JP2009030994A - Shape measurement method for buried concrete foundation, and device thereof - Google Patents

Shape measurement method for buried concrete foundation, and device thereof Download PDF

Info

Publication number
JP2009030994A
JP2009030994A JP2007192241A JP2007192241A JP2009030994A JP 2009030994 A JP2009030994 A JP 2009030994A JP 2007192241 A JP2007192241 A JP 2007192241A JP 2007192241 A JP2007192241 A JP 2007192241A JP 2009030994 A JP2009030994 A JP 2009030994A
Authority
JP
Japan
Prior art keywords
concrete foundation
buried concrete
resonance
buried
column body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007192241A
Other languages
Japanese (ja)
Other versions
JP5074117B2 (en
JP2009030994A5 (en
Inventor
Yoshiyasu Matsumura
吉康 松村
Masamichi Senda
眞道 千田
Hisami Sato
寿実 佐藤
Susumu Sugawara
晋 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yurtec Corp
Original Assignee
Yurtec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yurtec Corp filed Critical Yurtec Corp
Priority to JP2007192241A priority Critical patent/JP5074117B2/en
Publication of JP2009030994A publication Critical patent/JP2009030994A/en
Publication of JP2009030994A5 publication Critical patent/JP2009030994A5/ja
Application granted granted Critical
Publication of JP5074117B2 publication Critical patent/JP5074117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a noise by clarifying the distinction between the vibration mode used for measuring the shape and the size of a buried concrete foundation and other vibration modes generated in the buried concrete foundation, and to improve the measurement accuracy. <P>SOLUTION: An acceleration of a torsional vibration is detected by causing excitation to take place so that the torsional vibration is generated around the axis of the concrete foundation 2, and a plurality of resonance frequencies f of the acceleration detection value are extracted, and the size of the concrete foundation 2 is determined, based on the plurality of extracted resonance frequencies f, and a resonance condition formula that represents the relation between the resonance frequency f of the torsional vibration and the size of each part of the concrete foundation 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非掘削により埋設コンクリート基礎の形状寸法を測定する方法及び装置に係り、特に埋設コンクリート基礎の形状寸法を捩れ振動により解析する方法に関する。   The present invention relates to a method and an apparatus for measuring the shape and size of an embedded concrete foundation by non-excavation, and more particularly to a method for analyzing the shape and size of an embedded concrete foundation by torsional vibration.

非掘削により埋設構造物の形状寸法を測定する従来の方法として、特許文献1に記載されているように埋設構造物の共振振動を利用する方法がある。特許文献1の方法は、測定対象の埋設構造物を加振して複数の共振振動数を抽出しその複数の共振振動数と、共振振動数と埋設構造物の各部の寸法との関係を表した共振条件式とに基づいて、その埋設構造物の形状寸法を演算により求める方法である。   As a conventional method for measuring the shape and size of an embedded structure by non-excavation, there is a method of using resonance vibration of the embedded structure as described in Patent Document 1. In the method of Patent Document 1, a plurality of resonance frequencies are extracted by exciting a buried structure to be measured, and the relationship between the plurality of resonance frequencies and the dimensions of each part of the buried structure is represented. This is a method for obtaining the shape dimension of the embedded structure by calculation based on the resonance condition formula.

例えば、特許文献1は、角錐台又は円錐台の柱体部と矩形又は円形の断面を有する床盤部とを連結して形成された鉄塔基礎である逆T字型コンクリート基礎の形状寸法を測定するにあたり、共振振動数とコンクリート基礎の各部寸法との関係を表した共振条件式を設定する。そして、柱体部の頂部の幅a、柱体部の側面の傾斜角度θ及び縦波の伝播速度V等を測定し、柱体部の頂部を鉛直軸方向に加振して得られる共振振動数を3つ抽出する。抽出した3つの共振振動数を設定した共振条件式にあてはめて連立方程式を立て、その連立方程式を解いて地中に埋設された部分である柱体部の高さh、柱体部の底部の幅b、床盤部の幅B、床盤部の厚さt等を求めるようになっている。   For example, Patent Document 1 measures the shape and dimension of an inverted T-shaped concrete foundation, which is a steel tower foundation formed by connecting a truncated pyramid or truncated cone body portion and a floor portion having a rectangular or circular cross section. In order to do so, a resonance condition formula expressing the relationship between the resonance frequency and the dimensions of each part of the concrete foundation is set. Then, the width a of the top of the column body, the inclination angle θ of the side surface of the column body, the propagation velocity V of the longitudinal wave, etc. are measured, and the resonance vibration obtained by exciting the top of the column body in the vertical axis direction. Extract three numbers. A simultaneous equation is established by applying it to the resonance condition equation in which the three extracted resonance frequencies are set, and the height h of the column body portion embedded in the ground by solving the simultaneous equation, The width b, the width B of the floor board portion, the thickness t of the floor board portion, and the like are obtained.

特許第2555517号Japanese Patent No. 2555517

ところで、特許文献1は、逆T字型コンクリート基礎の頂部を鉛直軸方向に加振して起きる伸縮振動である縦波の共振振動を用いている。しかし、埋設コンクリート基礎の伸縮振動は、減衰が大きく、振動スペクトルの共振ピークがノイズに埋もれることがある。また、曲げ振動やその他の振動モードとの区別がつけ難く、振動スペクトルから伸縮の共振振動数を特定することが困難な場合がある。その結果、振動スペクトルから共振振動数を誤って選択する場合があり、解析値の誤差が大きくなることがある。   By the way, patent document 1 uses the resonance vibration of the longitudinal wave which is the expansion-contraction vibration which arises by vibrating the top part of an inverted T-shaped concrete foundation to a vertical-axis direction. However, the expansion and contraction vibration of the buried concrete foundation is greatly damped, and the resonance peak of the vibration spectrum may be buried in noise. Moreover, it is difficult to distinguish between bending vibration and other vibration modes, and it may be difficult to specify the resonance frequency of expansion and contraction from the vibration spectrum. As a result, the resonance frequency may be erroneously selected from the vibration spectrum, and the error of the analysis value may increase.

また、特許文献1では超音波伝播速度測定器により、埋設コンクリート基礎の地上部分の横方向の振動の伝播速度を測定しているので、解析に用いる伸縮振動の伝播速度とは厳密には一致しない。一般に、伝播速度は、縦波・横波等の波の形態や種々の物体の各共振モード等によってそれぞれ異なる。したがって、共振振動数と伝播速度を別個に測定する特許文献1の方法は、伝播速度が実際の数値と大きく異なることがある。そこで、共振振動数とその振動の伝播速度の測定の精度を向上することが望まれている。   Further, in Patent Document 1, since the propagation speed of the lateral vibration of the ground portion of the buried concrete foundation is measured by an ultrasonic propagation speed measuring device, the propagation speed of the stretching vibration used for the analysis does not exactly match. . In general, the propagation speed varies depending on the wave form such as longitudinal wave and transverse wave, and the resonance modes of various objects. Therefore, in the method of Patent Document 1 in which the resonance frequency and the propagation speed are separately measured, the propagation speed may be greatly different from the actual numerical value. Therefore, it is desired to improve the accuracy of measurement of the resonance frequency and the propagation speed of the vibration.

本発明が解決しようとする課題は、埋設コンクリート基礎の形状寸法測定に利用する振動モードと埋設コンクリート基礎に発生するその他の振動モードとの区別を明瞭にしてノイズを低減し、測定精度を向上させることにある。   The problem to be solved by the present invention is to clarify the distinction between the vibration mode used for measuring the geometric dimensions of the buried concrete foundation and other vibration modes generated in the buried concrete foundation, to reduce noise, and to improve the measurement accuracy. There is.

上記課題を解決するため、本発明は、角錐台又は円錐台の柱体部と矩形又は円形の断面を有する床盤部とを連結して形成された埋設コンクリート基礎の形状測定方法において、埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振して捩れ振動の加速度を検出し、その加速度検出値の複数の共振振動数を抽出し、その抽出した複数の共振振動数と、捩れ振動の共振振動数と埋設コンクリート基礎の各部の寸法との関係を表した共振条件式に基づいて、埋設コンクリート基礎の寸法を求めることを特徴とする。   In order to solve the above problems, the present invention relates to a method for measuring the shape of a buried concrete foundation formed by connecting a columnar part of a truncated pyramid or a truncated cone and a floor board part having a rectangular or circular cross section. The acceleration of the torsional vibration is detected by exciting the torsional vibration around the foundation axis, and a plurality of resonance frequencies of the detected acceleration value are extracted, and the extracted resonance frequencies and the torsional vibration are detected. It is characterized in that the dimensions of the buried concrete foundation are obtained on the basis of a resonance condition expression expressing the relationship between the resonance frequency and the dimensions of each part of the buried concrete foundation.

本発明によれば、測定に用いる振動モードとして埋設コンクリート基礎で最も強く起こる捩れ振動を用いているので、振動スペクトルの共振ピークが鋭く明瞭に現れる。このため、その他の振動モードとの区別がしやすくなり、また、共振ピークがノイズに埋もれることもなくなる。その結果、共振振動数の抽出が正確にできるようになり、共振振動数と共振条件式に基づいて求められる埋設コンクリート基礎の寸法の測定精度が向上する。   According to the present invention, since the torsional vibration that occurs most strongly in the buried concrete foundation is used as the vibration mode used for measurement, the resonance peak of the vibration spectrum appears sharply and clearly. For this reason, it becomes easy to distinguish from other vibration modes, and the resonance peak is not buried in noise. As a result, the resonance frequency can be accurately extracted, and the measurement accuracy of the dimensions of the buried concrete foundation obtained based on the resonance frequency and the resonance condition formula is improved.

また、捩れ振動の伝播速度は横波の伝播速度であり、この横波の伝播速度は振動モードによって異ならない。よって、コンクリート基礎の地上部分と埋設部分が振動媒質的に均一なら、コンクリート基礎の地上部分の側面で超音波伝播速度測定器により測定する横波の伝播速度を解析に用いることができる。   The propagation speed of the torsional vibration is the propagation speed of the transverse wave, and the propagation speed of the transverse wave does not vary depending on the vibration mode. Therefore, if the ground portion and the buried portion of the concrete foundation are uniform in terms of the vibration medium, the propagation speed of the transverse wave measured by the ultrasonic propagation velocity measuring device on the side surface of the concrete foundation can be used for the analysis.

この場合において、埋設コンクリート基礎の柱体部の頂部の幅又は直径、高さ、底部の幅又は直径、捩れ振動の伝播速度の値のうちいくつか、あるいは全てを共振条件式にあてはめることもできる。なお、底部の幅又は直径の値は、柱体部の頂部の幅又は直径と側面の傾斜角度と高さとの値に基づいた推定値とすることができる。このように、埋設コンクリート基礎の各部寸法の実測数を増やせば、それだけ共振条件式の未知数が少なくなるので誤差が小さくなり精度が上がる。   In this case, some or all of the values of the top width or diameter, height, bottom width or diameter, and torsional vibration propagation speed of the column portion of the buried concrete foundation can be applied to the resonance conditional expression. . In addition, the value of the width | variety or diameter of a bottom part can be made into the estimated value based on the value of the width | variety or diameter of the top part of a pillar part, and the inclination-angle and height of a side surface. In this way, if the number of actually measured dimensions of each part of the buried concrete foundation is increased, the number of unknowns in the resonance condition formula is reduced accordingly, so that the error is reduced and the accuracy is increased.

また、上記課題を解決するため、埋設コンクリート基礎の軸周りの捩れ振動の共振振動数と埋設コンクリート基礎の各部の寸法との関係を表した捩れ振動の共振条件式に基づいて、埋設コンクリート基礎の埋設部の未知寸法の特定の組み合わせにおける設定次の伝播定数を基準とするその他の埋設部の未知寸法の組み合わせにおける伝播定数の比を求め、寸法の組み合わせと伝播定数の比との対応関係を記載したテーブルを予めデータベースに格納しておき、埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振して捩れ振動の加速度を検出し、その加速度検出値の複数の共振振動数を抽出し、その抽出した複数の共振振動数のうち設定次の共振振動数を基準とするその他の共振振動数の比を求め、その比と伝播定数の比との誤差が最小になる寸法の組み合わせを前記データベースより検索して、前記埋設コンクリート基礎の寸法を求めることを特徴とする方法をとることもできる。   Moreover, in order to solve the above-mentioned problems, the buried concrete foundation is based on the resonance condition formula of torsional vibration that expresses the relationship between the resonance frequency of torsional vibration around the axis of the buried concrete foundation and the dimensions of each part of the buried concrete foundation. Setting for a specific combination of unknown dimensions in the buried part Finding the ratio of the propagation constant in the combination of unknown dimensions in other buried parts based on the following propagation constant, and describing the correspondence between the combination of dimensions and the ratio of the propagation constant The table is stored in advance in the database, and the acceleration of the torsional vibration is detected by exciting the torsional vibration around the axis of the buried concrete foundation, and a plurality of resonance frequencies of the acceleration detection value are extracted, Of the extracted resonance frequencies, the ratio of the other resonance frequencies based on the set resonance frequency is obtained, and the error between the ratio and the ratio of the propagation constant is The combination of dimensions to be smaller by searching from the data base, it is also possible to employ a method which is characterized in that to determine the dimensions of the buried concrete foundation.

これによれば、予め未知寸法の組み合わせと伝播定数の比との対応関係を記載したテーブルを格納したデータベースを作成しておくことにより、共振振動数の測定のみで埋設コンクリート基礎の形状測定ができる。すなわち、一般に、埋設コンクリート基礎の形状、寸法は決まっているので基礎ごとに分類することができ、各分類についてのデータベースを予め作成しておけば、共振振動数の測定のみで形状測定ができるようになる。よって、埋設コンクリート基礎の寸法を実測する手間を省くことができる。また、測定に伝播速度の値を用いないので精度があがり、伝播速度を測る必要もなくなり、さらに手間が省けることになる。   According to this, it is possible to measure the shape of the buried concrete foundation only by measuring the resonance frequency by creating a database storing a table in which the correspondence relationship between the combination of unknown dimensions and the ratio of the propagation constant is previously described. . In other words, in general, the shape and dimensions of the buried concrete foundation are determined, so that it can be classified for each foundation, and if a database for each classification is created in advance, the shape can be measured only by measuring the resonant frequency. become. Therefore, the trouble of actually measuring the dimensions of the buried concrete foundation can be saved. Further, since the value of the propagation velocity is not used for the measurement, the accuracy is improved, it is not necessary to measure the propagation velocity, and further labor is saved.

この場合において、埋設コンクリート基礎の柱体部の頂部の幅又は直径と高さの2つの実測値、あるいは、柱体部の頂部の幅又は直径と高さと底部の幅又は直径の3つの実測値を共振条件式にあてはめることもできる。なお、底部の幅又は直径の値は、柱体部の頂部の幅又は直径と側面の傾斜角度と高さの値に基づいた推定値である。このように、埋設コンクリート基礎の各部の寸法の実測数を増やせば、それだけ共振条件式の未知数が少なくなるのでデータベースの作成、検索が容易となる。   In this case, two actual measured values of the width or diameter and height of the top of the column part of the buried concrete foundation, or three actual measured values of the width or diameter and height and the width or diameter of the bottom of the column part. Can also be applied to the resonance condition equation. The value of the width or diameter of the bottom portion is an estimated value based on the width or diameter of the top portion of the column body portion, the inclination angle of the side surface, and the height value. In this way, if the actual number of dimensions of each part of the buried concrete foundation is increased, the number of unknown resonance condition equations is reduced accordingly, so that creation and retrieval of the database is facilitated.

またこの場合において、柱体部の回転軸が柱体部の途中を中心に中心軸から傾いているときに、柱体部は第1柱体部と第2柱体部の2つの柱体を接続して構成されているとみなし、第1柱体部の頂部の幅又は直径と第2柱体部の底部の幅又は直径と柱体部全体の高さとを実測して共振条件式にあてはめ、その共振条件式に基づいて埋設コンクリート基礎の各部の寸法の組み合わせと伝播定数との比を求めてテーブルを作成することを特徴とする形状測定方法をとることもできる。   Further, in this case, when the rotation axis of the column body part is inclined from the central axis about the middle of the column body part, the column body part has two column bodies of the first column body part and the second column body part. It is considered that they are connected, and the top width or diameter of the first column body portion, the bottom width or diameter of the second column body portion, and the height of the entire column body portion are measured and applied to the resonance condition equation. Further, it is possible to adopt a shape measuring method characterized in that a table is created by obtaining a ratio between a combination of dimensions of each part of the buried concrete foundation and a propagation constant based on the resonance condition formula.

これによれば、回転軸が柱体部の途中を中心に鉛直軸から傾いている場合でも、柱体部は2つの第1柱体部と第2第2柱体部が接続されて構成されていると考えることによりデータベースを作成して、埋設コンクリート基礎の各部の寸法を求めることができるようになる。   According to this, even when the rotation axis is inclined from the vertical axis about the middle of the column body portion, the column body portion is configured by connecting the two first column body portions and the second second column body portion. This makes it possible to create a database and determine the dimensions of each part of the buried concrete foundation.

本発明によれば、埋設コンクリート基礎の形状寸法測定に利用する振動モードと埋設コンクリート基礎に発生するその他の振動モードとの区別を明瞭にしてノイズを低減し、測定精度を向上させることができる。   According to the present invention, it is possible to clarify the distinction between the vibration mode used for measuring the shape and dimension of the buried concrete foundation and other vibration modes generated in the buried concrete foundation, to reduce noise, and to improve the measurement accuracy.

以下、本発明の実施例について数式及び図面を参照して説明する。   Embodiments of the present invention will be described below with reference to mathematical expressions and drawings.

本実施例では、図1に示すような逆T字型のコンクリート基礎2を測定対象とする。逆T字型のコンクリート基礎2は図2のような鉄塔4用の基礎である。ここでは、逆T字型のコンクリート基礎2を柱体部6と床盤部8からなっているとみなす。図1を参照して全実施例で使用する捩れ共振条件式の導出について説明する。なお、捩れ共振条件式の導出では説明を簡単にするため、柱体部6と床盤部8のそれぞれの断面は、正方形又は円であるとする。   In this embodiment, an inverted T-shaped concrete foundation 2 as shown in FIG. The inverted T-shaped concrete foundation 2 is a foundation for a steel tower 4 as shown in FIG. Here, it is considered that the inverted T-shaped concrete foundation 2 is composed of the column body portion 6 and the floor base portion 8. The derivation of the torsional resonance conditional expression used in all the embodiments will be described with reference to FIG. In order to simplify the description in the derivation of the torsional resonance conditional expression, the cross sections of the columnar body portion 6 and the floor base portion 8 are assumed to be squares or circles.

まず、ここで導出する捩れ共振条件式について簡単に説明をする。図1のコンクリート基礎2の柱体部6の頂部の幅又は直径をa、柱体部6の底部の幅又は直径をb、柱体部6の高さをh、床盤部8の幅又は直径をB、床盤部8の厚さをt、捩れ振動の伝播定数をβとする。導出する捩れ共振条件式は、a、b、t、B、h、βの関数であるので、F(a、b、t、B、h、β)=0で表すことができる。また、βは後述する式(6)により捩れの共振振動数fと捩れ振動の伝播速度Vsで表すことができるので、捩れ共振条件式はf、Vsの関数でもあり、F(a、b、t、B、h、f、Vs)=0と表すことができる。なお、伝播速度Vsは理想的には定数であるが、実際には基礎ごとにある程度の変動があるのでここでは変数とした。以降より、この捩れ共振条件式の導出をする。   First, the torsional resonance conditional expression derived here will be briefly described. The width or diameter of the top portion of the column body portion 6 of the concrete foundation 2 in FIG. 1 is a, the width or diameter of the bottom portion of the column body portion 6 is b, the height of the column body portion 6 is h, the width of the floor portion 8 or The diameter is B, the thickness of the floor base 8 is t, and the torsional vibration propagation constant is β. Since the derived torsional resonance conditional expression is a function of a, b, t, B, h, and β, it can be expressed as F (a, b, t, B, h, β) = 0. Further, β can be expressed by the torsional resonance frequency f and the torsional vibration propagation velocity Vs by the following equation (6), so the torsional resonance conditional expression is also a function of f and Vs, and F (a, b, t, B, h, f, Vs) = 0. Note that the propagation velocity Vs is ideally a constant, but in actuality, there is some variation from base to base, so it is a variable here. From now on, this torsional resonance conditional expression will be derived.

弾性体の振動解析には電気回路の分布回路理論を用いる。そこで、柱体部6と床盤部8のそれぞれの電気回路の4端子に対応したマトリックスを求め縦続接続する。ここで、軸(鉄骨10)の周りの捩れ振動を考えると、電気回路の分布回路理論との対応は、軸の周りのトルクTが電圧に対応し、捩れ角φの回転角速度ω=dφ/dtが電流に対応する。   The distributed circuit theory of electrical circuits is used for vibration analysis of elastic bodies. Therefore, a matrix corresponding to the four terminals of each electric circuit of the columnar section 6 and the floor board section 8 is obtained and cascaded. Here, considering the torsional vibration around the axis (steel frame 10), the correspondence with the distributed circuit theory of the electric circuit is that the torque T around the axis corresponds to the voltage, and the rotational angular velocity ω = dφ / dt corresponds to the current.

柱体部6の4端子マトリックスを式(1)で表すとする。   It is assumed that the four-terminal matrix of the column part 6 is represented by the formula (1).

Figure 2009030994
式(1)の、Ah、Bh、Ch、Dhは、それぞれ次式(2)、(3)、(4)、(5)で表される。
Figure 2009030994
Ah, Bh, Ch, and Dh in the formula (1) are represented by the following formulas (2), (3), (4), and (5), respectively.

Figure 2009030994
Figure 2009030994

Figure 2009030994
Figure 2009030994

Figure 2009030994
Figure 2009030994

Figure 2009030994
ここで、波長をλ、振動数をf、剛性率をG、密度をρとする。また、伝播定数βは次式(6)で表される。
Figure 2009030994
Here, the wavelength is λ, the frequency is f, the rigidity is G, and the density is ρ. The propagation constant β is expressed by the following equation (6).

Figure 2009030994
柱体部6の特性インピーダンスは錐体台であるため一定ではなく、式(2)、式(3)のαabが平均化された特性インピーダンスに相当する。αは、柱体部6の断面が円の場合は次式(7)、断面が正方形の場合は次式(8)で表される。
Figure 2009030994
The characteristic impedance of the columnar portion 6 is not constant because it is a truncated cone, and corresponds to the characteristic impedance obtained by averaging αab in the equations (2) and (3). α is expressed by the following formula (7) when the cross section of the columnar body 6 is a circle, and is expressed by the following formula (8) when the cross section is a square.

Figure 2009030994
Figure 2009030994

Figure 2009030994
捩れ振動の波長が骨材の大きさ、鉄骨・鉄筋の太さよりかなり大きい1次乃至5次ぐらい迄の低次の共振モードでは、骨材や鉄骨・鉄筋はコンクリート内で一様分布と見なしてよく、剛性率Gや密度ρ等の共振振動数fに関わる物理量を、均一な弾性体のものとして扱うことができる。ただし、それらの値はコンクリートのみのときより増加する。骨材や鉄骨・鉄筋は軸に垂直方向の断面積がコンクリートの断面積に比べてかなり小さいので、伝播速度Vsに関しては、コンクリートだけに比べて数パーセント増加したものとして扱えばよい。
Figure 2009030994
In the first-order to fifth-order resonance modes where the torsional vibration wavelength is much larger than the size of the aggregate and the thickness of the steel frame / rebar, the aggregate, steel frame / rebar are considered to be uniformly distributed in the concrete. The physical quantity related to the resonance frequency f such as the rigidity G and density ρ can be handled as a uniform elastic body. However, those values increase compared to concrete alone. Aggregates, steel frames, and reinforcing bars have a cross-sectional area perpendicular to the axis that is considerably smaller than the cross-sectional area of concrete. Therefore, the propagation velocity Vs may be treated as an increase of several percent compared to concrete.

床盤部8の4端子マトリックスは次式(9)となる。   The 4-terminal matrix of the floor unit 8 is expressed by the following equation (9).

Figure 2009030994
ここで、ZBは特性インピーダンスであり、床盤部8の断面が円の場合は、Bを直径として次式(10)で表され、床盤部8の断面が正方形の場合は、Bを幅として次式(11)で表される。
Figure 2009030994
Here, ZB is a characteristic impedance. When the cross section of the floor base 8 is a circle, it is expressed by the following formula (10) with B as the diameter. When the cross section of the floor base 8 is a square, B is the width. Is expressed by the following equation (11).

Figure 2009030994
Figure 2009030994

Figure 2009030994
柱体部6と床盤部8とを縦続接続したコンクリート基礎2の4端子マトリックスは積を計算をして、次式(12)となる。
Figure 2009030994
The 4-terminal matrix of the concrete foundation 2 in which the column body portion 6 and the floor base portion 8 are connected in cascade, calculates the product and becomes the following equation (12).

Figure 2009030994
ここで、柱体部6の上面と床盤部8の底面のトルク−回転角速度の縦ベクトルをそれぞれ次式(13)、次式(14)で表す。
Figure 2009030994
Here, the vertical vectors of the torque-rotational angular velocity of the top surface of the column body portion 6 and the bottom surface of the floor base portion 8 are represented by the following equations (13) and (14), respectively.

Figure 2009030994
Figure 2009030994

Figure 2009030994
式(13)と(14)の間の関係式は次式(15)で表される。
Figure 2009030994
The relational expression between the expressions (13) and (14) is expressed by the following expression (15).

Figure 2009030994
ここで、柱体部6の上面から見たインピーダンスZ(1)は、前述したトルクT、捩れ角の回転角速度ωと電圧、電流との対応関係から次式(16)で表される。
Figure 2009030994
Here, the impedance Z (1) viewed from the upper surface of the columnar portion 6 is expressed by the following equation (16) from the correspondence relationship between the torque T, the rotational angular velocity ω of the torsion angle, the voltage, and the current.

Figure 2009030994
図1のように、コンクリート基礎2の周囲が空気や土である場合は、T(3)≒0としてよい。したがって、Z(1)=BT1/DT1と与えられる。共振はインピーダンスが0のときに起こるので、式(16)の分子BT1を式(17)で表し、これを0とおいた式を式(18)とすると、式(18)が捩れ振動の共振条件式である。
Figure 2009030994
As shown in FIG. 1, when the surroundings of the concrete foundation 2 is air or soil, T (3) ≈0 may be set. Therefore, Z (1) = BT1 / DT1 is given. Since the resonance occurs when the impedance is 0, the numerator BT1 of the equation (16) is expressed by the equation (17), and when this is set to the equation (18), the equation (18) is the resonance condition of the torsional vibration. It is a formula.

Figure 2009030994
Figure 2009030994

Figure 2009030994
また、図3のように、床盤部8の下にさらに栗石とコンクリート(捨てコンクリート12)がある場合には、コンクリート基礎2全体の4端子マトリックスは、柱体部6、床盤部8、捨てコンクリート12の3段の4端子マトリックスを縦続接続する。説明を簡単にするために、捨てコンクリート12の断面は正方形であるとする。
Figure 2009030994
In addition, as shown in FIG. 3, when there is a chestnut stone and concrete (discarded concrete 12) below the floor part 8, the four-terminal matrix of the entire concrete foundation 2 is composed of the column part 6, the floor part 8, Cascade connection of three-stage 4-terminal matrix of discarded concrete 12 is made. In order to simplify the explanation, it is assumed that the section of the discarded concrete 12 is square.

捨てコンクリート12の4端子マトリックスは次式(19)で表される。   The 4-terminal matrix of the discarded concrete 12 is expressed by the following equation (19).

Figure 2009030994
ここで、ZBsは特性インピーダンスで、捨てコンクリート12の断面が正方形の場合はBsを幅として次式(20)で表される。
Figure 2009030994
Here, ZBs is a characteristic impedance. When the cross section of the discarded concrete 12 is a square, it is expressed by the following equation (20) with Bs as the width.

Figure 2009030994
柱体部6と床盤部8と捨てコンクリート12を縦続接続したコンクリート基礎2の4端子マトリックスは、積を計算して次式(21)となる。
Figure 2009030994
The 4-terminal matrix of the concrete foundation 2 in which the column body portion 6, the floor base portion 8, and the discarded concrete 12 are connected in cascade is calculated by the following equation (21).

Figure 2009030994
ここで、柱体部6の上面と捨てコンクリート12の底面のトルク−回転角速度の縦ベクトルをそれぞれ次式(22)、次式(23)で表す。
Figure 2009030994
Here, the longitudinal vectors of the torque-rotational angular velocity of the upper surface of the columnar section 6 and the bottom surface of the discarded concrete 12 are expressed by the following equations (22) and (23), respectively.

Figure 2009030994
Figure 2009030994

Figure 2009030994
すると、この間の関係式は次式(24)で表される。
Figure 2009030994
Then, the relational expression between them is expressed by the following expression (24).

Figure 2009030994
ここで、柱体部6の上面から見たインピーダンスZ(1)は、前述したトルクT、捩れ角の回転角速度ωと電圧、電流との対応関係から次式(25)で表される。
Figure 2009030994
Here, the impedance Z (1) viewed from the upper surface of the columnar section 6 is expressed by the following equation (25) from the correspondence relationship between the torque T, the rotational angular velocity ω of the torsion angle, the voltage, and the current.

Figure 2009030994
図1の場合と同様に、T(4)≒0としてよい。したがって、Z(1)=BT2/DT2と与えられる。共振はインピーダンスが0のときに起こるので、式(25)の分子BT2を式(26)で表し、これを0とおいた式を式(27)とすると、式(27)が捩れ振動の共振条件式である。
Figure 2009030994
As in the case of FIG. 1, T (4) ≈0 may be set. Therefore, Z (1) = BT2 / DT2. Since the resonance occurs when the impedance is 0, the numerator BT2 of the equation (25) is expressed by the equation (26), and when this is set to the equation (27), the equation (27) is the torsional vibration resonance condition. It is a formula.

Figure 2009030994
Figure 2009030994

Figure 2009030994
式(18)や式(27)から分かるように伝播定数βに振動数fが含まれているので、コンクリート基礎2の各部寸法や伝播速度Vsが与えられると、この式から多数の0点、即ち共振振動数が求められる。逆に、共振振動数が既知の場合は、未知のコンクリート基礎2の各部寸法や伝播速度Vsを求めることもできる。
Figure 2009030994
As can be seen from the equations (18) and (27), the frequency f is included in the propagation constant β. Therefore, given the dimensions of each part of the concrete foundation 2 and the propagation velocity Vs, a large number of 0 points from this equation, That is, the resonance frequency is obtained. On the contrary, when the resonance frequency is known, the dimensions and propagation speed Vs of each part of the unknown concrete foundation 2 can be obtained.

次に、図4に沿って、コンクリート基礎2の形状測定装置の構成を説明する。柱体部6の点線14は地面位置であり、点線14より下が地面に埋まっている。コンクリート基礎2に振動を与える加振方法として、ハンマー等で特定の部位を叩く方法と、正弦波振動を発生する振動子により振動を付与し、その周波数を掃引する方法が適用できる。本実施例では正弦波信号を掃引する加振器16を用いる。また、加振器16の加振力を検出するためにフォースセンサー18をコンクリート基礎2と加振器16との間に設ける。フォースセンサー18で検出された加振力は電気信号に変換され、信号処理装置20に入力される。また、発振器21は、加振器16に掃引するための正弦波信号を発生させるものである。この正弦波信号は増幅器22を介して増幅され、加振器16に入力される。振動を検出する手段として、加速度センサー24を用いる。加速度センサー24で検出された加速度は電気信号に変換され、信号処理装置20に入力される。信号処理装置20に入力された加振力信号、加速度信号はそれぞれA/D変換され、演算処理によりそれぞれ振動数スペクトルに変換される。この振動数スペクトルは、信号処理装置20からコンピュータ26に入力されディスプレイ等に表示される。   Next, the configuration of the shape measuring device for the concrete foundation 2 will be described with reference to FIG. A dotted line 14 of the column body portion 6 is a ground position, and a portion below the dotted line 14 is buried in the ground. As an excitation method for applying vibration to the concrete foundation 2, a method of hitting a specific part with a hammer or the like, and a method of applying vibration by a vibrator generating sine wave vibration and sweeping the frequency can be applied. In this embodiment, an exciter 16 that sweeps a sine wave signal is used. A force sensor 18 is provided between the concrete foundation 2 and the vibrator 16 in order to detect the vibration force of the vibrator 16. The excitation force detected by the force sensor 18 is converted into an electric signal and input to the signal processing device 20. Further, the oscillator 21 generates a sine wave signal for sweeping to the vibrator 16. This sine wave signal is amplified via the amplifier 22 and input to the vibrator 16. An acceleration sensor 24 is used as means for detecting vibration. The acceleration detected by the acceleration sensor 24 is converted into an electrical signal and input to the signal processing device 20. The excitation force signal and the acceleration signal input to the signal processing device 20 are A / D converted, respectively, and converted into a frequency spectrum by arithmetic processing. The frequency spectrum is input from the signal processing device 20 to the computer 26 and displayed on a display or the like.

コンピュータ26は、入力装置、記憶装置、演算処理装置、出力装置等により構成されている。記憶装置には、前述の共振条件式や関連演算式等形状測定の演算処理に必要な事項が予め格納されており、また、入力装置から入力された実測データや振動数スペクトル等が格納される。そして、実測データや共振条件式に基づいて演算処理を行い、コンクリート基礎2の形状寸法を求め、その結果をディスプレイ等の出力装置を介して出力するようになっている。   The computer 26 includes an input device, a storage device, an arithmetic processing device, an output device, and the like. The storage device stores in advance items necessary for the shape measurement calculation process, such as the above-described resonance condition formula and related calculation formula, and stores actual measurement data, frequency spectrum, and the like input from the input device. . Then, calculation processing is performed based on the actually measured data and the resonance condition formula, the shape dimension of the concrete foundation 2 is obtained, and the result is output via an output device such as a display.

次に、コンクリート基礎2の形状測定の手順を説明する。まず、コンクリート基礎2の柱体部6の頂部の幅a、柱体部6の側面の傾斜角度θ、柱体部6の高さhをそれぞれ必要に応じて実測する。柱体部6の頂部の幅a、柱体部6の側面の傾斜角度θは、柱体部6の頂部が地上に露出していることより測定できる。また、柱体部6の高さhは鉄棒等を地面に貫入して測定する。なお、コンクリート基礎2中を伝播する捩れ振動の伝播速度Vsは予め測定しておいた値を用いる(伝播速度の測定方法については、例えば、特許文献1に記載の方法参照。)。   Next, the procedure for measuring the shape of the concrete foundation 2 will be described. First, the width a of the top portion of the column body portion 6 of the concrete foundation 2, the inclination angle θ of the side surface of the column body portion 6, and the height h of the column body portion 6 are measured as necessary. The width a of the top of the columnar part 6 and the inclination angle θ of the side surface of the columnar part 6 can be measured from the fact that the top of the columnar part 6 is exposed to the ground. The height h of the column body portion 6 is measured by penetrating a steel bar or the like into the ground. In addition, the value measured beforehand is used for the propagation velocity Vs of the torsional vibration propagating through the concrete foundation 2 (refer to the method described in Patent Document 1 for the method of measuring the propagation velocity).

次に、図5(a)、(b)を参照して、加振器16、フォースセンサー18、加速度センサー24の柱体部6への取り付け方について説明する。図5(a)、(b)は柱体部6の平面図である。まず、加振器16とフォースセンサー18は、捩れ振動を起こすために用いる冶具28に取り付ける。なお、冶具28は、断面が直角二等辺三角形の三角柱状のものである。冶具28と、加速度センサー24用の冶具30を、柱体部6に接着剤等を使用して取り付ける。冶具28の取り付け位置は、柱体部6の頂部側面で、捩れ振動を起こせる位置ならどこでもよいが、本実施例では柱体部6の頂部側面の角に取り付ける。冶具30の取り付け位置については、捩れ振動を検出できる位置ならどこでもよいが、本実施例では柱体部6の頂部側面の角に取り付ける。なお、柱体部6が円柱の場合は、ねじれ振動を起こすために用いる冶具として、図5(b)のように三角プリズム形の冶具32を取り付ける。   Next, with reference to FIGS. 5A and 5B, how to attach the vibrator 16, the force sensor 18, and the acceleration sensor 24 to the column body portion 6 will be described. FIGS. 5A and 5B are plan views of the column body portion 6. First, the vibrator 16 and the force sensor 18 are attached to a jig 28 used for causing torsional vibration. Note that the jig 28 has a triangular prism shape whose cross section is a right-angled isosceles triangle. The jig 28 and the jig 30 for the acceleration sensor 24 are attached to the column body portion 6 using an adhesive or the like. The attachment position of the jig 28 may be anywhere on the top side surface of the column body portion 6 as long as it can cause torsional vibration. In this embodiment, the jig 28 is attached to the corner of the top side surface of the column body portion 6. The attachment position of the jig 30 may be anywhere as long as the torsional vibration can be detected, but in this embodiment, the jig 30 is attached to a corner of the top side surface of the column body part 6. When the column body portion 6 is a cylinder, a triangular prism-shaped jig 32 is attached as shown in FIG. 5B as a jig used for causing torsional vibration.

次に、冶具28にフォースセンサー18を取り付け、フォースセンサー18の上に加振器16を蝶ナット等で締めて取り付ける。また、冶具30に加速度センサー24を蝶ナット等で締めて取り付ける。なお、捩れ振動の確認のためには図6に示した2ヶ所で捩れ振動を測定する必要があるので、もう1つの冶具34と加速度センサー36を取り付ける。なお、1箇所で複数方向の加速度を測定するには3極x、y、z方向加速度センサーを用いるとよい。   Next, the force sensor 18 is attached to the jig 28, and the vibrator 16 is attached onto the force sensor 18 by tightening with a wing nut or the like. Further, the acceleration sensor 24 is attached to the jig 30 with a wing nut or the like. In order to confirm the torsional vibration, it is necessary to measure the torsional vibration at the two locations shown in FIG. 6, so another jig 34 and an acceleration sensor 36 are attached. In order to measure the acceleration in a plurality of directions at one place, a tripolar x, y, z direction acceleration sensor may be used.

そして、加振器16に増幅器22で増幅した正弦波信号を入力し、その正弦波信号の周波数を掃引させながらコンクリート基礎2に図7の矢印方向の加振力を加えて、コンクリート基礎2の軸周りに捩れ振動を与え、捩れ振動の振動数を測定する。次に、加振力及び加速度信号から変換された振動数スペクトルから捩れ共振振動数の同定を行う。   Then, the sine wave signal amplified by the amplifier 22 is input to the vibrator 16, and the excitation force in the direction of the arrow in FIG. 7 is applied to the concrete foundation 2 while sweeping the frequency of the sine wave signal. Apply torsional vibration around the axis and measure the frequency of torsional vibration. Next, the torsional resonance frequency is identified from the frequency spectrum converted from the excitation force and the acceleration signal.

ここで、捩れ共振振動数を同定する方法を説明する。捩れ共振振動数の同定は、柱体部6に取り付けた加振器16、加速度センサー24の位置関係より、振動数スペクトルの信号の符号と、信号のピークにより同定する。捩れ共振振動数は振動の節が1つの基準振動から、節がn個の振動数までを同定するが、nは自然数で、ここではおおよそ1から5である。なお、振動の節がn個の振動数をn次共振振動数と呼び、1次共振振動数をf1、2次共振振動数をf2と表し、図8のようになる。捩れ振動数は加振を行なう方向により決まり、振動の方向は加速度センサー24により検出でき、その方向は信号の符号に現れる。よって、加速度センサー24を取り付けた位置と、加振器16を取り付けた位置から、加速度センサー24が検出する信号の符号を確認し、捩れ振動の方向を確認する。図7に示した位置でのコンクリート基礎2の振動を測定した場合の捩れ振動の方向を表1に示す。   Here, a method for identifying the torsional resonance frequency will be described. The torsional resonance frequency is identified by the sign of the signal of the frequency spectrum and the peak of the signal based on the positional relationship between the vibrator 16 and the acceleration sensor 24 attached to the column portion 6. The torsional resonance frequency is identified from a reference vibration with one vibration node to a vibration frequency with n nodes, where n is a natural number, and is approximately 1 to 5 here. The frequency with n vibration nodes is referred to as the n-th resonance frequency, the primary resonance frequency is represented as f1, and the second resonance frequency is represented as f2, as shown in FIG. The torsional frequency is determined by the direction of excitation, and the direction of vibration can be detected by the acceleration sensor 24, and the direction appears in the sign of the signal. Therefore, the sign of the signal detected by the acceleration sensor 24 is confirmed from the position where the acceleration sensor 24 is attached and the position where the vibrator 16 is attached, and the direction of torsional vibration is confirmed. Table 1 shows the directions of torsional vibration when the vibration of the concrete foundation 2 at the position shown in FIG.

Figure 2009030994
測定した振動数スペクトルをコンピュータ26のディスプレイに表示させ、捩れ振動が起きる方向と振動数スペクトルのピークより、共振振動数を読み取る。図7に示した位置でのコンクリート基礎2の振動を測定した場合の振動数スペクトルの例を図8に示す。なお、図8に示すように、一般に1次共振振動数f1はノイズに埋もれてピークが明瞭でないことが多い。
Figure 2009030994
The measured frequency spectrum is displayed on the display of the computer 26, and the resonance frequency is read from the direction of the torsional vibration and the peak of the frequency spectrum. An example of the frequency spectrum when the vibration of the concrete foundation 2 at the position shown in FIG. 7 is measured is shown in FIG. As shown in FIG. 8, generally, the primary resonance frequency f1 is often buried in noise and the peak is often not clear.

以上のようにして得られたコンクリート基礎2の実測寸法と共振振動数を前述の共振条件式(18)又は(27)に代入して、コンクリート基礎2の未知寸法が得られる。以下、計算に用いる数値の違いにより、方法1乃至3に分けて説明する。なお、以降は柱体部6及び床盤部8の断面は正方形であるとする。   An unknown dimension of the concrete foundation 2 is obtained by substituting the actually measured dimension and the resonance frequency of the concrete foundation 2 obtained as described above into the resonance condition (18) or (27). Hereinafter, the methods 1 to 3 will be described in accordance with the difference in numerical values used for the calculation. Hereinafter, it is assumed that the cross sections of the columnar section 6 and the floor board section 8 are square.

(方法1)柱体部6の頂部の幅aと側面の傾斜角度θと、伝播速度Vsの値を用いる。これらの値を、共振条件式(18)又は(27)に代入する。そして、前述の捩れ共振振動数f1、f2、…fnから3点の共振振動数を選び、連立方程式を立てる。仮に、f1、f2、f3を選ぶと次の連立方程式(28)が成り立つ。   (Method 1) The width a of the top part of the columnar part 6, the inclination angle θ of the side surface, and the value of the propagation velocity Vs are used. These values are substituted into the resonance conditional expression (18) or (27). Then, three resonance frequencies are selected from the aforementioned torsional resonance frequencies f1, f2,... Fn, and simultaneous equations are established. If f1, f2, and f3 are selected, the following simultaneous equations (28) are established.

Figure 2009030994
式(28)を解いて、柱体部6の高さh、床盤部8の幅Bと厚さtを未知数として求めることができる。
Figure 2009030994
Equation (28) can be solved to obtain the height h of the columnar section 6 and the width B and thickness t of the floor board section 8 as unknowns.

(方法2)柱体部6の頂部の幅aと側面の傾斜角度θと高さhの実測値を用いる。なお、柱体部6の底部の幅bをaとθとhにより幾何学的に計算して近似し、値を求めておく必要がある。これらの値と3点の捩れの共振振動数fnから、方法1と同様にして、床盤部8の幅Bと厚さtを未知数として求める。また、方法1と異なり、伝播速度Vsの値は必要ない。   (Method 2) Measured values of the width a at the top of the columnar portion 6, the inclination angle θ of the side surface, and the height h are used. Note that the width b of the bottom portion of the column body portion 6 needs to be approximated by geometrically calculating with a, θ, and h to obtain a value. From these values and the resonance frequency fn of the torsion at three points, the width B and the thickness t of the floor board 8 are obtained as unknowns in the same manner as in the method 1. Further, unlike the method 1, the value of the propagation velocity Vs is not necessary.

(方法3)方法2で計算に用いる値に伝播速度Vsを追加する。これにより未知数が1つ減るので、計算に必要な捩れの共振振動数fnが2点に減り、連立方程式は2つとなる。これらを解いて、床盤部8の幅Bと厚さtを未知数として求める。   (Method 3) The propagation velocity Vs is added to the value used for the calculation in Method 2. As a result, the number of unknowns is reduced by 1, so that the torsional resonance frequency fn required for the calculation is reduced to two points, and the simultaneous equations become two. By solving these, the width B and the thickness t of the floor board 8 are obtained as unknowns.

以上説明したように、本実施例によれば、測定に用いる振動モードとして埋設コンクリート基礎で最も強く起こる捩れ振動を用いているので、振動スペクトルの共振ピークが鋭く明瞭に現れる。このため、その他の振動モードとの区別がしやすくなり、また、共振ピークがノイズに埋もれることもなくなる。よって、共振振動数fnの同定が正確にできるようになり、共振振動数fnと共振条件式(18)又は(27)に基づいて求められるコンクリート基礎2の埋設部分の寸法の測定精度が向上する。   As described above, according to the present embodiment, the torsional vibration that occurs most strongly in the buried concrete foundation is used as the vibration mode used for measurement, so that the resonance peak of the vibration spectrum appears sharply and clearly. For this reason, it becomes easy to distinguish from other vibration modes, and the resonance peak is not buried in noise. Therefore, the resonance frequency fn can be accurately identified, and the measurement accuracy of the dimension of the embedded portion of the concrete foundation 2 obtained based on the resonance frequency fn and the resonance conditional expression (18) or (27) is improved. .

また、方法1乃至3で説明したように、コンクリート基礎2の各部寸法の実測数を増やせば、それだけ共振条件式の未知数が少なくなるので誤差が小さくなり精度を上げることができる。   Further, as described in the methods 1 to 3, if the actual number of dimensions of each part of the concrete foundation 2 is increased, the number of unknowns in the resonance condition equation is reduced accordingly, so that the error is reduced and the accuracy can be improved.

実施例1では、コンクリート基礎2の実測可能な部分の実測値を用いて共振振動数と共振条件式からコンクリート基礎2の各部寸法を求めたが、見方を変えれば、コンクリート基礎2の各部寸法を用いて共振条件式から伝播定数(又は共振振動数)を求めることができるということである。そこで、本実施例ではこれを利用して、予めコンクリート基礎2の各部寸法と伝播定数(又は共振振動数)の関係を示したデータベースを作成しておき、実測した共振振動数に基づいてデータベースを照合して、コンクリート基礎2の各部寸法を求める。この方法を以下、作成するデータベースの違いにより、本実施例及び実施例3、4に分けて説明する。なお、前述したように、測定では1次共振振動数はノイズに埋もれてピークが明瞭でないことが多い。よって、本実施例及び実施例3、4では、1次共振振動数に対応する伝播定数と1次共振振動数は用いないものとする。   In Example 1, the dimensions of each part of the concrete foundation 2 were obtained from the resonance frequency and the resonance condition formula using the measured values of the measurable part of the concrete foundation 2. The propagation constant (or resonance frequency) can be obtained from the resonance condition equation. Therefore, in this embodiment, using this, a database showing the relationship between the dimensions of each part of the concrete foundation 2 and the propagation constant (or resonance frequency) is created in advance, and the database is created based on the actually measured resonance frequency. The dimensions of each part of the concrete foundation 2 are obtained by collation. This method will be described separately in the present embodiment and the third and fourth embodiments depending on the database to be created. As described above, in the measurement, the primary resonance frequency is often buried in noise and the peak is not clear. Therefore, in this example and Examples 3 and 4, the propagation constant corresponding to the primary resonance frequency and the primary resonance frequency are not used.

まず、柱体部6の頂部の幅aと高さhを実測する。そして、a、hの値を式(18)又は式(27)に代入する。次に、柱体部6の底部の幅bと床盤部8の幅Bと厚さtの数値を適切な範囲内において、適切な刻み幅で変えて、複数の伝播定数βを求める。このとき、1組の(b、B、t)の値に対し、βの値は共振振動数の数と同様に、β=βi(i=2、3…)のように無数に求まる。また、βiはi次共振振動数に対応する伝播定数であることを示す。数値の大きさは、β2<β3<β4<…となっている。   First, the width “a” and the height “h” of the top of the columnar body 6 are measured. Then, the values of a and h are substituted into formula (18) or formula (27). Next, a plurality of propagation constants β are obtained by changing numerical values of the width b of the bottom portion 6 of the column body portion 6, the width B of the floor base portion 8, and the thickness t within an appropriate range by an appropriate step size. At this time, with respect to one set of values (b, B, t), the value of β is obtained innumerably like β = βi (i = 2, 3,...), Similarly to the number of resonance frequencies. Βi indicates a propagation constant corresponding to the i-th resonance frequency. The numerical value is β2 <β3 <β4 <.

このようにして求めたβiの中の1つ、例えばβ2を基準にして、ki=βi/β2(i=3、4…)のような伝播定数の比kiを求める。kiはすなわち、計算により求めた理論値の伝播定数の比である。そして、kiの、(b、B、t)に対する3次元マトリックスのデータベースを作成する。例えば、表2のようなデータベースとなる。なお、表2中のk3(1,1,1)は、(b、B、t)=(b1、B1、t1)のときのβ2とβ3から求めたk3であることを示す。ちなみに、例えば、(b、B、t)=(b1、B1、t1)のときのβ2と、(b、B、t)=(b1、B2、t2)のときのβ2は違う値であることは言うまでもない。表2のようなデータベースがb=b2、b3、…のそれぞれの場合について存在し、さらに、kiのi=4、5、…のそれぞれの場合について存在する。   A propagation constant ratio ki such as ki = βi / β2 (i = 3, 4,...) Is obtained based on one of βi thus obtained, for example, β2. In other words, ki is a ratio of propagation constants of theoretical values obtained by calculation. Then, a three-dimensional matrix database for ki (b, B, t) is created. For example, the database is as shown in Table 2. Note that k3 (1, 1, 1) in Table 2 indicates k3 obtained from β2 and β3 when (b, B, t) = (b1, B1, t1). Incidentally, for example, β2 when (b, B, t) = (b1, B1, t1) and β2 when (b, B, t) = (b1, B2, t2) are different values. Needless to say. A database as shown in Table 2 exists for each case of b = b2, b3,..., And further exists for each case of i = 4, 5,.

Figure 2009030994
次に、上記のデータベースを寸法推定に用いる手順について説明する。まず、捩れの共振振動数fmi(i=2、3…)を測定する。測定する共振振動数fmiの数は多ければ精度はよいが、2点でもよい。次に、伝播定数の比kiを求める際に第2次共振振動数に対応するβ2を基準としたので、ここでは共振振動数fm2を基準にしてkmi=fmi/fm2(i=3、4…)のような共振振動数の比kmiを求める。kmiはすなわち、実測値の共振振動数の比である。
Figure 2009030994
Next, a procedure for using the above database for size estimation will be described. First, the torsional resonance frequency fmi (i = 2, 3,...) Is measured. If the number of resonance frequencies fmi to be measured is large, the accuracy is good, but it may be two points. Next, since β2 corresponding to the secondary resonance frequency is used as a reference when obtaining the propagation constant ratio ki, here, kmi = fmi / fm2 (i = 3, 4,..., With reference to the resonance frequency fm2. The resonance frequency ratio kmi as shown in FIG. In other words, kmi is the ratio of the actually measured resonance frequency.

ここで、式(6)から分かるように、伝播定数の比は共振振動数の比に等しい。よって、kiは理論値の共振振動数の比と等しく、kiとkmiを比較するということは理論値の共振振動数の比と実測値の共振振動数の比の比較をするということになる。これにより誤差を求め、誤差がより小さい(b、B、t)の組み合わせを選択すれば、精度よく(b、B、t)を推定することができる。誤差の算出は次式(29)の計算により行う。   Here, as can be seen from Equation (6), the ratio of propagation constants is equal to the ratio of resonance frequencies. Therefore, ki is equal to the ratio of the resonance frequency of the theoretical value, and comparing ki and kmi is a comparison of the ratio of the resonance frequency of the theoretical value and the ratio of the resonance frequency of the actual measurement value. Thus, by obtaining an error and selecting a combination (b, B, t) having a smaller error, (b, B, t) can be estimated with high accuracy. The error is calculated by the following equation (29).

Figure 2009030994
ここで、pは誤差である。pが最小になるki(i=3、4…)を求め、この時の(b、B、t)を柱体部6の底部の幅b、床盤部8の幅B、床盤部8の厚さtとして求める。
Figure 2009030994
Here, p is an error. ki (i = 3, 4...) that minimizes p is obtained, and (b, B, t) at this time is determined as the width b of the bottom part of the columnar part 6, the width B of the floor part 8, and the floor part 8. It is calculated | required as thickness t.

ここで、上記の理論を用いた解析プログラムによる解析方法を説明する。鉄塔基礎の形状解析には、解析結果の表現方法により2つの解析方法があり、標準鉄塔基礎の基礎型を解析結果とする方法と、鉄塔基礎の各部寸法を解析結果とする方法である。基礎型を解析結果とする方法は、解析対象とする鉄塔基礎が明らかに標準鉄塔基礎であることが分かっている場合に適用し、各部寸法を解析結果とする方法は、解析対象とする鉄塔基礎の情報が全くない場合に適用する。   Here, an analysis method using an analysis program using the above theory will be described. There are two analysis methods for shape analysis of a steel tower foundation, depending on the method of expressing the analysis results: a method in which the basic type of the standard steel tower foundation is used as the analysis result, and a method in which the dimensions of each part of the steel tower foundation are used as the analysis results. The method of using the foundation type as the analysis result is applied when the steel tower foundation to be analyzed is clearly known as the standard steel tower foundation, and the method of using the dimensions of each part as the analysis result is the steel tower foundation to be analyzed. Applicable when there is no information.

まず、標準鉄塔基礎の基礎型を解析結果とする方法について、図9のフローチャートに沿って説明する。
(ステップ101)解析プログラムに、実測したコンクリート基礎2の柱体部6の幅a、柱体部6の高さhと複数の捩れ共振振動数、ここではf2、f3、f4を入力する。
(ステップ102)入力したa、hの値を検索条件とし、解析プログラム内に格納された標準鉄塔基礎表から、コンクリート基礎2の形状、寸法等の条件にあう鉄塔基礎型を選択する。なお、標準鉄塔基礎表には、一般的な標準鉄塔基礎の形状、寸法が記載されている。
(ステップ103)選択された鉄塔基礎型の各部寸法より、柱体部6の幅b、床盤部8の幅B、厚さtそれぞれの最小値と最大値を決定する。
(ステップ104)ステップ103の最小値と最大値の範囲内において、(b、B、t)の3次元マトリックスを作成する。なお、ここでは各寸法の刻み幅は、Δb=0.01(m)、ΔB=0.1(m)、Δt=0.05(m)である。
(ステップ105)実測したa、hと3次元マトリックスの値(b、B、t)を式(18)又は式(27)に代入し、理論値の伝播定数(共振振動数)の比kiを算出する。
(ステップ106)実測値の共振振動数の比kmiを算出する。
(ステップ107)理論値の伝播定数(共振振動数)の比kiと実測値の共振振動数の比kmiを比較し、式(29)により誤差を算出する。誤差が最も小さくなる(b、B、t)の組合せを選択する。
(ステップ108)求めた(a、h、b、B、t)の組合せと、標準鉄塔基礎表の各部寸法の組合せを比較して誤差を算出する。
(ステップ109)誤差が最小となる標準鉄塔基礎型を解析結果として出力して処理を終了する。
First, a method of using the basic type of the standard steel tower foundation as an analysis result will be described with reference to the flowchart of FIG.
(Step 101) The actually measured width a of the column body portion 6 of the concrete foundation 2 and the height h of the column body portion 6 and a plurality of torsional resonance frequencies, here, f2, f3, and f4 are input to the analysis program.
(Step 102) Using the inputted values of a and h as search conditions, a tower foundation type that meets conditions such as the shape and dimensions of the concrete foundation 2 is selected from the standard tower foundation table stored in the analysis program. In addition, in the standard steel tower foundation table, the shape and dimensions of a general standard steel tower foundation are described.
(Step 103) The minimum value and the maximum value of the width b of the column body portion 6, the width B of the floor base portion 8, and the thickness t are determined from the dimensions of the selected steel tower foundation mold.
(Step 104) A three-dimensional matrix (b, B, t) is created within the range between the minimum value and the maximum value in Step 103. Here, the step size of each dimension is Δb = 0.01 (m), ΔB = 0.1 (m), and Δt = 0.05 (m).
(Step 105) Substituting the actually measured values a and h and the values (b, B, t) of the three-dimensional matrix into the equation (18) or the equation (27), and the ratio ki of the theoretical propagation constant (resonance frequency). calculate.
(Step 106) The ratio kmi of the actually measured resonance frequency is calculated.
(Step 107) The ratio k i of the propagation constant (resonance frequency) of the theoretical value and the ratio k mi of the resonance frequency of the actual measurement value are compared, and an error is calculated by the equation (29). The combination with the smallest error (b, B, t) is selected.
(Step 108) The error is calculated by comparing the obtained combination of (a, h, b, B, t) with the combination of the dimensions of each part of the standard tower basic table.
(Step 109) The standard tower foundation type with the smallest error is output as the analysis result, and the process is terminated.

図10に上記の方法で得られる三次元マトリックスデータの1例を示し、表3に解析結果の1例を示す。なお、表3のa、hの解析結果の数値は実測値である。表3から分かるように高い精度でコンクリート基礎2の埋設部分の寸法が推定できた。   FIG. 10 shows an example of the three-dimensional matrix data obtained by the above method, and Table 3 shows an example of the analysis result. Note that the numerical values of the analysis results of a and h in Table 3 are actually measured values. As can be seen from Table 3, the size of the buried portion of the concrete foundation 2 could be estimated with high accuracy.

Figure 2009030994
次に、図11のフローチャートに沿って鉄塔基礎の各部寸法を解析結果とする方法について説明する。
(ステップ201)解析プログラムに、実測したコンクリート基礎2の柱体部6の幅a、柱体部6の高さh、柱体部6の側面の傾斜角度θと複数の捩れ共振振動数f2、f3、f4を入力する。
(ステップ202)a、h、θより柱体部6の底部の幅bを計算し推定する。
(ステップ203)推定したbを基に、計算用マトリックスの範囲を計算する。ここでは、bの範囲は0.8b(m)〜1.2b(m)、Bの範囲は0.88b(m)〜2.4b(m)、tの範囲は0.3(m)〜0.8(m)である。
(ステップ204)ステップ203の最小値と最大値の範囲内において、(b、B、t)の3次元マトリックスを作成する。なお、各寸法の刻み幅は、Δb=0.01(m)、ΔB=0.1(m)、Δt=0.05(m)である。
(ステップ205)実測したa、hと3次元マトリックスの値(b、B、t)を式(18)又は式(27)に代入し、理論値の伝播定数(共振振動数)の比kiを算出する。
(ステップ206)実測値の共振振動数の比kmiを算出する。
(ステップ207)理論値の伝播定数(共振振動数)の比kiと実測値の共振振動数の比kmiを比較し、式(29)により誤差を算出する。誤差が最も小さくなる(b、B、t)の組合せを選択する。
(ステップ208)上記ステップで求めた(a、h、b、B、t)の組合せを解析結果として出力して処理を終了する。
Figure 2009030994
Next, a method of using the dimensions of each part of the steel tower foundation as an analysis result will be described with reference to the flowchart of FIG.
(Step 201) In the analysis program, the actually measured width a of the column body portion 6 of the concrete foundation 2, the height h of the column body portion 6, the inclination angle θ of the side surface of the column body portion 6, and a plurality of torsional resonance frequencies f2, Input f3 and f4.
(Step 202) The width b of the bottom part of the columnar part 6 is calculated and estimated from a, h, and θ.
(Step 203) The range of the calculation matrix is calculated based on the estimated b. Here, the range of b is 0.8b (m) to 1.2b (m), the range of B is 0.88b (m) to 2.4b (m), and the range of t is 0.3 (m) to 0.8 (m).
(Step 204) Within the range of the minimum value and the maximum value in Step 203, a three-dimensional matrix of (b, B, t) is created. The step size of each dimension is Δb = 0.01 (m), ΔB = 0.1 (m), and Δt = 0.05 (m).
(Step 205) The actually measured values a and h and the values (b, B, t) of the three-dimensional matrix are substituted into Equation (18) or Equation (27), and the ratio ki of the theoretical propagation constant (resonance frequency) is obtained. calculate.
(Step 206) The resonance frequency ratio kmi of the actually measured values is calculated.
(Step 207) The ratio k i of the propagation constant (resonance frequency) of the theoretical value and the ratio k mi of the resonance frequency of the actual measurement value are compared, and the error is calculated by the equation (29). The combination with the smallest error (b, B, t) is selected.
(Step 208) The combination of (a, h, b, B, t) obtained in the above step is output as an analysis result, and the process is terminated.

以上、本実施例のように、予めコンクリート基礎2の各部寸法と理論値の伝播定数(共振振動数)の比kiのデータベースを作成しておくことにより、実測共振振動数比のみで形状寸法が測定できるようになる。また、測定に伝播速度の値を用いないので精度が上がり、伝播速度を測る必要もなくなり、さらに手間が省けることになる。なお、データベースを作成する際の各部の寸法の刻み幅を小さくすれば、より高い精度で寸法測定ができる。   As described above, by creating a database of the ratio ki between the dimensions of the concrete foundation 2 and the propagation constant (resonance frequency) of the theoretical value in advance as in the present embodiment, the shape dimension can be determined only by the measured resonance frequency ratio. It becomes possible to measure. Further, since the value of the propagation velocity is not used for the measurement, the accuracy is improved, it is not necessary to measure the propagation velocity, and further labor is saved. It should be noted that if the step size of each part at the time of creating the database is reduced, the dimension can be measured with higher accuracy.

実施例2で、式(18)又は式(27)に、柱体部6の頂部の幅aと高さhを代入するが、これらに加えて柱体部6の底部の幅bを代入する。このbは、側面の傾斜角度θとaとhにより幾何学的に計算して値を求めておく。以降は実施例2と同様に行う。なお、本実施例において作成するデータベースは、kiと(B、t)の2次元マトリックスとなり、求める寸法は、床盤部8の幅B、床盤部8の厚さtである。   In the second embodiment, the width a and the height h of the top of the column body 6 are substituted into the formula (18) or the formula (27), but in addition to these, the width b of the bottom of the column body 6 is substituted. . This b is obtained by geometrically calculating the side inclination angle θ and a and h. The subsequent steps are the same as in the second embodiment. Note that the database created in this embodiment is a two-dimensional matrix of ki and (B, t), and the required dimensions are the width B of the floor base 8 and the thickness t of the floor base 8.

本実施例によれば、作成するデータベースが(B、t)の2次元マトリックスとなり、データベースの作成、検索が容易になる。   According to the present embodiment, the database to be created is a two-dimensional matrix (B, t), and the creation and retrieval of the database is facilitated.

なお、本実施例で寸法を求めることもできるが、柱体部6の側面の傾斜角度θから求める柱体部6の底部の幅bは、柱体部6の側面の平面度がよくないため誤差が大きいことがあり、床盤部8の幅Bと厚さtの解析結果が悪くなることがあるので、実施例2の測定の方が望ましい。   In addition, although a dimension can also be calculated | required in a present Example, since the width | variety b of the bottom part of the columnar part 6 calculated | required from the inclination | tilt angle (theta) of the side surface of the columnar part 6 is not flatness of the side surface of the columnar part 6. Since the error may be large and the analysis result of the width B and the thickness t of the floor board portion 8 may be deteriorated, the measurement of Example 2 is more desirable.

実施例2、3で式(18)又は式(27)に代入する値として伝播速度Vsを加える。実施例2、3では、理論値の伝播定数の比kiと実測値の伝播定数の比kmiという伝播定数の比を比較したが、本実施例では伝播速度Vsがあるので式(6)により理論値の共振振動数fiが導出できる。よって、理論値の共振振動数fiと実測値の共振振動数fmiを比を用いることなくそのまま比較することができる。そのため、本実施例において作成するデータベースは、共振振動数fiと各部寸法の3次元又は2次元マトリックスのデータベースとなる。また、実測する共振振動数fmiの数は、多ければ精度はよいが2つでもよい。その他の方法は実施例2,3と同様である。なお、誤差の算出は次式(30)の計算により行う。   In the second and third embodiments, the propagation velocity Vs is added as a value to be substituted into the equation (18) or the equation (27). In Examples 2 and 3, the ratio of the propagation constants k i of the theoretical values and the ratio k m of the propagation constants of the actual measurement values were compared. However, in this example, there is a propagation velocity Vs, so The value of the resonance frequency fi can be derived. Therefore, the theoretical resonance frequency fi and the actually measured resonance frequency fmi can be directly compared without using a ratio. For this reason, the database created in this embodiment is a three-dimensional or two-dimensional matrix database of the resonance frequency fi and the dimensions of each part. Further, the number of actually measured resonance frequencies fmi is good if it is large, but may be two. Other methods are the same as those in the second and third embodiments. The error is calculated by the following equation (30).

Figure 2009030994
pが最小になるfi(i=3、4…)を求め、この時の(b、B、t)又は(B、t)の組み合わせを求める。
Figure 2009030994
Fi (i = 3, 4,...) that minimizes p is obtained, and a combination of (b, B, t) or (B, t) at this time is obtained.

本実施例によれば、伝播定数の比を用いることなく共振振動数のまま比較することができるので、作成すべきデータベースは共振振動数fiと各部寸法のものでよい。よって、データベースの作成が容易になる。   According to the present embodiment, since the comparison can be made with the resonance frequency without using the ratio of the propagation constants, the database to be created may have the resonance frequency fi and the size of each part. Therefore, creation of a database becomes easy.

本実施例では、図12aのように回転軸(捩れ軸)38が柱体部6の鉛直軸40上の点Pを中心に傾いている場合を考える。この場合、図12bで示すように、柱体部6は点Pを通る床盤部8と平行な面42を境として、2つの第1柱体部44と第2第2柱体部46を接続して構成されていると考える。第1柱体部44と第2柱体部46及び床盤部8を接続してなる基礎の4端子マトリックスは次式(31)になる。   In this embodiment, a case is considered in which the rotation axis (twisting axis) 38 is tilted around a point P on the vertical axis 40 of the columnar section 6 as shown in FIG. In this case, as shown in FIG. 12b, the columnar section 6 has two first columnar sections 44 and a second second columnar section 46, with a plane 42 parallel to the floor base section 8 passing through the point P as a boundary. Think of it as being connected. A basic four-terminal matrix formed by connecting the first column body portion 44, the second column body portion 46, and the floor base portion 8 is expressed by the following equation (31).

Figure 2009030994
また、図13のように床盤部8の下に捨てコンクリート12が接続されてなる基礎の4端子マトリックスは次式(32)になる。
Figure 2009030994
Further, as shown in FIG. 13, the basic four-terminal matrix in which the discarded concrete 12 is connected under the floor board portion 8 is expressed by the following equation (32).

Figure 2009030994
式(31)、式(32)から実施例1で述べたように共振条件式を求める。なお、式(31)のAh1、Bh1、Ch1、Dh1は、式(2)のAh、式(3)のBh、式(4)のCh、式(5)のDh中のbがcに、hがh1となった式であり、式(32)のAh2、Bh2、Ch2、Dh2は、式(2)のAh、式(3)のBh、式(4)のCh、式(5)のDh中のaがcに、hがh2となった式である。なお、h1は第1柱体部44の高さ、h2は第2柱体部46の高さ、cは第1柱体部44の底部の幅(第2柱体部46の頂部の幅)である。以下この場合の形状測定方法を、方法4、5に分けて説明する。
Figure 2009030994
As described in the first embodiment, the resonance condition equation is obtained from the equations (31) and (32). In Formula (31), Ah1, Bh1, Ch1, and Dh1 are Ah in Formula (2), Bh in Formula (3), Ch in Formula (4), and b in Dh in Formula (5) are c, h is an expression of h1, and Ah2, Bh2, Ch2, and Dh2 in Expression (32) are Ah in Expression (2), Bh in Expression (3), Ch in Expression (4), and Expression (5) In Dh, a is c and h is h2. In addition, h1 is the height of the 1st column body part 44, h2 is the height of the 2nd column body part 46, c is the width | variety of the bottom part of the 1st column body part 44 (width | variety of the top part of the 2nd column body part 46). It is. Hereinafter, the shape measuring method in this case will be described by dividing into methods 4 and 5.

(方法4)実施例2と同様の方法を用いる。第1柱体部44の頂部の幅a、第1柱体部44と第2柱体部46の高さの合計h、第2柱体部46の底部の幅bを測定する。次に、式(31)又は(32)から求められる共振条件式に基づいて、適切な範囲内において、aとbとB及びtに対する伝播定数βの比に関する4次元マトリックスのデータベースを作成する。ここで、cは相似の関係を用いて、h1/h、a、bから求めることができる。よって、cの値を固定しておき、(a、b、B、t)の数値を変えてデータベースを作成する。以降は、実施例2と同様に行う。
(方法5)方法4ではcの値を固定したが、ここではh1/hの値を固定する。第1柱体部44の頂部の幅a、第1柱体部44と第2柱体部46の高さの合計h、第2柱体部46の底部の幅bを測定する。次に、式(31)又は(32)から求められる共振条件式に基づいて、適切な範囲内において、Bとt及びcに対する伝播定数βの比に関する3次元マトリックスのデータベースを作成する。以降は、実施例2と同様に行う。
(Method 4) The same method as in Example 2 is used. The width a of the top part of the first columnar part 44, the total height h of the first columnar part 44 and the second columnar part 46, and the width b of the bottom part of the second columnar part 46 are measured. Next, based on the resonance condition equation obtained from the equation (31) or (32), a four-dimensional matrix database relating to the ratio of the propagation constant β to a, b, B, and t is created within an appropriate range. Here, c can be obtained from h1 / h, a, and b using a similar relationship. Therefore, the value of c is fixed, and the database is created by changing the numerical values of (a, b, B, t). Thereafter, the same process as in the second embodiment is performed.
(Method 5) Although the value of c is fixed in Method 4, the value of h1 / h is fixed here. The width a of the top part of the first columnar part 44, the total height h of the first columnar part 44 and the second columnar part 46, and the width b of the bottom part of the second columnar part 46 are measured. Next, a database of a three-dimensional matrix relating to the ratio of the propagation constant β to B, t, and c is created within an appropriate range based on the resonance condition equation obtained from the equation (31) or (32). Thereafter, the same process as in the second embodiment is performed.

以上説明したように、本実施例によれば、回転軸38が柱体部6の点Pを中心に鉛直軸40から傾いている場合においても、2つの第1柱体部44と第2第2柱体部46が接続されていると考えることにより、コンクリート基礎2の寸法を求めることができるようになる。   As described above, according to the present embodiment, even when the rotation shaft 38 is inclined from the vertical axis 40 around the point P of the column body portion 6, the two first column body portions 44 and the second second column body portions 44 are arranged. The dimension of the concrete foundation 2 can be calculated | required now by thinking that the 2 pillar part 46 is connected.

上述したように、実施例1乃至5によれば捩れ共振条件式と共振振動数を用いることにより、埋設コンクリート基礎の各部寸法を高い精度で求めることができる。   As described above, according to Examples 1 to 5, by using the torsional resonance conditional expression and the resonance frequency, the dimensions of each part of the buried concrete foundation can be obtained with high accuracy.

また、実施例1の図3における捨てコンクリート12よりさらに下に構造物があることが想定される場合は、その構造物についての式(19)のような4端子マトリックスを求め、以降は式(27)を求める方法と同様に式を求めることで対応できる。また、実施例2の解析プログラムでは伝播定数の比を用いて解析を行っているが、実施例4のように共振振動数を用いる解析プログラムを適用することもできる。その際は、伝播速度の値が必要となる。   Further, when it is assumed that there is a structure further below the discarded concrete 12 in FIG. 3 of Example 1, a four-terminal matrix such as Expression (19) for the structure is obtained. This can be dealt with by obtaining an equation in the same manner as the method of obtaining 27). In the analysis program of the second embodiment, the analysis is performed using the ratio of the propagation constants. However, an analysis program using the resonance frequency as in the fourth embodiment can be applied. In that case, the value of propagation velocity is required.

なお、本実施例では柱体部6と床盤部8及び捨てコンクリート12の断面が正方形又は円である場合について説明したが、矩形の場合についても、未知数は多くなるが共振条件式を設定することで対応できる。つまり、図1のような埋設コンクリート基礎以外でも、その基礎の形状に対応する捩れの共振条件式を設定できれば本発明の方法で形状測定をすることは可能である。   In addition, although the present Example demonstrated the case where the cross section of the pillar part 6, the floor base part 8, and the discarded concrete 12 was a square or a circle, also in the case of a rectangle, although unknown amount increases, a resonance conditional expression is set. It can respond. That is, it is possible to measure the shape by the method of the present invention other than the buried concrete foundation as shown in FIG. 1 if the torsional resonance conditional expression corresponding to the shape of the foundation can be set.

コンクリート基礎の側面図である。It is a side view of a concrete foundation. コンクリート基礎を使用する鉄塔である。It is a steel tower using a concrete foundation. 床盤部の下に捨てコンクリートがある場合の側面図である。It is a side view in case there is discarded concrete under a floor board part. コンクリート基礎2の形状測定装置の構成図である。It is a block diagram of the shape measuring apparatus of the concrete foundation 2. FIG. 捩れ共振振動数を測定する各センサーを取り付ける際の柱体部の平面図である。It is a top view of the column body part at the time of attaching each sensor which measures a torsional resonance frequency. 加速度センサーを2つ付ける際の柱体部の平面図である。It is a top view of the pillar part at the time of attaching two acceleration sensors. 捩れ共振振動数を同定するための参照図である。It is a reference figure for identifying a torsional resonance frequency. コンクリート基礎の振動を測定した場合の振動数スペクトルの例である。It is an example of the frequency spectrum at the time of measuring the vibration of a concrete foundation. 実施例2の標準鉄塔基礎の基礎型を解析結果とする解析プログラムのフローチャートである。It is a flowchart of the analysis program which makes the analysis result the basic | foundation type of the standard steel tower foundation of Example 2. FIG. 実施例2の(b、B、t)の三次元マトリックスデータの1例である。It is an example of the three-dimensional matrix data of (b, B, t) of Example 2. 実施例2の鉄塔基礎の各部寸法を解析結果とする解析プログラムのフローチャートである。It is a flowchart of the analysis program which makes each part dimension of the steel tower foundation of Example 2 an analysis result. 実施例5の回転軸が柱体部の途中を中心に鉛直軸から傾いている場合の側面図である。It is a side view in case the rotating shaft of Example 5 inclines from a vertical axis centering on the middle of a column part. 実施例5の床盤部の下に捨てコンクリートがある場合の側面図である。It is a side view in case there is discarded concrete under the floor board part of Example 5. FIG.

符号の説明Explanation of symbols

2 コンクリート基礎
6 柱体部
8 床盤部
12 捨てコンクリート
16 加振器
18 フォースセンサー
20 信号処理装置
24 加速度センサー
44 第1柱体部
46 第2柱体部
2 Concrete foundation 6 Column body portion 8 Floor base portion 12 Discarded concrete 16 Exciter 18 Force sensor 20 Signal processing device 24 Acceleration sensor 44 First column body portion 46 Second column body portion

Claims (11)

角錐台又は円錐台の柱体部と矩形又は円形の断面を有する床盤部とを連結して形成された埋設コンクリート基礎の形状測定方法において、
前記埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振して捩れ振動の加速度を検出し、該加速度検出値の複数の共振振動数を抽出し、該抽出した複数の共振振動数と、前記捩れ振動の共振振動数と前記埋設コンクリート基礎の各部の寸法との関係を表した共振条件式に基づいて、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。
In the method of measuring the shape of the buried concrete foundation formed by connecting the columnar part of the truncated pyramid or truncated cone and the floor part having a rectangular or circular cross section,
Detecting acceleration of torsional vibration by exciting so that torsional vibration occurs around the axis of the buried concrete foundation, extracting a plurality of resonance frequencies of the acceleration detection value, and extracting the plurality of resonance frequencies, A method for measuring the shape of a buried concrete foundation, wherein the dimensions of the buried concrete foundation are obtained based on a resonance condition expression representing a relationship between a resonance frequency of the torsional vibration and a dimension of each part of the buried concrete foundation.
請求項1において、前記埋設コンクリート基礎の前記柱体部の頂部の幅又は直径を実測し、前記共振条件式にあてはめて、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   The shape of a buried concrete foundation according to claim 1, wherein the width or diameter of the top portion of the pillar portion of the buried concrete foundation is actually measured and applied to the resonance condition formula to determine the size of the buried concrete foundation. Measuring method. 請求項1又は2において、前記埋設コンクリート基礎の前記柱体部の高さを実測し、前記共振条件式にあてはめて、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   The shape measurement of the buried concrete foundation according to claim 1 or 2, wherein the height of the column body portion of the buried concrete foundation is actually measured and applied to the resonance condition formula to determine the size of the buried concrete foundation. Method. 請求項1乃至3のいずれか1項において、前記埋設コンクリート基礎の前記柱体部の頂部の幅又は直径と側面の傾斜角度と高さとを実測し、該実測値に基づいて前記柱体部の底部の幅又は直径を推定し、前記共振条件式にあてはめて、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   In any 1 item | term of Claim 1 thru | or 3, it measures the width | variety or diameter of the top part of the said column body part of the said embedded concrete foundation, and the inclination angle and height of a side surface, Based on this measured value, the said column body part's A method for measuring the shape of a buried concrete foundation, wherein a width or a diameter of a bottom portion is estimated and applied to the resonance condition formula to determine a dimension of the buried concrete foundation. 請求項1乃至4のいずれか1項において、前記埋設コンクリート基礎の前記捩れ振動の伝播速度を実測し、前記共振条件式にあてはめて、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   5. The buried concrete according to claim 1, wherein a propagation speed of the torsional vibration of the buried concrete foundation is actually measured and applied to the resonance condition formula to determine a dimension of the buried concrete foundation. Basic shape measurement method. 角錐台又は円錐台の柱体部と矩形又は円形の断面を有する床盤部とを連結して形成された埋設コンクリート基礎の形状測定方法において、
前記埋設コンクリート基礎の軸周りの捩れ振動の共振振動数と前記埋設コンクリート基礎の各部の寸法との関係を表した捩れ振動の共振条件式に基づいて、前記埋設コンクリート基礎の埋設部の未知寸法の特定の組み合わせにおける設定次の伝播定数を基準とするその他の埋設部の未知寸法の組み合わせにおける伝播定数の比を求め、寸法の組み合わせと前記伝播定数の比との対応関係を記載したテーブルを予めデータベースに格納しておき、前記埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振して捩れ振動の加速度を検出し、該加速度検出値の複数の共振振動数を抽出し、該抽出した複数の共振振動数のうち前記設定次の共振振動数を基準とするその他の共振振動数の比を求め、該比と前記伝播定数の比との誤差が最小になる寸法の組み合わせを前記データベースより検索して、前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。
In the method of measuring the shape of the buried concrete foundation formed by connecting the columnar part of the truncated pyramid or truncated cone and the floor part having a rectangular or circular cross section,
Based on the resonance condition equation of the torsional vibration representing the relationship between the resonance frequency of the torsional vibration around the axis of the buried concrete foundation and the size of each part of the buried concrete foundation, the unknown dimension of the buried part of the buried concrete foundation is The ratio of the propagation constant in the combination of unknown dimensions of other embedded parts based on the next propagation constant set in a specific combination is obtained, and a table in which the correspondence between the combination of dimensions and the ratio of the propagation constant is described in a database in advance And detecting the acceleration of the torsional vibration so that the torsional vibration occurs around the axis of the buried concrete foundation, extracting a plurality of resonance frequencies of the detected acceleration value, The ratio of the other resonance frequencies with respect to the set resonance frequency as a reference is obtained, and the error between the ratio and the ratio of the propagation constant is minimized. The combination of dimensions by searching from the database, the shape measuring method of the buried concrete foundation, characterized in that to determine the dimensions of the buried concrete foundation.
請求項6において、前記埋設コンクリート基礎の前記柱体部の頂部の幅又は直径と高さとを実測して前記共振条件式にあてはめて、該共振条件式に基づいて前記埋設コンクリート基礎の各部の寸法の組み合わせと前記伝播定数との比を求め、前記テーブルを作成して前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   In Claim 6, the width or diameter and height of the top portion of the pillar portion of the buried concrete foundation are measured and applied to the resonance condition formula, and the dimensions of each part of the buried concrete foundation are determined based on the resonance condition formula. A method for measuring the shape of a buried concrete foundation, wherein the ratio of the combination of the two and the propagation constant is obtained, the table is created, and the dimensions of the buried concrete foundation are obtained. 請求項6において、前記埋設コンクリート基礎の前記柱体部の頂部の幅又は直径と高さと側面の傾斜角度とを実測し、該実測値に基づいて前記柱体部の底部の幅又は直径を推定して前記共振条件式にあてはめ、該共振条件式に基づいて前記埋設コンクリート基礎の各部の寸法の組み合わせと前記伝播定数との比を求め、前記テーブルを作成して前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   7. The width or diameter and height of the top portion of the column body portion of the buried concrete foundation and the inclination angle of the side surface are measured, and the width or diameter of the bottom portion of the column body portion is estimated based on the measured values. Then, it is applied to the resonance condition equation, and the ratio of the combination of the dimensions of each part of the buried concrete foundation and the propagation constant is obtained based on the resonance condition equation, and the table is prepared to obtain the dimension of the buried concrete foundation. A method for measuring the shape of a buried concrete foundation. 請求項6において、前記柱体部の回転軸が前記柱体部の途中を中心に中心軸から傾いているときに、前記柱体部は第1柱体部と第2柱体部の2つの柱体を接続して構成されているとみなし、第1柱体部の頂部の幅又は直径と第2柱体部の底部の幅又は直径と前記柱体部全体の高さとを実測して前記共振条件式にあてはめ、該共振条件式に基づいて前記埋設コンクリート基礎の各部の寸法の組み合わせと前記伝播定数との比を求め、前記テーブルを作成して前記埋設コンクリート基礎の寸法を求めることを特徴とする埋設コンクリート基礎の形状測定方法。   In Claim 6, when the rotation axis of the column body part is inclined from the central axis about the middle of the column body part, the column body part includes two columns, a first column body part and a second column body part. It is considered that the column bodies are connected, and the top width or diameter of the first column body portion, the width or diameter of the bottom portion of the second column body portion, and the height of the entire column body portion are measured and measured. Applying a resonance condition formula, obtaining a ratio of the combination of dimensions of each part of the buried concrete foundation and the propagation constant based on the resonance condition formula, creating the table and obtaining the dimension of the buried concrete foundation Method for measuring the shape of buried concrete foundation. 埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振する加振手段と、前記捩れ振動の加速度を検出する加速度検出手段と、該加速度検出手段の出力信号から前記埋設コンクリート基礎の捩れの共振振動数を含む振動数スペクトルを分析する振動数分析手段と、前記共振振動数と前記埋設コンクリート基礎の各部の寸法との関係を表した共振条件式を有し、前記振動数分析手段により分析された複数の共振振動数と前記共振条件式とに基づいて、前記埋設コンクリート基礎の寸法を演算により求める演算手段とを備えてなる埋設コンクリート基礎の形状測定装置。   Vibration means for exciting the torsional vibration around the axis of the buried concrete foundation, acceleration detecting means for detecting acceleration of the torsional vibration, and torsional resonance of the buried concrete foundation from the output signal of the acceleration detecting means A frequency analysis means for analyzing a frequency spectrum including the frequency, and a resonance conditional expression representing a relationship between the resonance frequency and dimensions of each part of the buried concrete foundation, and is analyzed by the frequency analysis means. An embedded concrete foundation shape measuring device comprising: a computing means for computing the dimensions of the buried concrete foundation based on a plurality of resonance frequencies and the resonance condition formula. 捩れの共振振動数と埋設コンクリート基礎の各部の寸法との関係を表した共振条件式に基づいて、前記埋設コンクリート基礎の埋設部の未知寸法の特定の組み合わせにおける設定次の伝播定数を基準とするその他の伝播定数の比を求め、寸法の組み合わせと前記伝播定数の比との対応関係を記載したテーブルを記憶する記憶手段と、前記埋設コンクリート基礎の軸周りに捩れ振動が起きるように加振する加振手段と、前記捩れ振動の加速度を検出する加速度検出手段と、該加速度検出手段の出力信号から前記埋設コンクリート基礎の捩れの共振振動数を含む振動数スペクトルを分析する振動数分析手段と、該振動数分析手段により分析された複数の共振振動数のうちの前記設定次の共振振動数を基準とするその他の共振振動数の比と前記伝播定数の比との誤差を演算する演算手段と、該演算手段の演算結果に基づいて前記記憶手段を検索する検索手段とを備えてなる埋設コンクリート基礎の形状測定装置。   Based on the resonance condition equation that expresses the relationship between the resonant frequency of torsion and the dimensions of each part of the buried concrete foundation, and based on the set propagation constants for a specific combination of unknown dimensions of the buried part of the buried concrete foundation. A ratio of other propagation constants is obtained, and a storage means for storing a table describing a correspondence relationship between a combination of dimensions and the ratio of the propagation constants, and excitation is performed so that torsional vibration occurs around the axis of the buried concrete foundation. Vibration means; acceleration detection means for detecting acceleration of the torsional vibration; and frequency analysis means for analyzing a frequency spectrum including a resonance frequency of torsion of the buried concrete foundation from an output signal of the acceleration detection means; Ratio of other resonance frequencies based on the set resonance frequency among the plurality of resonance frequencies analyzed by the frequency analysis means and the propagation Calculating means for calculating an error between the ratio of the amount, shape-measuring apparatus of the buried concrete foundation comprising a retrieval means for retrieving the storage means on the basis of the calculation result of the calculating means.
JP2007192241A 2007-07-24 2007-07-24 Method and apparatus for measuring shape of buried concrete foundation Active JP5074117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192241A JP5074117B2 (en) 2007-07-24 2007-07-24 Method and apparatus for measuring shape of buried concrete foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192241A JP5074117B2 (en) 2007-07-24 2007-07-24 Method and apparatus for measuring shape of buried concrete foundation

Publications (3)

Publication Number Publication Date
JP2009030994A true JP2009030994A (en) 2009-02-12
JP2009030994A5 JP2009030994A5 (en) 2010-09-24
JP5074117B2 JP5074117B2 (en) 2012-11-14

Family

ID=40401675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192241A Active JP5074117B2 (en) 2007-07-24 2007-07-24 Method and apparatus for measuring shape of buried concrete foundation

Country Status (1)

Country Link
JP (1) JP5074117B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112895A (en) * 2010-11-26 2012-06-14 Yurtec Corp Method for measuring dimension of buried part of buried concrete foundation
CN108287035A (en) * 2018-01-15 2018-07-17 中国铁道科学研究院 Dropper dynamic impulsion force measuring device
CN109000601A (en) * 2018-07-12 2018-12-14 贵州路桥集团有限公司 A kind of pylon offset dynamic observation system
JP2019527780A (en) * 2017-06-05 2019-10-03 韓国電力公社Korea Electric Power Corporation Steel tower basic specifications prediction method
CN110319919A (en) * 2018-03-29 2019-10-11 上海梅山钢铁股份有限公司 A kind of loosening method of discrimination applied to blower mixed mud basis
CN111764447A (en) * 2020-07-20 2020-10-13 天津市地质工程勘察院 Method for monitoring horizontal displacement of pile top of foundation pit supporting pile
CN113356285A (en) * 2021-06-24 2021-09-07 浙江华东测绘与工程安全技术有限公司 Offshore wind power suction bucket jacket foundation safety monitoring device
CN113759422A (en) * 2021-09-10 2021-12-07 刘俊伟 Underground abnormal body detection method
CN114775611A (en) * 2022-04-24 2022-07-22 贵州强胜基础工程技术有限公司 Construction method for sediment treatment and reinforcement of building pile foundation bottom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179920A (en) * 1985-02-05 1986-08-12 Ohbayashigumi Ltd Rocking device for underground penetrating member
JPH06235629A (en) * 1992-09-16 1994-08-23 Yoshio Moriai Measuring method and apparatus for shape of buried structure
JPH109847A (en) * 1996-06-26 1998-01-16 Aoki Corp Method for diagnosing shape of artificial or natural structure
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2003057024A (en) * 2001-08-09 2003-02-26 Nippon Koei Co Ltd Expanded bottom part measuring method for concrete foundation
JP2006078243A (en) * 2004-09-08 2006-03-23 Yohei Kawamura Nondestructive geometry diagnosing method for buried object and its device
JP2007178430A (en) * 2005-12-19 2007-07-12 Weyerhaeuser Co Method for adjusting lumbering stiffness of raw material group based on timber and prediction based on stress wave velocity concerning warp propensity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179920A (en) * 1985-02-05 1986-08-12 Ohbayashigumi Ltd Rocking device for underground penetrating member
JPH06235629A (en) * 1992-09-16 1994-08-23 Yoshio Moriai Measuring method and apparatus for shape of buried structure
JP2555517B2 (en) * 1992-09-16 1996-11-20 禧夫 盛合 Method and device for measuring the shape of a buried structure
JPH109847A (en) * 1996-06-26 1998-01-16 Aoki Corp Method for diagnosing shape of artificial or natural structure
JP2001021336A (en) * 1999-07-08 2001-01-26 Token Koei:Kk Method and device for measuring degradation of concrete structure
JP2003057024A (en) * 2001-08-09 2003-02-26 Nippon Koei Co Ltd Expanded bottom part measuring method for concrete foundation
JP2006078243A (en) * 2004-09-08 2006-03-23 Yohei Kawamura Nondestructive geometry diagnosing method for buried object and its device
JP2007178430A (en) * 2005-12-19 2007-07-12 Weyerhaeuser Co Method for adjusting lumbering stiffness of raw material group based on timber and prediction based on stress wave velocity concerning warp propensity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112895A (en) * 2010-11-26 2012-06-14 Yurtec Corp Method for measuring dimension of buried part of buried concrete foundation
JP2019527780A (en) * 2017-06-05 2019-10-03 韓国電力公社Korea Electric Power Corporation Steel tower basic specifications prediction method
CN108287035A (en) * 2018-01-15 2018-07-17 中国铁道科学研究院 Dropper dynamic impulsion force measuring device
CN108287035B (en) * 2018-01-15 2024-05-17 中国铁路总公司 Dynamic impact force measuring device for integral hanger
CN110319919A (en) * 2018-03-29 2019-10-11 上海梅山钢铁股份有限公司 A kind of loosening method of discrimination applied to blower mixed mud basis
CN109000601A (en) * 2018-07-12 2018-12-14 贵州路桥集团有限公司 A kind of pylon offset dynamic observation system
CN111764447A (en) * 2020-07-20 2020-10-13 天津市地质工程勘察院 Method for monitoring horizontal displacement of pile top of foundation pit supporting pile
CN113356285A (en) * 2021-06-24 2021-09-07 浙江华东测绘与工程安全技术有限公司 Offshore wind power suction bucket jacket foundation safety monitoring device
CN113759422A (en) * 2021-09-10 2021-12-07 刘俊伟 Underground abnormal body detection method
CN113759422B (en) * 2021-09-10 2023-11-21 刘俊伟 Underground abnormal body detection method
CN114775611A (en) * 2022-04-24 2022-07-22 贵州强胜基础工程技术有限公司 Construction method for sediment treatment and reinforcement of building pile foundation bottom

Also Published As

Publication number Publication date
JP5074117B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5074117B2 (en) Method and apparatus for measuring shape of buried concrete foundation
JP2009030994A5 (en)
Mao et al. Structural condition assessment of a bridge pier: A case study using experimental modal analysis and finite element model updating
Zhang et al. Enhanced modeling of nonlinear restoring force in multi-stable energy harvesters
CN104964805A (en) Method of measuring modal vibration mode and torsion vibration mode of flexible structure
Kindova-Petrova Vibration-based methods for detecting a crack in a simply supported beam
CN104165795B (en) A kind of residue anti-bending bearing capacity assay method of ancient building wooden frame
Heydari et al. Continuous model for flexural vibration analysis of Timoshenko beams with a vertical edge crack
US6845671B2 (en) Inverse method to estimate the properties of a flexural beam and the corresponding boundary parameters
US7590495B2 (en) Inverse method to calculate material properties using a non-resonant technique
Jiang et al. A hybrid multiple damages detection method for plate structures
Gunes et al. Structural health monitoring and damage assessment Part II: Application of the damage locating vector (DLV) method to the ASCE benchmark structure experimental data
JP2555517B2 (en) Method and device for measuring the shape of a buried structure
Lachowicz et al. Numerical modeling of GPR field in damage detection of a reinforced concrete footbridge
Li et al. Efficient calibration of a laser dynamic deflectometer
Providakis et al. Operational modal analysis of historical buildings and finite element model updating using α laser scanning vibrometer
JP2016161463A (en) Liquefaction strength curve generation method and program
JP5564410B2 (en) Dimension measurement method for buried concrete foundation
RU2544308C2 (en) Method for determining parameters of wave solid-state gyroscope
Batabyal et al. Crack detection in cantilever beam using vibration response
Aulakh et al. Non-bonded piezo sensor configuration for strain modal analysis based shm
Humer et al. Testing the scattering analysis method for guided waves by means of artificial disturbances
Zhao et al. Reference Vibration analysis of Piezoelectric Micromachined Modal Gyroscope
Petrushenko et al. Uncertainty propagation of system parameters to the dynamic response: An application to a benchtop pendulum
Ozevin et al. Acoustic emission source orientation based on time scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250