JP2008128846A - Alkali aggregate reaction determination method - Google Patents

Alkali aggregate reaction determination method Download PDF

Info

Publication number
JP2008128846A
JP2008128846A JP2006314793A JP2006314793A JP2008128846A JP 2008128846 A JP2008128846 A JP 2008128846A JP 2006314793 A JP2006314793 A JP 2006314793A JP 2006314793 A JP2006314793 A JP 2006314793A JP 2008128846 A JP2008128846 A JP 2008128846A
Authority
JP
Japan
Prior art keywords
alkali
aggregate reaction
test
core
test core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006314793A
Other languages
Japanese (ja)
Other versions
JP5274767B2 (en
Inventor
Hiroaki Mori
寛晃 森
Shoichi Ogawa
彰一 小川
Toshiaki Kobayashi
俊秋 小林
Midori Onozato
みどり 小野里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Oriental Shiraishi Corp
Original Assignee
Taiheiyo Cement Corp
Oriental Shiraishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Oriental Shiraishi Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006314793A priority Critical patent/JP5274767B2/en
Publication of JP2008128846A publication Critical patent/JP2008128846A/en
Application granted granted Critical
Publication of JP5274767B2 publication Critical patent/JP5274767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkali aggregate reaction determination method capable of easily and accurately determining the progression state of alkali aggregate reaction of a concrete structure. <P>SOLUTION: The alkali aggregate reaction determination method comprises a core sampling process of sampling a test core from the concrete structure, an excitation process of generating a longitudinal wave elastic wave in the test core, a receiving process of receiving the longitudinal wave elastic wave, an analysis process of analyzing a received signal and determining the propagation velocity of the longitudinal wave elastic wave in the test core, and a determination process of determining the progression state of the alkali aggregate reaction of the concrete structure based on the propagation velocity of the longitudinal wave elastic wave obtained in the analysis process. In the determination process, when the propagation velocity of the longitudinal wave elastic wave in a predetermined time obtained in the analysis process is a predetermined value or higher, it is determined as a sound concrete structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルカリ骨材反応判定方法に関するものである。
なお、アルカリ骨材反応とは、セメントコンクリートに含有されるアルカリ成分(NaとK)が、非晶質のシリカなどの反応性鉱物を含む骨材と反応し、アルカリシリカゲルを生成することを言う。
The present invention relates to an alkali aggregate reaction determination method.
The alkali aggregate reaction means that alkali components (Na and K) contained in cement concrete react with an aggregate containing a reactive mineral such as amorphous silica to produce alkali silica gel. .

アルカリ骨材反応を起こす鉱物は、不安定なシリカ鉱物(クリストバライト、トリジマイト、オパールなど)、結晶性の石英であっても、微細な結晶粒や歪んだ結晶格子をもつものであり、これら以外に、シリケート鉱物や非晶質の火山ガラスなどがある。これらの鉱物は、火山岩(例えば安山岩)やチャートのような堆積岩に含まれている。
この種の鉱物を多く含む骨材をコンクリートに使用した場合、コンクリート中のNaOHやKOHを主成分とする空隙水が、骨材中の反応性の高い上記シリカ鉱物などと反応して、骨材の周囲にアルカリシリカゲルを生成する。アルカリシリカゲルは吸水・膨潤する性質があり、コンクリートに異常な膨張やそれに伴うひび割れを発生させる。
このアルカリ骨材反応が起きると、無筋コンクリートや鉄筋量の少ないコンクリート構造物では、網の目状または亀甲状のひび割れが発達し、鉄筋コンクリートおよびPCコンクリート構造物では、軸方向鉄筋やPC鋼材に沿った方向性のあるひび割れが生じる。
近年、アルカリ骨材反応により過大な膨張が生じた構造物には、コンクリート強度の低下、鉄筋とかぶりとの付着力の低下、曲げ加工部や圧接部での鉄筋破断などの損傷が確認されており、構造物の維持管理において、アルカリ骨材反応が生じているか否か、あるいは、生じている場合には、その損傷はどの程度であるのか、また、将来的にどの程度進行するのかを予測することが非常に重要である。
Minerals that cause an alkali-aggregate reaction are unstable silica minerals (such as cristobalite, tridymite, opal, etc.) and crystalline quartz, which have fine crystal grains and a distorted crystal lattice. There are silicate minerals and amorphous volcanic glass. These minerals are contained in sedimentary rocks such as volcanic rocks (eg andesite) and chert.
When an aggregate containing a large amount of this kind of mineral is used in concrete, the pore water mainly composed of NaOH or KOH in the concrete reacts with the highly reactive silica mineral in the aggregate, and the aggregate. Alkaline silica gel is produced around Alkali silica gel absorbs water and swells, and causes abnormal expansion and cracking in concrete.
When this alkali-aggregate reaction occurs, mesh-like or tortoiseshell-like cracks develop in unreinforced concrete and concrete structures with a small amount of reinforcing steel, and in reinforced concrete and PC concrete structures, axial reinforcement and PC steel There is a directional crack along the direction.
In recent years, structures that have undergone excessive expansion due to alkali-aggregate reactions have been confirmed to have reduced concrete strength, reduced adhesion between the reinforcing bars and the cover, and breakage of the reinforcing bars at the bent and pressed parts. In the maintenance of the structure, it is predicted whether or not an alkali-aggregate reaction has occurred, and if so, how much damage has occurred and how much it will progress in the future. It is very important to do.

上記アルカリ骨材反応によって生じるコンクリート表面の変状(例えば、ひび割れ、変色、ゲルの滲出)は、アルカリ骨材反応に特有なものであるので、劣化がある程度進行した段階(加速期や劣化期)では、目視調査のみでも比較的高い確度で原因を特定できる場合がある。
しかし、潜伏期(アルカリ骨材反応は生じているが、外観上の変化が見られない時期)あるいは進展期の初期においては、荷重や支持条件の変化によって生じる構造的なひび割れや、コンクリートの収縮など材料に起因するひび割れ、あるいは、施工の不具合によって生じたひび割れ等と区別することが困難な場合がある。
Deterioration of the concrete surface caused by the alkali-aggregate reaction (for example, cracks, discoloration, gel exudation) is unique to the alkali-aggregate reaction, and therefore the stage where deterioration has progressed to some extent (acceleration period or deterioration period) In some cases, the cause can be identified with relatively high accuracy even by visual inspection alone.
However, in the incubation period (when alkali-aggregate reaction occurs but no change in appearance) or in the early stage of development, structural cracks caused by changes in load and support conditions, concrete shrinkage, etc. In some cases, it is difficult to distinguish from cracks caused by materials or cracks caused by construction defects.

目視による判定が困難な場合には、一般的には、構造物から採取したコアの強度試験、あるいは、コアの膨張率試験が行われる。
コアの強度試験では、非特許文献4に示されるように、圧縮強度と静弾性係数の結果からアルカリ骨材反応が生じているか否かを判断する。劣化が相当に進行していれば静弾性係数が顕著に低下するため判定は可能であるが、外来アルカリなどによって、将来的にアルカリ骨材反応を生じる可能性があっても、それが顕在化する以前であれば、強度試験だけから判定することは難しい。
一方、コアの残存膨張試験は、採取したコアにコンタクトゲージ測定用のポイントを接着したステンレス製バンドを巻き付け、各種養生条件の下でポイント間の長さ変化を測定し、コンクリートの膨張率を経時的に測定するものである。この試験方法には、コア採取後の促進養生方法や判定基準が異なる幾つかの方法(例えば、JCI−DD2法、デンマーク法、及びカナダ法など)がある。
When visual judgment is difficult, generally, a core strength test taken from a structure or a core expansion rate test is performed.
In the core strength test, as shown in Non-Patent Document 4, it is determined from the results of the compressive strength and the static elastic modulus whether or not an alkali aggregate reaction has occurred. Judgment is possible because the static elastic modulus is remarkably reduced if the deterioration has progressed considerably, but even if there is a possibility that an alkali-aggregate reaction will occur in the future due to exogenous alkali, etc., this will become apparent. If it is before, it is difficult to judge only from the strength test.
On the other hand, in the residual expansion test of the core, a stainless steel band with a contact gauge measurement point attached to the sampled core was wrapped, the length change between the points was measured under various curing conditions, and the concrete expansion rate was measured over time. Measured automatically. This test method includes several methods (for example, the JCI-DD2 method, the Danish method, and the Canadian method) having different accelerated curing methods after core collection and different judgment criteria.

特許文献1には、コンクリートの促進膨張試験によって得られたコンクリートの膨張量の変化と水酸化アルカリ濃度の相関関係を用いて、アルカリシリカ反応による劣化進行を予測する方法が提案されている。
また、非特許文献1には、アルカリ骨材反応を生じたコンクリート構造物のコア試料による膨張量の測定方法が詳しく説明されている。
さらに、非特許文献2には、北陸地方の特徴である安山岩粒子が主要な反応性骨材である川砂及び非晶質なシリカからなるガラス砂について、デンマーク法、JIS A 1146法、及びASTM C 1260法による調査が報告されている。
また、非特許文献3には、北陸地方でコンクリート骨材として使われる河川砂利について、カナダ法による調査が報告されている。
Patent Document 1 proposes a method for predicting deterioration due to an alkali-silica reaction using a correlation between a change in the amount of expansion of concrete obtained by an accelerated expansion test of concrete and an alkali hydroxide concentration.
Non-Patent Document 1 describes in detail a method for measuring an expansion amount of a core sample of a concrete structure that has caused an alkali-aggregate reaction.
Further, Non-Patent Document 2 describes Danish method, JIS A 1146 method, and ASTM C for glass sand composed of river sand and androgenic silica whose andesite particles are the main reactive aggregate, which is a feature of the Hokuriku region. An investigation by the 1260 method has been reported.
Non-Patent Document 3 reports a survey by Canadian law on river gravel used as concrete aggregate in the Hokuriku region.

特開平11−274291号公報JP-A-11-274291 耐久性診断研究委員会報告書(社団法人 日本コンクリート工学協会 1989年6月)Durability Diagnosis Research Committee Report (Japan Concrete Institute, June 1989) 「促進養生試験による骨材のアルカリシリカ反応性評価」(鳥居和之外、コンクリート工学年次論文集 Vol.26 No.1, 2004 )"Evaluation of alkali-silica reactivity of aggregates by accelerated curing test" (Kazuyuki Torii, Annual Report of Concrete Engineering Vol.26 No.1, 2004) 「コアによるコンクリート構造物のアルカリシリカ反応の判定」(野村昌弘外、コンクリート工学年次論文集 Vol.23 No.1, 2001 )"Judgment of Alkali-Silica Reaction of Concrete Structures by Core" (Nomura Masahiro, Annual Report of Concrete Engineering Vol.23 No.1, 2001) 小林一輔、森弥広、野村謙二:圧縮載荷試験によるアルカリ骨材反応の診断方法、土木学会論文集、No.460/V・18、pp.151-154、1993.2Kazusuke Kobayashi, Yahiro Mori, Kenji Nomura: Diagnosis method of alkali-aggregate reaction by compression loading test, Proceedings of Japan Society of Civil Engineers, No.460 / V ・ 18, pp.151-154, 1993.2

上記非特許文献1に記載されている方法を、以下に簡単に紹介する。
図16は、反応性コアの膨張特性概略図である。コアを採取直後から湿度100%に近い状態で標準養生すると、一定量の膨張が生じる。さらにその状態で促進養生をすると、コンクリート中に残存している反応性物質による膨張が生じる。前者は、既に発生しているアルカリ骨材反応の尺度となり、解放膨張と呼ばれる。後者は、構造物が将来膨張する危険度を示す尺度で、残存膨張と呼ばれる。
図17は、膨張特性からアルカリ骨材反応の進行を判定する原理を説明する図である。同じ膨張率であっても、解放膨張率の割合が大きい場合は、アルカリ骨材反応は終了期に近いと判断し、逆に、残存膨張率の割合が大きい場合は、構造物の損傷が将来拡大する余地があると判断する。
The method described in Non-Patent Document 1 is briefly introduced below.
FIG. 16 is a schematic diagram of expansion characteristics of the reactive core. When the core is standard-cured in a state close to 100% humidity immediately after collection, a certain amount of expansion occurs. Furthermore, when accelerated curing is performed in this state, expansion occurs due to reactive substances remaining in the concrete. The former is a measure of the alkali-aggregate reaction that has already occurred and is called free expansion. The latter is a measure of the risk of future expansion of the structure and is called residual expansion.
FIG. 17 is a diagram for explaining the principle of determining the progress of the alkali aggregate reaction from the expansion characteristics. Even if the expansion coefficient is the same, if the ratio of the expansion coefficient is large, it is judged that the alkali-aggregate reaction is close to the end stage. Conversely, if the ratio of the residual expansion coefficient is large, damage to the structure will occur in the future. Judge that there is room for expansion.

ただし、得られた結果の解釈については、以下のような課題がある。
解放膨張率は、既に発生しているアルカリ骨材反応の尺度になると言われているが、統計的なデータはほとんど無い。例えば、本願発明の試験例を記載した図12における標準養生中の膨張量が解放膨張量に相当するものであるが、その数値は高々200μm乃至500μm程度であり、コア採取後の保管状況によっては乾燥の影響によって容易に変動してしまう値であり、過去に受けた損傷程度については分からない場合が多い。
一方、残存膨張率は、今後の劣化進行を予測する上で役に立つ指標であるが、既に反応が収束している場合には、コアはほとんど膨張せず、健全なコンクリートとの識別ができない可能性がある。
なお、コアの残存膨張試験および判定に要する時間は、最も一般的に実施されているJCI−DD2法で、約半年を要する。
However, the interpretation of the results obtained has the following problems.
The rate of expansion is said to be a measure of the alkali-aggregate reaction that has already occurred, but there is little statistical data. For example, the expansion amount during the standard curing in FIG. 12 describing the test example of the present invention corresponds to the release expansion amount, but the numerical value is about 200 μm to 500 μm at most, depending on the storage situation after core collection. The value easily fluctuates due to the effect of drying, and the degree of damage in the past is often unknown.
On the other hand, the residual expansion rate is a useful index for predicting the progress of deterioration in the future, but if the reaction has already converged, the core will hardly expand and may not be distinguished from healthy concrete. There is.
The time required for the residual expansion test and determination of the core is about half a year in the JCI-DD2 method which is most commonly performed.

上記のような場合、偏光顕微鏡や粉末X線回折による岩種判定、アルカリ含有量分析、シリカゲルの確認等を行えば、劣化原因がアルカリ骨材反応であるかどうかを判定することはできるが、これらの方法は、専門的な知識や技術が必要であり、その判定基準も定量的なものとは言えない。また、試料数が多い場合などは、迅速に判定することも困難である。仮に、劣化原因がアルカリ骨材反応であることは分かっても、過去の損傷程度や今後の劣化進行の可能性について知ることはできない。   In the above case, if the rock type determination by polarization microscope or powder X-ray diffraction, alkali content analysis, confirmation of silica gel, etc., it can be determined whether the cause of deterioration is alkali aggregate reaction, These methods require specialized knowledge and techniques, and the judgment criteria are not quantitative. In addition, when the number of samples is large, it is difficult to make a quick determination. Even if it is known that the cause of deterioration is an alkali aggregate reaction, it is not possible to know the past degree of damage or the possibility of future deterioration.

本発明は、上述した背景技術が有する問題点に鑑み成されたものであって、コンクリート構造物にアルカリ骨材反応が生じているか否か、また、過去に受けたアルカリ骨材反応による損傷の程度、さらには、将来的にアルカリ骨材反応による劣化が進行するか否かを、簡便に、しかも早期に判定することのできるアルカリ骨材反応判定方法を提案することを課題とする。   The present invention has been made in view of the problems of the background art described above, and whether or not an alkali aggregate reaction has occurred in a concrete structure, and damage caused by an alkali aggregate reaction that has been received in the past. It is an object of the present invention to propose an alkali aggregate reaction determination method that can easily and quickly determine whether the deterioration due to an alkali aggregate reaction will progress in the future.

上記した課題は、下記の〔1〕〜〔7〕の本発明に係るアルカリ骨材反応判定方法によって解決された。すなわち、
〔1〕 コンクリート構造物から試験コアを採取するコア採取過程と、前記試験コアに縦波弾性波を発生させる励振過程と、前記縦波弾性波を受信する受信過程と、受信された信号を分析して前記試験コア中の縦波弾性波の伝播速度を求める分析過程と、前記分析過程で得られた縦波弾性波の伝播速度から前記コンクリート構造物のアルカリ骨材反応の進行状況を判定する判定過程とを含む、アルカリ骨材反応判定方法。
〔2〕 前記励振過程が、所定の重さと形状の物体を所定の高さから前記試験コアに落下させて縦波弾性波を励振させる過程であり、前記受信過程が、励振された前記縦波弾性波を前記試験コアに設けられた加速度センサで受信する過程であり、前記分析過程が、受信された前記縦波弾性波の周波数分析を行い、ピーク周波数から縦波弾性波の伝播速度を求める過程である、前記〔1〕のアルカリ骨材反応判定方法。
〔3〕 前記励振過程が、前記試験コアに設けられた送信器からパルス弾性波を送る過程であり、前記受信過程が、前記試験コアに設けられた受信器で前記パルス弾性波を受信する過程であり、前記分析過程が、前記送信器で送信した信号と前記受信器で受信した信号の到達時間差に基づいて縦波弾性波の伝播速度を求める過程である、前記〔1〕のアルカリ骨材反応判定方法。
〔4〕 前記判定過程が、前記分析過程で得られた所定の時期の縦波弾性波の伝播速度が所定の値以上である場合には、健全なコンクリート構造物と判定するものである、前記〔1〕のアルカリ骨材反応判定方法。
〔5〕 前記判定過程が、前記分析過程で得られた所定の期間の縦波弾性波の伝播速度が上昇している場合には、既にかなりのアルカリ骨材反応により損傷を受けた構造物(劣化期にあるコンクリート構造物)と判定するものである、前記〔1〕のアルカリ骨材反応判定方法。
〔6〕 前記判定過程が、前記分析過程で得られた所定の期間の縦波弾性波の伝播速度が低下している場合には、今後、アルカリ骨材反応による劣化進行が予測される構造物(潜伏期にあるコンクリート構造物)と判定するものである、前記〔1〕のアルカリ骨材反応判定方法。
〔7〕 前記試験コアの膨張量測定を行い解放膨張量及び/ 又は残存膨張量を求める膨張量測定過程をさらに含み、前記膨張量測定過程の結果もふまえて前記判定過程において前記コンクリート構造物のアルカリ骨材反応の進行状況を判定する、前記〔1〕のアルカリ骨材反応判定方法。
The above-described problems have been solved by the following alkali aggregate reaction determination methods according to the present invention [1] to [7]. That is,
[1] Core sampling process for sampling a test core from a concrete structure, excitation process for generating a longitudinal acoustic wave in the test core, a receiving process for receiving the longitudinal acoustic wave, and analysis of the received signal Then, the progress of the alkali-aggregate reaction of the concrete structure is determined from the analysis process for obtaining the propagation velocity of the longitudinal acoustic wave in the test core and the propagation velocity of the longitudinal acoustic wave obtained in the analysis process. A method for determining an alkali-aggregate reaction, including a determination process.
[2] The excitation process is a process in which an object having a predetermined weight and shape is dropped from the predetermined height onto the test core to excite a longitudinal elastic wave, and the reception process is the excited longitudinal wave This is a process of receiving an elastic wave with an acceleration sensor provided in the test core, and the analysis process performs a frequency analysis of the received longitudinal elastic wave and obtains a propagation velocity of the longitudinal elastic wave from a peak frequency. The method for determining an alkali-aggregate reaction according to [1], which is a process.
[3] The excitation process is a process of transmitting a pulse elastic wave from a transmitter provided in the test core, and the reception process is a process of receiving the pulse elastic wave by a receiver provided in the test core. The alkali aggregate according to [1], wherein the analysis step is a step of obtaining a propagation velocity of longitudinal elastic waves based on a difference in arrival time between the signal transmitted by the transmitter and the signal received by the receiver Reaction determination method.
[4] In the determination process, when the propagation velocity of the longitudinal acoustic wave at a predetermined time obtained in the analysis process is equal to or higher than a predetermined value, it is determined as a sound concrete structure. [1] Alkali-aggregate reaction determination method.
[5] In the determination process, when the propagation velocity of longitudinal acoustic waves for a predetermined period obtained in the analysis process is increased, the structure already damaged by a considerable alkali-aggregate reaction ( (1) Alkali-aggregate reaction determination method according to [1] above, which is determined as a concrete structure in a deterioration period
[6] In the case where the propagation speed of longitudinal acoustic waves in the predetermined period obtained in the analysis process is reduced in the determination process, a structure in which deterioration progress due to an alkali aggregate reaction is predicted in the future The alkali aggregate reaction determination method according to the above [1], which is determined as (concrete structure in the latent period).
[7] The method further includes an expansion amount measurement process for measuring the expansion amount of the test core to obtain a release expansion amount and / or a residual expansion amount, and in the determination process based on a result of the expansion amount measurement process. The method for determining an alkali aggregate reaction according to the above [1], wherein the progress of the alkali aggregate reaction is determined.

上記した本発明に係るアルカリ骨材反応判定方法によれば、コンクリート構造物にアルカリ骨材反応が生じているか否か、また、過去に受けたアルカリ骨材反応による損傷の程度、さらには、将来的にアルカリ骨材反応による劣化が進行するか否かを、簡便に、しかも早期に判定することができる。   According to the above-described alkali aggregate reaction determination method according to the present invention, whether or not the alkali aggregate reaction has occurred in the concrete structure, the degree of damage caused by the alkali aggregate reaction received in the past, and further in the future In particular, it can be determined easily and at an early stage whether or not the deterioration due to the alkali-aggregate reaction proceeds.

以下、上記した本発明に係るアルカリ骨材反応判定方法の有効性を示す、試験例について説明する。   Hereinafter, test examples showing the effectiveness of the above-described alkali aggregate reaction determination method according to the present invention will be described.

試験用のコンクリートは、次のようにして作製された。
セメントは普通ポルトランドセメント、細骨材は非反応性の陸砂、粗骨材は反応性骨材(化学法試験の結果、無害ではないと判定された骨材)及び非反応性骨材を容積比5:5で混合して使用した。
アルカリ骨材反応を促進させるために、等価アルカリ量が8.0kg/m3となるようにNaOHを練混ぜ水に添加した。
対比試験用に、アルカリを添加しない正常なコンクリートも用意した。
The test concrete was produced as follows.
Cement is ordinary Portland cement, fine aggregate is non-reactive land sand, coarse aggregate is reactive aggregate (aggregate determined to be non-hazardous as a result of chemical test) and non-reactive aggregate Used in a mixed ratio of 5: 5.
In order to promote the alkali aggregate reaction, NaOH was mixed and added to the water so that the equivalent alkali amount was 8.0 kg / m 3 .
A normal concrete to which no alkali was added was also prepared for the comparison test.

コンクリート供試体の仕様は、表1及び表2に示したとおりであった。

Figure 2008128846
Figure 2008128846
The specifications of the concrete specimens were as shown in Tables 1 and 2.
Figure 2008128846
Figure 2008128846

図1に使用したコンクリート供試体の側面図(A)、正面図(B)を示す。供試体はポストテンション方式で作製したPC(プレストレストコンクリート)供試体で、使用したPC鋼材はφ11mmのPC鋼棒であった。   FIG. 1 shows a side view (A) and a front view (B) of the concrete specimen used. The specimen was a PC (prestressed concrete) specimen prepared by a post-tension method, and the PC steel material used was a PC steel bar having a diameter of 11 mm.

上記コンクリート供試体について、脱型後に28日間湿布養生を行い、その後、湿度98%、温度40℃の恒温室にて促進アルカリ骨材反応養生を行った。
そして、促進養生をさせる前のコンクリート供試体(試料No.0:潜伏期相当)と、アルカリ骨材反応によりひび割れが顕在化したコンクリート供試体(試料No.1:進展期相当)と、アルカリ骨材反応により劣化が相当進行したコンクリート供試体(試料No.2:劣化期相当)、及び正常なコンクリート供試体(健全)から、各々試験コアを採取した。
試験コアの採取は、図1に示す位置で行われた。試験コアは、それぞれ直径が100mmで、長さが300mmであった。
The concrete specimen was subjected to poultice curing for 28 days after demolding, and then subjected to accelerated alkali-aggregate reaction curing in a constant temperature room at a humidity of 98% and a temperature of 40 ° C.
Then, a concrete specimen (sample No. 0: equivalent to the incubation period) before the accelerated curing, a concrete specimen (sample No. 1: equivalent to the development period) in which cracks were revealed by the alkali aggregate reaction, and the alkali aggregate Test cores were collected from concrete specimens (sample No. 2: equivalent to the degradation period) in which deterioration was considerably advanced by the reaction, and normal concrete specimens (sound).
The test core was collected at the position shown in FIG. Each test core had a diameter of 100 mm and a length of 300 mm.

上記のようにして採取した試験コアについて、JCI−DD2法に準拠して、膨張量試験を行うと共に、試験コア中の弾性波の伝播速度を、下記の二つの方法で計測した。   About the test core extract | collected as mentioned above, while performing the expansion amount test based on JCI-DD2 method, the propagation velocity of the elastic wave in a test core was measured with the following two methods.

図2は、試験コア中の弾性波の伝播速度を測定する第1の方法の概念図である。
この方法においては、試験コア1の両端面に電気・音響トランデューサ2,2を密着させて設けておく。そして、パルス信号発生器3からパルス信号を一方の電気・音響トランスデューサ2に送り、試験コア1の一端で弾性波を発生させる(励振過程)。そして、試験コア1内を伝播し、他端に到達した音響信号は他方の電気・音響トランスデューサ2で電気信号に変換される(受振過程)。パルス信号発生器3からの入力パルス信号S1と、電気信号に変換された受信信号S2が分析器4に送られる。分析器4で信号が解析され、試験コア内を透過した弾性波の伝播速度の計算や周波数分析等が行われる(分析過程)。弾性波の伝播速度は、例えば、信号パルスの立ち上がり時点の遅れに基づいて、公知の技術を用いて容易に求めることができる。
FIG. 2 is a conceptual diagram of a first method for measuring the propagation velocity of elastic waves in the test core.
In this method, the electrical / acoustic transducers 2 and 2 are provided in close contact with both end faces of the test core 1. Then, a pulse signal is sent from the pulse signal generator 3 to one of the electric / acoustic transducers 2 to generate an elastic wave at one end of the test core 1 (excitation process). The acoustic signal that propagates through the test core 1 and reaches the other end is converted into an electrical signal by the other electrical / acoustic transducer 2 (a vibration receiving process). An input pulse signal S1 from the pulse signal generator 3 and a received signal S2 converted into an electric signal are sent to the analyzer 4. The signal is analyzed by the analyzer 4 and calculation of the propagation speed of the elastic wave transmitted through the test core and frequency analysis are performed (analysis process). The propagation speed of the elastic wave can be easily obtained using a known technique, for example, based on the delay at the rising edge of the signal pulse.

図3は、促進養生をさせる前のコンクリート供試体(試料No.0:潜伏期相当)から採取した試験コア1中を伝播した弾性波の受信信号の例である。図4は、アルカリ骨材反応が進行し、膨張量が2860μmであるコンクリート供試体(試料No.1:進展期相当)から採取した試験コア1中を伝播した弾性波の受信信号の例である。また、図5と図6は、それぞれ図3と図4の信号の周波数スペクトラムである。   FIG. 3 is an example of the received signal of the elastic wave propagated through the test core 1 taken from the concrete specimen (sample No. 0: equivalent to the incubation period) before the accelerated curing. FIG. 4 is an example of a received signal of an elastic wave propagated through the test core 1 collected from a concrete specimen (sample No. 1: equivalent to the development period) in which the alkali aggregate reaction proceeds and the expansion amount is 2860 μm. . 5 and 6 are frequency spectra of the signals of FIGS. 3 and 4, respectively.

上記図3の受信信号と比べて、上記図4の受信信号の信号強度は非常に小さくなっている。また、図6の周波数分布からは図5で見られる150kHz付近の高周波成分が消失していることが分かる。これは、アルカリ骨材反応の進行により生成した微細なひび割れやアルカリシリカゲルを透過する際に、弾性波が吸収される、あるいは散乱するなどして減衰したためと考えられる。
このように出力信号の波形が崩れていると、パルス入力時間と透過したパルスの立ち上り時間の差から弾性波の伝播速度を求めることが困難な場合もある。パルス入力強度を大きくする、あるいは試験コア長さを短くするなどの方法で出力波形の立ち上り時間を見やすくすることは可能であるが、試験条件が変化するため望ましくない。
Compared with the received signal in FIG. 3, the signal strength of the received signal in FIG. 4 is very small. Further, it can be seen from the frequency distribution of FIG. 6 that the high frequency component around 150 kHz seen in FIG. 5 has disappeared. This is presumably because the elastic waves were attenuated by being absorbed or scattered when passing through fine cracks generated by the progress of the alkali-aggregate reaction or alkali silica gel.
If the waveform of the output signal is broken in this way, it may be difficult to obtain the propagation speed of the elastic wave from the difference between the pulse input time and the rise time of the transmitted pulse. Although it is possible to make the rise time of the output waveform easier to see by increasing the pulse input intensity or shortening the test core length, it is not desirable because the test conditions change.

上記のことから、図2のパルスを透過させる方法では、透過パルスの立ち上がり時間が正確に読み取れず、また、計測者による誤差が生じることもある。さらに、計測装置の時間軸分解能(サンプリング周波数)によっては、精度が期待できない場合もある。   From the above, in the method of transmitting the pulse of FIG. 2, the rising time of the transmitted pulse cannot be read accurately, and an error by the measurer may occur. Furthermore, the accuracy may not be expected depending on the time base resolution (sampling frequency) of the measuring device.

図7は、試験コア中の弾性波の伝播速度を測定する第2の方法の概念図である。
この方法においては、試験コア1の任意の点、例えば試験コア1の片側端面に加速度センサ5を密着させて設けておく。そして、試験コア1の一方の端面を上方に向けて、かつ試験コア1の振動を減衰させないように、すなわち、自由振動が可能なように試験コア1を支持しておく。
この状態で、試験コア1から所定距離、例えば30cmの高さから、所定の物体6、例えば直径20mm、質量30g程度の鋼球を落として試験コア1の端面に当てて、試験コア1を自由振動させる(励振過程)。入力された弾性波は、試験コア1の両端面を往復し、試験コア全体は自由振動する。そして、その振動を上記加速度センサ5で検出する(受振課程)。
なお、自由振動をさせるためには、必ずしも上記の鋼球を使う必要はなく、鉄製あるいはプラスチック製のハンマー等により打撃する方法でも良いが、条件を規格化するために、所定の重さと形状の物体を所定の高さから落下させる方法を採用することは好ましい。
FIG. 7 is a conceptual diagram of a second method for measuring the propagation velocity of elastic waves in the test core.
In this method, the acceleration sensor 5 is provided in close contact with an arbitrary point of the test core 1, for example, one end face of the test core 1. Then, the test core 1 is supported so that one end face of the test core 1 faces upward and the vibration of the test core 1 is not damped, that is, free vibration is possible.
In this state, from a predetermined distance from the test core 1, for example, a height of 30 cm, a predetermined object 6, for example, a steel ball having a diameter of about 20 mm and a mass of about 30 g is dropped and applied to the end surface of the test core 1 to freely test the core 1 Vibrate (excitation process). The input elastic wave reciprocates on both end faces of the test core 1 and the entire test core vibrates freely. Then, the vibration is detected by the acceleration sensor 5 (a vibration receiving process).
In order to make free vibration, it is not always necessary to use the above steel balls, and a method of hitting with a hammer made of iron or plastic may be used. However, in order to standardize the conditions, a predetermined weight and shape are used. It is preferable to employ a method of dropping an object from a predetermined height.

長さがLの円筒形物体の端面に円筒軸の方向に衝撃を加えたときに、円筒体の中に励起される弾性波の自由振動の応答周波数ピークfは、その物体の縦波弾性波速度Vと、次の式の関係にある。

V=2fL

従って、自由振動の応答周波数ピークfを検出することにより、縦波弾性波速度Vを求めることができる(分析過程)。
試験コアの寸法がφ50〜100mm、長さ100〜400mm程度であれば、検出される応答周波数ピークfは数kHzから数十kHzの範囲内の値となる。サンプリング間隔は数十μs、解析に必要なデータ数は2000個程度である。
When an impact is applied to the end face of a cylindrical object having a length L in the direction of the cylinder axis, the response frequency peak f of the free vibration of the elastic wave excited in the cylindrical body is a longitudinal elastic wave of the object. There is a relationship between the velocity V and the following equation.

V = 2fL

Accordingly, the longitudinal elastic wave velocity V can be obtained by detecting the response frequency peak f of free vibration (analysis process).
If the dimension of the test core is φ50 to 100 mm and the length is about 100 to 400 mm, the detected response frequency peak f is a value within a range of several kHz to several tens of kHz. The sampling interval is several tens of μs, and the number of data necessary for analysis is about 2000.

図8は、促進養生をさせる前のコンクリート供試体(試料No.0:潜伏期相当)から採取した試験コア1の自由振動を加速度センサ5で受信した信号の例である。図9は、アルカリ骨材反応が進行し、膨張量が5000μmであるコンクリート供試体(試料No.2:劣化期相当)から採取した試験コア1の自由振動を加速度センサ5で受信した信号の例である。図10と図11は、それぞれ図8と図9の信号の周波数スペクトラムである。   FIG. 8 is an example of a signal received by the acceleration sensor 5 of the free vibration of the test core 1 taken from the concrete specimen (sample No. 0: equivalent to the incubation period) before the accelerated curing. FIG. 9 shows an example of a signal received by the acceleration sensor 5 from the free vibration of the test core 1 taken from a concrete specimen (sample No. 2: equivalent to the deterioration period) in which the alkali aggregate reaction proceeds and the expansion amount is 5000 μm. It is. 10 and 11 are frequency spectra of the signals of FIGS. 8 and 9, respectively.

上記図11の場合、上記図10に比べて、応答周波数ピークが下がっている。これは、アルカリ骨材反応が進むと、アルカリシリカゲルや微細ひび割れの生成によって、試験コア1の縦波弾性波速度Vが小さくなり、この結果、応答周波数ピークが下がると考えられる。   In the case of FIG. 11, the response frequency peak is lower than that of FIG. It is considered that when the alkali-aggregate reaction proceeds, the longitudinal acoustic wave velocity V of the test core 1 decreases due to the generation of alkali silica gel and fine cracks, and as a result, the response frequency peak decreases.

図12は、試料No.0(潜伏期相当)と、試料No.1(進展期相当)と、試料No.2(劣化期相当)と、正常なコンクリート(健全)について、それぞれ試験コアの膨張量試験を行い、解放膨張量及び残存膨張量を、材齢の関数として示した図である。
なお、膨張量試験は、上記したようにJCI−DD2法に準拠して行った。
FIG. 0 (equivalent to incubation period) and sample no. 1 (equivalent to the development period) and sample no. It is the figure which performed the expansion | swelling amount test of the test core about 2 (deterioration period equivalent) and normal concrete (sound), respectively, and showed the open | release expansion amount and the residual expansion amount as a function of material age.
The expansion amount test was performed according to the JCI-DD2 method as described above.

試料No.0(潜伏期相当:黒菱形印)の試験コアの膨張量測定では、促進養生後の膨張量の立ち上がりが大きいが、試料No.1(進展期相当:白丸印)ではその立ち上がりが小さくなり、試料No.2(劣化期相当:黒三角印)では殆ど立ち上がらず、正常なコンクリート(健全:バツ印)と明確に区別を付けることができないことが分かる。
すなわち、膨張量測定では、調査時までにどの程度すでに膨張していたかが不明であり、例えばアルカリ骨材反応が収束していると、劣化原因がアルカリ骨材反応であっても、試験コアは膨張せず、アルカリ骨材反応を検出することができないことが分かる。
Sample No. In the measurement of the expansion amount of the test core of 0 (latent period equivalent: black rhombus), the rise of the expansion amount after the accelerated curing is large. No. 1 (corresponding to the progressing period: white circle mark), the rise is small, and sample No. 2 (deterioration period equivalent: black triangle mark) hardly stands up, and it can be seen that it cannot be clearly distinguished from normal concrete (healthy: cross mark).
In other words, in the measurement of the amount of expansion, it is unclear how much it has already expanded by the time of the survey.For example, if the alkali aggregate reaction has converged, the test core will expand even if the cause of deterioration is the alkali aggregate reaction. It can be seen that the alkali aggregate reaction cannot be detected.

図13は、試料No.0(潜伏期相当)と、試料No.1(進展期相当)と、試料No.2(劣化期相当)と、正常なコンクリート(健全)について、上記膨張量試験と並行して、それぞれの試験コアについて図2に示した方法で超音波パルス伝播速度の測定を行い、材齢の関数としてその測定値を示した図である。
また、図14は、試料No.0(潜伏期相当)と、試料No.1(進展期相当)と、試料No.2(劣化期相当)と、正常なコンクリート(健全)について、上記膨張量試験と並行して、それぞれの試験コアについて図7に示した方法で縦弾性波伝播速度の測定を行い、材齢の関数としてその測定値を示した図である。
FIG. 0 (equivalent to incubation period) and sample no. 1 (equivalent to the development period) and sample no. 2 (corresponding to deterioration period) and normal concrete (healthy), in parallel with the above expansion test, the ultrasonic pulse propagation velocity was measured for each test core by the method shown in FIG. It is the figure which showed the measured value as a function.
14 shows the sample No. 0 (equivalent to incubation period) and sample no. 1 (equivalent to the development period) and sample no. 2 (corresponding to deterioration period) and normal concrete (healthy), in parallel with the above expansion test, the longitudinal elastic wave propagation velocity was measured for each test core by the method shown in FIG. It is the figure which showed the measured value as a function.

一般に、コンクリート構造物が健全な状態にある場合の伝播速度(例えば、竣工時の伝播速度など)は不明であるが、コンクリートの配合条件が既知の場合には、その伝播速度の推定が可能である。
例えば、試験に使用した骨材を用いて、水セメント比と単位粗骨材量を変化させ、アルカリを添加しないコンクリート供試体を作製し、超音波パルス伝播速度を計測したところ、図15に示したような結果を得た。
今回の試験に使用したコンクリートの配合は、表2の通りW/C=50%、単位粗骨材量380L/m3であるから、図15から健全な状態の超音波パルス伝播速度は約4500m/sと推定できる。この推定結果は、図13に示す正常なコンクリート(健全:バツ印)の伝播速度とほぼ一致している。
同様の推定方法によって、試験に使用したコンクリート配合の健全な状態における縦弾性波伝播速度は、約4200m/sと推定できる。
Generally, the propagation speed when the concrete structure is in a healthy state (for example, the propagation speed at the time of completion) is unknown, but if the concrete mixing conditions are known, the propagation speed can be estimated. is there.
For example, using the aggregate used for the test, the water cement ratio and the unit coarse aggregate amount were changed, a concrete specimen without addition of alkali was prepared, and the ultrasonic pulse propagation velocity was measured. I got the result.
As shown in Table 2, the composition of the concrete used in this test is W / C = 50% and the unit coarse aggregate amount is 380 L / m 3 , and the ultrasonic pulse propagation velocity in a healthy state is about 4500 m from FIG. / S. This estimation result almost coincides with the propagation speed of normal concrete (sound: cross) shown in FIG.
By a similar estimation method, the longitudinal elastic wave propagation velocity in a healthy state of the concrete blend used in the test can be estimated to be about 4200 m / s.

上記図13、図14から、少なくとも材齢90日(標準養生40日+促進養生50日)以降であれば、全ての試料について、アルカリ骨材反応が生じたコンクリートと正常なコンクリートとを明確に区別できることが分かる。
すなわち、正常なコンクリート(健全:バツ印)のみが推定された伝播速度(約4500m/s、あるいは約4200m/s)から低下しておらず、図13において4500m/s程度、図14において4100m/s強を保持している。これに対して、アルカリ骨材反応が生じたコンクリートは、コア採取時の劣化状態によらず伝播速度が低下し、図13において4000m/s強、図14においては3400m/s程度となっている。
特に、膨張率試験では区別できなかった劣化期相当のコンクリート(No.2:黒三角印)と正常なコンクリート(健全:バツ印)を明瞭に区別できる。
上記のことより、所定の時期、例えば促進養生開始から50日後に測定した伝播速度が、配合条件から推定される伝播速度の95%以上(例えば、パルス弾性波の入力による計測の場合に4200m/s以上、衝撃弾性波の入力による計測の場合には4000m/s以上)なら、健全なコンクリート構造物であると判定することが可能である。
From FIG. 13 and FIG. 14, if the age is at least 90 days (standard curing 40 days + accelerated curing 50 days), the concrete in which the alkali-aggregate reaction has occurred and the normal concrete are clearly defined for all samples. It can be seen that they can be distinguished.
That is, only normal concrete (healthy: cross) is not lowered from the estimated propagation speed (about 4500 m / s, or about 4200 m / s), and is about 4500 m / s in FIG. 13 and 4100 m / s in FIG. Holds s strong. On the other hand, the concrete in which the alkali-aggregate reaction has occurred has a reduced propagation speed regardless of the deterioration state at the time of core collection, and is slightly over 4000 m / s in FIG. 13 and about 3400 m / s in FIG. .
In particular, it is possible to clearly distinguish between concrete corresponding to a deterioration period (No. 2: black triangle mark) and normal concrete (sound: cross mark) that could not be distinguished in the expansion rate test.
From the above, the propagation velocity measured at a predetermined time, for example, 50 days after the start of accelerated curing, is 95% or more of the propagation velocity estimated from the blending conditions (for example, 4200 m / in the case of measurement by inputting pulsed elastic waves) s or more and 4000 m / s or more in the case of measurement by input of impact elastic waves), it is possible to determine that the concrete structure is sound.

また、図13、図14から、解放膨張試験の間、すなわちコア抜き直後から解放膨張が終了する材齢40日程度の間において伝播速度が上昇して現れるのは、試料No.2(劣化期相当:黒三角印)の試料のみであり、他は概ね伝播速度の変化は見られないことが分かる。
上記のことから、所定の期間、例えば構造物から採取した試験コアについて、コア抜き直後と解放膨張終了時(材齢40日程度)の伝播速度を比較し、伝播速度が上昇しているようであれば、過去に既にかなりのアルカリ骨材反応により損傷を受けた構造物(劣化期にあるコンクリート構造物)と判定することが可能である。なお、劣化が相当に進んだ試料において、解放膨張試験期間中に膨張を示しながらも、伝播速度が上昇する原因については不明であるが、例えば、試験中の湿潤条件下でコア供試体自体が吸水した、あるいはアルカリシリカゲルが吸水膨潤することによりコア供試体中の微細ひび割れが充填されたことなどが考えられる。
From FIGS. 13 and 14, it can be seen that the propagation speed increases during the release expansion test, that is, the age of about 40 days after release of the core immediately after the core is removed. It can be seen that only the sample No. 2 (corresponding to the deterioration period: black triangle mark) is observed, and no change in the propagation velocity is observed in the other samples.
From the above, for the test cores taken from the structure for a predetermined period, for example, the propagation speed immediately after removal of the core is compared with the propagation speed at the end of release expansion (about 40 days of age), and the propagation speed seems to increase. If there is, it is possible to determine that the structure has already been damaged by a considerable alkali aggregate reaction in the past (a concrete structure in a deterioration stage). Although the cause of the increase in the propagation speed is unknown in the sample with considerably advanced deterioration while showing expansion during the open expansion test period, for example, the core specimen itself under the wet conditions under test It is conceivable that fine cracks in the core specimen were filled due to water absorption or alkali silica gel swelling and absorbing water.

さらに、図13、図14から、解放膨張終了後、促進養生の初期の段階(促進養生開始後30〜50日)において急激に伝播速度が低下して現れるのは、試料No.0(潜伏期相当:黒菱形印)の試料のみであり、他は、大きな伝播速度の変化は認められないことが分かる。
上記のことから、所定の期間、例えば構造物から採取した試験コアについて、解放膨張終了直後と促進養生30〜50日後(材齢70〜80日)の伝播速度を比較し、伝播速度が低下しているようであれば、今後、アルカリ骨材反応により劣化進行が予想される構造物(潜伏期にあるコンクリート構造物)と判定することが可能である。なお、潜伏期の試料において、この間に伝播速度の低下が現れるのは、促進養生によって急激に試料のアルカリ骨材反応が進行し、アルカリシリカゲルやひび割れ、亀裂の生成のためであると考えられる。
Furthermore, from FIG. 13 and FIG. 14, after the completion of the release expansion, the propagation speed suddenly decreases at the initial stage of accelerated curing (30 to 50 days after the start of accelerated curing). It can be seen that there is only a sample of 0 (latent period equivalent: black rhombus mark), and no significant change in propagation velocity is observed in other samples.
From the above, for the test core collected from the structure for a predetermined period, for example, the propagation speed immediately after the end of the open expansion is compared with the propagation speed 30 to 50 days after accelerated curing (age 70 to 80 days), and the propagation speed decreases. If so, it can be determined that the structure is expected to progress in the future due to the alkali aggregate reaction (concrete structure in the latent period). In addition, in the sample in the incubation period, the decrease in the propagation speed during this period is thought to be due to the generation of alkali silica gel, cracks, and cracks due to the rapid progress of the alkali aggregate reaction of the sample due to accelerated curing.

なお、上記した劣化期にあるコンクリート構造物との判定、あるいは潜伏期にあるコンクリート構造物との判定は、所定期間における伝播速度の上昇あるいは低下をもって判定を行うものであり、必ずしも配合条件からの伝播速度推定は必要でない。   In addition, the determination with the concrete structure in a deterioration period mentioned above, or the determination with a concrete structure in a latent period is performed with the increase or decrease of the propagation speed in a predetermined period, and it is not necessarily propagation from mixing conditions. Speed estimation is not necessary.

また、上記試験例の如く、試験コアに対する膨張量試験と並行して上記伝播速度の測定を行うこととすると、膨張量の試験からは将来の膨張性有無に関する情報が得られ、伝播速度の測定値およびその変化からは現時点までにアルカリ骨材反応による損傷を受けたか否か、また、どの程度の損傷であるかに関する情報が得られ、両者の情報から総合的に判定することにより、より高い確度でコンクリート構造物のアルカリ骨材反応の進行状況を判定することが可能である。   Further, as in the above test example, when the propagation velocity is measured in parallel with the expansion amount test for the test core, information on the presence or absence of future expansion is obtained from the expansion amount test, and the propagation velocity is measured. From the value and its change, it is possible to obtain information on whether or not it has been damaged by the alkali-aggregate reaction up to the present time, and how much damage has occurred, and it is higher by comprehensively judging from both information It is possible to determine the progress of the alkali aggregate reaction of the concrete structure with accuracy.

なお、図2のパルス透過法に比べて、図7の鋼球落下による衝撃弾性波法の方が、入力する弾性波のエネルギーが大きく、試験コアを自由振動させることになるため、コンクリート内の平均的な剛性率をよく捉えることができ、また、同じ試験コアで複数回同様の計測をする場合の結果(例えば、応答周波数ピークの測定結果)の再現性は高く、計測者による読み取り誤差も少なくなる。   Compared with the pulse transmission method of FIG. 2, the impact elastic wave method by dropping the steel ball of FIG. 7 has a larger energy energy of the input elastic wave and causes the test core to vibrate freely. The average rigidity can be well understood, and the reproducibility of the results (for example, the response frequency peak measurement results) when the same measurement is performed multiple times with the same test core is high, and the reading error by the measurer is also low. Less.

また、図13と図14より、パルス透過法に比べて、鋼球落下による衝撃弾性波法の方が、アルカリ骨材反応による伝播速度の低下を捉えやすい傾向があることが分かる。これは、次の理由によるものと考えられる。
鋼球φ10〜20mmを用いた場合、入力できる弾性波の波長は数十cmであり、φ100mmの試験コアの寸法より十分に長い。このため、衝撃弾性波法では棒を伝わる縦波の速度が求められていることになる。一方、パルス透過法では使用している弾性波の波長は数cmであり、実体波P波速度が算出されている。
実体波P波速度VPと棒を伝播する縦波の速度V1との間には、以下の数1のような関係がある。

Figure 2008128846
両者の関係はポアソン比によって決まるが、アルカリ骨材反応を生じたコンクリートのポアソン比についてはこれまでに知見が得られていない。
試験コアではないが、同時に作製したテストピースの強度試験結果によれば、劣化前のコンクリートで0.2程度(この時、棒を伝わる縦波の速度は実体波P波速度の0.95倍)、アルカリ骨材反応により5000μm程度膨張したコンクリートで0.3程度(この時、棒を伝わる縦波の速度は実体波P波速度の0.86倍)であった。このため、棒を伝播する縦波の速度として算出される衝撃弾性波法の方が、アルカリ骨材反応による伝播速度の低下が現れ易かったと考えられる。 From FIG. 13 and FIG. 14, it can be seen that the impact elastic wave method by dropping a steel ball tends to catch the decrease in propagation speed due to the alkali aggregate reaction, compared with the pulse transmission method. This is considered to be due to the following reason.
When a steel ball of φ10 to 20 mm is used, the wavelength of the elastic wave that can be input is several tens of cm, which is sufficiently longer than the size of the test core of φ100 mm. For this reason, in the shock elastic wave method, the velocity of the longitudinal wave traveling through the rod is required. On the other hand, in the pulse transmission method, the wavelength of the elastic wave used is several cm, and the body wave P wave velocity is calculated.
The following relationship is established between the body wave P wave velocity V P and the longitudinal wave velocity V 1 propagating through the rod.
Figure 2008128846
The relationship between the two is determined by the Poisson's ratio, but no knowledge has been obtained about the Poisson's ratio of concrete that has caused an alkali-aggregate reaction.
Although it is not a test core, according to the strength test result of the test piece produced at the same time, it is about 0.2 in concrete before deterioration (at this time, the velocity of the longitudinal wave transmitted through the bar is 0.95 times the velocity of the body wave P wave) ), About 0.3 μm in concrete expanded by about 5000 μm due to the alkali aggregate reaction (at this time, the velocity of the longitudinal wave transmitted through the rod was 0.86 times the velocity of the body wave P wave). For this reason, it is considered that the impact elastic wave method calculated as the velocity of the longitudinal wave propagating through the rod is more likely to cause a decrease in the propagation velocity due to the alkali aggregate reaction.

以上、本発明に係るアルカリ骨材反応判定方法の試験例を記載したが、本発明は、何ら上記の試験例に限定されず、特許請求の範囲に記載した本発明の技術的思想の範囲内において、種々の変形及び変更が可能であることは当然である。
例えば、本発明を実施するに当たって、弾性波の伝播速度を検出する方法は、上記図2及び図7に基づいて説明した方法に限られない。例えば、図2の方法の場合、入力信号はパルスに限られず、連続波を採用し、応答関数から伝播速度を求めたり、図7の方法の場合、複数の加速度計を取り付け、振動モードを明確にし、V=2fLの式が成立するモードの振動の周波数を検出する等の変更を行うことも可能である。
As mentioned above, although the test example of the alkali-aggregate reaction determination method according to the present invention has been described, the present invention is not limited to the above test example, and is within the scope of the technical idea of the present invention described in the claims. Of course, various modifications and changes are possible.
For example, in carrying out the present invention, the method for detecting the propagation speed of elastic waves is not limited to the method described based on FIGS. For example, in the case of the method of FIG. 2, the input signal is not limited to a pulse, but a continuous wave is adopted and the propagation speed is obtained from the response function. In the case of the method of FIG. It is also possible to make a change such as detecting the vibration frequency in a mode in which the equation of V = 2fL is established.

コンクリート供試体の側面図(A)、正面図(B)である。It is a side view (A) and a front view (B) of a concrete specimen. 試験コア中の弾性波の伝播速度を測定する第1の方法を示した概念図である。It is the conceptual diagram which showed the 1st method of measuring the propagation velocity of the elastic wave in a test core. 促進養生をさせる前のコンクリート供試体から採取した試験コア中を伝播した弾性波の受信信号の例である。It is an example of the received signal of the elastic wave which propagated in the test core extract | collected from the concrete test body before carrying out accelerated curing. アルカリ骨材反応が進行したコンクリート供試体から採取した試験コア中を伝播した弾性波の受信信号の例である。It is an example of the received signal of the elastic wave which propagated in the test core extract | collected from the concrete test body which alkali-aggregate reaction advanced. 図3の信号の周波数スペクトラムである。It is a frequency spectrum of the signal of FIG. 図4の信号の周波数スペクトラムである。5 is a frequency spectrum of the signal of FIG. 試験コア中の弾性波の伝播速度を測定する第2の方法を示した概念図である。It is the conceptual diagram which showed the 2nd method of measuring the propagation velocity of the elastic wave in a test core. 促進養生をさせる前のコンクリート供試体から採取した試験コアの自由振動を加速度センサで受信した信号の例である。It is an example of the signal which received the free vibration of the test core extract | collected from the concrete test body before carrying out accelerated curing with the acceleration sensor. アルカリ骨材反応が進行したコンクリート供試体から採取した試験コアの自由振動を加速度センサで受信した信号の例である。It is an example of the signal which received the free vibration of the test core extract | collected from the concrete test body which alkali-aggregate reaction advanced with the acceleration sensor. 図8の信号の周波数スペクトラムである。It is a frequency spectrum of the signal of FIG. 図9の信号の周波数スペクトラムである。10 is a frequency spectrum of the signal of FIG. 9. 潜伏期相当の試料と、進展期相当の試料と、劣化期相当の試料と、正常なコンクリートについて、膨張量を材齢の関数として測定した例である。This is an example in which the amount of expansion was measured as a function of age for samples corresponding to the incubation period, samples corresponding to the development period, samples corresponding to the deterioration period, and normal concrete. 潜伏期相当の試料と、進展期相当の試料と、劣化期相当の試料と、正常なコンクリートについて、超音波パルス伝播速度を材齢の関数として測定した例である。This is an example in which the ultrasonic pulse propagation velocity was measured as a function of material age for samples corresponding to the incubation period, samples corresponding to the development period, samples corresponding to the deterioration period, and normal concrete. 潜伏期相当の試料と、進展期相当の試料と、劣化期相当の試料と、正常なコンクリートについて、縦弾性波伝播速度を材齢の関数として測定した例である。This is an example in which the longitudinal elastic wave propagation velocity was measured as a function of age for a sample corresponding to the incubation period, a sample corresponding to the development period, a sample corresponding to the deterioration period, and normal concrete. コンクリート配合条件と超音波パルス伝播速度の関係を示した図である。It is the figure which showed the relationship between concrete mixing conditions and the ultrasonic pulse propagation velocity. 反応性コアの膨張特性概略図である。FIG. 3 is a schematic diagram of expansion characteristics of a reactive core. 膨張特性からアルカリ骨材反応の進行を判定する原理を説明する図である。It is a figure explaining the principle which determines progress of an alkali aggregate reaction from an expansion characteristic.

符号の説明Explanation of symbols

1 試験コア
2 電気・音響トランデューサ
3 パルス信号発生器
4 分析器
5 加速度センサ
6 鋼球
S1 入力パルス信号
S2 受信信号
1 Test Core 2 Electric / Acoustic Transducer 3 Pulse Signal Generator 4 Analyzer 5 Acceleration Sensor 6 Steel Ball S1 Input Pulse Signal S2 Received Signal

Claims (7)

コンクリート構造物から試験コアを採取するコア採取過程と、前記試験コアに縦波弾性波を発生させる励振過程と、前記縦波弾性波を受信する受信過程と、受信された信号を分析して前記試験コア中の縦波弾性波の伝播速度を求める分析過程と、前記分析過程で得られた縦波弾性波の伝播速度から前記コンクリート構造物のアルカリ骨材反応の進行状況を判定する判定過程とを含むことを特徴とする、アルカリ骨材反応判定方法。   A core sampling process for sampling a test core from a concrete structure, an excitation process for generating a longitudinal acoustic wave in the test core, a receiving process for receiving the longitudinal acoustic wave, and analyzing a received signal to analyze the received signal An analysis process for determining the propagation velocity of longitudinal elastic waves in the test core, and a determination process for determining the progress of alkali-aggregate reaction of the concrete structure from the propagation velocity of longitudinal acoustic waves obtained in the analysis process A method for determining an alkali-aggregate reaction, comprising: 前記励振過程が、所定の重さと形状の物体を所定の高さから前記試験コアに落下させて縦波弾性波を励振させる過程であり、前記受信過程が、励振された前記縦波弾性波を前記試験コアに設けられた加速度センサで受信する過程であり、前記分析過程が、受信された前記縦波弾性波の周波数分析を行い、ピーク周波数から縦波弾性波の伝播速度を求める過程であることを特徴とする、請求項1記載のアルカリ骨材反応判定方法。   The excitation process is a process in which an object having a predetermined weight and shape is dropped from the predetermined height onto the test core to excite a longitudinal elastic wave, and the reception process includes the excited longitudinal wave elastic wave. It is a process of receiving with an acceleration sensor provided in the test core, and the analysis process is a process of performing a frequency analysis of the received longitudinal acoustic wave and obtaining a propagation velocity of the longitudinal acoustic wave from a peak frequency. The method for determining an alkali-aggregate reaction according to claim 1, wherein: 前記励振過程が、前記試験コアに設けられた送信器からパルス弾性波を送る過程であり、前記受信過程が、前記試験コアに設けられた受信器で前記パルス弾性波を受信する過程であり、前記分析過程が、前記送信器で送信した信号と前記受信器で受信した信号の到達時間差に基づいて縦波弾性波の伝播速度を求める過程であることを特徴とする、請求項1記載のアルカリ骨材判定方法。   The excitation process is a process of sending a pulse elastic wave from a transmitter provided in the test core, and the reception process is a process of receiving the pulse elastic wave by a receiver provided in the test core; 2. The alkali according to claim 1, wherein the analyzing process is a process of obtaining a propagation velocity of a longitudinal elastic wave based on a difference in arrival time between a signal transmitted by the transmitter and a signal received by the receiver. Aggregate judgment method. 前記判定過程が、前記分析過程で得られた所定の時期の縦波弾性波の伝播速度が所定の値以上である場合には、健全なコンクリート構造物と判定するものであることを特徴とする、請求項1記載のアルカリ骨材反応判定方法。   In the determination process, when the propagation velocity of the longitudinal elastic wave at a predetermined time obtained in the analysis process is equal to or higher than a predetermined value, it is determined as a sound concrete structure. The alkali-aggregate reaction determination method according to claim 1. 前記判定過程が、前記分析過程で得られた所定の期間の縦波弾性波の伝播速度が上昇している場合には、既にかなりのアルカリ骨材反応により損傷を受けた構造物(劣化期にあるコンクリート構造物)と判定するものであることを特徴とする、請求項1記載のアルカリ骨材反応判定法。   When the propagation speed of longitudinal acoustic waves in the predetermined period obtained in the analysis process is increased in the determination process, the structure already damaged by a considerable alkali-aggregate reaction (during the deterioration period) 2. The alkali aggregate reaction determination method according to claim 1, wherein the determination is made as a concrete structure. 前記判定過程が、前記分析過程で得られた所定の期間の縦波弾性波の伝播速度が低下している場合には、今後、アルカリ骨材反応により劣化進行が予想される構造物(潜伏期にあるコンクリート構造物)と判定するものであることを特徴とする、請求項1記載のアルカリ骨材反応判定法。   When the propagation speed of the longitudinal acoustic wave in the predetermined period obtained in the analysis process is reduced in the determination process, a structure that is expected to progress in the future due to the alkali-aggregate reaction (in the latent period) 2. The alkali aggregate reaction determination method according to claim 1, wherein the determination is made as a concrete structure. 前記試験コアの膨張量測定を行い解放膨張量及び/又は残存膨張量を求める膨張量測定過程をさらに含み、前記膨張量測定過程の結果もふまえて前記判定過程において前記コンクリート構造物のアルカリ骨材反応の進行状況を判定することを特徴とする、請求項1記載のアルカリ骨材反応判定方法。   It further includes an expansion amount measurement process for measuring the expansion amount of the test core to obtain a release expansion amount and / or a residual expansion amount, and in the determination process based on the result of the expansion amount measurement process, the alkali aggregate of the concrete structure The method for determining an alkali-aggregate reaction according to claim 1, wherein the progress of the reaction is determined.
JP2006314793A 2006-11-21 2006-11-21 Alkali aggregate reaction judgment method Expired - Fee Related JP5274767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314793A JP5274767B2 (en) 2006-11-21 2006-11-21 Alkali aggregate reaction judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314793A JP5274767B2 (en) 2006-11-21 2006-11-21 Alkali aggregate reaction judgment method

Publications (2)

Publication Number Publication Date
JP2008128846A true JP2008128846A (en) 2008-06-05
JP5274767B2 JP5274767B2 (en) 2013-08-28

Family

ID=39554816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314793A Expired - Fee Related JP5274767B2 (en) 2006-11-21 2006-11-21 Alkali aggregate reaction judgment method

Country Status (1)

Country Link
JP (1) JP5274767B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243397A (en) * 2009-04-08 2010-10-28 East Nippon Expressway Co Ltd Concrete expansion prediction method
JP2017133936A (en) * 2016-01-28 2017-08-03 オリエンタル白石株式会社 Striking device used for impact elastic wave method
JP2017198463A (en) * 2016-04-25 2017-11-02 国立大学法人東北大学 Method for determining alkali-silica reaction and method for quantifying alkali-silica gel produced by alkali-silica reaction
CN113009118A (en) * 2021-03-01 2021-06-22 中铁检验认证中心有限公司 Method for evaluating damage risk of alkali aggregate reaction of concrete structure
CN114754666A (en) * 2022-03-29 2022-07-15 清华大学 Concrete dam alkali aggregate reaction deformation monitoring equipment and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2001099833A (en) * 1999-09-28 2001-04-13 Electric Power Dev Co Ltd Method for predicting progress in deterioration due to alkali/silica reaction of concrete structure
JP2002296253A (en) * 2001-03-30 2002-10-09 Ohmoto Gumi Co Ltd Diagnostic system for structure by elastic wave motion
JP2003302382A (en) * 2002-04-08 2003-10-24 Fujimitsu Komuten:Kk Method for measuring advancing stage of alkali aggregate reaction in concrete structure and method for measuring internal strength of concrete structure using the same
JP2004037411A (en) * 2002-07-08 2004-02-05 Sumitomo Mitsui Construction Co Ltd Nondestructive compressive concrete strength measuring method and system
JP2005315622A (en) * 2004-04-27 2005-11-10 Fujimitsu Komuten:Kk Nondestructive inspection method and device of concrete structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2001099833A (en) * 1999-09-28 2001-04-13 Electric Power Dev Co Ltd Method for predicting progress in deterioration due to alkali/silica reaction of concrete structure
JP2002296253A (en) * 2001-03-30 2002-10-09 Ohmoto Gumi Co Ltd Diagnostic system for structure by elastic wave motion
JP2003302382A (en) * 2002-04-08 2003-10-24 Fujimitsu Komuten:Kk Method for measuring advancing stage of alkali aggregate reaction in concrete structure and method for measuring internal strength of concrete structure using the same
JP2004037411A (en) * 2002-07-08 2004-02-05 Sumitomo Mitsui Construction Co Ltd Nondestructive compressive concrete strength measuring method and system
JP2005315622A (en) * 2004-04-27 2005-11-10 Fujimitsu Komuten:Kk Nondestructive inspection method and device of concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011052300; 森寛晃,外: 'ASRを生じた構造物の劣化診断への衝撃弾性波法の適用に関する検討' 太平洋セメント研究報告 , 20051225, P.22-38 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243397A (en) * 2009-04-08 2010-10-28 East Nippon Expressway Co Ltd Concrete expansion prediction method
JP2017133936A (en) * 2016-01-28 2017-08-03 オリエンタル白石株式会社 Striking device used for impact elastic wave method
JP2017198463A (en) * 2016-04-25 2017-11-02 国立大学法人東北大学 Method for determining alkali-silica reaction and method for quantifying alkali-silica gel produced by alkali-silica reaction
CN113009118A (en) * 2021-03-01 2021-06-22 中铁检验认证中心有限公司 Method for evaluating damage risk of alkali aggregate reaction of concrete structure
CN114754666A (en) * 2022-03-29 2022-07-15 清华大学 Concrete dam alkali aggregate reaction deformation monitoring equipment and method
CN114754666B (en) * 2022-03-29 2022-12-02 清华大学 Concrete dam alkali aggregate reaction deformation monitoring equipment and method

Also Published As

Publication number Publication date
JP5274767B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Chen et al. Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique
Sargolzahi et al. Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete
Dai et al. Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques
JP4810320B2 (en) Method and apparatus for evaluating quality of concrete
Giannini Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation
US10156550B2 (en) Non-intrusive methods for the detection and classification of alkali-silica reaction in concrete structures
JP5274767B2 (en) Alkali aggregate reaction judgment method
Saouma Diagnosis & prognosis of AAR affected structures: state-of-the-art report of the RILEM Technical Committee 259-ISR
Nikvar-Hassani et al. Alkali activated fly ash-based concrete: Evaluation of curing process using non-linear ultrasonic approach
Boukari et al. Combining nonlinear acoustics and physico-chemical analysis of aggregates to improve alkali–silica reaction monitoring
Moradi-Marani et al. Nonlinear acoustic technique of time shift for evaluation of alkali-silica reaction damage in concrete structures
Diab et al. Changes in mechanical properties and durability indices of concrete undergoing ASR expansion
JP2004150945A (en) Nondestructive measuring instrument and method for dynamic characteristic of concrete by surface wave
Malone et al. Evaluation of alkali–silica reaction damage in concrete using linear and nonlinear resonance techniques
Moradi-Marani et al. Effect of the temperature on the nonlinear acoustic behavior of reinforced concrete using dynamic acoustoelastic method of time shift
Świt et al. Application of acoustic emission to monitoring the course of the alkali-silica reaction
JP2004053586A (en) Evaluation method for ground characteristic
Pazdera et al. Nondestructive testing of advanced concrete structure during lifetime
JP2001012933A (en) Method for measuring depth of crack in structure using surface wave
Dahlen et al. NDT&E International
Moradi-Marani et al. Application of the mechanical perturbation produced by traffic as a new approach of nonlinear acoustic technique for detecting microcracks in the concrete: A laboratory simulation
Lokajíček et al. Dynamic elastic properties of hardened experimental mortar bars affected by accelerated alkali–silica reactivity test: a laboratory approach
Sanish et al. Characterization of strength development of concrete using ultrasonic method
Beck et al. A quantitative study of the relationship between concrete crack parameters and acoustic emission energy released during failure
Fuzail Hashmi et al. Age-dependent compressive strength of fly ash concrete using non-destructive testing techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees