JP2001021336A - Method and device for measuring degradation of concrete structure - Google Patents

Method and device for measuring degradation of concrete structure

Info

Publication number
JP2001021336A
JP2001021336A JP11193942A JP19394299A JP2001021336A JP 2001021336 A JP2001021336 A JP 2001021336A JP 11193942 A JP11193942 A JP 11193942A JP 19394299 A JP19394299 A JP 19394299A JP 2001021336 A JP2001021336 A JP 2001021336A
Authority
JP
Japan
Prior art keywords
resonance frequency
concrete structure
deterioration
degree
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11193942A
Other languages
Japanese (ja)
Other versions
JP3340702B2 (en
Inventor
Yoshio Moriai
禧夫 盛合
Yoshiyasu Matsumura
吉康 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKEN KOEI KK
Original Assignee
TOKEN KOEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKEN KOEI KK filed Critical TOKEN KOEI KK
Priority to JP19394299A priority Critical patent/JP3340702B2/en
Publication of JP2001021336A publication Critical patent/JP2001021336A/en
Application granted granted Critical
Publication of JP3340702B2 publication Critical patent/JP3340702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately and nondestructively measure and detect the degree of degradation of a concrete structure at a deep portion by analyzing the deviation between the resonance frequency spectra from a defectless section and other sections. SOLUTION: The reference resonance frequency spectrum of the defectless section of a concrete structure 10 to be measured is prepared in advance by measuring the resonance frequency of the section by applying vibrations to the section. Then the resonance frequency spectrum of another measured section is prepared by measuring the resonance frequency of the section by applying vibrations to the section. Then the degree of degradation of the internal portion of the concrete structure 10 is discriminated by analyzing the deviation between both prepared resonance frequency spectra by superposing the spectra upon another. An impulse method in which a prescribed portion is hit with an impact hammer 11, etc., is used as the vibration applying means. The vibration applying force of the hammer 11 and the vibration of the structure 10 are respectively detected by means of a force detecting pickup 16 and an acceleration pickup 16 and the signals of the pickups 12 and 16 are inputted to a high-speed Fourier transformation analyzer 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンクリート構造
物を破壊することなしに、コンクリート構造物の内部組
織の劣化度合を測定する技術分野に属する。
The present invention belongs to the technical field of measuring the degree of deterioration of the internal structure of a concrete structure without destroying the concrete structure.

【0002】[0002]

【従来の技術】鉄筋コンクリート構造物の劣化について
は、鉄筋の腐食、アルカリ骨材反応、凍害等により、
セメントの軟質化、即ちコンクリート内部組織破壊によ
る耐圧力低下、亀裂、即ち、鉄筋の腐食発錆によるコ
ンクリートのひび割れ、鉄筋とコンクリートとの遊離
等の現象を生じ、ひび割れ等が目視できる程度に顕在化
する以前に、その劣化の程度を知ることが望ましい。従
来、コンクリート構造物の内部組織の劣化度合を測定す
るには、コンクリート構造物の所定箇所からサンプルを
採取し、圧縮試験等を行い、さらに粉末にして組成を分
析して石灰変質度合の程度を検出する劣化測定方法が、
確実に劣化の程度を知る手段として一般的に知られお
り、また、特開平8-29413号公報に開示されているよう
に、コンクリート構造物に細い検査孔を複数本削孔し、
ファイバースコープ等を挿入してひび割れの進展等を検
査する方法が知られているが、いずれも、サンプルを採
取する必要があったり、検査孔を削孔しなければならな
い。そこで、コンクリート構造物の内部組織の劣化度合
を非破壊で検出する方法が求められ、従来、コンクリー
ト構造物の外観から目視によってその色合い等で劣化の
おおよその程度を知ることができるが、客観的評価が得
られにくく、非破壊で客観的評価が得られるようにする
ため、種々のコンクリート構造物の劣化度合検出方法が
提案されている。
2. Description of the Related Art Deterioration of reinforced concrete structures is caused by corrosion of reinforcing steel, alkali-aggregate reaction, and frost damage.
Softening of cement, that is, reduction of pressure resistance due to destruction of the internal structure of the concrete, cracking, that is, cracking, concrete cracking due to corrosion and rusting of the reinforcing steel, separation of the reinforcing steel from the concrete, etc. Before doing so, it is desirable to know the extent of its degradation. Conventionally, in order to measure the degree of deterioration of the internal structure of a concrete structure, a sample is taken from a predetermined portion of the concrete structure, a compression test is performed, the composition is further made into powder, and the composition is analyzed to determine the degree of lime alteration. Deterioration measurement method to detect,
It is generally known as a means for surely knowing the degree of deterioration, and, as disclosed in JP-A-8-29413, drilling a plurality of thin inspection holes in a concrete structure,
Methods of inserting a fiberscope or the like to inspect the progress of cracks and the like are known, but in any case, it is necessary to collect a sample or drill an inspection hole. Therefore, a method of nondestructively detecting the degree of deterioration of the internal structure of a concrete structure is required. Conventionally, the approximate degree of deterioration can be known visually from the appearance of a concrete structure by its color, etc. Various methods of detecting the degree of deterioration of concrete structures have been proposed in order to make it difficult to obtain an evaluation and to obtain an objective evaluation in a non-destructive manner.

【0003】例えば、コンクリート構造物の表面に変位
計や歪みゲージを設置し、鉄筋の腐食に伴って発生する
変形を経時的に計測して劣化の程度を判断する方法が知
られている。また、特開平8-15126号公報に提案されて
いるように、コンクリート構造物の各面を超音波でスキ
ャンニングし、得られた距離測定値と予め設定された建
全部の基準値とを比較し劣化の度合を検出している。ま
た、特開平11-30510号公報に提案されているように、コ
ンクリート構造物の表面の凸凹を距離センサーの直線上
の走査により測定し、測定された凸凹量から劣化状態を
検出している。さらに、特開平5-108796号公報に開示さ
れているように、コンクリート構造物の表面温度分布を
赤外線センサーによって検出し、コンクリート構造物の
健全状態の温度分布と比較して、特異な温度分布を検出
した場合に、劣化部分として判定・評価していた。
[0003] For example, a method is known in which a displacement gauge or a strain gauge is installed on the surface of a concrete structure, and the degree of deterioration is determined by measuring the deformation caused by corrosion of the reinforcing bar over time. In addition, as proposed in Japanese Patent Application Laid-Open No. 8-15126, each surface of a concrete structure is scanned with an ultrasonic wave, and the obtained distance measurement value is compared with a preset reference value of the entire building. And the degree of deterioration is detected. Further, as proposed in Japanese Patent Application Laid-Open No. H11-30510, unevenness on the surface of a concrete structure is measured by scanning a distance sensor on a straight line, and a deterioration state is detected from the measured unevenness. Furthermore, as disclosed in JP-A-5-108796, the surface temperature distribution of the concrete structure is detected by an infrared sensor, and compared with the temperature distribution of the concrete structure in a healthy state, a unique temperature distribution is obtained. When it was detected, it was judged and evaluated as a deteriorated part.

【0004】また、現在、比較的に評価が確立されたコ
ンクリート構造物の劣化の測定方法として、自然電位を
測定して劣化度合を分析する自然電位測定方法が知られ
ている。
[0004] As a method of measuring deterioration of a concrete structure, which has been relatively well-established, a method of measuring a natural potential and analyzing a degree of deterioration is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来のコンクリート構造物の非破壊での劣化度合の検査
・測定方法において、例えば、歪みゲージ等で経時的に
形状変化を計る方法においては表面から浅い部位での劣
化は比較的正確に検出できるが、内部組織の特に深層部
位での劣化度合は必ずしも正確に測定・検出できないと
いう問題点があった。また、赤外線センサーによる表面
温度分布を計る方法においては、表面から浅い部位での
劣化は比較的正確に検出できるが、内部組織の特に深層
部位での劣化度合は必ずしも正確に測定・検出できない
という問題点の外に、温度管理が困難であると云った問
題点があった。更に、自然電位測定方法は、主に鉄筋の
劣化度合を検出するには最適であるが、コンクリート自
体の劣化やひび割れを検出するには適さないという問題
点があった。
However, in the above-mentioned conventional method for inspecting and measuring the degree of nondestructive deterioration of a concrete structure, for example, in a method for measuring a change in shape with time using a strain gauge, etc. Deterioration at a shallow site can be detected relatively accurately, but there is a problem that the degree of deterioration of an internal tissue, particularly at a deep site, cannot always be measured and detected accurately. Also, in the method of measuring the surface temperature distribution by an infrared sensor, deterioration at a shallow portion from the surface can be detected relatively accurately, but the degree of deterioration of internal tissue, particularly at a deep portion, cannot always be measured and detected accurately. In addition to the point, there was a problem that the temperature control was difficult. Further, the method of measuring the self-potential is most suitable for mainly detecting the degree of deterioration of a reinforcing bar, but is not suitable for detecting deterioration or cracks of concrete itself.

【0006】本発明は、上記の問題点に鑑みてなされた
もので、その課題は、非破壊でコンクリート構造物内部
の深層部位で劣化度合の程度を適格に測定・検出するこ
とのできるコンクリート構造物の劣化測定方法、およ
び、その測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a concrete structure capable of non-destructively measuring and detecting the degree of deterioration at a deep portion inside a concrete structure. An object of the present invention is to provide a method for measuring deterioration of an object and a measuring device therefor.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の発明は、ほぼ同じ厚さの部分を
有するコンクリート構造物において、予め測定対象のコ
ンクリート構造物の健全部を加振して共振振動数を測定
し、健全部の基準共振周波数スペクトルを作成するとと
もに、他の測定部を加振して測定部共振振動数を測定
し、該測定部共振周波数スペクトルを作成して、作成し
た両共振周波数スペクトルを重ね合わせて、両共振周波
数スペクトルのずれの程度を分析することによって内部
組織の劣化度合を判定する鉄筋コンクリート構造物の劣
化測定方法である。そして、健全部のスペクトルと比較
して複雑になっている複雑さの度合を分析、あるいは、
スペクトルのピークが鈍っている度合を分析することに
よって、測定個所のセメントの軟質化、亀裂、鉄筋のコ
ンクリートからの遊離等の程度を測定する。上記の課題
を解決するために、請求項2に記載の発明は、ほぼ同じ
厚さの部分を有するコンクリート構造物において、予め
測定対象のコンクリート構造物の健全部を加振して健全
部での振動の基本モードの基準共振周波数を検出し、該
基準共振周波数から基準位相速度の値を算出するととも
に、他の測定部を加振して前記基準周波数の付近で振動
の測定部共振周波数のピークを検出し、該ピークでの測
定部共振周波数から振動の位相速度値を算出し、両位相
速度値を比較してその差の値を分析することによって内
部組織の劣化度合を判定する鉄筋コンクリート構造物の
劣化測定方法である。そして、振動の位相速度の値によ
って、定量的に鉄筋コンクリート構造物の内部組織の劣
化度合を判断する。上記の課題を解決するために、請求
項3に記載の発明は、ほぼ同じ厚さの部分を有するコン
クリート構造物において、予め測定対象のコンクリート
構造物の健全部を加振して共振振動数を測定し、健全部
の基準共振周波数スペクトルを作成するとともに、他の
測定部を加振して測定部共振振動数を測定し、該測定部
共振周波数スペクトルを作成して、作成した両共振周波
数スペクトルを重ね合わせて、両共振周波数スペクトル
のずれの程度を分析することによって内部組織の劣化度
合を判定することを特徴とする鉄筋コンクリート構造物
の劣化測定装置である。上記の課題を解決するために、
請求項3に記載の発明は、ほぼ同じ厚さの部分を有する
コンクリート構造物において、予め測定対象のコンクリ
ート構造物の健全部を加振して健全部での振動の基本モ
ードの基準共振周波数を検出し、該基準共振周波数から
基準位相速度の値を算出するとともに、他の測定部を加
振して前記基準周波数の付近で振動の測定部共振周波数
のピークを検出し、該ピークでの測定部共振周波数から
振動の位相速度値を算出し、両位相速度値を比較してそ
の差の値を分析することによって内部組織の劣化度合を
判定する鉄筋コンクリート構造物の劣化測定装置であ
る。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, in a concrete structure having a portion having substantially the same thickness, a sound portion of a concrete structure to be measured in advance is used. To measure the resonance frequency of the sound part to create a reference resonance frequency spectrum of the sound part, and to excite other measurement parts to measure the resonance frequency of the measurement part to create the resonance frequency spectrum of the measurement part. This is a method for measuring the deterioration of a reinforced concrete structure in which the created two resonance frequency spectra are superimposed and the degree of the deterioration of the internal structure is determined by analyzing the degree of deviation between the two resonance frequency spectra. Then, analyze the degree of complexity that is more complicated than the sound part spectrum, or
By analyzing the degree of dulling of the peak of the spectrum, the degree of softening, cracking, and detachment of the reinforcing steel from the concrete at the measuring point is measured. In order to solve the above-mentioned problem, the invention according to claim 2 is a method of vibrating a sound portion of a concrete structure to be measured in advance in a sound structure of a concrete structure having a portion having substantially the same thickness. Detect the reference resonance frequency of the fundamental mode of vibration, calculate the value of the reference phase velocity from the reference resonance frequency, and excite other measurement units to peak the resonance frequency of the vibration measurement unit near the reference frequency. , A phase velocity value of the vibration is calculated from the resonance frequency of the measuring part at the peak, the two phase velocity values are compared, and the value of the difference is analyzed to determine the degree of deterioration of the internal structure of the reinforced concrete structure. This is a method for measuring the deterioration of the device. Then, the degree of deterioration of the internal structure of the reinforced concrete structure is quantitatively determined based on the value of the phase velocity of the vibration. In order to solve the above-mentioned problem, the invention according to claim 3 provides a concrete structure having a portion having substantially the same thickness, and vibrates a sound part of the concrete structure to be measured in advance to reduce the resonance frequency. Measure and create a reference resonance frequency spectrum of the healthy part, and also vibrate the other measurement parts to measure the resonance frequency of the measurement part, create the measurement part resonance frequency spectrum, and create the two resonance frequency spectra Are superimposed on each other, and the degree of deviation between the two resonance frequency spectra is analyzed to determine the degree of deterioration of the internal structure. To solve the above issues,
According to a third aspect of the present invention, in a concrete structure having a portion having substantially the same thickness, a sound portion of a concrete structure to be measured is vibrated in advance to set a reference resonance frequency of a fundamental mode of vibration in the sound portion. Detecting and calculating the value of the reference phase velocity from the reference resonance frequency, and vibrating another measurement unit to detect a peak of the resonance frequency of the vibration measurement unit near the reference frequency, and measuring at the peak. This is a deterioration measurement device for a reinforced concrete structure that calculates a phase velocity value of vibration from a partial resonance frequency, compares the two phase velocity values, and analyzes the difference value to determine the degree of deterioration of the internal structure.

【0008】[0008]

【発明の実施の形態】ここで、本発明に好適なコンクリ
ート構造物の内部組織の劣化度合測定方法と測定装置を
説明するが、まず、本発明のコンクリート構造物の内部
組織の劣化度合測定方法と測定装置の原理を説明する。
本発明者らは、一般に、物体の強度を表す物理量の1つ
にヤング率Eがあり、このヤング率Eが大きいほど、物
体の圧縮強度も大きいことに着目して、非破壊状態で、
鉄筋コンクリート構造物の内部の圧縮強度を測定するこ
とを、鋭意研究した。上記ヤング率Eを測定する方法に
は物体の共振振動数を測定することによってその物体の
ヤング率Eを測定する方法があり、この測定方法は、コ
ンクリート構造物のような有限の大きさの弾性体が、多
数の固有振動モードを有しており、これらのモード振動
数は、そのコンクリート構造物の材質・形状および寸法
によって定まる数値である。そして、弾性体であるコン
クリート構造物を叩くと、有限の大きさ、例えば厚さや
寸法によって、コンクリート構造物の固有振動モードが
励起され、その固有振動数で振動(共振現象)するが、ど
のモードが励起されるかは、叩く位置や叩き方によって
決まる。例えば、橋の床板コンクリート構造物の固有振
動モードも多数存在するが、上述したように、一般に叩
く位置によって励起するモードは異なる。本発明者ら
は、床板コンクリート構造物において、床板コンクリー
トの厚さがほぼ一定である場合に、叩く位置に依らずに
励起されるモードが幾つか存在することを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION Here, a method and a device for measuring the degree of deterioration of the internal structure of a concrete structure suitable for the present invention will be described. First, the method for measuring the degree of deterioration of the internal structure of a concrete structure according to the present invention will be described. And the principle of the measuring device will be described.
The present inventors have generally noted that one of physical quantities representing the strength of an object is a Young's modulus E. The larger the Young's modulus E, the higher the compressive strength of the object, and in a non-destructive state,
Measuring the compressive strength inside a reinforced concrete structure has been studied extensively. As a method of measuring the Young's modulus E, there is a method of measuring the Young's modulus E of an object by measuring the resonance frequency of the object. This measuring method uses a finite-sized elastic material such as a concrete structure. The body has a number of natural vibration modes, and these mode frequencies are numerical values determined by the material, shape, and dimensions of the concrete structure. When a concrete structure that is an elastic body is hit, a natural vibration mode of the concrete structure is excited by a finite size, for example, a thickness or a dimension, and vibrates at the natural frequency (resonance phenomenon). Is excited depends on the hitting position and how to hit. For example, there are many natural vibration modes of a floor slab concrete structure of a bridge, but as described above, the mode to be excited generally differs depending on the hitting position. The present inventors have found that in a floor slab concrete structure, when the thickness of the floor slab concrete is substantially constant, there are several modes that are excited regardless of the hitting position.

【0009】それらは、床板の厚さ方向の横波と縦波の
振動モードであり、それらの振動の基本モードの振動数
は次式(1)〜(4)で与えられる。 (1)横波の共振振動数 fs=vs/2h (2)横波の伝搬速度 vs=√1/2(1+σ)・E/ρ (3)縦波の共振振動数 fp=vp/2h (4)縦波の伝搬速度 vp=√(1-σ)/(1+σ)(1−2σ)・E/ρ ここで、h:床板の厚さ、σ:ポアソン比、ρ:密度、
である。ただし、実際には上記の横波と縦波とは、複合
波となって厳密には区別できないので、本発明及び実施
例では厳密には横波は「横波的」、縦波は「縦波的」で
あるが、本明細書では単に「横波」、「縦波」と定義す
る。
These are vibration modes of transverse and longitudinal waves in the thickness direction of the floorboard, and the frequencies of the fundamental modes of these vibrations are given by the following equations (1) to (4). (1) Shear wave resonance frequency fs = vs / 2h (2) Shear wave propagation velocity vs = √1 / 2 (1 + σ) E / ρ (3) Longitudinal wave resonance frequency fp = vp / 2h (4) Longitudinal wave propagation velocity vp = √ (1−σ) / (1 + σ) (1-2σ) · E / ρ where h: thickness of floorboard, σ: Poisson's ratio, ρ: density,
It is. However, in practice, the above-mentioned transverse wave and longitudinal wave are complex waves and cannot be strictly distinguished, so strictly speaking, in the present invention and the examples, the transverse wave is “transverse wave” and the longitudinal wave is “longitudinal wave”. However, in this specification, they are simply defined as “lateral wave” and “longitudinal wave”.

【0010】そして、鉄筋コンクリート構造物の劣化
は、上述したように、セメントの軟質化、亀裂、
鉄筋の遊離等の現象を生じるが、本発明者らは、鉄筋コ
ンクリート構造物の劣化と上述した共振振動数との関係
が、h:床板の厚さ、σ:ポアソン比、ρ:密度に関連
し、同じ厚さを有するコンクリート構造物においては、
セメントの軟質化の現象に対して、上記のいずれの共
振振動数も低い方に移動し、かつ、スペクトルのピーク
が鈍ることを見出した。また、亀裂、鉄筋の遊離等
の現象に対しては、スペクトルが複雑になったり、共振
振動数のピークが明瞭ではなくなることをも見出した。
As described above, the deterioration of the reinforced concrete structure is caused by the softening of cement, cracking,
Although the phenomenon such as separation of the reinforcing bars occurs, the present inventors have found that the relationship between the deterioration of the reinforced concrete structure and the above-mentioned resonance frequency is related to h: the thickness of the floorboard, σ: Poisson's ratio, and ρ: density. , For concrete structures having the same thickness,
With respect to the phenomenon of cement softening, it has been found that any of the above resonance frequencies shifts to a lower one and the peak of the spectrum becomes dull. It has also been found that the spectrum becomes complicated and the peak of the resonance frequency is not clear for phenomena such as cracks and loosening of reinforcing bars.

【0011】本実施例では、上記の知見に基づき、図1
に示すような計測システムを組み立てて使用したが、以
下にそのシステムを図に沿って説明する。上記の原理を
確認するための測定対象の鉄筋コンクリート構造物は、
図2に示すような、厚さh=0.23m で1m四方の床板の
鉄筋コンクリートの健全な床板モデルである。まず、鉄
筋コンクリート構造物10(図1において、鉄筋コンク
リートの床板モデル、または、測定対象の鉄筋コンクリ
ート)に振動を付与するための加振手段としては、イン
パクトハンマー11で所定部位を叩くインパルス方式、
又は正弦波振動を発生する振動子により振動を付与し、
その振動数を掃引する掃引方式が適用できる。本実施例
ではインパクトハンマー11を用いた。このハンマー1
1には加振力を力検出ピックアップ12で検出して電気
信号を出力する加振力検出手段が設けられており、この
電気信号は加振検出信号13として前置増幅器14によ
り増幅されてFTT分析器15(fast fourier transfor
m)のFFTアナライザ部(図示せず)の第1チャンネル15
1に入力されている。鉄筋コンクリート構造物10の振
動を検出するための振動検出手段として、鉄筋コンクリ
ート構造物10の上端面に加速度ピックアップ16が取
り付けられている。この取り付け手段は振動検出の精度
を高めるために、例えば、瞬間接着剤などの接着剤を介
して強固に取り付ける。この加速度ピックアップ16は
圧電型の加速度ピックアップで、振動成分を検出可能で
あり、それぞれの方向の振動を電気信号の振動検出信号
17に変換して出力するようになっている。この振動検
出信号17はチャージ増幅器18により増幅されてFT
T分析器15のFFTアナライザ(図示せず)の第2チャ
ンネル152に入力されている。
In this embodiment, based on the above findings, FIG.
The measurement system shown in Fig. 1 was assembled and used, and the system will be described below with reference to the drawings. The reinforced concrete structure to be measured to confirm the above principle is
As shown in FIG. 2, this is a sound floor model of reinforced concrete having a thickness h = 0.23 m and a floor plate of 1 m square. First, as a vibrating means for applying vibration to the reinforced concrete structure 10 (in FIG. 1, a reinforced concrete floor plate model, or a reinforced concrete to be measured), an impulse method in which an impact hammer 11 strikes a predetermined portion,
Or vibration is given by a vibrator that generates sinusoidal vibration,
A sweep method for sweeping the frequency can be applied. In this embodiment, the impact hammer 11 is used. This hammer 1
1 is provided with exciting force detecting means for detecting an exciting force by a force detecting pickup 12 and outputting an electric signal. This electric signal is amplified as a vibration detecting signal 13 by a preamplifier 14 and Analyzer 15 (fast fourier transfor
m) of the first channel 15 of the FFT analyzer section (not shown)
Entered in 1. As a vibration detecting means for detecting the vibration of the reinforced concrete structure 10, an acceleration pickup 16 is attached to the upper end surface of the reinforced concrete structure 10. This mounting means is firmly mounted via an adhesive such as an instantaneous adhesive in order to increase the accuracy of vibration detection. The acceleration pickup 16 is a piezoelectric acceleration pickup capable of detecting a vibration component, and converts the vibration in each direction into a vibration detection signal 17 of an electric signal and outputs the signal. This vibration detection signal 17 is amplified by the charge amplifier 18 and
The signal is input to a second channel 152 of an FFT analyzer (not shown) of the T analyzer 15.

【0012】上記のFFTアナライザ部は、入力される
加振検出信号13と振動検出信号17をそれぞれA/D
変換し、コンピュータによる演算処理によりフーリェ変
換して振動波形を振動数スペクトルに分析するようにな
っている。ところで、インパクトハンマー11で鉄筋コ
ンクリート構造物10を叩くインパルス方式の場合は、
加振力の振動数スペクトルが平坦ではないため、インパ
クトハンマー11の加振力を検出してなる加振検出信号
13の振動数スペクトルと振動検出信号17の振動数ス
ペクトルとの比をとって規格化し、振動数応答として測
定するようになっている。このようにして測定された振
動検出信号17の振動数を分析した周波数応答関数(周
波数スペクトル)をディスプレー画面に表示させるよう
になっている。また、必要に応じて振動数スペクトルの
出力をピーク読み取り装置19に入力しパソコン20を
介して、必要なデータを抽出してプリンタ21からプリ
ントアウトすればよく、また、分析した振動数スペクト
ルデータをフロッピーディスク(FD)などの記録媒体
に記録する。FTT分析器15の形状演算装置は、入力
装置、演算処理装置、記憶装置、出力装置等からなるマ
イクロコンピュータを用いて構成されている。記憶装置
には、前述の原理に基づいて設定された共振条件式、関
連演算式、演算処理プログラム等、形状測定の演算処理
に必要な事項が予め格納され、ハンマー11の力検出ピ
ックアップ12と加速度ピックアップ16とからの出力
から周波数スペクトルを算出し、即ち周波数応答関数の
グラフをFTT分析器15のディスプレイ又はプリンタ
21などの出力装置を介して出力するようになってい
る。
The FFT analyzer unit converts the input excitation detection signal 13 and vibration detection signal 17 into A / D signals, respectively.
After that, a Fourier transform is performed by an arithmetic processing by a computer, and the vibration waveform is analyzed into a frequency spectrum. By the way, in the case of the impulse method in which the reinforced concrete structure 10 is hit with the impact hammer 11,
Since the frequency spectrum of the excitation force is not flat, the standard is determined by taking the ratio between the frequency spectrum of the excitation detection signal 13 obtained by detecting the excitation force of the impact hammer 11 and the frequency spectrum of the vibration detection signal 17. And measure it as a frequency response. A frequency response function (frequency spectrum) obtained by analyzing the frequency of the vibration detection signal 17 thus measured is displayed on the display screen. If necessary, the output of the frequency spectrum may be input to the peak reading device 19, and the necessary data may be extracted and printed out from the printer 21 via the personal computer 20, and the analyzed frequency spectrum data may be output. The data is recorded on a recording medium such as a floppy disk (FD). The shape calculation device of the FTT analyzer 15 is configured using a microcomputer including an input device, a calculation processing device, a storage device, an output device, and the like. The storage device stores in advance the items necessary for the shape measurement calculation processing, such as the resonance condition formulas, related calculation formulas, and calculation processing programs set based on the above-described principle. A frequency spectrum is calculated from the output from the pickup 16, that is, a graph of the frequency response function is output via an output device such as the display of the FTT analyzer 15 or the printer 21.

【0013】ここでの測定対象の鉄筋コンクリート構造
物10は、図2に示す、厚さh=0.23m で1m四方の床
板の鉄筋コンクリートの健全な床板モデル101であり、
この床板モデル101を上記の測定システムを用いて計測
した結果が図3に示されるグラフである。そして、上述
したように、床板コンクリート構造物において、叩く位
置によらない励起されるモードが幾つか存在し、床板の
厚さ方向の横波と縦波の振動モードの基本モードの振動
数は上記(1)〜(4)で与えられる。図3のグラフにおい
て、横軸は共振振動数で縦軸は振動強度関数であるが、
振動強度関数は、前述したように、インパクトハンマー
11の加振力を検出してなる加振検出信号13の振動数
スペクトルと振動検出信号17の振動数スペクトルとの
比をとって規格化し、振動数応答として測定したFTT
分析器15で規格された値で無次元の値である。この場
合、振動数応答のピークの周波数を検出できればよく、
本件発明において特に振動強度そのものの値は必要とし
ない。測定結果は、床板モデル101が有限長の1m四方
の正方形で厚さh:0.23mの四角柱であるので、図3のグ
ラフにおいて多数の振動数のピークが出現するが、上述
した計算式から得られるコンクリート構造物の横波と縦
波の振動モードの基本モードの振動数も、以下の数値で
比較的鋭いピークで現れている。なお、後述するよう
に、実際の測定部分となる厚さh:0.23mの広い面積の壁
等の健全部においては、比較的単純なスペクトルでピー
クの数も少ない。
The reinforced concrete structure 10 to be measured here is a sound slab model 101 of reinforced concrete with a thickness of h = 0.23 m and a 1 m square slab shown in FIG.
FIG. 3 is a graph showing the result of measuring the floor panel model 101 using the above-described measurement system. And, as described above, in the floor slab concrete structure, there are several modes that are excited regardless of the hitting position, and the fundamental mode frequency of the transverse and longitudinal wave vibration modes in the thickness direction of the floor slab is as described above ( It is given by 1) to (4). In the graph of FIG. 3, the horizontal axis represents the resonance frequency and the vertical axis represents the vibration intensity function.
As described above, the vibration intensity function is normalized by taking the ratio between the frequency spectrum of the vibration detection signal 13 obtained by detecting the vibration force of the impact hammer 11 and the frequency spectrum of the vibration detection signal 17, and FTT measured as number response
It is a dimensionless value that is a value standardized by the analyzer 15. In this case, it suffices if the peak frequency of the frequency response can be detected,
In the present invention, a value of the vibration intensity itself is not particularly required. The measurement results show that the floor panel model 101 is a square prism having a finite length of 1 m square and a thickness of h: 0.23 m. Therefore, many frequency peaks appear in the graph of FIG. The frequencies of the fundamental modes of the transverse and longitudinal vibration modes of the obtained concrete structure also appear as relatively sharp peaks with the following values. As will be described later, in a sound part such as a wall having a wide area with a thickness h: 0.23 m serving as an actual measurement part, the number of peaks is relatively small with a relatively simple spectrum.

【0014】(1)横波の共振振動数:fs=5.3kHz 上記の振動数に対する横波の伝搬速度:vs=2.4km/s (2)縦波の共振振動数:fp=8.3kHz 上記の振動数に対する縦波の伝搬速度:vp=3.8km/s(1) Resonance frequency of shear wave: fs = 5.3 kHz Propagation velocity of shear wave with respect to the above frequency: vs = 2.4 km / s (2) Resonance frequency of longitudinal wave: fp = 8.3 kHz Propagation speed of longitudinal wave with respect to: vp = 3.8km / s

【0015】上記の事実に基づいて、実際の鉄筋コンク
リート構造物の共振振動のスペクトルを測定した。実際
には、東北自動車道豊沢川橋の厚さがほぼ 0.23m程度の
床板コンクリート壁の部分を測定した。そして、厚さ
h:0.23mの床板のコンクリート構造物の健全部では横波
と縦波の振動モードの基本モードの振動数が、fs=5.3
kHz、fp=8.3kHzの近傍で現れるはずであることから、
この付近の共振振動の周波数スペクトルを分析し、ま
た、そのピーク周波数値から位相速度値を算出し、更
に、そのコンクリート構造物の部位のサンプルを採取
し、ひび割れ状態と遊離石灰状態の実際の状態を分析し
両者を比較した。
Based on the above fact, the spectrum of the resonance vibration of the actual reinforced concrete structure was measured. In fact, we measured the part of the concrete wall of the floorboard where the thickness of the Tohoku Expressway Toyosawa River Bridge was about 0.23m. And the thickness
h: In the sound part of a concrete structure with a floor panel of 0.23 m, the fundamental mode frequency of transverse and longitudinal wave modes is fs = 5.3
kHz, fp = 8.3kHz
Analyze the frequency spectrum of the resonance vibration in the vicinity, calculate the phase velocity value from the peak frequency value, and further take a sample of the concrete structure part, and check the actual state of the cracked state and free lime state Was analyzed and the two were compared.

【0016】[実施例1]次に、本発明の共振周波数測定
によるコンクリート劣化測定方法と測定装置の第1の実
施例を説明する。測定対象の厚さ h:0.23mの床板コンク
リート構造物を加振し、そのコンクリート構造物の共振
振動数を測定し分析した結果、実際の健全部のコンクリ
ート構造物は、5kHz付近で横波的の共振周波数のピー
クが明瞭に出現するが、8kHz付近に出現するはずの縦
波的の共振周波数のピークは不明瞭であることが判明し
た。それは、高い周波数の8kHzでは外乱ノイズが混入
しやすく、また、現状では測定器の感度の低いものしか
得られないことに原因があるものと考えられる。また、
ひび割れ部については、スペクトルが複雑になり、共振
振動数のペークも明瞭でないことが判明した。当然のこ
とながら、高い周波数の8kHzでも、対象コンクリート
構造物や測定器よっては共振周波数のピークが明瞭に判
断できる場合は、高い周波数の8kHzの縦波的振動を用
いて測定すれば良い。
[Embodiment 1] Next, a first embodiment of a concrete deterioration measuring method and a measuring apparatus by resonance frequency measurement of the present invention will be described. As a result of vibration of a concrete floor plate with a thickness h: 0.23m of the object to be measured and measurement and analysis of the resonance frequency of the concrete structure, the concrete structure in the actual healthy part showed a shear wave around 5kHz. It was found that the peak of the resonance frequency appeared clearly, but the peak of the longitudinal resonance frequency, which should appear around 8 kHz, was unclear. It is considered that disturbance noise is apt to be mixed in at a high frequency of 8 kHz, and at present, only a low-sensitivity measuring instrument can be obtained. Also,
It was found that the spectrum of the cracked portion became complicated and that the resonance frequency was not clear. As a matter of course, if the peak of the resonance frequency can be clearly determined depending on the target concrete structure or the measuring instrument even at the high frequency of 8 kHz, the measurement may be performed using the high frequency longitudinal vibration of 8 kHz.

【0017】次に、実際のコンクリート構造物を測定し
た具体的な結果を、図4〜図9に示して説明する。図4
〜図5のスペクトルを有するコンクリート構造物は、ス
ペクトルは比較的単純であり、5kHz付近で横波の共振
周波数のピークが明瞭に出現し、縦軸で表される振動強
度関数も大きい。なお、図3〜9における縦軸の振動強
度関数は、振動強度に関する値であるが、測定値の感度
等の条件を一定にしたときの、FTT分析器15の出力
であって各周波数での振動強度に関する値であるが、F
TT分析器15で規格された値であって無次元である。
これに対して、図6〜図7のスペクトルを有するコンク
リート構造物は、スペクトルは比較的複雑であり、5kH
z付近で横波の共振周波数のピークはなだらかであり、
かつ、振動強度関数も低くなっている。更に、図8〜図
9のスペクトルを有するコンクリート構造物は、共振周
波数スペクトルは複雑であり、5kHz付近で横波の共振
周波数のピークは明瞭でない。特に、この、ひび割れ部
の検出は、共振周波数スペクトルにおいて深く鋭い谷部
が出現し、他の公知の劣化測定手段では得られない明瞭
な検出手段であることも特徴の1つである。
Next, specific results obtained by measuring an actual concrete structure will be described with reference to FIGS. FIG.
The spectrum of the concrete structure having the spectrum shown in FIG. 5 to FIG. 5 is relatively simple, the peak of the resonance frequency of the shear wave clearly appears around 5 kHz, and the vibration intensity function represented by the vertical axis is large. The vibration intensity function on the vertical axis in FIGS. 3 to 9 is a value related to the vibration intensity, but is an output of the FTT analyzer 15 when conditions such as the sensitivity of the measured value are constant, It is a value related to the vibration intensity.
The value is standardized by the TT analyzer 15 and is dimensionless.
In contrast, the concrete structure having the spectra of FIGS. 6 and 7 has a relatively complicated spectrum,
Near the z, the peak of the resonance frequency of the shear wave is gentle,
In addition, the vibration intensity function is also low. Further, the concrete structure having the spectrum shown in FIGS. 8 and 9 has a complicated resonance frequency spectrum, and the peak of the resonance frequency of the shear wave is not clear around 5 kHz. In particular, one of the features of this crack detection is that it is a clear detection means that a deep and sharp valley appears in the resonance frequency spectrum and cannot be obtained by other known deterioration measurement means.

【0018】これらの事実から、本発明の実施例コンク
リート構造物の劣化度合測定方法および測定装置は、測
定対象の鉄筋コンクリート構造物を加振し、共振周波数
スペクトルを測定し、鉄筋コンクリート構造物の内部組
織の劣化度合を以下の基準で判定して、健全部であるか
否を調べる。 (1)共振周波数スペクトルに複雑な凸凹で深く鋭い谷部
があり、厚さによる固有の横波の共振周波数のピークが
不明瞭である場合→ひび割れ部が有りと判定。 (2)共振周波数スペクトルの厚さによる固有の横波の共
振周波数のピークが、なだらかで振動強度関数も低い場
合→遊離石灰部が有りと判定。 (3)上記の(1)(2)に該当せず、かつ、共振周波数スペク
トルの厚さによる固有の横横波の共振周波数のピークが
明瞭で振動強度関数も高い場合→健全部であると判定。
From these facts, the method and apparatus for measuring the degree of deterioration of a concrete structure according to the embodiment of the present invention vibrate a reinforced concrete structure to be measured, measure a resonance frequency spectrum, and measure the internal structure of the reinforced concrete structure. Is determined based on the following criteria, and whether or not the part is sound is checked. (1) When the resonance frequency spectrum has a complex uneven, deep and sharp valley, and the peak of the resonance frequency of the inherent transverse wave due to the thickness is unclear → It is determined that there is a crack. (2) If the peak of the resonance frequency of the inherent shear wave due to the thickness of the resonance frequency spectrum is gentle and the vibration intensity function is low, it is determined that free lime is present. (3) If the above does not apply to (1) and (2), and the peak of the resonance frequency of the inherent transverse shear wave due to the thickness of the resonance frequency spectrum is clear and the vibration intensity function is high → it is determined to be a healthy part .

【0019】上記(1)(2)(3)の状態は健全部の平均共振
周波数スペクトルを作成して基準共振周波数スペクトル
とし、測定部位の測定共振周波数スペクトルとを重ね合
わせて、その、ずれ度合を程度を目視して判定するか、
ずれ度合を定量的に算出すれば、鉄筋コンクリート構造
物の内部組織の劣化度合を測定することができる。
In the states (1), (2), and (3), an average resonance frequency spectrum of a sound part is created and used as a reference resonance frequency spectrum. Is determined by visual observation of the degree,
By calculating the degree of displacement quantitatively, the degree of deterioration of the internal structure of the reinforced concrete structure can be measured.

【0020】そして、上記の具体的測定装置の構成は、
既に公知のFTT分析器15を用い、その形状演算装置
は、入力装置、演算処理装置、記憶装置、出力装置等か
らなるマイクロコンピュータを用いて構成し、この記憶
装置には、基準共振周波数スペクトルと記憶し、この基
準共振周波数スペクトルを呼び出し、上述した手順で測
定した測定共振周波数スペクトルとを重ね合わせてディ
スプレイに表示し、基準共振周波数スペクトルよりも測
定共振周波数スペクトルが下位値に外れた領域を赤色
に、上位値に外れた領域を緑色で表示し、上記の(1)(2)
(3)の判定基準で劣化度合をオペレータが画面から目視
して判定するか、ずれ度合を定量的に算出して鉄筋コン
クリート構造の内部の劣化度合を判定する。この際の装
置の構成は公知の上記の測定方法に適するピーク分析ソ
フト等の画面分析ソフトを適宜選択すればよい。また、
必要に応じて、比較スペクトルをプリンタなどの出力装
置を介して紙出力しておけば、単なるコンクリートの外
観目視の判定と違って、客観的な鉄筋コンクリート構造
物の劣化度合のデータとして利用できる。
The specific configuration of the measuring device is as follows:
A known FTT analyzer 15 is used, and the shape calculation device is configured using a microcomputer including an input device, a calculation processing device, a storage device, an output device, and the like. Recall this reference resonance frequency spectrum, superimpose the measured resonance frequency spectrum measured in the above-described procedure on the display, and display the area where the measured resonance frequency spectrum is lower than the reference resonance frequency spectrum in red. In addition, the area outside the upper value is displayed in green, and the above (1) (2)
The degree of deterioration is visually determined from the screen by the operator based on the determination criteria of (3), or the degree of deviation is quantitatively calculated to determine the degree of deterioration inside the reinforced concrete structure. The configuration of the apparatus at this time may be appropriately selected from screen analysis software such as peak analysis software suitable for the above-described measurement method. Also,
If the comparison spectrum is output on paper via an output device such as a printer as needed, it can be used as objective deterioration degree data of a reinforced concrete structure, unlike a simple visual inspection of concrete.

【0021】なお、上記の第1の実施例において、厚さ
0.23mのコンクリートの壁状・路面・天井の構造物を対
象としたが、勿論、0.23m以外の厚さがほぼ一定のコン
クリート、例えば厚さ1mのコンクリートの壁状・路面・
天井の構造物に対しても、上記の同様の手順で健全部の
平均共振周波数スペクトルを作成して基準共振周波数ス
ペクトルとし、測定部位の測定共振周波数スペクトルと
を重ね合わせて、上記(1)(2)(3)の判定基準でずれ度合
を目視して判定するか、ずれ度合を定量的に算出すれ
ば、鉄筋コンクリート構造物の内部組織の劣化度合を測
定することができる。また、同じ幾何学的形状及び寸法
の箇所が多数個存在するコンクリート構造物において
も、同じ厚さhが存在すれば、スペクトルが複雑になる
が、同じ厚さhに対するが厚さ方向の横波と縦波の振動
モードの基準共振周波数が存在するのであるから、測定
対象は床板に限定されることはなく、同じ幾何学的形状
及び寸法のコンクリート構造物、例えば、立方体や多面
体のコンクリート構造物に適用されることは勿論であ
る。
In the first embodiment described above, the thickness
It is intended for structures with 0.23m concrete walls, roads and ceilings.Of course, concrete with a constant thickness other than 0.23m, for example, 1m thick concrete walls, roads,
For the ceiling structure, the average resonance frequency spectrum of the sound part is created in the same procedure as described above and used as the reference resonance frequency spectrum, and the measured resonance frequency spectrum of the measurement site is overlapped with the above (1) ( 2) The degree of deterioration of the internal structure of the reinforced concrete structure can be measured by visually determining the degree of deviation or quantitatively calculating the degree of deviation based on the criteria of (3). Further, even in a concrete structure having many places of the same geometric shape and dimensions, if the same thickness h is present, the spectrum becomes complicated, but for the same thickness h, a transverse wave in the thickness direction is generated. Since there is a reference resonance frequency of the longitudinal wave vibration mode, the measurement target is not limited to the floor plate, but to a concrete structure having the same geometric shape and dimensions, for example, a cubic or polyhedral concrete structure. Of course, it is applied.

【0022】[実施例2]次に、本発明の共振周波数測定
によるコンクリート劣化測定方法と測定装置の第2の実
施例を説明する。現在、比較的に評価が確立された自然
電位測定方法の自然電位と本発明による5kHz付近で横
波の共振周波数のピークでの横波の位相速度のと関係を
分析したが、その結果を図10のグラフと図11の[表
−1]に示して説明する。
[Embodiment 2] Next, a concrete embodiment of a concrete deterioration measuring method and a measuring apparatus by resonance frequency measurement according to the present invention will be described. At present, the relationship between the self-potential of the self-potential measurement method which has been relatively well-established and the phase velocity of the shear wave at the peak of the resonance frequency of the shear wave at around 5 kHz according to the present invention is analyzed. The result is shown in FIG. This will be described with reference to a graph and [Table 1] in FIG.

【0023】上記の図11の[表−1]について説明す
る。まず、前記(1)で説明したように、共振周波数スペ
クトルが複雑な凸凹で深く鋭い谷部があり、横波の共振
周波数のピークが不明瞭である場合は、測定するまでも
なく一目でひびわれ部が有りと判定できるので、比較対
象からは除外したが、測定対象コンクリートXの圧縮強
度もσ=238と極めて脆く、劣化の程度も明らかに劣る
ものであった。また、健全部か遊離石灰部かの判定は、
その部位のコンクリートをサンプルを採取し、圧縮試験
等を行い、さらに粉末にして組成を分析して石灰変質度
合を検出した。
[Table 1] in FIG. 11 will be described. First, as described in the above (1), when the resonance frequency spectrum has a complex irregularity and a deep and sharp valley, and the peak of the resonance frequency of the shear wave is unclear, the cracks are seen at a glance without measuring. Was excluded from the comparison, but the compressive strength of the concrete X to be measured was very weak at σ = 238, and the degree of deterioration was clearly inferior. In addition, judgment of healthy part or free lime part,
A sample of the concrete at the site was collected and subjected to a compression test and the like, and further, the powder was analyzed for its composition to detect the degree of lime alteration.

【0024】前記の自然電位測定方法において、コンク
リート構造物の鋼材腐食の可能性は自然電位mVの値が、 (1) -200mV<E の場合は、90%以上の確率で腐食なし (2) -350mV<E≦-200mV の場合は、腐食の度合は不確定 (3) E≦-350mV の場合は、90%以上の確率で腐食あり と判定される。そして、同じ測定対象の鉄筋コンクリー
ト構造物に対する自然電位測定方法における自然電位
と、5kHz付近で横波の共振周波数のピークでの横波の
位相速度を(1)横波の共振振動数fs=vs/2hの式から
逆算してvsを求めた位相速度値とを比較すると、図1
0のグラフに示されるように相関関係がみられ、信頼性
があることも確認できた。即ち、図10のグラフにおい
て、健全部は自然電位が左側寄りで、かつ、上方に位置
することが判る。
In the above-mentioned method of measuring the natural potential, the possibility of corrosion of the steel material of the concrete structure is determined as follows: if the value of the natural potential mV is: (1) -200 mV <E, there is a probability of 90% or more of no corrosion. If -350mV <E ≤ -200mV, the degree of corrosion is uncertain. (3) If E ≤ -350mV, the probability of corrosion is 90% or more. Then, the natural potential in the natural potential measurement method for the reinforced concrete structure to be measured and the phase velocity of the shear wave at the peak of the resonance frequency of the shear wave near 5 kHz are expressed by the following equation: (1) The resonance frequency of the shear wave fs = vs / 2h FIG. 1 shows a comparison with a phase velocity value obtained by calculating back vs.
As shown in the graph of 0, a correlation was observed, and it was also confirmed that there was reliability. That is, in the graph of FIG. 10, it can be seen that the self-potential of the healthy part is located on the left side and above.

【0025】上記の図11の[表−1]の測定結果から、
5kHz付近で横波の共振周波数のピークでの横波の位相
速度の値vs(km/s)が 1.(1) 2.25>vs(km/s) の場合は、遊離石灰が多く、遊離石灰部 (Y1〜Y6:コンクリートの圧縮強度 σc=270(kg・f/cm2)) (2) 2.25>vs(km/s)>2.28 の場合は、遊離石灰部の度合は不確定 (3) vs(km/s)≧2.28 の場合は、遊離石灰部はほとんどなく、健全部 (Z1〜Z4:コンクリートの圧縮強度 σc=288(kg・f/cm2)) であると判定できる。上記の判定を、自然電位測定方法
の結果と比較して、より確定的な判定基準とするには、
データY6,Z1が自然電位測定方法においては、(2)-350mV
<E≦-200mVの領域となり、腐食の度合は不確定の範囲
となり、この範囲も遊離石灰部の度合は不確定とすれ
ば、下記2.のようになり、より適格になる。
From the measurement results shown in [Table 1] in FIG.
When the shear wave phase velocity value vs (km / s) at the peak of the shear wave resonance frequency near 5 kHz is 1. (1) 2.25> vs (km / s), the amount of free lime is large and the free lime portion ( Y1 to Y6: Compressive strength of concrete σc = 270 (kg · f / cm2)) (2) If 2.25> vs (km / s)> 2.28, the degree of free lime is uncertain (3) vs (km If / s) ≥ 2.28, there is almost no free lime and it can be determined that the part is sound (Z1 to Z4: compressive strength of concrete σc = 288 (kg · f / cm2)). In order to make the above judgment as a more definitive judgment criterion in comparison with the result of the self potential measurement method,
Data Y6 and Z1 are (2) -350mV
<E ≦ −200 mV, and the degree of corrosion is in an uncertain range. In this range, if the degree of free lime is uncertain, the following 2. And become more qualified.

【0026】 2.(1) 2.23>vs(km/s)(Y1〜Y5)の場合は、遊離石灰が多く遊離石灰部 (2) 2.23>vs(km/s)≧2.44 (Y6,Z1)の場合は、遊離石灰部の度合は不確定 (3)vs(km/s)≧2.44(Z2〜Z4)の場合は、遊離石灰部はほとんどなく健全部2. (1) In the case of 2.23> vs (km / s) (Y1 to Y5), the amount of free lime is large, and the free lime portion is (2) 2.23> vs (km / s) ≧ 2.44 (Y6, Z1) In the case of, the degree of free lime is uncertain. (3) In the case of vs (km / s) ≥ 2.44 (Z2 to Z4), there is almost no free lime and there is a healthy part.

【0027】第2実施例の共振周波数測定方法および測
定装置は、上述したように、測定対象のコンクリート構
造物を加振し、そのコンクリート構造物の共振振動数を
測定し、厚さがh:0.23mの場合に5kHz付近で横波の共振
周波数のピークが明瞭に出現するが、この5kHz付近で
横波の共振周波数のピークでの横波の位相速度値を算出
し、この位相速度の値vs(km/s)が(1)2.25>vs(km/s)
、より好ましくは2.23>vs(km/s) の場合は、遊離石
灰が多く遊離石灰部と判定し、(2)2.25>vs(km/s)>2.
28 、より好ましくは、2.23>vs(km/s)≧2.44 の場合
は、遊離石灰部の度合は不確定と判定し、(3)vs(km/s)
≧2.28 、より好ましくはvs(km/s)≧2.44の場合は、遊
離石灰部はほとんどなく健全部と判定する。ただし、第
2実施例の共振周波数測定方法は、 (1)横波の共振振動数 fs=vs/2h (2)縦波の共振振動数 fp=vp/2h であることを基本にしているものであり、測定対象のコ
ンクリート構造物の厚さがh:0.23mから変われば、当然
上記の(1)横波の共振振動数fs=vs/2h (2)縦波の
共振振動数fp=vp/2hも変わり、横波の共振周波数
のピークも5kHz付近から移動することになるが、その
都度、その厚さでの健全部の横波の基準共振周波数値お
よび横波の基準位相速度値を設定して、上記と同じ手順
で内部組織の劣化度合を測定し判定すれば良い。
As described above, the resonance frequency measuring method and the measuring apparatus according to the second embodiment vibrate a concrete structure to be measured, measure the resonance frequency of the concrete structure, and measure the thickness h: In the case of 0.23 m, the peak of the resonance frequency of the shear wave clearly appears around 5 kHz. The phase velocity value of the shear wave at the peak of the resonance frequency of the shear wave near 5 kHz is calculated, and the value of this phase speed vs (km / s) is (1) 2.25> vs (km / s)
In the case of 2.23> vs (km / s), more free lime is determined to be a free lime portion, and (2) 2.25> vs (km / s)> 2.
28, More preferably, if 2.23> vs (km / s) ≧ 2.44, the degree of free lime is determined to be indeterminate, and (3) vs (km / s)
In the case of ≧ 2.28, more preferably vs (km / s) ≧ 2.44, it is determined that there is almost no free lime portion and that it is a healthy portion. However, the resonance frequency measuring method of the second embodiment is based on (1) the resonance frequency of the transverse wave fs = vs / 2h (2) the resonance frequency of the longitudinal wave fp = vp / 2h Yes, if the thickness of the concrete structure to be measured changes from h: 0.23 m, the above-mentioned (1) resonance frequency of transverse wave fs = vs / 2h (2) resonance frequency of longitudinal wave fp = vp / 2h Also changes, the peak of the resonance frequency of the shear wave also moves from around 5 kHz. In each case, the reference resonance frequency value of the shear wave and the reference phase velocity value of the shear wave of the sound part at the thickness are set, and The degree of deterioration of the internal structure may be measured and determined in the same procedure as described above.

【0028】そして、上記の具体的測定装置の構成は、
実施例1と同様に、FTT分析器15を用い、その形状
演算装置は、入力装置、演算処理装置、記憶装置、出力
装置等からなるマイクロコンピュータを用いて構成し、
測定対象のコンクリート構造物の厚さがh:0.23mの床板
の場合は、5kHz付近で横波の共振周波数のピークを検
出し、その共振周波数のピークでの横波の位相速度vs
の値を検出して、そのvs(km/s)値を上記1.又は2.
の数値と比較して、(1)遊離石灰が多く遊離石灰部であ
ると、(2)遊離石灰部の度合は不確定部であると、(3)遊
離石灰部はほとんどなく健全部であるとを種別して表示
し、この際の装置の構成は公知の上記の測定方法に適す
る画面分析ソフトを適宜選択すればよい。また、必要に
応じて、プリンタなどの出力装置を介して紙出力してお
けば、単なるコンクリートの外観目視の判定と違って、
客観的な鉄筋コンクリート構造物の劣化度合のデータと
して利用できる。
Then, the configuration of the above specific measuring device is as follows:
As in the first embodiment, the FTT analyzer 15 is used, and the shape calculation device is configured using a microcomputer including an input device, a calculation processing device, a storage device, an output device, and the like.
When the thickness of the concrete structure to be measured is h: 0.23 m, the peak of the shear wave resonance frequency is detected near 5 kHz, and the phase velocity of the shear wave at the peak of the resonance frequency vs.
Is detected, and its vs (km / s) value is calculated as 1. Or 2.
(1) When the amount of free lime is free lime, the degree of free lime is uncertain, and (3) There is almost no free lime and it is healthy Are displayed by classification, and the configuration of the apparatus at this time may be selected as appropriate from screen analysis software suitable for the above-described known measurement method. Also, if necessary, if the paper is output via an output device such as a printer, unlike the judgment of the visual appearance of concrete,
It can be used as objective degradation data of reinforced concrete structures.

【0029】なお、上記の第2の実施例において、厚さ
0.23mのコンクリートの壁状・路面・天井の構造物を対
象としたが、勿論、0.23m以外の厚さがほぼ一定のコン
クリートの壁状・路面・天井の構造物に対しても、上記
と同様の手順で健全部の平均共振周波数スペクトルを作
成して基準共振周波数スペクトルとし、そこでの位相速
度を算出して健全部での位相速度と比較すれば、定量的
に鉄筋コンクリート構造物の内部組織の劣化度合を測定
することができる。また、同じ幾何学的形状及び寸法の
箇所が多数個存在するコンクリート構造物、例えば立方
体や多面体においても、同じ厚さhが存在すれば、スペ
クトルが複雑になるが、同じ厚さhに対するが厚さ方向
の横波と縦波の振動モードで基準共振周波数が存在する
のであるから、測定対象は床板に限定されることはな
く、同じ幾何学的形状及び寸法のコンクリート構造物に
適用されることは勿論である。
In the second embodiment, the thickness
Although it was intended for 0.23m concrete wall-shaped, road-surface and ceiling structures, the same applies to concrete wall-shaped, road-surface and ceiling structures of almost constant thickness other than 0.23m. The average resonance frequency spectrum of the healthy part is created in the same procedure as the reference resonance frequency spectrum, and the phase velocity there is calculated and compared with the phase velocity in the healthy part to quantitatively determine the internal structure of the reinforced concrete structure. The degree of deterioration can be measured. Also, in the case of a concrete structure having many places of the same geometrical shape and dimensions, for example, a cube or a polyhedron, if the same thickness h is present, the spectrum becomes complicated. Since the reference resonance frequency exists in the transverse and longitudinal wave vibration modes in the vertical direction, the measurement target is not limited to the floorboard, but can be applied to concrete structures with the same geometric shape and dimensions. Of course.

【0030】また、本発明の特徴を損なうものでなけれ
ば、上記の両実施例に限定されるものでないことは勿論
であり、例えば、上述したように、実施例では、測定対
象を床板としたが、同じ厚さ寸法を有する幾何学的形状
のコンクリート構造物としてもよいことは勿論であり、
厚さについても23cm以外の他の厚さのコンクリート構造
物を測定対象として測定できることは勿論であり、上記
の両引用例は、横波あるいは横波的な比較的低い共振周
波数(5kHz)を測定の対象としたが、当然のことなが
ら、縦波あるいは縦波的の比較的高い共振周波数(8kH
z)でも、対象コンクリート構造物や測定器よっては共
振周波数のピークが明瞭に判断できる場合は、高い周波
数の縦波あるいは縦波的振動を対象ととして測定すれば
良い。
It is needless to say that the present invention is not limited to the above-mentioned two embodiments unless the characteristics of the present invention are impaired. For example, as described above, the object to be measured is a floor plate in the embodiment. However, it is a matter of course that the concrete structure may have a geometric shape having the same thickness.
As for the thickness, it is of course possible to measure a concrete structure having a thickness other than 23 cm as a measurement target. In the above two cited examples, a transverse wave or a relatively low transverse wave-like resonance frequency (5 kHz) is measured. However, as a matter of course, a longitudinal wave or a relatively high longitudinal wave-like resonance frequency (8 kHz
Even in z), when the peak of the resonance frequency can be clearly determined depending on the target concrete structure or the measuring instrument, the measurement may be performed on a high frequency longitudinal wave or longitudinal wave vibration.

【0031】[0031]

【発明の効果】以上説明したように、請求項1、およ
び、請求項3に記載の発明によれば、ほぼ同じ厚さの部
分を有するコンクリート構造物において、予め測定対象
のコンクリート構造物の健全部を加振して共振振動数を
測定し、健全部の基準共振周波数スペクトルを作成する
とともに、他の測定部を加振して測定部共振振動数を測
定し、該測定部共振周波数スペクトルを作成して、作成
した両共振周波数スペクトルを重ね合わせて、両共振周
波数スペクトルのずれの程度を分析することによって内
部組織の劣化度合を判定する鉄筋コンクリート構造物の
劣化測定方法、および、測定装置であるから、コンクリ
ートの圧縮強度に関係した要素であるヤング率を基礎と
して、非破壊でコンクリート構造物の表面や浅い部位は
勿論、内部の深層部位で劣化度合の程度を適格に測定で
き、また、ひび割れをも適格に測定でき、特に、健全部
のスペクトルと比較して複雑になっている複雑さの度合
から、即ち複雑な凸凹で深く鋭い谷部が出現する共振周
波数スペクトルから、測定個所の亀裂、鉄筋のコンクリ
ートからの遊離等の程度を、また、スペクトルのピーク
が鈍っている度合から、測定個所のセメントの軟質化の
程度を測定し簡単に判定することができるという効果が
得られる。
As described above, according to the first and third aspects of the present invention, in a concrete structure having portions of substantially the same thickness, the soundness of the concrete structure to be measured in advance is determined. Excitation of the part to measure the resonance frequency, create a reference resonance frequency spectrum of the healthy part, and excite other measurement parts to measure the resonance frequency of the measurement part, and measure the resonance frequency spectrum of the measurement part. A method for measuring the deterioration of a reinforced concrete structure, which determines the degree of deterioration of the internal structure by analyzing the degree of deviation between the two resonance frequency spectra by superimposing the created two resonance frequency spectra, and a measuring device. Therefore, based on the Young's modulus, which is an element related to the compressive strength of concrete, non-destructive concrete structures, shallow parts and deep inside The degree of deterioration can be measured appropriately, and the cracks can also be measured appropriately, especially from the degree of complexity that is more complicated than the sound part spectrum, that is, deep and sharp valleys with complex irregularities From the resonance frequency spectrum where the part appears, easily measure the degree of cracking at the measurement location, the degree of liberation of the reinforcing steel from the concrete, and the degree of softening of the cement at the measurement location from the degree of the peak of the spectrum being dull. Is obtained.

【0032】また、請求項2、および、請求項4に記載
の発明によれば、ほぼ同じ厚さの部分を有するコンクリ
ート構造物において、予め測定対象のコンクリート構造
物の健全部を加振して健全部での振動の基本モードの基
準共振周波数を検出し、該基準共振周波数から基準位相
速度の値を算出するとともに、他の測定部を加振して前
記基準周波数の付近で振動の測定部共振周波数のピーク
を検出し、該ピークでの測定部共振周波数から振動の位
相速度値を算出し、両位相速度値を比較してその差の値
を分析することによって内部組織の劣化度合を判定する
鉄筋コンクリート構造物の劣化測定方法、および、測定
装置であるから、コンクリートの圧縮強度に関係した要
素であるヤング率を基礎として、非破壊でコンクリート
構造物の表面や浅い部位は勿論、内部の深層部位での劣
化度合を、簡単に定量的に適格に測定でき、さらに、振
動の位相速度の値によって、定量的に鉄筋コンクリート
構造物の内部組織の劣化度合を判断できるという効果が
得られる。
According to the second and fourth aspects of the present invention, in a concrete structure having a portion having substantially the same thickness, a sound portion of the concrete structure to be measured is vibrated in advance. The reference resonance frequency of the fundamental mode of the vibration in the sound part is detected, the value of the reference phase velocity is calculated from the reference resonance frequency, and another measurement unit is vibrated to measure the vibration around the reference frequency. The peak of the resonance frequency is detected, the phase velocity value of the vibration is calculated from the resonance frequency of the measuring unit at the peak, the two phase velocity values are compared, and the difference value is analyzed to determine the degree of deterioration of the internal tissue. Because it is a method and a measuring device for measuring the deterioration of reinforced concrete structures, the surface and shallowness of concrete structures are non-destructive based on the Young's modulus, a factor related to the compressive strength of concrete. It is said that the degree of deterioration in the deeper parts inside as well as the parts can be easily measured quantitatively and appropriately, and the degree of deterioration of the internal structure of the reinforced concrete structure can be quantitatively determined by the value of the phase velocity of vibration. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例のコンクリート構造物の劣化
測定方法に使用する測定装置のシステムの概略を説明す
る説明図
FIG. 1 is an explanatory view schematically illustrating a system of a measuring device used in a method for measuring deterioration of a concrete structure according to one embodiment of the present invention.

【図2】鉄筋コンクリート構造物の床板モデルの斜視図FIG. 2 is a perspective view of a floor panel model of a reinforced concrete structure.

【図3】床板モデルの共振振動周波数のスペクトル図FIG. 3 is a spectrum diagram of a resonance vibration frequency of a floor panel model.

【図4】、FIG.

【図5】測定対象物の鉄筋コンクリート構造物の健全部
の共振振動周波数のスペクトル図
FIG. 5 is a spectrum diagram of a resonance vibration frequency of a sound part of a reinforced concrete structure to be measured.

【図6】、FIG.

【図7】測定対象物の鉄筋コンクリート構造物の遊離石
灰部の共振振動周波数のスペクトル図
FIG. 7 is a spectrum diagram of a resonance vibration frequency of a free lime portion of a reinforced concrete structure to be measured.

【図8】、FIG.

【図9】測定対象物の鉄筋コンクリート構造物のひびわ
れ部の共振振動周波数のスペクトル図
FIG. 9 is a spectrum diagram of a resonance vibration frequency of a crack in a reinforced concrete structure to be measured.

【図10】自然電位測定方法における自然電位と、5kH
z付近で横波の共振周波数のピークでの横波の位相速度
の関係をグラフした図、
FIG. 10 shows the natural potential and 5 kHz in the method for measuring the natural potential.
A graph showing the relationship between the phase velocity of the shear wave at the peak of the resonance frequency of the shear wave near z,

【図11】自然電位測定方法における自然電位と、5kH
z付近で横波の共振周波数のピークでの横波の位相速度
の関係を、[表−1]として示した図である。
FIG. 11 shows the natural potential and 5 kHz in the method for measuring the natural potential.
FIG. 6 is a diagram showing, as [Table 1], a relationship between a shear wave phase velocity and a peak of a shear wave resonance frequency near z.

【符号の説明】[Explanation of symbols]

10…鉄筋コンクリートの床板モデル、または、測定対象
鉄筋コンクリート 11…インパクトハンマー 12…力検出ピックアップ 13…加振検出信号 14…前置増幅器 15…FTT分析器 151…FFTアナライザ部の第1チャンネル 152…同第2チャンネル 16…加速度ピックアップ 17…振動検出信号 18…チャージ増幅器 19…ピーク読み取り装置 20…パソコン 21…プリンタ
10: Reinforced concrete floor plate model or reinforced concrete to be measured 11: Impact hammer 12: Force detection pickup 13: Excitation detection signal 14: Preamplifier 15: FTT analyzer 151: First channel of FFT analyzer section 152: Same as above 2 channels 16 Acceleration pickup 17 Vibration detection signal 18 Charge amplifier 19 Peak reader 20 PC 21 Printer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 盛合 禧夫 宮城県仙台市泉区黒松2丁目28番27号 (72)発明者 松村 吉康 宮城県仙台市太白区長町5丁目9番地10− 1003 Fターム(参考) 2E176 AA01 BB38 2F068 AA00 BB26 CC11 DD13 FF23 FF25 FF28 GG05 KK16 QQ00 QQ05 QQ10 QQ25 RR01 RR13 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshio Soriai 2-28-27 Kuromatsu, Izumi-ku, Sendai City, Miyagi Prefecture (72) Inventor Yoshiyasu Matsumura 5-9-9, Nagamachi, Taihaku-ku, Sendai City, Miyagi Prefecture 10-1003 F-term (Reference) 2E176 AA01 BB38 2F068 AA00 BB26 CC11 DD13 FF23 FF25 FF28 GG05 KK16 QQ00 QQ05 QQ10 QQ25 RR01 RR13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ほぼ同じ厚さの部分を有するコンクリート
構造物において、予め測定対象のコンクリート構造物の
健全部を加振して共振振動数を測定し、健全部の基準共
振周波数スペクトルを作成するとともに、他の測定部を
加振して測定部共振振動数を測定し、該測定部共振周波
数スペクトルを作成して、作成した両共振周波数スペク
トルを重ね合わせて、両共振周波数スペクトルのずれの
程度を分析することによって内部組織の劣化度合を判定
することを特徴とする鉄筋コンクリート構造物の劣化測
定方法。
In a concrete structure having a portion having substantially the same thickness, a healthy part of a concrete structure to be measured is vibrated in advance to measure a resonance frequency, and a reference resonance frequency spectrum of the healthy part is created. At the same time, the other measuring unit is vibrated to measure the resonance frequency of the measuring unit, and the measuring unit resonance frequency spectrum is created. A method for measuring the deterioration of a reinforced concrete structure, characterized in that the degree of deterioration of the internal structure is determined by analyzing the degree of deterioration.
【請求項2】ほぼ同じ厚さの部分を有するコンクリート
構造物において、予め測定対象のコンクリート構造物の
健全部を加振して健全部での振動の基本モードの基準共
振周波数を検出し、該基準共振周波数から基準位相速度
の値を算出するとともに、他の測定部を加振して前記基
準周波数の付近で振動の測定部共振周波数のピークを検
出し、該ピークでの測定部共振周波数から振動の位相速
度値を算出し、両位相速度値を比較してその差の値を分
析することによって内部組織の劣化度合を判定すること
を特徴とする鉄筋コンクリート構造物の劣化測定方法。
2. In a concrete structure having a portion having substantially the same thickness, a sound portion of a concrete structure to be measured is vibrated in advance to detect a reference resonance frequency of a fundamental mode of vibration in the sound portion. While calculating the value of the reference phase velocity from the reference resonance frequency, the other measurement unit is excited to detect a peak of the measurement unit resonance frequency of the vibration near the reference frequency, and from the measurement unit resonance frequency at the peak. A method for measuring deterioration of a reinforced concrete structure, comprising calculating a phase velocity value of vibration, comparing the two phase velocity values, and analyzing a difference between the two to determine a degree of deterioration of an internal structure.
【請求項3】ほぼ同じ厚さの部分を有するコンクリート
構造物において、予め測定対象のコンクリート構造物の
健全部を加振して共振振動数を測定し、健全部の基準共
振周波数スペクトルを作成するとともに、他の測定部を
加振して測定部共振振動数を測定し、該測定部共振周波
数スペクトルを作成して、作成した両共振周波数スペク
トルを重ね合わせて、両共振周波数スペクトルのずれの
程度を分析することによって内部組織の劣化度合を判定
することを特徴とする鉄筋コンクリート構造物の劣化測
定装置。
3. In a concrete structure having a portion having substantially the same thickness, a healthy portion of the concrete structure to be measured is vibrated in advance to measure a resonance frequency, and a reference resonance frequency spectrum of the healthy portion is created. At the same time, the other measuring unit is vibrated to measure the resonance frequency of the measuring unit, and the measuring unit resonance frequency spectrum is created. A deterioration measuring device for a reinforced concrete structure, characterized in that the degree of deterioration of an internal structure is determined by analyzing the degree of deterioration.
【請求項4】ほぼ同じ厚さの部分を有するコンクリート
構造物において、予め測定対象のコンクリート構造物の
健全部を加振して健全部での振動の基本モードの基準共
振周波数を検出し、該基準共振周波数から基準位相速度
の値を算出するとともに、他の測定部を加振して前記基
準周波数の付近で振動の測定部共振周波数のピークを検
出し、該ピークでの測定部共振周波数から振動の位相速
度値を算出し、両位相速度値を比較してその差の値を分
析することによって内部組織の劣化度合を判定すること
を特徴とする鉄筋コンクリート構造物の劣化測定装置。
4. In a concrete structure having a portion having substantially the same thickness, a sound portion of the concrete structure to be measured is vibrated in advance to detect a reference resonance frequency of a fundamental mode of vibration in the sound portion. While calculating the value of the reference phase velocity from the reference resonance frequency, the other measurement unit is excited to detect a peak of the measurement unit resonance frequency of the vibration near the reference frequency, and from the measurement unit resonance frequency at the peak. An apparatus for measuring deterioration of a reinforced concrete structure, comprising calculating a phase velocity value of vibration, comparing the two phase velocity values, and analyzing a difference value between the two to determine a degree of deterioration of an internal structure.
JP19394299A 1999-07-08 1999-07-08 A method for measuring deterioration of a concrete structure and a measuring device therefor. Expired - Fee Related JP3340702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19394299A JP3340702B2 (en) 1999-07-08 1999-07-08 A method for measuring deterioration of a concrete structure and a measuring device therefor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19394299A JP3340702B2 (en) 1999-07-08 1999-07-08 A method for measuring deterioration of a concrete structure and a measuring device therefor.

Publications (2)

Publication Number Publication Date
JP2001021336A true JP2001021336A (en) 2001-01-26
JP3340702B2 JP3340702B2 (en) 2002-11-05

Family

ID=16316321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19394299A Expired - Fee Related JP3340702B2 (en) 1999-07-08 1999-07-08 A method for measuring deterioration of a concrete structure and a measuring device therefor.

Country Status (1)

Country Link
JP (1) JP3340702B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028622A (en) * 2001-07-13 2003-01-29 Fujita Corp Method for measuring shape of structure and method for measuring degradation/damage
JP2004026485A (en) * 2001-08-21 2004-01-29 Canon Inc Signal output device, sheet material type distinguishing device, image forming device, and sheet material type distinguishing method
KR20050090559A (en) * 2004-03-09 2005-09-14 경상대학교산학협력단 Nondestructive evaluation of strength performance for finger-jointed timbers with different finger dimensions and distance between tips and roots for a pair of fingers by tapping with a hammer
JP2008020425A (en) * 2006-07-10 2008-01-31 Marui:Kk Nondestructive diagnosis method and device for concrete structure
JP2008128846A (en) * 2006-11-21 2008-06-05 Taiheiyo Cement Corp Alkali aggregate reaction determination method
JP2008275518A (en) * 2007-05-01 2008-11-13 Toa Harbor Works Co Ltd Degradation inspecting method for concrete structure
JP2008275520A (en) * 2007-05-01 2008-11-13 Toa Harbor Works Co Ltd Method for inspecting deterioration of concrete structure
JP2009030994A (en) * 2007-07-24 2009-02-12 Yurtec Corp Shape measurement method for buried concrete foundation, and device thereof
JP2010071748A (en) * 2008-09-17 2010-04-02 Nippon Telegr & Teleph Corp <Ntt> Method for detecting damage of concrete pole
JP2010266378A (en) * 2009-05-15 2010-11-25 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic diagnosis/evaluation system
JP2011149751A (en) * 2010-01-20 2011-08-04 Railway Technical Research Institute Method of diagnosing slope protection work and soundness diagnosing device
CN102175771A (en) * 2011-01-18 2011-09-07 重庆市科学技术研究院 Method for detecting steel tube void of concrete filled steel tube (CFST) arch bridge by utilizing transient impact method
CN102422154A (en) * 2009-05-13 2012-04-18 清华大学 System, device for structural damage detection and method for structural damage detection
WO2012044003A3 (en) * 2010-09-29 2012-06-21 (주)엘지하우시스 Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
CN102759744A (en) * 2012-06-20 2012-10-31 中国水电顾问集团贵阳勘测设计研究院 Method for detecting grotto steel lining concrete void thickness
KR101229622B1 (en) 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
JP2013044523A (en) * 2011-08-20 2013-03-04 Dia Consultant:Kk Diagnostic method for concrete pipe
JP2013096720A (en) * 2011-10-28 2013-05-20 Railway Technical Research Institute Method for monitoring deterioration of rc structure due to reinforcement corrosion and device therefor
JP2013096721A (en) * 2011-10-28 2013-05-20 Railway Technical Research Institute Method for performance validation test of surface coating material of rc structure and device therefor
JP2014032123A (en) * 2012-08-03 2014-02-20 Fukui Prefecture Crack part evaluation method for ground surface reinforcement layer
JP2014149285A (en) * 2013-02-01 2014-08-21 Fuji Giken Center Kk Deterioration degree diagnosis method for floor slab through elastic wave velocity ratio
JP2019124691A (en) * 2018-01-18 2019-07-25 原子燃料工業株式会社 Quality evaluation method for concrete member

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028622A (en) * 2001-07-13 2003-01-29 Fujita Corp Method for measuring shape of structure and method for measuring degradation/damage
JP2004026485A (en) * 2001-08-21 2004-01-29 Canon Inc Signal output device, sheet material type distinguishing device, image forming device, and sheet material type distinguishing method
KR20050090559A (en) * 2004-03-09 2005-09-14 경상대학교산학협력단 Nondestructive evaluation of strength performance for finger-jointed timbers with different finger dimensions and distance between tips and roots for a pair of fingers by tapping with a hammer
JP2008020425A (en) * 2006-07-10 2008-01-31 Marui:Kk Nondestructive diagnosis method and device for concrete structure
JP2008128846A (en) * 2006-11-21 2008-06-05 Taiheiyo Cement Corp Alkali aggregate reaction determination method
JP2008275518A (en) * 2007-05-01 2008-11-13 Toa Harbor Works Co Ltd Degradation inspecting method for concrete structure
JP2008275520A (en) * 2007-05-01 2008-11-13 Toa Harbor Works Co Ltd Method for inspecting deterioration of concrete structure
JP2009030994A (en) * 2007-07-24 2009-02-12 Yurtec Corp Shape measurement method for buried concrete foundation, and device thereof
JP2010071748A (en) * 2008-09-17 2010-04-02 Nippon Telegr & Teleph Corp <Ntt> Method for detecting damage of concrete pole
CN102422154A (en) * 2009-05-13 2012-04-18 清华大学 System, device for structural damage detection and method for structural damage detection
JP2010266378A (en) * 2009-05-15 2010-11-25 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic diagnosis/evaluation system
JP2011149751A (en) * 2010-01-20 2011-08-04 Railway Technical Research Institute Method of diagnosing slope protection work and soundness diagnosing device
KR101229622B1 (en) 2010-08-30 2013-02-04 (주)엘지하우시스 Apparatus and method for evaluating internal vacuum level of vacuum insulation panel using frequency response method
CN103140709A (en) * 2010-09-29 2013-06-05 乐金华奥斯有限公司 Vacuum insulation panel, and apparatus and method for evaluating internal vacuum level of the vacuum insulation panel using frequency response method
WO2012044003A3 (en) * 2010-09-29 2012-06-21 (주)엘지하우시스 Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
US9194782B2 (en) 2010-09-29 2015-11-24 Lg Hausys, Ltd. Vacuum thermal-insulation material, and a device and method for assessing the degree of vacuum in the vacuum insulation material by using the frequency response method
CN102175771A (en) * 2011-01-18 2011-09-07 重庆市科学技术研究院 Method for detecting steel tube void of concrete filled steel tube (CFST) arch bridge by utilizing transient impact method
JP2013044523A (en) * 2011-08-20 2013-03-04 Dia Consultant:Kk Diagnostic method for concrete pipe
JP2013096720A (en) * 2011-10-28 2013-05-20 Railway Technical Research Institute Method for monitoring deterioration of rc structure due to reinforcement corrosion and device therefor
JP2013096721A (en) * 2011-10-28 2013-05-20 Railway Technical Research Institute Method for performance validation test of surface coating material of rc structure and device therefor
CN102759744A (en) * 2012-06-20 2012-10-31 中国水电顾问集团贵阳勘测设计研究院 Method for detecting grotto steel lining concrete void thickness
JP2014032123A (en) * 2012-08-03 2014-02-20 Fukui Prefecture Crack part evaluation method for ground surface reinforcement layer
JP2014149285A (en) * 2013-02-01 2014-08-21 Fuji Giken Center Kk Deterioration degree diagnosis method for floor slab through elastic wave velocity ratio
JP2019124691A (en) * 2018-01-18 2019-07-25 原子燃料工業株式会社 Quality evaluation method for concrete member
JP7273517B2 (en) 2018-01-18 2023-05-15 原子燃料工業株式会社 Quality evaluation method for concrete members

Also Published As

Publication number Publication date
JP3340702B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP3340702B2 (en) A method for measuring deterioration of a concrete structure and a measuring device therefor.
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
Helal et al. Non-destructive testing of concrete: A review of methods
Carino The impact-echo method: an overview
US6880379B2 (en) Method and device for detecting damage in materials or objects
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
Sadri Application of impact-echo technique in diagnoses and repair of stone masonry structures
Guthrie et al. Automated air-coupled impact-echo testing of a concrete bridge deck from a continuously moving platform
Kasal et al. Stress waves
Montiel-Zafra et al. Monitoring the internal quality of ornamental stone using impact-echo testing
Olson et al. Concrete bridge condition assessment with impact echo scanning
JP4553458B2 (en) Tunnel diagnostic apparatus and method
JPH109847A (en) Method for diagnosing shape of artificial or natural structure
JP3510835B2 (en) Deterioration measurement device for concrete structures.
JP2001004604A (en) Inspecting method for flaw in concrete structure
Carino et al. Flaw detection in concrete using the impact-echo method
JP2002148244A (en) Concrete structure examining and diagnosing method
JP2001296214A (en) Deterioration measuring device for concrete structure, and its measuring method
KR102260598B1 (en) System for evaluating internal damages of asphalt-concrete bridge-deck using air-coupled ultrasonics, and method for the same
Fröjd Structural health monitoring of concrete structures using diffuse waves
Morison et al. Timber bridge evaluation: a global nondestructive approach using impact generated FRFs
Ohtsu et al. Development of non-contact SIBIE procedure for identifying ungrouted tendon duct
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees