JP4407817B2 - Inspection object discrimination method and apparatus - Google Patents

Inspection object discrimination method and apparatus Download PDF

Info

Publication number
JP4407817B2
JP4407817B2 JP2004339355A JP2004339355A JP4407817B2 JP 4407817 B2 JP4407817 B2 JP 4407817B2 JP 2004339355 A JP2004339355 A JP 2004339355A JP 2004339355 A JP2004339355 A JP 2004339355A JP 4407817 B2 JP4407817 B2 JP 4407817B2
Authority
JP
Japan
Prior art keywords
inspection object
frequency
vibration
inspection
discriminating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004339355A
Other languages
Japanese (ja)
Other versions
JP2006145495A (en
Inventor
明 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004339355A priority Critical patent/JP4407817B2/en
Publication of JP2006145495A publication Critical patent/JP2006145495A/en
Application granted granted Critical
Publication of JP4407817B2 publication Critical patent/JP4407817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばエンジンに用いられるコンロッド(コネクティングロッド)のような鍛造品、鋳造品あるいは焼結体等からなる部材、製品の表面欠陥検査等に好適な検査対象物判別方法及び装置に関するものである。   The present invention relates to a method and apparatus for discriminating an inspection object suitable for inspection of surface defects of a forged product such as a connecting rod (connecting rod) used in an engine, a member made of a cast product or a sintered body, and the like. is there.

従来、この種の部材等の表面欠陥検査方法としては、検査対象物の表面をCCDカメラ等で撮像し、得られた画像信号に画像処理を施し、その処理結果画像を表示して観察するという方法があった(例えば特許文献1参照)。   Conventionally, as a surface defect inspection method for this type of member or the like, the surface of an inspection object is imaged with a CCD camera or the like, image processing is performed on the obtained image signal, and the processing result image is displayed and observed. There was a method (for example, refer patent document 1).

特開平3−209113号公報JP-A-3-209113

上述従来技術では、撮像前に検査対象物表面に微粉体を吹き付けるので、単に検査対象物表面を撮像する方法に比較して割れ等の表面欠陥が判別し易くなるという利点があるものの、視覚に頼った検査であることに変わりはないので検出力が低く、表面欠陥を見落とす虞があった。
そこで、検査対象物に打撃を加えることによって生じる振動(音)を周波数解析して上記検査対象物に固有の基本波又はこれに隣接する波形を取得し、そのピーク値を含む波形と、予め取得しておいた基準波形との間の周波数差によって、検査対象物の表面欠陥の有無を判別する方法が提案された。
これによれば、視覚に頼った検査ではない点で検出力を向上できるが、上記の周波数差が小さく、割れ等の表面欠陥の有無判別に用いるしきい値(周波数)の設定が困難となった。このため、判別精度を上げることができない場合もあり、従来、この点についての改善が要望されていた。またこの方法においては、検査対象物の内部欠陥(内部酸化等の内部組織の欠陥)を判別することはできず、内部欠陥も検出したい場合には、別途、異なる手法で行わなければならず煩雑であり、この点についての改善も要望されていた。
In the above-described prior art, since fine powder is sprayed on the surface of the inspection object before imaging, there is an advantage that surface defects such as cracks are easily discriminated compared to a method of simply imaging the surface of the inspection object, but visually Since it was a reliable inspection, the detection power was low and there was a risk of overlooking surface defects.
Therefore, the vibration (sound) generated by hitting the inspection object is subjected to frequency analysis to acquire a fundamental wave unique to the inspection object or a waveform adjacent thereto, and a waveform including the peak value is acquired in advance. A method has been proposed in which the presence or absence of a surface defect on an inspection object is determined based on the frequency difference from the reference waveform.
According to this, the detection power can be improved in that the inspection is not based on visual inspection, but the above-mentioned frequency difference is small, and it becomes difficult to set a threshold value (frequency) used for determining the presence or absence of surface defects such as cracks. It was. For this reason, there are cases where the discrimination accuracy cannot be increased, and there has been a demand for improvement in this regard. Further, in this method, internal defects (internal structure defects such as internal oxidation) of the inspection object cannot be determined, and if it is desired to detect internal defects, it must be performed separately by a different method. There was also a demand for improvements in this regard.

本発明の目的は、上記のような実情に鑑みなされたもので、視覚に頼った検査に比べて表面欠陥の検出力が高く、しかも共通の構成部分によって内部欠陥も検出することができ、更には、検査対象物の量産工程においてラインの一時停止等で検査対象物に温度の変化が生じた場合にも、表面欠陥や内部欠陥を判別できる検査対象物判別方法及び装置を提供することにある。 An object of the present invention has been made in view of the circumstances described above, the power to detect surface defects compared to test relying on visual is high and Ki internal defects out be detected by a common component, Furthermore, when a change in temperature occurs in the test object with the temporary stop of the line in the mass production process of the test object is also to provide a test object discrimination method and apparatus can determine the surface defects and internal defects It is in.

上記目的を達成するために、特許請求の範囲の請求項に記載の検査対象物判別方法は、検査対象物の所望方向に沿う複数位置について連続的に打撃を加えながら各位置において生じる該検査対象物の振動を受信し、この受信された各振動について周波数解析し、該検査対象物に固有の周波数分布中の同一次の波動におけるピーク値を含む波形データを各々取得し、それらのうちの何れか1つのデータを基準に、その基準データ値との間の周波数変化率を各々求め、求められた各周波数変化率の変化によって前記検査対象物の表面欠陥又は内部欠陥の有無の判別を行うことを特徴とする。 In order to achieve the above object, the inspection object discrimination method according to claim 1 of the claims includes the inspection that occurs at each position while continuously hitting a plurality of positions along a desired direction of the inspection object. Receive vibrations of the object, perform frequency analysis on each received vibration, obtain waveform data including peak values in the same order wave in the frequency distribution specific to the inspection object, and Using any one data as a reference, the frequency change rate between the reference data values is obtained, and the presence or absence of a surface defect or an internal defect of the inspection object is determined based on the obtained change in the frequency change rate. It is characterized by that.

特許請求の範囲の請求項に記載の検査対象物判別装置は、検査対象物に打撃を加える加振手段と、前記打撃によって生じる前記検査対象物の振動を受信する振動受信手段と、前記検査対象物の打撃位置を移動させる移動手段と、前記検査対象物を打撃することによって生じる該検査対象物の振動を、該検査対象物の所望方向に沿う複数位置について連続的に受信し、この受信された各振動について周波数解析し、該検査対象物に固有の周波数分布中の同一次の波動におけるピーク値を含む波形データを各々取得し、それらのうちの何れか1つのデータを基準に、その基準データ値との間の周波数変化率を各々求め、求められた各周波数変化率の変化によって前記検査対象物の表面欠陥又は内部欠陥の有無の判別を行う解析判別手段とを具備することを特徴とする。 The inspection object discriminating apparatus according to claim 2 of the claim includes an excitation means for striking the inspection object, a vibration receiving means for receiving vibration of the inspection object caused by the striking, and the inspection The moving means for moving the hit position of the object and the vibration of the test object generated by hitting the test object are continuously received at a plurality of positions along the desired direction of the test object. Frequency analysis for each of the vibrations obtained, each obtaining waveform data including a peak value in the same order wave in the frequency distribution specific to the inspection object, based on any one of those data, Analyzing and discriminating means for determining a frequency change rate between each of the reference data values and determining the presence or absence of a surface defect or an internal defect of the inspection object based on the obtained change in each frequency change rate And wherein the Rukoto.

特許請求の範囲の請求項1に記載の発明は、相互間に温度変化が生じ得る環境で同一設計値で製造された複数の検査対象物の各々に対して、その欠陥の有無の判別を行う検査対象物判別方法であって、前記検査対象物の複数位置について連続的に加えられる打撃による振動(音)を受信し、得られた各振動について周波数解析し,その検査対象物に固有の周波数分布中の同一次の波動におけるピーク値を含む波形データを各々取得し、この複数の波形データ間における各周波数変化率の変化によって、検査対象物の表面欠陥又は内部欠陥の有無の判別を行うものである。つまり、自身(同一検査対象物内)で得られた波形データを用いて表面欠陥又は内部欠陥の有無の判別を行うものである。
量産ライン等の環境に変化があり、製造された部材、製品等(検査対象物)の間に温度変化が生じると、その検査対象物に固有の周波数分布が変動し、上述した固有の周波数を用いた判別方法では判別不可能となる。しかし、量産ライン等の環境に温度変化が生じても、自身の温度は、連続的に加えられる打撃が済む間(短時間)変わらない。したがって、量産ラインの一時停止等で検査対象物である製品間に温度差が生じた場合でも、特定の検査対象物の表面欠陥や内部欠陥を判別できる。
また、上記のように取得した複数の波形データ間における各周波数変化「率」の変化によって、検査対象物の表面欠陥又は内部欠陥の有無の判別を行っている。したがって、相互間に温度変化が生じ得る環境で同一設計値で製造された、特に一時停止等で製品間に温度差が生じ得る量産ラインで製造された、複数の製品、つまり検査対象物の各々についても、表面欠陥や内部欠陥を判別できる。
更に本発明によれば、割れや内部酸化等の欠陥位置において周波数変化率が低下していることによって、表面欠陥又は内部欠陥が生じている大凡の位置も分かる。
なお、特許請求の範囲の請求項1に記載の発明によれば、表面欠陥の判別につき、視覚に頼った検査ではないので検出力を向上できる。
しかも、共通の手法(構成)によって内部欠陥も検出することができる。すなわち、打撃を加えることによって生じる検査対象物の振動を周波数解析すると、その検査対象物に固有の周波数分布や固有周波数が結果として得られる。周波数解析の結果として得られる周波数分布は、その検査対象物の表面や内部の欠陥の有無を反映して固有のパターンを示す。したがって、検査対象物の複数位置についての波形データ(周波数分布データ)を各々取得し、うち何れか1つのデータを基準に、その値との間の周波数変化率を各々求め、各周波数変化率の変化によれば、その検査対象物の表面欠陥や内部欠陥の有無を判別できるが、この際自身の、つまり1つの検査対象物に対して、共通の手法を繰り返すことによって判別できる。
According to the first aspect of the present invention, the presence or absence of a defect is determined for each of a plurality of inspection objects manufactured at the same design value in an environment where temperature changes can occur between them. A method for discriminating an object to be inspected, which receives vibrations (sounds) caused by striking continuously applied to a plurality of positions of the object to be inspected , performs frequency analysis on each of the obtained vibrations, and has a frequency unique to the object to be inspected. Acquires waveform data including peak values in the same order wave in the distribution, and determines the presence or absence of surface defects or internal defects on the inspection object by changing each frequency change rate between the multiple waveform data It is. That is, the presence / absence of a surface defect or an internal defect is determined using waveform data obtained by itself (within the same inspection object).
When there is a change in the environment such as a mass production line and a temperature change occurs between manufactured parts, products, etc. (inspection object), the frequency distribution inherent to the inspection object fluctuates, and the above-mentioned inherent frequency is changed. The discriminating method used cannot be discriminated. However, even if a temperature change occurs in an environment such as a mass production line, its own temperature does not change during a continuous blow (short time). Therefore, even when a temperature difference occurs between products that are inspection objects due to temporary suspension of a mass production line or the like, surface defects and internal defects of a specific inspection object can be determined.
Further, the presence / absence of a surface defect or an internal defect of the inspection object is determined based on a change in each frequency change “rate” between the plurality of waveform data acquired as described above. Therefore, each of a plurality of products, that is, inspection objects, manufactured at the same design value in an environment where temperature changes can occur between each other, especially manufactured on a mass production line where a temperature difference can occur between products due to temporary stoppage, etc. As for, surface defects and internal defects can be discriminated.
Furthermore , according to the present invention, the approximate position where the surface defect or internal defect is generated can be found by the fact that the frequency change rate is reduced at the defect position such as cracking or internal oxidation .
According to the invention described in claim 1 of the scope of claims, the detection capability can be improved because the inspection of the surface defect is not a visual inspection.
Moreover, internal defects can also be detected by a common method (configuration). That is, if the frequency of the vibration of the inspection object generated by applying the impact is analyzed, a frequency distribution and a natural frequency specific to the inspection object are obtained as a result. The frequency distribution obtained as a result of the frequency analysis shows a unique pattern reflecting the presence or absence of defects on the surface of the inspection object or inside. Therefore, waveform data (frequency distribution data) for a plurality of positions of the inspection object is acquired, and the frequency change rate between each value is obtained based on any one of the data, and each frequency change rate is calculated. According to the change, the presence or absence of a surface defect or an internal defect of the inspection object can be determined. At this time, it can be determined by repeating a common method for itself, that is, one inspection object.

特許請求の範囲の請求項に記載の発明は、請求項に記載の検査対象物判別方法を適用した装置であり、上述した作用に基づいて請求項に記載の検査対象物判別方法と同様の効果を有する。 The invention according to claim 2 of the appended claims is a device to which the test object determination method according to claim 1, the test object determination method according to claim 1 on the basis of the action described above Has the same effect.

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
まず、本発明(第1の発明)に係る検査対象物判別方法について説明する。
部材、製品等の物体に打撃を加え、自由振動を与えればその物体は、次式(1)で与えられる固有周波数(固有振動数)fで振動する。
f=〔(α2/L2)×(EI/ρS)1/2〕/2π …(1)
ただし、αは定数、Lは検査対象物の長さ、Eは弾性率(ヤング率:σ/ε)、Iは慣性モーメント、ρは密度、Sは断面積、πは円周率である。
そしてこの固有周波数を基本波として、それより高い周波数側に高次波が生じる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
First, an inspection object discrimination method according to the present invention (first invention) will be described.
If an object such as a member or product is hit and free vibration is applied, the object vibrates at a natural frequency (natural frequency) f given by the following equation (1).
f = [(α 2 / L 2 ) × (EI / ρS) 1/2 ] / 2π (1)
Where α is a constant, L is the length of the object to be inspected, E is the elastic modulus (Young's modulus: σ / ε), I is the moment of inertia, ρ is the density, S is the cross-sectional area, and π is the circumference.
Then, with this natural frequency as a fundamental wave, a higher-order wave is generated on the higher frequency side.

図1は、このような物体の振動を周波数解析して得られる周波数分布波形を示す図であり、横軸に周波数(0Hz〜40kHz)、縦軸にそのエネルギ(信号強度)をとって示している。この図から分かるように、周波数分布波形中には、基本波P1とそれより高い周波数側に多数の高次波P2を含んでいる。
図1中には、2つの周波数分布波形P11,P12が示されているが、2つの物体の材質が異なれば、その周波数分布波形も異なる。つまり、周波数分布波形はその物体に固有のものである。このことから、材質の相違は周波数分布波形の相違となって表われることが分かる。
FIG. 1 is a diagram showing a frequency distribution waveform obtained by frequency analysis of the vibration of such an object, with the horizontal axis representing the frequency (0 Hz to 40 kHz) and the vertical axis representing the energy (signal intensity). Yes. As can be seen from this figure, the frequency distribution waveform includes the fundamental wave P1 and a number of higher-order waves P2 on the higher frequency side.
In FIG. 1, two frequency distribution waveforms P11 and P12 are shown. However, if the materials of the two objects are different, the frequency distribution waveforms are also different. That is, the frequency distribution waveform is unique to the object. From this, it can be seen that the difference in material appears as a difference in frequency distribution waveform.

また物体に、割れ等の表面欠陥や内部欠陥(内部酸化等の内部組織の欠陥)がある場合も、周波数解析をすれば各々固有の、つまり異なった周波数分布波形を示すことになる。
図2は、これを基本波P1(図1参照)より高い周波数領域において、上述したような種々の属性をもつ多数の検査対象物(設計値が同じ部材、製品)、ここでは焼結コンロッドについての周波数分布波形を示す。
この図2に示すように、表面欠陥(ここでは割れ)の大小によって周波数分布波形のピーク値をとる周波数が異なり、また内部欠陥(ここでは内部酸化)が生じていると、大凡定まった周波数領域内に周波数分布波形のピーク値が現れる。また、それらピーク値間にも周波数差が生じている。欠陥のない物体(良品)については、大凡、欠陥品(不良品)に比べて更に高い周波数側にピーク値が集中している。
このことから、また図1との比較から、周波数解析により得られた周波数分布波形における、基本波から高い周波数側に離れた高次波のピーク値を含む波形相互を比較すれば、上記良品と不良品との相違がより高精度に判別でき、また、材質の相違(異材品か否か)も高精度に判別可能であることが分かる。
Further, even when the object has surface defects such as cracks or internal defects (defects of internal structure such as internal oxidation), if frequency analysis is performed, each of them shows a unique, that is, different frequency distribution waveform.
FIG. 2 shows a large number of inspection objects (members and products having the same design value) having various attributes as described above in the frequency region higher than the fundamental wave P1 (see FIG. 1), here, a sintered connecting rod. The frequency distribution waveform of is shown.
As shown in FIG. 2, the frequency at which the peak value of the frequency distribution waveform differs depending on the size of surface defects (here, cracks), and when internal defects (in this case, internal oxidation) occur, a roughly defined frequency region is obtained. The peak value of the frequency distribution waveform appears inside. In addition, there is a frequency difference between these peak values. For an object having no defect (non-defective product), peak values are generally concentrated on a higher frequency side than a defective product (defective product).
From this, and from comparison with FIG. 1, in the frequency distribution waveform obtained by frequency analysis, if the waveform including the peak value of the higher order wave separated from the fundamental wave to the higher frequency side is compared, It can be seen that the difference from the defective product can be determined with higher accuracy, and the difference in material (whether it is a different material or not) can also be determined with high accuracy.

上記判別について、図3〜図5を参照して更に説明する。
図3は割れの有無を、図4は焼入れ済みか否かを、図5は一方の材質が他方の材質と同じか否かを、各々設計値を同じくする検査対象物について、容易に判別できることを表す。
すなわち図3〜図5は、基準物と検査対象物との間で検出される、ピーク値を含む波形相互間における周波数差(幅)fwが、基本波又はそれに隣接する波動相互間で比較した場合(各(a)図)と、基本波から高い周波数側に離れた高次波のピーク値を含む波形相互間で比較した場合(各(b)図)とを、比較対照した図である。なお、各図中の波形は、同じ基準物、検査対象物に対して、各々複数回加振し解析して得られた波形を重ねて示したものである。
ここで基準物とは、図3では良品、図4では焼入れ品(焼入れ済み品)、図5では一方の材質:S48C(炭素鋼)を指し、また検査対象物とは、同様に不良品、未焼入れ品、あるいは他方の材質:SCr20(クロム鋼)を指す。基準物及び検査対象物は同一設計値で製造、加工されたものである。図3〜図5中の各波形において、実線31,41,51が基準物の波形を、破線32,42,52が検査対象物の波形を示す。 図3〜図5を比較対照すると、この図3〜図5における各(b)図で示す場合、つまり基本波から高い周波数側に離れた高次波のピーク値を含む波形相互間で比較した場合は、各(a)図で示す場合より、いずれも周波数差fwが大きいことが分かる。したがって、割れのない良品か否か、焼入れ済み品か否か、あるいは一方の材質と同じか否かの判別に当たって境界値となるしきい値(周波数)の設定が容易になることが分かる。
このしきい値は、図示周波数差fwの範囲内において設定されることはいうまでもないが、これに縦軸に示す信号レベルの範囲もしきい値(上下限値)として設定してもよく、これによれば、判別の精度を上げることができる。周波数に係るしきい値も、周波数差fwの範囲内に加え、これとはピーク値の周波数を挟んで反対側(図中、右側)にも設定、つまり上下限値として設定するようにしてもよい。
内部酸化の判別についても、その有無や程度に応じて、周波数解析で得た周波数分布波形中のピーク値を含む波形相互間に周波数差が生じるので、後述するようにその判別が可能である。
なお上掲図1中、f11は本発明方法において周波数解析の対象としている周波数領域(0Hz〜40kHz程度)を示し、f12は従来の検査対象物判別方法において周波数解析の対象としている周波数領域(0Hz〜10kHz程度)を示す。本発明方法における周波数領域f11は可聴域から超音波域までの広い範囲に及んでいることが分かる。
The determination will be further described with reference to FIGS.
3 can easily determine whether or not there is a crack, FIG. 4 can determine whether or not quenching has been completed, and FIG. 5 can determine whether or not one material is the same as the other material for inspection objects having the same design value. Represents.
That is, in FIGS. 3 to 5, the frequency difference (width) fw between the waveforms including the peak value detected between the reference object and the inspection object is compared between the fundamental wave or the adjacent waves. It is the figure which contrasted and contrasted the case (each (a) figure) and the case (each (b) figure) where it compared between the waveforms containing the peak value of the higher order wave far from the fundamental wave to the high frequency side. . Note that the waveforms in each figure are obtained by superimposing the waveforms obtained by analyzing the same reference object and inspection object multiple times and analyzing them.
Here, the reference material is a non-defective product in FIG. 3, a hardened product (hardened product) in FIG. 4, one material: S48C (carbon steel) in FIG. 5, and an inspection object is also a defective product, It refers to an unquenched product or the other material: SCr20 (chromium steel). The reference object and the inspection object are manufactured and processed with the same design value. In each waveform in FIGS. 3 to 5, solid lines 31, 41, 51 indicate the waveform of the reference object, and broken lines 32, 42, 52 indicate the waveform of the inspection object. 3 to 5 are compared with each other in the cases shown in FIGS. 3 to 5B, that is, between waveforms including the peak value of the higher order wave separated from the fundamental wave to the higher frequency side. In each case, it can be seen that the frequency difference fw is larger than the case shown in each figure (a). Therefore, it can be seen that it is easy to set a threshold value (frequency) as a boundary value in determining whether the product is a non-breaking good product, a hardened product, or the same material.
It goes without saying that this threshold value is set within the range of the illustrated frequency difference fw, but the signal level range shown on the vertical axis may also be set as the threshold value (upper and lower limit values). According to this, the accuracy of discrimination can be increased. The threshold value related to the frequency is also set within the range of the frequency difference fw, and is also set on the opposite side (right side in the figure) across the peak value frequency, that is, set as the upper and lower limit values. Good.
Regarding the determination of internal oxidation, a frequency difference is generated between waveforms including the peak value in the frequency distribution waveform obtained by frequency analysis according to the presence or absence and the degree thereof, so that it can be determined as described later.
In FIG. 1, f11 indicates a frequency region (about 0 Hz to 40 kHz) that is a target of frequency analysis in the method of the present invention, and f12 is a frequency region (0 Hz) that is a target of frequency analysis in the conventional inspection object discrimination method. About 10 kHz). It can be seen that the frequency region f11 in the method of the present invention covers a wide range from the audible range to the ultrasonic range.

図6は、内部酸化の有無を判別するため、多数の試料について各々周波数解析を行って得られた周波数分布波形を、基本波P1(図1参照)から高い周波数側に離れた領域において示す図である。基本波P1は、横軸に示す最小周波数9800Hzよりも低いので、図6には示されていない。
この図6において、周波数領域A〜Cのうち、最も高い周波数領域Aにピーク値波形(ピーク値を含む波形)を示す試料群が内部酸化のない良品群である。次に高い周波数領域Bにピーク値波形を示す試料群は、内部酸化が僅かにあるが良品と判別して差し支えのない試料群である。周波数領域Cにピーク値波形を示す試料群は、内部酸化があって不良品と判別される試料群となる。
なお、内部酸化があると物体組織中に細かな孔が散在し、強度を低下させる。細かな孔は、内部酸化の程度が高くなるほど多数現れ、強度低下の度合いを高める。
FIG. 6 is a diagram showing a frequency distribution waveform obtained by performing frequency analysis on each of a large number of samples in order to determine the presence or absence of internal oxidation in a region away from the fundamental wave P1 (see FIG. 1) on the higher frequency side. It is. Since the fundamental wave P1 is lower than the minimum frequency 9800 Hz shown on the horizontal axis, it is not shown in FIG.
In FIG. 6, among the frequency regions A to C, a sample group showing a peak value waveform (a waveform including a peak value) in the highest frequency region A is a good product group having no internal oxidation. The sample group showing the peak value waveform in the next highest frequency region B is a sample group that has a slight internal oxidation but can be discriminated as a non-defective product. The sample group showing the peak value waveform in the frequency region C is a sample group that has internal oxidation and is identified as a defective product.
If there is internal oxidation, fine pores are scattered in the body tissue and the strength is lowered. Fine pores appear as the degree of internal oxidation increases, and the degree of strength reduction increases.

図6によれば、基本波P1から高い周波数側に離れた領域におけるピーク値波形が、周波数領域A,B内にあるか、あるいはC内にあるかによって内部酸化の有無の判別が可能であることが分かる。つまり、内部酸化についての良品か否かの判別も、大きな周波数差(幅)内において容易に設定されるしきい値によって可能であることが分かる。   According to FIG. 6, it is possible to determine the presence or absence of internal oxidation depending on whether the peak value waveform in the region away from the fundamental wave P1 to the higher frequency side is in the frequency regions A and B or C. I understand that. That is, it can be seen that whether or not the internal oxidation is a non-defective product can be determined by a threshold value that is easily set within a large frequency difference (width).

そこで、検査対象物に打撃を加えることによって生じる、その検査対象物の振動(音)を広帯域、例えば0Hz〜40kHzで受信し、この受信された振動を周波数解析し、その検査対象物に固有の周波数分布(周波数スペクトル)中の、その検査対象物の基本波よりも高い周波数側の所定の高次波におけるピーク値を含む波形データを取得する。そしてこの波形データと、上記検査対象物に係る基準物についてその検査対象物に対する検査時と同じ条件下で予め周波数解析し取得しておいた基準波形データとの間(基本的には両波形データのピーク値相互間)の周波数差によって上記良品か否か、あるいは検査対象物が焼入れされているか否か、更には特定材質か否かを判別することが可能となる。
しかも、検査対象物の基本波よりも高い周波数側の所定の、つまり実験や計算等により予め選択しておいた高次波におけるピーク値を含む波形データと、検査対象物に係る基準物についてその検査対象物に対する検査時と同じ条件下で予め周波数解析し取得しておいた基準波形データとの周波数差による場合には、検査対象物の判別に用いるしきい値の選択が容易になる。上記両波形データ間の周波数差は、基本波P1又はそれに隣接する波動相互間で比較する場合の周波数差よりも大きくなるからである。
本発明方法は、以上のような知見に基づきなされたものである。
Therefore, the vibration (sound) of the inspection object generated by hitting the inspection object is received in a wide band, for example, 0 Hz to 40 kHz, and the received vibration is subjected to frequency analysis, and is inherent to the inspection object. Waveform data including a peak value in a predetermined higher-order wave on the frequency side higher than the fundamental wave of the inspection object in the frequency distribution (frequency spectrum) is acquired. Between this waveform data and the reference waveform data obtained by frequency analysis in advance under the same conditions as the inspection of the inspection object (basically both waveform data) It is possible to determine whether the product is a non-defective product, whether the inspection object is quenched, and whether it is a specific material.
In addition, the waveform data including the peak value in a predetermined higher frequency wave higher than the fundamental wave of the inspection object, that is, the higher-order wave selected in advance by experiment or calculation, and the reference object related to the inspection object In the case of the frequency difference from the reference waveform data obtained by frequency analysis in advance under the same conditions as inspecting the inspection object, it becomes easy to select a threshold value used for discrimination of the inspection object. This is because the frequency difference between the two waveform data is larger than the frequency difference in the case of comparison between the fundamental wave P1 or the waves adjacent thereto.
The method of the present invention has been made based on the above findings.

図7は、上述した本発明方法(第1の発明)が適用された検査対象物判別装置(第2の発明)の一実施形態を示すブロック図である。
図示するように、検査対象物判別装置は、加振手段71と振動受信手段72と解析判別手段73とモニタ74とを備えてなる。
この場合、加振手段71は、検査対象物(ここでは焼結コンロッド)75に打撃を加える手段であって、例えば空気圧で駆動されるハンマからなる。ここで、検査対象物75は、打撃を受けた際に自由振動可能に、例えばゴム板等の支持台76上に置かれている。
振動受信手段72は、加振手段71による打撃によって生じる検査対象物75の振動(音)を広帯域で受信する手段であって、ここでは0Hz〜40kHzまでの帯域幅を有するマイクロホンからなり、検査対象物75に近接配置されている。
FIG. 7 is a block diagram showing an embodiment of an inspection object discriminating apparatus (second invention) to which the method of the present invention (first invention) described above is applied.
As shown in the figure, the inspection object discriminating apparatus includes an excitation unit 71, a vibration receiving unit 72, an analysis discriminating unit 73, and a monitor 74.
In this case, the vibration means 71 is a means for striking the inspection object (here, the sintered connecting rod) 75, and is composed of, for example, a hammer driven by air pressure. Here, the inspection object 75 is placed on a support stand 76 such as a rubber plate so that it can freely vibrate when hit.
The vibration receiving means 72 is means for receiving the vibration (sound) of the inspection object 75 generated by hitting by the vibration means 71 in a wide band. Here, the vibration receiving means 72 is composed of a microphone having a bandwidth of 0 Hz to 40 kHz, and is an inspection object. It is arranged close to the object 75.

解析判別手段73は、振動受信手段72によって受信された振動を周波数解析し、検査対象物75に固有の周波数分布中の、その検査対象物75の基本波よりも高い周波数側の所定の高次波におけるピーク値を含む波形データを取得する。そして、この波形データと、上記検査対象物75に係る基準物についてその検査対象物75に対する検査時と同じ条件下で予め周波数解析し取得しておいた基準波形データとの間、ここでは両波形データのピーク値相互間の周波数差によって上記検査対象物75の判別を行う手段である。具体的には、検査物が良品か否か、あるいは検査対象物75が焼入れされているか否か、更には特定材質か否かを判別する手段である。
解析判別手段73としては、例えば必要事項が記述されたプログラムを実行して上述したような解析判別処理を行うコンピュータが用いられ、この解析判別手段73による判別結果はモニタ74に表示される。例えば、表面割れ検査の場合には、検査対象物75の品番、シリアル番号と、割れあり、なしの別がモニタ74に表示される。
The analysis discriminating means 73 performs frequency analysis on the vibration received by the vibration receiving means 72 and has a predetermined higher order on the frequency side higher than the fundamental wave of the inspection object 75 in the frequency distribution unique to the inspection object 75. Acquire waveform data including peak values in the wave. Between the waveform data and the reference waveform data obtained by performing frequency analysis on the reference object related to the inspection object 75 in advance under the same conditions as the inspection of the inspection object 75, both waveforms here. This is means for discriminating the inspection object 75 based on the frequency difference between peak values of data. Specifically, it is means for discriminating whether or not the inspection object is a non-defective product, whether or not the inspection object 75 is quenched, and further whether or not it is a specific material.
As the analysis discriminating unit 73, for example, a computer that executes the analysis discriminating process as described above by executing a program in which necessary items are described is used, and the discrimination result by the analysis discriminating unit 73 is displayed on the monitor 74. For example, in the case of surface crack inspection, the product number and serial number of the inspection object 75 and whether there is a crack or not are displayed on the monitor 74.

次に、このような装置による検査対象物の判別方法について説明する。
図7において、まず検査対象物75を支持台76上に載置すると共に、支持台76の位置を調整して加振手段71に対する検査対象物75の位置合わせを行い、その後、加振手段71が駆動して検査対象物75を打撃する。
この打撃により、検査対象物75には自由振動が生じ、この振動は振動受信手段72が受信する。受信帯域は0Hz〜40kHzまでと広帯域である。振動受信手段72は、受信した振動を電気信号に変換し、解析判別手段73に与える。
解析判別手段73は、振動受信手段72からの受信信号(振動データ)にフーリエ変換を施して周波数解析を行う。このように周波数解析して得られた周波数分布波形の一例が図1に示す波形である。
Next, a method for discriminating an inspection object using such an apparatus will be described.
In FIG. 7, first, the inspection object 75 is placed on the support base 76 and the position of the support base 76 is adjusted to align the inspection object 75 with the vibration means 71, and then the vibration means 71. Is driven and hits the inspection object 75.
Due to this impact, free vibration is generated in the inspection object 75, and this vibration is received by the vibration receiving means 72. The reception band is a wide band from 0 Hz to 40 kHz. The vibration receiving means 72 converts the received vibration into an electrical signal and gives it to the analysis discriminating means 73.
The analysis discriminating unit 73 performs frequency analysis by performing Fourier transform on the received signal (vibration data) from the vibration receiving unit 72. An example of the frequency distribution waveform obtained by frequency analysis in this way is the waveform shown in FIG.

図1に例示する周波数分布波形は、検査対象物75の形状、寸法、密度、材質、更には表面や内部の欠陥の有無、あるいはその検査対象物が焼入れ済みか否かの性状等(属性)を反映して固有のパターンを示す。つまり、同一設計値で製造、加工された部材あるいは製品(以下、製品と総称する。)ではあるが、個々の製品間で形態、内部組織等で僅かな違いがあれば、それは周波数分布波形(周波数分布データ)の違いとなって表れる。
そこで、上記属性が既知の製品(良品、焼入れ済み品等の基準物)につき、検査対象物75に対する検査時と同じ条件下で予め周波数解析して周波数分布波形を多数取得し、基準波形データとして記憶しておくことにより、これを検査対象物75の判別、つまり良品か否か、焼入れ済み品か否か等の判別に利用できる。
すなわち、ある検査対象物75について、振動測定し周波数解析し取得した周波数分布波形を、予め多数記憶しておいた上記基準物の周波数分布波形(基準波形データ)の何れかと一致するかを比較対照すれば、その検査対象物75が良品であるか、あるいは焼入れ済み品であるか等を判別することができる。
The frequency distribution waveform illustrated in FIG. 1 includes the shape, size, density, and material of the inspection object 75, the presence or absence of defects on the surface and inside, or the property of whether or not the inspection object has been quenched (attributes). The unique pattern is reflected. In other words, although it is a member or product manufactured and processed with the same design value (hereinafter collectively referred to as a product), if there is a slight difference in form, internal structure, etc. between individual products, that is a frequency distribution waveform ( Frequency distribution data).
Therefore, for products having the above-mentioned attributes (reference products such as non-defective products and hardened products), a frequency analysis is performed in advance under the same conditions as the inspection of the inspection object 75 to obtain a large number of frequency distribution waveforms, and as reference waveform data By storing it, it can be used for discrimination of the inspection object 75, that is, whether it is a non-defective product, whether it is a quenched product, or the like.
That is, for a certain inspection object 75, whether the frequency distribution waveform obtained by vibration measurement and frequency analysis is the same as one of the frequency distribution waveforms (reference waveform data) of the reference object stored in advance is compared. Then, it can be determined whether the inspection object 75 is a non-defective product or a quenched product.

ここで、上述したように周波数分布データとして、基本波よりも高い周波数側の所定の高次波におけるピーク値を含む波形データを用いれば、基準物の基準波形データと検査対象物75の波形データとの間の周波数差が大きくなり、被検査物75の判別に当たって境界値となるしきい値等の設定が容易になって判別精度を高めることができる。また、基準波形データを予め用意しておくことにより、種々の判別を共通の手順で同様に行うことができる。   Here, as described above, if waveform data including a peak value in a predetermined higher-order wave on the frequency side higher than the fundamental wave is used as the frequency distribution data, the reference waveform data of the reference object and the waveform data of the inspection object 75 are used. The frequency difference between the threshold value and the threshold value becomes large, and it becomes easy to set a threshold value or the like that becomes a boundary value when the inspection object 75 is determined, thereby improving the determination accuracy. In addition, by preparing the reference waveform data in advance, various determinations can be made in the same manner using a common procedure.

以上述べたように、第1及び第2の発明に係る検査対象物判別方法及び装置によれば、表面や内部の欠陥の検査や、検査対象物が焼入れされているか、あるいは特定材質か否かの判別を高効率、低コストで行うことができる。また、検査対象物の判別を目視によらないで行うので、それらの検査、判別が高精度で行うことができる。   As described above, according to the inspection object discriminating method and apparatus according to the first and second inventions, inspection of defects on the surface and inside, whether the inspection object is quenched, or whether it is a specific material. Can be determined with high efficiency and low cost. Further, since the inspection object is discriminated without visual observation, the inspection and discrimination can be performed with high accuracy.

次に、第3の発明に係る(請求項に記載の)検査対象物判別方法について述べる。
まず、図8に示すように検査対象物(焼結コンロッド)75を所望の方向に沿って複数位置、図示例では位置イ〜ホの5箇所について連続的に打撃を加えながら各位置イ〜ホにおいて生じる振動(音)を広帯域、ここでは0Hz〜40kHzまでの帯域で受信する。そして、受信された各振動について周波数解析し、その検査対象物に固有の周波数分布(周波数スペクトル)中の同一次の波動、例えば基本波や同一次の高次波におけるピーク値を含む波形データを各々取得する。そして、これらのうちの何れか1つのデータ、例えば最初の打撃位置イにおけるデータ(基本的にはピーク値データ)を基準に、その基準のデータ値との間の周波数変化率を各々求め、求められた各周波数変化率の変化によって上記検査対象物75の表面欠陥や内部欠陥の有無の判別を行う。
It will now be described a third according to the invention (according to claim 1) inspection object determination method.
First, as shown in FIG. 8, the test object (sintered connecting rod) 75 is continuously struck at a plurality of positions along a desired direction, in the illustrated example, at five positions a to e. The vibration (sound) generated in is received in a wide band, here in a band from 0 Hz to 40 kHz. Then, frequency analysis is performed on each received vibration, and waveform data including peak values in the same order wave in the frequency distribution (frequency spectrum) unique to the inspection object, for example, the fundamental wave and the same order higher order wave, is obtained. Get each. Then, using any one of these data, for example, data at the first hitting position (a) (basically peak value data) as a reference, a frequency change rate between the reference data value is obtained and obtained. The presence or absence of a surface defect or an internal defect of the inspection object 75 is determined based on the change in each frequency change rate.

図9は、上記周波数変化率の変化によって検査対象物75の表面欠陥や内部欠陥、具体的には、割れや内部酸化の有無の判別ができる様子を分かりやすく示すグラフであって、横軸に打撃位置を、縦軸に周波数変化率をとって示している。
図9は、位置イ〜ホにおいて各々求められた周波数変化率の変化曲線を、3つの態様で示す。この場合、変化曲線91は割れがなく、内部酸化が僅かにある検査対象物、変化曲線92は内部酸化のある検査対象物、変化曲線93は割れのある検査対象物についての曲線を各々例示している。なお、位置イ〜ホにおける変化率が各々「1」となるのは、検査対象物75に割れも内部酸化もない場合である。
このように、変化曲線91〜93の形態を見れば、つまり周波数変化率を各々求めれば、検査対象物75の表面欠陥や内部欠陥の有無の判別ができる。なお、曲線91,92から分かるように、割れや内部酸化等の欠陥位置において周波数変化率が低下しているので、欠陥が生じている大凡の位置も分かる。図示例では、位置ロ,ハ部分において欠陥が生じていることが分かる。
上述した第3の発明に係る検査対象物判別方法の装置(第4の発明:請求項2に記載の発明)への適用は、例えば図7中の支持台76を任意方向に任意間隔で移動、停止可能とし、この支持台76の移動に応じて加振手段71が検査対象物75に打撃を加え、振動受信手段72が各停止位置における打撃のタイミングで検査対象物75の振動を受信する構成とすることで実現できる。
FIG. 9 is a graph showing in an easy-to-understand manner how surface defects and internal defects of the inspection object 75, specifically, the presence or absence of cracks and internal oxidation can be determined by the change in the frequency change rate. The striking position is shown with the frequency change rate on the vertical axis.
FIG. 9 shows the change curves of the frequency change rates respectively obtained at the positions i to e in three modes. In this case, the change curve 91 is an example of a test object having no cracks and a little internal oxidation, the change curve 92 is a test object having an internal oxidation, and the change curve 93 is a curve of a test object having a crack. ing. It should be noted that the rate of change in each of the positions A to E is “1” when the inspection object 75 has neither cracks nor internal oxidation.
In this way, by looking at the forms of the change curves 91 to 93, that is, by obtaining the respective frequency change rates, it is possible to determine the presence or absence of surface defects and internal defects of the inspection object 75. As can be seen from the curves 91 and 92, since the frequency change rate is reduced at the defect position such as a crack or internal oxidation, the approximate position where the defect occurs can also be known. In the example shown in the drawing, it can be seen that defects are generated at the positions B and C.
Application of the inspection object discrimination method according to the above-described third invention to the apparatus (fourth invention : invention according to claim 2 ) is achieved, for example, by moving the support base 76 in FIG. The vibrating means 71 strikes the inspection object 75 in accordance with the movement of the support base 76, and the vibration receiving means 72 receives the vibration of the inspection object 75 at the timing of striking at each stop position. This can be realized by configuring.

以上に述べた第3及び第4の発明(請求項1及び2に記載の発明)に係る検査対象物判別方法及び装置によれば、量産ライン等の環境に変化があり、製造された部材、製品等(検査対象物)の間に温度変化が生じても、自身の温度は、連続的に加えられる打撃が済む間(短時間)変わらない。
したがって、量産ラインの一時停止等で検査対象物である製品間に温度差が生じた場合でも、特定の検査対象物の表面欠陥や内部欠陥を判別できる。
また、上記のように取得した複数の波形データ間における各周波数変化「率」の変化によって、検査対象物の表面欠陥又は内部欠陥の有無の判別を行っている。したがって、相互間に温度変化が生じ得る環境で同一設計値で製造された、特に一時停止等で製品間に温度差が生じ得る量産ラインで製造された、複数の製品、つまり検査対象物の各々についても、表面欠陥や内部欠陥を判別できる。
更に本発明によれば割れや内部酸化等の欠陥位置において周波数変化率が低下していることによって、表面欠陥又は内部欠陥が生じている大凡の位置も分かる等の利点がある。
なお、第3及び第4の発明によれば、表面欠陥の判別につき、視覚に頼った検査ではないので検出力を向上できる。
しかも、共通の手法(構成)によって内部欠陥も検出することができる。すなわち、打撃を加えることによって生じる検査対象物の振動を周波数解析すると、その検査対象物に固有の周波数分布や固有周波数が結果として得られる。周波数解析の結果として得られる周波数分布は、その検査対象物の表面や内部の欠陥の有無を反映して固有のパターンを示す。したがって、検査対象物の複数位置についての波形データ(周波数分布データ)を各々取得し、うち何れか1つのデータを基準に、その値との間の周波数変化率を各々求め、各周波数変化率の変化によれば、その検査対象物の表面欠陥や内部欠陥の有無を判別できるが、この際自身の、つまり1つの検査対象物に対して、共通の手法を繰り返すことによって判別できる。
図7に示す装置においては、振動受信手段にマイクロホン、つまり非接触式の振動受信手段を用いたが、これのみに限らず、接触式の振動受信手段を用いてもよい。
According to the inspection object discriminating method and apparatus according to the third and fourth inventions described above (the inventions according to claims 1 and 2), there are changes in the environment such as the mass production line, Even if a temperature change occurs between a product or the like (inspection object), its own temperature does not change during a continuous blow (short time).
Therefore, even when a temperature difference occurs between products that are inspection objects due to temporary suspension of a mass production line or the like, surface defects and internal defects of a specific inspection object can be determined.
Further, the presence / absence of a surface defect or an internal defect of the inspection object is determined based on a change in each frequency change “rate” between the plurality of waveform data acquired as described above. Therefore, each of a plurality of products, that is, inspection objects, manufactured at the same design value in an environment where temperature changes can occur between each other, especially manufactured on a mass production line where a temperature difference can occur between products due to temporary stoppage, etc. As for, surface defects and internal defects can be discriminated.
Furthermore, according to the present invention, since the frequency change rate is reduced at the defect positions such as cracks and internal oxidation, there is an advantage that the approximate position where the surface defect or the internal defect is generated can be recognized.
According to the third and fourth aspects of the invention, the detection of surface defects can be improved because it is not a visual inspection.
Moreover, internal defects can also be detected by a common method (configuration). That is, if the frequency of the vibration of the inspection object generated by applying the impact is analyzed, a frequency distribution and a natural frequency specific to the inspection object are obtained as a result. The frequency distribution obtained as a result of the frequency analysis shows a unique pattern reflecting the presence or absence of defects on the surface of the inspection object or inside. Therefore, waveform data (frequency distribution data) for a plurality of positions of the inspection object is acquired, and the frequency change rate between each value is obtained based on any one of the data, and each frequency change rate is calculated. According to the change, the presence or absence of a surface defect or an internal defect of the inspection object can be determined. At this time, it can be determined by repeating a common method for itself, that is, one inspection object.
In the apparatus shown in FIG. 7, a microphone, that is, a non-contact type vibration receiving unit is used as the vibration receiving unit. However, the present invention is not limited to this, and a contact type vibration receiving unit may be used.

物体の振動を周波数解析して得られる周波数分布波形を示す図である。It is a figure which shows the frequency distribution waveform obtained by frequency-analyzing the vibration of an object. 多数の検査対象物についての周波数分布波形を示す図である。It is a figure which shows the frequency distribution waveform about many test objects. 本発明によって検査対象物の割れの有無を判別できること説明するための図である。It is a figure for demonstrating that the presence or absence of the crack of a test target object can be discriminate | determined by this invention. 同じく検査対象物が焼入れ済みか否かを判別できること説明するための図である。It is a figure for demonstrating that it can be discriminate | determined whether the test target object has been hardened similarly. 同じく検査対象物について一方の材質が他方の材質と同じか否かを判別できること説明するための図である。It is a figure for demonstrating that it can discriminate | determine whether one material is the same as the other material similarly about a test object. 多数の試料について周波数解析を行って得られた周波数分布波形を示す図である。It is a figure which shows the frequency distribution waveform obtained by performing frequency analysis about many samples. 本発明による検査対象物判別装置の一実施形態を示すブロック図である。It is a block diagram showing one embodiment of the inspection subject discriminating device by the present invention. 図7とは異なる発明による検査対象物判別方法の手順説明図である。FIG. 8 is a procedure explanatory diagram of an inspection object discrimination method according to an invention different from FIG. 7. 同上発明において検査対象物の判別ができる様子を示すグラフである。It is a graph which shows a mode that a test target object can be discriminate | determined in invention same as the above.

符号の説明Explanation of symbols

71:加振手段、72:振動受信手段、73:解析判別手段、74:モニタ、75:検査対象物。
71: vibration means, 72: vibration receiving means, 73: analysis discrimination means, 74: monitor, 75: inspection object.

Claims (2)

相互間に温度変化が生じ得る環境で同一設計値で製造された複数の検査対象物の各々に対して、その欠陥の有無の判別を行う検査対象物判別方法であって、
前記検査対象物の所望方向に沿う複数位置について連続的に打撃を加えながら各位置において生じる該検査対象物の振動を受信し、この受信された各振動について周波数解析し、該検査対象物に固有の周波数分布中の同一次の波動におけるピーク値を含む波形データを各々取得し、それらのうちの何れか1つのデータを基準に、その基準データ値との間の周波数変化率を各々求め、求められた各周波数変化率の変化によって前記検査対象物の表面欠陥又は内部欠陥の有無の判別を行うことを特徴とする検査対象物判別方法。
An inspection object discriminating method for discriminating the presence or absence of a defect for each of a plurality of inspection objects manufactured with the same design value in an environment where temperature changes can occur between each other,
Wherein while adding continuously striking the plurality of positions along the desired direction of the inspection object receiving the vibration of the object to be examined occurring in each position, a frequency analysis for each of the vibration which is the received, specific to the inspection object Waveform data including peak values in the same-order wave in the frequency distribution of the respective frequency data are obtained, and the frequency change rate between the reference data values is obtained with any one of the data as a reference. A method for discriminating an inspection object, comprising: discriminating the presence or absence of a surface defect or an internal defect of the inspection object based on a change in each frequency change rate.
相互間に温度変化が生じ得る環境で同一設計値で製造された複数の検査対象物の各々に対して、その欠陥の有無の判別を行う検査対象物判別装置であって、
前記検査対象物に連続的に打撃を加える加振手段と、
前記打撃によって生じる前記検査対象物の振動を受信する振動受信手段と、
前記検査対象物の打撃位置を移動させる移動手段と、
前記検査対象物を打撃することによって生じる該検査対象物の振動を、該検査対象物の所望方向に沿う複数位置について連続的に受信し、この受信された各振動について周波数解析し、該検査対象物に固有の周波数分布中の同一次の波動におけるピーク値を含む波形データを各々取得し、それらのうちの何れか1つのデータを基準に、その基準データ値との間の周波数変化率を各々求め、求められた各周波数変化率の変化によって前記検査対象物の表面欠陥又は内部欠陥の有無の判別を行う解析判別手段とを具備することを特徴とする検査対象物判別装置。
An inspection object discriminating apparatus that discriminates the presence or absence of defects for each of a plurality of inspection objects manufactured with the same design value in an environment where temperature changes can occur between each other,
And vibration means for applying a continuously blow to the test object,
Vibration receiving means for receiving vibration of the inspection object generated by the hitting;
Moving means for moving the hit position of the inspection object;
The vibration of the inspection object generated by hitting the inspection object is continuously received at a plurality of positions along the desired direction of the inspection object, the frequency analysis is performed for each received vibration, and the inspection object Waveform data including peak values in the same-order wave in the frequency distribution unique to the object is acquired, and the frequency change rate between the reference data values is obtained based on any one of the data. An inspection object discriminating apparatus comprising: an analysis discriminating unit that determines the presence or absence of a surface defect or an internal defect of the inspection object according to the obtained change in each frequency change rate.
JP2004339355A 2004-11-24 2004-11-24 Inspection object discrimination method and apparatus Expired - Fee Related JP4407817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339355A JP4407817B2 (en) 2004-11-24 2004-11-24 Inspection object discrimination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339355A JP4407817B2 (en) 2004-11-24 2004-11-24 Inspection object discrimination method and apparatus

Publications (2)

Publication Number Publication Date
JP2006145495A JP2006145495A (en) 2006-06-08
JP4407817B2 true JP4407817B2 (en) 2010-02-03

Family

ID=36625349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339355A Expired - Fee Related JP4407817B2 (en) 2004-11-24 2004-11-24 Inspection object discrimination method and apparatus

Country Status (1)

Country Link
JP (1) JP4407817B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261816A (en) * 2009-05-07 2010-11-18 Asama Giken Co Ltd Hammering test method
JP5732826B2 (en) * 2010-11-22 2015-06-10 トヨタ自動車株式会社 Casting inspection method
WO2016092869A1 (en) * 2014-12-10 2016-06-16 原子燃料工業株式会社 Method for evaluating state of member
JP6605409B2 (en) * 2015-08-28 2019-11-13 日立オートモティブシステムズ株式会社 Sound inspection device
JP6933595B2 (en) * 2018-03-14 2021-09-08 株式会社東芝 Diagnostic equipment, diagnostic robots, diagnostic methods and programs

Also Published As

Publication number Publication date
JP2006145495A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
EP1933135B1 (en) Nondestructive inspection apparatus
JP4875589B2 (en) Panel inspection apparatus and inspection method
RU2011122813A (en) METHOD AND DEVICE FOR ANALYSIS OF VIBRATIONS, AND ALSO THE DATABASE OF IMAGE DATA FOR THEM AND APPLICATION OF THE DATABASE OF IMAGE DATA
JP2011257384A (en) Method for imaging structure shape in welded part and device therefor
JP2013543128A (en) Method and apparatus for inspecting eggs
JP4407817B2 (en) Inspection object discrimination method and apparatus
KR101830461B1 (en) Method and device for determining an orientation of a defect present within a mechanical component
JP6240186B2 (en) Method and apparatus for detecting cracks in eggshell
JPH0392758A (en) Product inspection
Chaudhari et al. Experimental investigation of crack detection in cantilever beam using vibration analysis
Kananen et al. Discriminating pores from inclusions in rolled steel by ultrasonic echo analysis
Barth et al. Testing of ceramics by ultrasound microscopy and vibration analysis
JP2006038478A (en) Quality determination method and device for specimen
JP3236865B2 (en) Excitation mode identification method
JP5492623B2 (en) Inspection apparatus and inspection method
JP7357341B2 (en) Acoustic inspection device and method
KR100485450B1 (en) Ultrasonic testing apparatus and control method therefor
JP2004093227A (en) Steel inclusion detection method by water immersion ultrasonic inspection
JP2004177168A (en) In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2005172430A (en) Flaw-detecting method of ceramic product
Weiher et al. Laser Sensing System for Contactless Detection of Subsurface Defects in Concrete Tunnel Lining
JP2008020425A (en) Nondestructive diagnosis method and device for concrete structure
JP2023119392A (en) Inspection device and inspection method
Köhler et al. A new application of laser vibrometric wave field propagation measurements: Grain structure visualization
JP2004219086A (en) Cleanliness evaluation method of steel by immersion ultrasonic inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees