performed quickly by a central processing unit incorporating many functions, and these inspections are carried out by bringing a small, portable device to the inspection site and the results are obtained instantaneously.

また、この装置は検査実施者に関係なく結果は全く変わらないこと。打撃の大小によっても影響を受けず安定している。その上、検査に必要な多機能を持っていて検査現場へも手軽く持ち込みが可能、結果が瞬時にして得られる。  The result of this device should not change at all, regardless of the person performing the inspection. It is stable without being affected by the magnitude of the blow. In addition, it has many functions necessary for inspection and can be easily brought to the inspection site, and results can be obtained instantaneously.

振動加速度センサー1内に設置した感知センサー2を被測定物(コンクリート構造物)の表面に接触させ、別に用意したインパクトハンマー(特に形状は何れでも良いが実際には棒の先端に小球を付けたもの)でセンサー2の接触部周辺を複数カ所(通常5ヵ所)叩打し、その際生じた振動波を感知センサー2にて捉える。この信号にはハンマーが被測定物を叩打した時の衝撃振動だけでなく、これに起因する一次反射振動や二次反射振動その他の状態から生じる様々な振動が重奏されて見掛け上は一つの波形として現れる。  A sensor 2 installed in the vibration acceleration sensor 1 is brought into contact with the surface of the object to be measured (concrete structure), and a separately prepared impact hammer (particularly any shape, but in practice a small ball is attached to the tip of the rod) The sensor 2 hits a plurality of locations (usually 5 locations) around the contact portion of the sensor 2 with the detection sensor 2. This signal includes not only the impact vibration when the hammer strikes the object to be measured, but also the primary reflection vibration, secondary reflection vibration and other vibrations resulting from this, and it appears as one waveform. Appears as

しかし、振動加速度センサー1の感知センサー2によって検出した振動波(波形)をチャージアンプ3により電圧に変換し、このままでは電圧は微弱なので伝送中に減衰するのを防止する為に増幅器4によって伝送し易い状態にまで増幅する。  However, the vibration wave (waveform) detected by the sensor 2 of the vibration acceleration sensor 1 is converted into a voltage by the charge amplifier 3, and the voltage is weak as it is, so that it is transmitted by the amplifier 4 to prevent it from being attenuated during transmission. Amplifies even easier.

次にケーブルを介して受信した信号は総てアナログ信号であるためこれをコンクリート診断器5内のA/D変換器6で様々な数値処理に適したデジタル信号に変換した後、感知センサー2にて得られたサンプリングデータ、測定データ等の総ての情報を中央演算処理装置7のメモリー部8で記憶し、更にメモリー部8で記憶したデータの振動強さと時間の関係を中央演算処理装置7でフーリエ変換して振動数のスペクトル化を行う。  Next, since all signals received via the cable are analog signals, they are converted into digital signals suitable for various numerical processing by the A / D converter 6 in the concrete diagnostic device 5, and then sent to the sensor 2. All the information such as sampling data and measurement data obtained in this way is stored in the memory unit 8 of the central processing unit 7, and the relation between the vibration strength and time of the data stored in the memory unit 8 is further stored in the central processing unit 7. The frequency is converted into spectrum by Fourier transform.

また、メモリー部8に記憶したサンプリングデータから合否判定の基準となるしきい値を設定すると共に、中央演算処理装置7の合否判定部11ではこのしきい値と測定データとをキースイッチ9からの指示に従って処理することによりコンクリート構造物の合否の判定を行い且つ表示器10を見て確認する。これと同時に合否判定結果について合否表示部12において正常・異常・注意の三段ランクに識別して夫々カラーランプで表示し、特に不適切な時は危険を知らせるブザーにて警報を発信するようにしている。  In addition, a threshold value that is a criterion for pass / fail judgment is set from the sampling data stored in the memory unit 8, and the pass / fail judgment unit 11 of the central processing unit 7 sends the threshold value and measurement data from the key switch 9. The concrete structure is judged to be accepted or rejected by processing according to the instructions, and the display 10 is checked for confirmation. At the same time, the pass / fail judgment result is identified in the three ranks of normal / abnormal / caution in the pass / fail display section 12 and displayed with color lamps, respectively. ing.

尚、図中符号13はインターフェイスで外部の表示装置14へ中継接続するための装置である。図4は測定データの振動波形をフーリエ変換したもので、図5は振動周波数をスペクトル化した状態を示す。  In the figure, reference numeral 13 denotes a device for relay connection to an external display device 14 through an interface. FIG. 4 shows a Fourier transform of the vibration waveform of the measurement data, and FIG. 5 shows a state where the vibration frequency is spectrumized.

本発明装置の構成を示すブロック図Block diagram showing the configuration of the apparatus of the present invention 5周期の正弦波とそのフーリエ変換後の波形グラフ5 period sine wave and waveform graph after Fourier transform 5周期と10周期の正弦波からなる歪波とフーリエ変換後の波形グラフDistorted wave consisting of 5 and 10 sine waves and waveform graph after Fourier transform 測定データのフーリエ変換後波形Waveform after Fourier transform of measurement data 振動数をスペクトル化したものグラフGraph of frequency spectrum

符号の説明Explanation of symbols

1 振動加速度センサー
2 感知センサー
7 中央演算処理装置
8 メモリー部
9 キースイッチ部
11 合否判定部
12 合否表示部
DESCRIPTION OF SYMBOLS 1 Vibration acceleration sensor 2 Sensor 7 Central processing unit 8 Memory part 9 Key switch part 11 Pass / fail judgment part 12 Pass / fail display part

Claims (2)

信号の強さと信号の経過時間の関係についてフーリエ変換することにより、信号の強さと振動数の関係に置き換えてスペクトル化し、センサーによって検知したサンプリングデータによってしきい値を設定し、しきい値と測定データとを比較することによりコンクリート構造物の良否を判別するようにしたことを特徴とするコンクリート構造物の非破壊診断方法By performing a Fourier transform on the relationship between the signal strength and the elapsed time of the signal, it is converted into a spectrum by replacing it with the relationship between the signal strength and the frequency, and the threshold value is set based on the sampling data detected by the sensor. Nondestructive diagnosis method for concrete structure characterized in that quality of concrete structure is judged by comparing with data 振動加速度センサーと、信号の強さと信号の経過時間との関係についてフーリエ変換することにより、信号の強さと振動数の関係に置き換えてスペクトル化する中央演算処理装置と、サンプリングデータ及び測定データ、スペクトル化した振動周波数などの各データを記憶するメモリー部と、中央演算処理装置に数値処理を指示するキースイッチ部と、測定データをしきい値と比較してコンクリート構造物の良否を決定する合否判定部とからなることを特徴とするコンクリート構造物の非破壊診断装置A vibration acceleration sensor, a central processing unit that performs a Fourier transform on the relationship between the signal strength and the elapsed time of the signal, and replaces it with the relationship between the signal strength and the vibration frequency, and the sampling data, measurement data, spectrum Memory part that stores data such as vibration frequency, key switch part that instructs the central processing unit to perform numerical processing, and pass / fail judgment that compares the measured data with a threshold value to determine the quality of the concrete structure Non-destructive diagnostic device for concrete structures characterized by comprising
JP2006216226A 2006-07-10 2006-07-10 Nondestructive diagnosis method and device for concrete structure Pending JP2008020425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216226A JP2008020425A (en) 2006-07-10 2006-07-10 Nondestructive diagnosis method and device for concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216226A JP2008020425A (en) 2006-07-10 2006-07-10 Nondestructive diagnosis method and device for concrete structure

Publications (1)

Publication Number Publication Date
JP2008020425A true JP2008020425A (en) 2008-01-31

Family

ID=39076463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216226A Pending JP2008020425A (en) 2006-07-10 2006-07-10 Nondestructive diagnosis method and device for concrete structure

Country Status (1)

Country Link
JP (1) JP2008020425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937646A (en) * 2012-11-08 2013-02-20 沈阳建筑大学 Health monitoring system for concrete structure
CN108284507A (en) * 2017-12-29 2018-07-17 中国水利水电第七工程局有限公司 A kind of attached vibrator control system for shield duct piece concrete vibrating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029124U (en) * 1996-03-19 1996-09-27 株式会社フジタ Wall peeling diagnostic machine
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2002340869A (en) * 2001-05-11 2002-11-27 Nippon Steel Corp Method and device for nondestructive inspection for hammering test workpiece and quality management method
JP2003004711A (en) * 2001-06-20 2003-01-08 Hitachi Ltd Method for inspecting concrete structure and inspection device using the same
JP2003057217A (en) * 2001-08-21 2003-02-26 Taisei Corp Method and apparatus for evaluating soundness in concrete
JP2003066014A (en) * 2001-08-29 2003-03-05 Nec San-Ei Instruments Ltd Hammering device
JP2006170774A (en) * 2004-12-15 2006-06-29 Olympus Corp Ultrasonic flaw detector and information output program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029124U (en) * 1996-03-19 1996-09-27 株式会社フジタ Wall peeling diagnostic machine
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2002340869A (en) * 2001-05-11 2002-11-27 Nippon Steel Corp Method and device for nondestructive inspection for hammering test workpiece and quality management method
JP2003004711A (en) * 2001-06-20 2003-01-08 Hitachi Ltd Method for inspecting concrete structure and inspection device using the same
JP2003057217A (en) * 2001-08-21 2003-02-26 Taisei Corp Method and apparatus for evaluating soundness in concrete
JP2003066014A (en) * 2001-08-29 2003-03-05 Nec San-Ei Instruments Ltd Hammering device
JP2006170774A (en) * 2004-12-15 2006-06-29 Olympus Corp Ultrasonic flaw detector and information output program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937646A (en) * 2012-11-08 2013-02-20 沈阳建筑大学 Health monitoring system for concrete structure
CN108284507A (en) * 2017-12-29 2018-07-17 中国水利水电第七工程局有限公司 A kind of attached vibrator control system for shield duct piece concrete vibrating

Similar Documents

Publication Publication Date Title
JP3813580B2 (en) Structure inspection equipment
Sung et al. Monitoring of impact damages in composite laminates using wavelet transform
Kaphle Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications
JP6751937B2 (en) Tapping sound diagnostic device and diagnostic method
JP3958538B2 (en) Concrete hammering inspection method and concrete hammering inspection apparatus
CN109142547A (en) A kind of online lossless detection method of acoustics based on convolutional neural networks
JP2012168022A (en) Method for diagnosing quality of concrete-based structure
JP6130778B2 (en) Method and apparatus for inspecting interface of composite structure
JP4311680B2 (en) Structure inspection device
JP6195234B2 (en) Method and apparatus for sound inspection of brazed articles
JP2008020425A (en) Nondestructive diagnosis method and device for concrete structure
JP2010169465A (en) Defect detection method and defect detection device of structure
JP2019174131A (en) Concrete void detection device and detection method
JP6371575B2 (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus
JP2005148064A (en) Device and method for detecting change or damage to pressure vessel during or after pressure test
JP2009041978A (en) Integrity diagnostic method by tap tone analysis
JP2009287923A (en) Method and apparatus for evaluating unstableness of rock mass on slope of rock bed
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
Kaphle et al. Effective discrimination of acoustic emission source signals for structural health monitoring
JP2013253947A (en) Inspection method of concrete structure, and inspection device of concrete structure
KR102311106B1 (en) An Evaluation and Localization System of The Concrete Soundness Based on Mixed Reality through Real-Time Strike Sound Analysis and It&#39;s Method
KR20220170653A (en) Partial discharge diagnosis method and device using ultrasonic visualization and phase resolution analysis
JP4407817B2 (en) Inspection object discrimination method and apparatus
JP2000074889A (en) Hammering determining device
Wu et al. Correlation of accelerometer and microphone data in the" coin tap test"

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710