JP2008018532A - Method for manufacturing grinding wheel - Google Patents

Method for manufacturing grinding wheel Download PDF

Info

Publication number
JP2008018532A
JP2008018532A JP2007262925A JP2007262925A JP2008018532A JP 2008018532 A JP2008018532 A JP 2008018532A JP 2007262925 A JP2007262925 A JP 2007262925A JP 2007262925 A JP2007262925 A JP 2007262925A JP 2008018532 A JP2008018532 A JP 2008018532A
Authority
JP
Japan
Prior art keywords
grinding wheel
grindstone
abrasive grains
sintered
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007262925A
Other languages
Japanese (ja)
Other versions
JP4584971B2 (en
Inventor
Kozo Ishizaki
幸三 石▲崎▼
Atsushi Takada
篤 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP2007262925A priority Critical patent/JP4584971B2/en
Publication of JP2008018532A publication Critical patent/JP2008018532A/en
Application granted granted Critical
Publication of JP4584971B2 publication Critical patent/JP4584971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding wheel which simultaneously provides high efficiency, high accuracy and high processing quality by well-balancedly controlling dressing, breaking, loading and grazing properties with high binding force of abrasive grains with binding agent. <P>SOLUTION: A preliminary molded material is manufactured by molding a grinding tool manufacturing raw material made of granule obtained by mixing super abrasive grains as abrasive grains with metallic powder as the binding agent into a sheet shape and drying the raw material. The preliminary molded material is cut into desired shapes and is sintered. A plurality of the sintered sheet cut pieces are arranged to be formed into a desired shape as a polishing grinding wheel. The binding agent made of the metallic powder is used to fill a gap between the respective sintered sheet cut pieces. The sheet cut pieces are sintered again to obtain the grinding tool. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、予備成形体で製造した制御された砥粒間隔の研削砥石の製造方法に関するものである。得られた研削砥石は、精密加工分野で用いられる砥石、特に高能率、高研削比、高精度、高仕上げ面を得るための砥石である。   The present invention relates to a method for producing a grinding wheel with controlled abrasive spacing produced from a preform. The obtained grinding wheel is a grinding wheel used in the precision machining field, particularly for obtaining a high efficiency, a high grinding ratio, high accuracy, and a high finished surface.

現在の研削砥石は、主に単軸プレスまたは流し込みによって作られている。単軸プレス法は、金型に研粒とボンド材の原料を混合した粉粒体を充填し、プレスして作られる。流し込み法は、砥粒とボンド材(主に液体樹脂)を混合して、それを砥石型に流し込み、乾燥し、樹脂部分の硬化させることで作られる。これらの砥石は、主に横軸平面研削盤または縦軸ロータリー研削盤を用いた研削砥石として使用されている。これらの砥石の形状は、図4に示すように、砥石の外周面または砥石端面に沿った形状になっている。これらの砥石を用いて、高能率研削を実現するためには、例えば砥石面に溝を入れたり、砥石をペレット状に成形して貼りつける方法を用いて切れ味をあげる工夫をするが、それだけの操作では研削砥石の研削能率は大きく向上しない。特に粒径の細かい砥粒を使用したときは顕著にその傾向が現れ、粒径を細かくすればするほど、格段に砥石の研削能率は低下する。そのために、粒径の細かい砥粒を使用する場合は、砥石に多量の気孔を設け、砥石の強度を落として脱落しやすくする。それによって砥石の研削能率を向上させる。しかしながら、砥石に多量の気孔を設けることによって砥石の強度の低下は著しく、砥石の摩耗が極端に多くなってしまう。   Current grinding wheels are mainly made by uniaxial pressing or pouring. The uniaxial press method is made by filling a mold with powder and a mixture of raw materials for agglomeration and bond material, and pressing them. The pouring method is made by mixing abrasive grains and a bond material (mainly liquid resin), pouring them into a grindstone mold, drying and curing the resin portion. These grindstones are mainly used as grinding wheels using a horizontal axis surface grinder or a vertical axis rotary grinder. As shown in FIG. 4, the shape of these grindstones is a shape along the outer peripheral surface of the grindstone or the end surface of the grindstone. In order to achieve high-efficiency grinding using these grindstones, for example, a groove is formed in the grindstone surface, or the grindstone is shaped and pasted into a pellet shape, and the device is designed to improve sharpness. In operation, the grinding efficiency of the grinding wheel is not greatly improved. In particular, when abrasive grains having a small particle diameter are used, the tendency appears remarkably. The finer the particle diameter, the lower the grinding efficiency of the grindstone. Therefore, when using abrasive grains with a small particle size, a large amount of pores are provided in the grindstone, and the strength of the grindstone is lowered to make it easy to drop off. Thereby, the grinding efficiency of the grindstone is improved. However, by providing a large amount of pores in the grindstone, the strength of the grindstone is significantly reduced, and the wear of the grindstone is extremely increased.

面粗度を向上させるためには、当然使用する砥粒径を小さくしなければならずなおかつ砥粒先端をそろえなければならない。現状ではそれを実現するためには、弾性ボンドを用いたり、遊離砥粒を用いたりして、調節している。つまり両者とも被削材に対して弾性を利用して砥粒の先端を揃えている。この対応の弊害としては、弾性を利用して砥粒先端を揃えるために、砥石の剛性が全くなくなる。したがって高い寸法精度を得るためには、この弾性変形が弊害となり、寸法精度が得られない。このように研削砥石には、研削能率と研削比、研削能率と仕上げ面粗さ、仕上げ面粗さと寸法精度のような砥石性能を決定する上記諸関係には必ずといっていいほど、相反特性がある。既存の砥石では、それらの相反特性を解決する手段はなかった。   In order to improve the surface roughness, naturally the abrasive grain size to be used must be reduced and the tips of the abrasive grains must be aligned. At present, in order to realize this, adjustment is performed by using an elastic bond or using loose abrasive grains. That is, in both cases, the tips of the abrasive grains are aligned using the elasticity of the work material. The adverse effect of this measure is that the rigidity of the grindstone is completely eliminated because the abrasive grain tips are aligned using elasticity. Therefore, in order to obtain high dimensional accuracy, this elastic deformation becomes a harmful effect, and dimensional accuracy cannot be obtained. In this way, the grinding wheel has a reciprocal characteristic that is not necessarily related to the above relationships that determine the grinding wheel performance such as grinding efficiency and grinding ratio, grinding efficiency and finished surface roughness, finished surface roughness and dimensional accuracy. is there. In the existing grindstone, there was no means for solving these reciprocal characteristics.

そこで本発明者らは研削能率がよく、なおかつ強度ヤング率が高く、かつ結合材と砥粒との結合力も強い砥石を得るために、メタルボンド砥石の組成中に気孔を形成して多孔質とする発明を完成させた(特許文献1、2)。この多孔質メタルボンドは、例えば砥粒と結合材金属粒子とを混合し、熱揮発性の結合剤は用いずに、砥石の形状に圧縮成形し、結合材金属が粒状を保ったままその粒子同士、および結合材粒子と砥粒との間に結合または反応が生じる程度の温度と圧力を加えて焼結することによって製造できる。このようにして製造された多孔質メタルボンド砥石は、結合材の超砥粒との結合力が強く、目立て性が良好であり、また研削作業中に生じた研削屑などは気孔のポケットに捕捉されて除去されるので目詰まりが起こり難く、砥粒の切れ刃が摩耗しても、結合材が適度に崩落して新たな切れ刃が現れ、目潰れも起こり難くなることが期待され、目的通りの成果が得られた。つまり上記記載の研削能率と研削比、寸法精度に関しては一度に解決することができ、荒加工、高能率加工、高精度加工において十分な成果を挙げることができた。   Therefore, in order to obtain a grindstone having a good grinding efficiency, a high strength Young's modulus, and a strong bonding force between the binder and the abrasive grains, the present inventors formed pores in the composition of the metal bond grindstone and made it porous. To complete the invention (Patent Documents 1 and 2). This porous metal bond is, for example, a mixture of abrasive grains and binder metal particles, compression-molded into the shape of a grindstone without using a heat-volatile binder, and the particles of the binder metal remain granular. They can be manufactured by sintering by applying a temperature and pressure that cause bonding or reaction between each other and between the binder particles and the abrasive grains. The porous metal bond grindstone produced in this way has a strong bonding force with the superabrasive grains of the binder, and has a good sharpness. Also, grinding debris generated during grinding is trapped in the pore pockets. It is expected that clogging is unlikely to occur because it is removed, and even if the abrasive cutting edge wears out, the binding material will collapse appropriately and a new cutting edge will appear, and clogging will not easily occur. The street results were obtained. In other words, the above-described grinding efficiency, grinding ratio, and dimensional accuracy could be solved at once, and sufficient results could be achieved in roughing, high-efficiency machining, and high-precision machining.

しかしながら、このような概念で発明された砥石においても、もう一つの問題点、つまり仕上げ面粗さの向上が残されている。上述したように高い仕上げ面粗さを得るために、しかも高能率、高精度加工も同時に実現するためには、前記砥石の作製だけでは対応できない。なぜならば、高品位仕上げ面粗さを得るためには砥粒径を細かくする必要があり、砥粒径を細かくすることによって、砥石の研削能率の低下は免れない状況にある。高能率、高精度、高品位加工を一度に実現するためには、砥粒径の細かい砥粒を用いて、砥粒先端を揃え、なおかつ砥粒の突き出しが必要であり、また、砥粒とボンド材との間の結合を強固にしなければならない。これらの条件を同時に満たすためには、既存の市販砥石では全く実現できず、本発明者らが開発した砥石だけでも実現できなかった。
特開平7−251378号公報 特開平7−251379号公報
However, the grindstone invented with such a concept still has another problem, that is, the improvement of the finished surface roughness. As described above, in order to obtain a high finished surface roughness and to simultaneously realize high-efficiency and high-accuracy machining, it is not possible only to produce the grindstone. This is because, in order to obtain a high-quality finished surface roughness, it is necessary to make the abrasive grain size fine. By making the abrasive grain size fine, the grinding efficiency of the grindstone is inevitably lowered. In order to achieve high efficiency, high accuracy, and high-quality processing at once, it is necessary to use abrasive grains with a fine abrasive grain size, align the abrasive grain tips, and project the abrasive grains. The bond between the bond materials must be strengthened. In order to satisfy these conditions at the same time, it could not be realized at all with the existing commercially available grindstone, and could not be realized with only the grindstone developed by the present inventors.
JP 7-251378 A JP 7-251379 A

この問題を解決するために、本発明者らは、砥粒径の細かい砥粒において、砥粒ボンドの結合力を高めるとともに、砥粒の分布とその先端高さを調節することを課題とした。本発明は、砥粒と結合材との結合力が強く、目立て性、目こぼれ性、目詰まり性、目潰れ性等がバランス良く制御され、高能率、高精度、高品位加工を一度に実現できる砥石を提供することを目的とする。   In order to solve this problem, the inventors of the present invention have made it an object to increase the bonding force of the abrasive bond and adjust the distribution of the abrasive grains and the height of the tip in the abrasive grains having a fine abrasive grain size. . The present invention has a strong bonding force between the abrasive grains and the bonding material, and sharpness, spillability, clogging, crushing, etc. are controlled in a well-balanced manner, realizing high efficiency, high accuracy, and high quality processing at once. An object is to provide a grindstone that can be used.

本発明は、砥粒としての超砥粒と、結合材としての金属粉末とを混合して得られた粉粒体からなる研削砥石製造原料でシート状に成形し乾燥して予備成形体を製造し、該予備成形体を所望の形状に切断し、焼結し、焼結されたシート切断片を、複数枚用いて研磨砥石として所望の形状になるように配置し、各焼結されたシート切断片の隙間は金属粉末からなる結合材を用いて充填し、再度焼結して砥石を得ることを特徴とする研削砥石の製造方法を要旨としている。   The present invention produces a pre-formed body by forming into a sheet shape and drying with a grinding wheel manufacturing raw material comprising a powder obtained by mixing superabrasive grains as abrasive grains and metal powder as a binder. Then, the preform is cut into a desired shape, sintered, and a plurality of the sintered sheet cut pieces are arranged so as to have a desired shape as a grinding wheel, and each sintered sheet The gist of the grinding wheel manufacturing method is characterized in that the gap between the cut pieces is filled with a binder made of metal powder and sintered again to obtain a grinding wheel.

上記超砥粒は、ヌープ硬度1000以上を有する、ダイヤモンドおよび立方晶窒化ホウ素から選ばれる。上記研削砥石製造原料を構成する結合材が、Fe、Cu、Ni、Co、Cr、Ta、V、Nb、Al、W、Ti、SiおよびZrからなる群から選ばれる、加熱下に超砥粒と化学的および物理的に結合し得る、かつ、粉末焼結により多孔構造相の多孔質体を形成し得る1種以上の金属からなる。
すなわち、本発明は、砥粒としての、ヌープ硬度1000以上を有する、ダイヤモンドおよび立方晶窒化ホウ素から選ばれる超砥粒と、結合材としての、Fe、Cu、Ni、Co、Cr、Ta、V、Nb、Al、W、Ti、SiおよびZrからなる群から選ばれる、加熱下に超砥粒と化学的および物理的に結合し得る、かつ、粉末焼結により多孔構造相の多孔質体を形成し得る1種以上の金属からなる金属粉末とを混合して得られた粉粒体からなる研削砥石製造原料でシート状に成形し乾燥して予備成形体を製造し、該予備成形体を所望の形状に切断し、焼結し、焼結されたシート切断片を、複数枚用いて研磨砥石として所望の形状になるように配置し、各焼結されたシート切断片の隙間は金属粉末からなる結合材を用いて充填し、再度焼結して砥石を得ることを特徴とする研削砥石の製造方法を要旨としている。
The superabrasive grains are selected from diamond and cubic boron nitride having a Knoop hardness of 1000 or more. The binder constituting the grinding wheel manufacturing raw material is selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ta, V, Nb, Al, W, Ti, Si and Zr, and superabrasive grains under heating And one or more metals that can be chemically and physically bonded to each other and can form a porous body having a porous structure phase by powder sintering.
That is, the present invention provides superabrasive grains selected from diamond and cubic boron nitride having Knoop hardness of 1000 or more as abrasive grains, and Fe, Cu, Ni, Co, Cr, Ta, V as binders. Selected from the group consisting of Nb, Al, W, Ti, Si and Zr, which can be chemically and physically bonded to superabrasive grains under heating, and a porous body having a porous structure phase by powder sintering. A preform is produced by forming into a sheet with a grinding wheel production raw material comprising a granular material obtained by mixing a metal powder composed of one or more kinds of metals that can be formed, and then drying the preform. Cut into a desired shape, sinter, and use a plurality of sintered sheet cut pieces to form the desired shape as a grinding wheel, and the gap between each sintered sheet cut piece is a metal powder Filled with a binder consisting of and sintered again It is summarized as method for manufacturing a grinding wheel, characterized in that to obtain a grinding wheel Te.

予備成形体の形状はシート状が例示される。シート状予備成形体は例えば流し込みまたはドクターブレード法を用いて成形したものである。すなわち、本発明は、流し込みまたはドクターブレード法を用いてシート状に成形し乾燥して予備成形体を製造しており、砥粒としての超砥粒と、結合材としての金属粉末とを混合して得られた粉粒体からなる研削砥石製造原料で流し込みまたはドクターブレード法を用いてシート状に成形し乾燥して予備成形体を製造し、該予備成形体を所望の形状に切断し、焼結し、焼結されたシート切断片を、複数枚用いて研磨砥石として所望の形状になるように配置し、各焼結されたシート切断片の隙間は金属粉末からなる結合材を用いて充填し、再度焼結して砥石を得ることを特徴とする研削砥石の製造方法を要旨としている。   The shape of the preform is exemplified by a sheet shape. The sheet-like preform is formed by casting or using a doctor blade method, for example. That is, in the present invention, a preform is manufactured by forming into a sheet using a casting or doctor blade method and drying, and a superabrasive grain as an abrasive grain and a metal powder as a binder are mixed. Casting with a grinding wheel manufacturing raw material consisting of the granular material obtained in this way or forming into a sheet shape using a doctor blade method and drying to produce a preform, cutting the preform into a desired shape, firing The sintered and cut sheet cut pieces are arranged in a desired shape as a grinding wheel using a plurality of sheets, and the gap between each sintered sheet cut piece is filled with a binder made of metal powder Then, the gist is a method for producing a grinding wheel, which is sintered again to obtain a grinding wheel.

予備成形体を所望の形状に切断し、粉末焼結して、研削砥石製造原料を構成する結合材が、化学的および物理的結合をして超砥粒を保持した多孔質体に形成され、かつ、該多孔質体に形成された後少なくともその表面がセラミックスに変成されている状態に焼結し、焼結されたシート切断片とする。得られた砥石は、砥石全体の気孔率が5〜60%、好ましくは5〜45%である。
本発明の研削砥石の製造方法は上記予備成形体を用いることを特徴とする。予備成形体を適当な形に組み立てて高能率、高研削比、高精度、高仕上げ面を得るための砥石を製造する。高能率、高精度、高品位加工を一度に実現するためには、砥粒径の細かい砥粒を用いて、砥粒先端を揃え、なおかつ砥粒の突き出しが必要であり、また、砥粒とボンド材との間の結合を強固にしなければならない。これらの条件を同時に満たすために、本発明は上記予備成形体を用いる。本発明の研削砥石においては、砥粒の入っている予備成形体で構成される部分が、この結合材は、化学的および物理的結合をして超砥粒を保持した多孔質体に形成され、かつ、該多孔質体に形成された後少なくともその表面がセラミックスに変成されている。上記多孔質体は、粉末焼結により形成された多孔構造相のものである。砥石全体の気孔率は5〜60%、好ましくは5〜45%に調整されている。
The preform is cut into a desired shape, powder-sintered, and the binder constituting the grinding wheel manufacturing raw material is formed into a porous body that holds superabrasive grains by chemical and physical bonding, And after forming in this porous body, it sinters in the state by which at least the surface was transformed into ceramics, and it is set as the sintered sheet cutting piece. The obtained grindstone has a porosity of 5 to 60%, preferably 5 to 45% of the entire grindstone.
The method for producing a grinding wheel of the present invention is characterized by using the preform. A pre-formed body is assembled into an appropriate shape to produce a grindstone for obtaining a high efficiency, high grinding ratio, high precision, and a high finished surface. In order to achieve high efficiency, high accuracy, and high-quality processing at once, it is necessary to use abrasive grains with a fine abrasive grain size, align the abrasive grain tips, and project the abrasive grains. The bond between the bond materials must be strengthened. In order to satisfy these conditions simultaneously, the present invention uses the preform. In the grinding wheel of the present invention, the part constituted by the preform containing the abrasive grains is formed into a porous body that holds super abrasive grains by chemical and physical bonding. And after forming in this porous body, at least the surface is transformed into ceramics. The porous body is of a porous structure phase formed by powder sintering. The porosity of the entire grindstone is adjusted to 5 to 60%, preferably 5 to 45%.

砥粒と結合材との結合力が強く、目立て性、目こぼれ性、目詰まり性、目潰れ性等がバランス良く制御され、高能率、高精度、高品位加工を一度に実現できる砥石を提供することができる。   Provides a grinding wheel that has high bonding strength between the abrasive grains and the binding material, and has well-balanced control of sharpness, spillage, clogging, crushing, etc., enabling high-efficiency, high-accuracy, high-quality machining at once can do.

研削砥石中に含まれる気孔は、研削加工中の切りくずの排出に使われると言われているが、実際に使用する砥石の場合、気孔率は硬度の安定性つまり砥石の品質管理として使われる。よって気孔径の大小に関してはあまり議論されていない。実際に切りくずを排出する役割は、砥粒の突き出し量によって行われる。気孔はその砥粒突き出しを簡単に制御するためのものであって当然気孔径が重要なファクターになる。気孔率は気孔径を制御するために必要なファクターである。既存の砥石は、経験則が最優先であり、理論的に研削現象を解明されていない。ここで、理想的な砥石の条件としてどのような特徴を持つ必要があるのか以下に整理した。   It is said that the pores contained in the grinding wheel are used for chip evacuation during grinding, but in the case of a grinding wheel that is actually used, the porosity is used for hardness stability, that is, quality control of the grinding wheel. . Therefore, there is not much discussion about the size of the pore diameter. The role of actually discharging chips is performed by the protruding amount of abrasive grains. The pores are for easily controlling the protrusion of the abrasive grains, and naturally the pore diameter is an important factor. The porosity is a necessary factor for controlling the pore diameter. As for the existing grindstone, the rule of thumb is the highest priority, and the grinding phenomenon has not been clarified theoretically. Here, the characteristics of the ideal grinding wheel conditions are summarized below.

1.砥石の切れ味に必要な条件(1)砥粒の突き出し量、および(2)ボンドもしくは砥石中に含まれる気孔径に依存する。なお、気孔径は、砥粒またはボンド粒径と気孔率によって制御される。
(3)砥粒に加わる分担荷重の高いものほど良く切れる。なお、分担荷重は、砥粒粒度分布が広いものほど高くなる。面粗度が悪い:切れる。分担荷重は、砥粒粒度分布が狭いものほど低くなる。面粗度が良い:切れない。
(4)砥粒先端が尖っているもの程、切れ味がよくなる。接触面積に比べて研削面積が大きくなるためである。
(5)砥粒径の大きいものほど除去量が多い。砥粒形径のばらつきが大きい:分担荷重が大きくなる。
2.ドレスまたはツルーイングに必要な条件(1)気孔径および気孔率。気孔率の大きなもの程、ドレッシング、ツルーイングはし易い。気孔径が大きい場合には、砥粒の突き出しの制御が難しい。
1. Conditions necessary for the sharpness of the grindstone (1) The amount of protrusion of the abrasive grains, and (2) the pore diameter contained in the bond or the grindstone. The pore diameter is controlled by the abrasive grain or bond particle diameter and the porosity.
(3) The higher the shared load applied to the abrasive grains, the better the cutting. Note that the load sharing increases as the abrasive grain size distribution increases. Surface roughness is poor: Cutting occurs. The shared load becomes lower as the abrasive grain size distribution is narrower. Good surface roughness: not cut.
(4) The sharper the abrasive grain tip, the better the sharpness. This is because the grinding area is larger than the contact area.
(5) The larger the abrasive grain size, the greater the removal amount. Large variation in abrasive grain diameter: The shared load increases.
2. Conditions required for dressing or truing (1) Pore diameter and porosity. The larger the porosity, the easier the dressing and truing. When the pore diameter is large, it is difficult to control the protrusion of the abrasive grains.

3.研削比に必要な条件(1)ボンドおよび砥粒の保持力。砥粒の脱落が少なくなる。かしめ深さではなく砥粒自体をボンドと反応させて保持する。
(2)砥粒の保持力(ボンドが砥粒を保持する力)。通常ボンドでは、これは砥粒ボンドに対してどれだけ潜っているか(かしめられているか)によって決められる。多孔質メタルボンドまたは多孔質セラミックスボンド(特開平7−251378号および特開平7−251379号公報)では、かしめ量ではなく、砥粒との反応を用いて制御する。反応の度合いによって研削比は向上する。しかし、ボンドの気孔率も当然重要なファクターである。一般には反応が進行するほど、気孔率は少ない。
4.熱伝導度(1)砥粒の熱伝導度が高いものほど研削熱は低い(熱放散が大きい)。
(2)ボンドの熱伝導度の低いものほど研削熱は低い(熱放散が大きい)。
(3)被削材が金属の場合研削熱は高い(砥粒と切り屑の接触が多い)。
(4)被削材がセラミックス(脆性材料)の場合研削熱は低い(砥粒と切り屑の接触が少ない)。研削砥石の熱伝導度は、研削中に生じる熱(特に材料を変形させる熱量が生じる。特に加工中に塑性変形を伴う材料ほど熱の影響は大きい(砥粒にひっつくため、砥粒の先端刃先が目潰れを起こす)。この後、研削が進行することによって、砥粒の先端だけの目潰れからボンド部分まで延長され、研削中の熱が砥石部分に伝わり砥石の温度が高くなる。この際に砥粒はもちろんのこと、ボンド部分の熱の放散は重要であり、ボンドに対しては、熱伝導度の高い材料が望まれる。
3. Conditions required for grinding ratio (1) Bond and abrasive holding power. Abrasive grains fall off less. The abrasive grains themselves react with the bond, not the caulking depth, and are held.
(2) Abrasive retention force (the force with which the bond retains the abrasive). In a normal bond, this is determined by how much is dive (crimped) with respect to the abrasive bond. In the case of a porous metal bond or a porous ceramic bond (Japanese Patent Laid-Open Nos. 7-251378 and 7-251379), the amount is controlled not by the amount of caulking but by reaction with abrasive grains. The grinding ratio improves depending on the degree of reaction. However, the porosity of the bond is of course also an important factor. In general, the more the reaction proceeds, the lower the porosity.
4). Thermal conductivity (1) The higher the thermal conductivity of the abrasive grains, the lower the grinding heat (the greater the heat dissipation).
(2) The lower the thermal conductivity of the bond, the lower the grinding heat (the greater the heat dissipation).
(3) When the work material is metal, the grinding heat is high (the contact between the abrasive grains and the chips is large).
(4) When the work material is ceramic (brittle material), the grinding heat is low (the contact between the abrasive grains and the chips is small). The thermal conductivity of a grinding wheel is the heat generated during grinding (especially the amount of heat that deforms the material. In particular, the material with plastic deformation during processing has a greater influence of heat (because it is attracted to the abrasive grains, After this, as the grinding proceeds, the crushing only at the tip of the abrasive grain is extended to the bond portion, and heat during grinding is transmitted to the grinding wheel portion, and the temperature of the grinding wheel becomes high. In addition to the abrasive grains, heat dissipation in the bond portion is important, and a material having high thermal conductivity is desired for the bond.

5.被削材面粗度(1)砥粒径が小さいものほど面粗度が滑らか(砥粒突き出しが揃いにくい)。
(2)砥粒径が大きいものほど面粗度が粗い(砥粒突き出しが揃いやすい)。
(3)切れ味の良いものほど面粗度が粗い(分担荷重が大きく、砥粒が深く食い込む)。
(4)切れ味の悪いものほど面粗度は滑らか(分担荷重が大きく、砥粒が深く食い込む)。
(5)砥粒先端が揃っているものほど面粗度は滑らか(分担荷重が均一。食い込み深さが一定)。
(6)砥粒先端が不揃いなものほど面粗度は粗い(分担荷重が不均一。食い込み深さが不均一)。
(7)砥石周速が速いものほど面粗度は滑らか(接触時間が短くなれば、切り込む深さが浅くなる)。
(8)砥石周速が遅いものほど面粗度は粗い(接触時間が長くなれば、切り込む深さが深くなる)。
5. Work surface roughness (1) The smaller the abrasive grain size, the smoother the surface roughness (the abrasive grain protrusion is less likely to be aligned).
(2) The larger the abrasive grain size, the rougher the surface roughness (the easier the abrasive grain protrusion is).
(3) The sharper the surface, the rougher the surface roughness (the larger the shared load, the deeper the abrasive grains).
(4) The surface roughness is smoother as the sharpness is worsened (the load sharing is larger, and the abrasive grains are deeper).
(5) The surface roughness is smoother as the tips of the abrasive grains are aligned (the load sharing is uniform. The biting depth is constant).
(6) The rougher the tip of the abrasive grain is, the rougher the surface roughness is (the load sharing is uneven, the biting depth is uneven).
(7) The faster the grinding wheel peripheral speed, the smoother the surface roughness (the shorter the contact time, the smaller the cutting depth).
(8) The slower the grindstone peripheral speed, the rougher the surface roughness (the longer the contact time, the deeper the cutting depth).

ここに記載した、理想的な砥石の条件を実現するために、既存のプレス法又は流し込み法だけを利用して行うには、砥石の相反特性のために実現は不可能である。本発明は上記理想的な砥石の条件を実現するためになされたもので、以下にその構成を具体的に説明する。   In order to realize the ideal grindstone conditions described here, it is impossible to realize the conditions by using only the existing pressing method or casting method because of the reciprocal characteristics of the grindstone. The present invention has been made to realize the ideal grinding wheel conditions, and the configuration thereof will be specifically described below.

本発明は砥粒として超砥粒(ダイヤモンド、CBN)および結合材として金属粉末からなり、この結合材は、化学的および物理的結合をして超砥粒を保持した多孔質体に形成され、かつ該多孔質体に形成された後少なくとも表面がセラミックスに変成されていることを特徴とする多孔質超砥粒砥石を使用するものである。結合材の多孔質構造相の気孔率を調節し、かつ該多孔質体の少なくとも表面をセラミックスに変成することによって得られた、超砥粒と結合材相との結合力が強く目立て性、目こぼれ性、目詰まり性、目潰れ性等がバランス良く制御されるような多孔質超砥粒砥石である。この砥石以外も、実現は可能であるが、目的を全て満たすためには、これらの砥石を使用する方が望ましい。   The present invention comprises superabrasive grains (diamond, CBN) as abrasive grains and metal powder as a binder, and this binder is formed into a porous body that holds superabrasive grains by chemical and physical bonding, In addition, a porous superabrasive grindstone is used in which at least the surface is transformed into ceramic after being formed on the porous body. The binding force between the superabrasive grains and the binder phase obtained by adjusting the porosity of the porous structure phase of the binder and transforming at least the surface of the porous body into a ceramic is strongly conspicuous. It is a porous superabrasive grindstone whose spillability, clogging property, crushing property, etc. are controlled in a well-balanced manner. Other than this grindstone can be realized, but it is desirable to use these grindstones in order to satisfy all the purposes.

まず、最初に考えることは、研削砥石内の砥粒の分布である。なおかつ使用される砥粒は、細かい粒径(1から5ミクロン)の砥粒である。荒い砥粒(100から200ミクロン)でも可能であるが、細かい面粗度を得るためには、細かい砥粒を使うことが望ましい。   First, the first thing to consider is the distribution of abrasive grains in the grinding wheel. Moreover, the abrasive grains used are those with a fine grain size (1 to 5 microns). Although rough abrasive grains (100 to 200 microns) are possible, it is desirable to use fine abrasive grains to obtain fine surface roughness.

そこで本発明においては、これらの特性を実現するために、予備成形体、例えばシート状の成形体を用いてそれを、異形状に加工することによって、砥石に必要な諸条件を解決するものである。本発明の研削砥石の第一の特徴は、予備成形体を経て製造され、制御された砥粒間隔を有することであり、具体的には砥粒の分散、または砥粒の配置または砥粒の先端が調節されていることである。被削材表面の面粗度は、研削砥石の砥粒の突き出しに依存する。砥石中に含まれる研削砥粒の先端を精度良く揃えることで、50Å以下の面粗度は簡単に実現できるものと考える。砥粒径が細かくなればなるほど、図3(a)に示すように、砥粒の先端高さのばらつきは小さくなる。つまり小さな砥粒径を使用した砥石は、先端高さが簡単に制御できる。この状態では、面粗度はよくなるが、高性能研削は実現できない。そこで、実際に高能率研削に必要な条件は、砥粒の突き出しと砥粒にかかる分担加重の大きさが問題となる〔図3(b)参照〕。分担加重を得るためには、砥粒同士の間隔を大きくしなければならない。また砥粒の突き出し量は、砥粒部分とマトリックスのボンド部分の高さの差によって実現させる。図1にその模式図を示す。   Therefore, in the present invention, in order to realize these characteristics, a preformed body, for example, a sheet-shaped molded body, is used to process various shapes, thereby solving various conditions necessary for the grindstone. is there. The first feature of the grinding wheel of the present invention is that it is manufactured through a preform and has a controlled abrasive spacing. Specifically, the dispersion of the abrasive grains, the arrangement of the abrasive grains, or the abrasive grains The tip is adjusted. The surface roughness of the work surface depends on the protrusion of the abrasive grains of the grinding wheel. It is considered that a surface roughness of 50 mm or less can be easily realized by accurately aligning the tips of the abrasive grains contained in the grindstone. As the abrasive grain size becomes finer, the variation in the tip height of the abrasive grains becomes smaller as shown in FIG. That is, the tip height of a grindstone using a small abrasive grain size can be easily controlled. In this state, the surface roughness is improved, but high performance grinding cannot be realized. Therefore, the conditions necessary for high-efficiency grinding are problematic in that the protruding abrasive grains and the size of the shared weight applied to the abrasive grains are a problem (see FIG. 3B). In order to obtain the shared weight, the interval between the abrasive grains must be increased. Further, the protruding amount of the abrasive grains is realized by the difference in height between the abrasive grain portion and the bond portion of the matrix. FIG. 1 shows a schematic diagram thereof.

上記、砥粒として超砥粒(ダイヤモンド、CBN)および結合材として金属粉末からなる組成で混合された粉粒体を利用して、流し込みまたはドクターブレード法を用いてシート状の研削砥石仮成形体を作製する。この時使用するものとしては、砥粒とボンドの分散を良くするための、分散剤や溶媒、シート状の研削砥石のハンドリング性を挙げるためにバインダーを使用する。これらの物質と混合された超砥粒と金属粉末からなる粉粒体を再混合し、シート状の研削砥石を作製する。このシートの厚みは、0.05mmから1mmの間で色々と調整できる。得られたシートは乾燥することで、ハンドリング可能なシートになる。   A sheet-shaped grinding wheel temporary compact using the casting or doctor blade method using the above-described powder mixed with a composition comprising superabrasive grains (diamond, CBN) and metal powder as a binder. Is made. As a material used at this time, a binder or a solvent is used in order to improve the dispersion of the abrasive grains and the bond, and the handling property of a dispersing agent, a solvent, and a sheet-shaped grinding wheel. The superabrasive grains mixed with these substances and a powder body made of metal powder are mixed again to produce a sheet-shaped grinding wheel. The thickness of this sheet can be variously adjusted between 0.05 mm and 1 mm. The obtained sheet is dried to become a handleable sheet.

このシートは、色々な形状に加工できる。図2に示すように、例えばな波形、渦巻き形、円形、棒形等色々な形状に加工できる。シート状の成形体の作製は、スリップキャスティング法やドクターブレード法等を用いて作製する。この時、シート状の成形体内部に含まれる原材料は、ダイヤモンド砥粒はやCBN砥粒などの研削砥粒、その砥粒を保持するためのボンド材、また成形性後のハンドリング性を高めるための、バインダー等成形されたシート状の成形体は、乾燥後、所定の形状に成形される。その形状は、波形、渦巻き形、円形、棒形など色々な形状が考えられ、一つの形状の限定する必要はない。つまり、この形状は、研削砥石の研削条件や被削材の種類などによって決定されるものである。   This sheet can be processed into various shapes. As shown in FIG. 2, it can be processed into various shapes such as a corrugated shape, a spiral shape, a circular shape, and a rod shape. The sheet-like molded body is manufactured using a slip casting method, a doctor blade method, or the like. At this time, the raw materials contained in the sheet-like molded body are diamond abrasive grains and abrasive grains such as CBN abrasive grains, a bond material for holding the abrasive grains, and a handling property after formability is improved. The sheet-like molded body, such as a binder, is molded into a predetermined shape after drying. The shape may be various shapes such as a corrugated shape, a spiral shape, a circular shape, and a rod shape, and it is not necessary to limit one shape. That is, this shape is determined by the grinding conditions of the grinding wheel and the type of work material.

シート状の研削砥石の例を挙げることとする。研削砥石基盤(図1記載の形状)の形状に合わせて図2a)、b)、c)のような形状に加工する。そのすき間は、シート状の砥石の強固に保持するために金属ボンドまたはその他のボンド類で保持される。そのボンド類はドレッシング時の除去性を高めるために、剛性が高く、除去性も良いものが望まれる。またそのボンドはシート状の砥石の接合強度より、低い方が望ましい。このシートを用いた研削砥石の製造方法の特徴は、以下のとおりである。
1.シートは色々な形状に作製できる。
2.使用する砥粒は、極微粒のものを使用できる(砥粒の突き出し量を1ミクロン単位で制御するために)。
3.砥粒間隔(砥粒率)はシートの形状によって決定される。
4.ダイヤモンド砥粒やその他砥粒の保持力はシート状の砥石のボンドによって決定される。
5.研削条件や、被削材の種類によって、シートの形状が決定できる。
・重研削の場合にはシートの間隔を狭める。軽研削の場合には砥粒間隔を広くする(分担荷重をそろえるために)。
・高能率研削を行うためには間隔を広げる。仕上げ研削を行う場合には間隔を狭める。
An example of a sheet-shaped grinding wheel will be given. According to the shape of the grinding wheel base (the shape shown in FIG. 1), it is processed into a shape as shown in FIGS. 2a), b) and c). The gap is held with a metal bond or other bonds to hold the sheet-like grindstone firmly. In order to improve the removability at the time of dressing, the bond is desired to have high rigidity and good removability. The bond is preferably lower than the bonding strength of the sheet-like grindstone. The characteristics of the method for producing a grinding wheel using this sheet are as follows.
1. Sheets can be made in various shapes.
2. The abrasive grains used can be very fine grains (in order to control the protruding amount of abrasive grains in units of 1 micron).
3. The abrasive grain spacing (abrasive grain ratio) is determined by the shape of the sheet.
4). The holding power of diamond abrasive grains and other abrasive grains is determined by the bond of a sheet-like grindstone.
5. The shape of the sheet can be determined depending on the grinding conditions and the type of work material.
・ In the case of heavy grinding, reduce the interval between sheets. In case of light grinding, widen the interval between grains (to make the shared load uniform).
・ In order to perform high-efficiency grinding, increase the interval. When finishing grinding, narrow the interval.

つまり、前述した理想的な砥石の条件と本発明で得られる砥石の効果と比較してみる。
(砥粒の突き出しの制御)ボンド材の摩耗を砥粒が入っている部分の摩耗より早くする。
(支持ボンド材と砥粒ボンド材の制御)粒径、接合強度:例、支持ボンド材が砥粒ボンド材より粒径を大きくする。焼結時にその多孔体の強度が低くなる。つまり砥粒ボンド材の方を脱落しにくくする。同じ条件で、同じ砥石で作製された砥石をドレスした場合に、支持ボンド材部分が砥石部分よりより多く除去される。それによって、砥粒の突き出しを確保する。
(砥粒と砥粒ボンド材の結合強度の制御)砥粒と砥粒ボンド材は、反応によってその接合強度を制御する。砥粒の界面にボンドとの反応を生じさせる。砥粒の保持力は、この反応度合いによって制御する。この時ボンド粒径は砥粒の大きさより小さくすることが望まれる。砥粒を十分に保持するためには、その砥粒との接触点(配位数)を多くする必要があるためである。
(被削材表面粗さの制御)これは砥粒の突き出し高さ、つまり砥粒の最先端のばらつきに依存する。したがって本発明の砥石においては、砥粒最先端のばらつきを平均砥粒径によって制御する。砥粒の大きさのばらつきは、平均砥粒径が小さくなればなるほど、その値は、狭くなる。つまりばらつきが小さくなる。本発明の砥石に関しては、シート状の砥石の作製に微粒砥粒を使用する。10μm以下(その値は研削条件や要求される仕上げ面粗さに依存する。)の砥粒と砥粒ボンド材を混合して、図2に記載の砥石を作製する。この砥石をドレッシングすると砥粒の先端はこの砥粒径に依存して制御される。つまり砥粒が小さければ小さい程、砥粒先端のばらつきが小さくなる。その先端のばらつきは直接被削材の表面粗さに寄与する。
(熱伝導度の制御)ボンド材または砥粒ボンド材の種類によって決定できる。
That is, the ideal grinding wheel condition described above is compared with the effect of the grinding wheel obtained in the present invention.
(Control of abrasive grain protrusion) The wear of the bonding material is made faster than the wear of the portion containing the abrasive grains.
(Control of Support Bond Material and Abrasive Bond Material) Particle Size, Bond Strength: For example, the support bond material has a larger particle size than the abrasive bond material. The strength of the porous body is reduced during sintering. That is, the abrasive bond material is less likely to fall off. When a grindstone made of the same grindstone is dressed under the same conditions, the supporting bond material portion is removed more than the grindstone portion. Thereby, the protrusion of the abrasive grains is ensured.
(Control of Bond Strength between Abrasive Grains and Abrasive Bond Material) The abrasive grains and the abrasive bond material control the bonding strength by reaction. A reaction with the bond is caused at the interface of the abrasive grains. The holding power of the abrasive grains is controlled by this reaction degree. At this time, it is desired that the bond grain size be smaller than the size of the abrasive grains. This is because in order to sufficiently hold the abrasive grains, it is necessary to increase the number of contact points (coordination number) with the abrasive grains.
(Control of the surface roughness of the work material) This depends on the protruding height of the abrasive grains, that is, the most advanced variation of the abrasive grains. Therefore, in the grindstone of the present invention, the variation of the most advanced abrasive grains is controlled by the average abrasive grain size. The variation in the size of the abrasive grains becomes narrower as the average abrasive grain diameter becomes smaller. That is, the variation is reduced. Regarding the grindstone of this invention, a fine grain is used for preparation of a sheet-like grindstone. An abrasive grain of 10 μm or less (the value depends on the grinding condition and required finished surface roughness) and an abrasive bond material are mixed to produce the grindstone shown in FIG. When this grindstone is dressed, the tip of the abrasive grains is controlled depending on the abrasive grain size. That is, the smaller the abrasive grain, the smaller the variation of the abrasive grain tip. The variation of the tip directly contributes to the surface roughness of the work material.
(Control of thermal conductivity) It can be determined by the type of bond material or abrasive bond material.

本発明を実施例で説明する。本発明はこれら実施例によって何ら限定されるものではない。   The present invention will be described with reference to examples. The present invention is not limited to these examples.

砥粒としてダイヤモンド(粒度30−40μm)、ボンド材として剛性の高いタングステン粉末(粒径:1−2μm)を使用し、有機バインダーを用い、ダイヤモンド砥粒を100部、タングステンを34部、有機バインダーを3部、溶媒としてエチルアルコール9部計量したものをポリエチレンポットに挿入しアルミナボールを用いて、24時間混合した。その混合物をシート作製装置を用い、シート指定厚みを500ミクロン設定し、シートの作製を行った。シートの大きさは250×1000mmであり、そのシートは揮発分のエタノールを十分に乾燥させた後、厚みの測定を行った。乾燥後のシートの厚みは、約300μmであった。得られたシートは4×25の寸法で切断し、500℃、大気中にて脱脂し、その後真空雰囲気中でパルス通電焼結法を用い1400℃、10MPa、5分の条件で焼結した。この時ダイヤモンド砥粒とタングステン粉末はその界面においてWCが生成していることを確認し、また、このものの気孔率は40%であった。   Diamond (grain size 30-40 μm) is used as abrasive grains, tungsten powder with high rigidity (particle size: 1-2 μm) is used as bond material, organic binder is used, diamond abrasive grains 100 parts, tungsten 34 parts, organic binder 3 parts and 9 parts of ethyl alcohol as a solvent were weighed and inserted into a polyethylene pot, and mixed for 24 hours using alumina balls. The mixture was prepared using a sheet manufacturing apparatus, with a specified sheet thickness set to 500 microns. The size of the sheet was 250 × 1000 mm, and the thickness of the sheet was measured after the volatile component ethanol was sufficiently dried. The thickness of the dried sheet was about 300 μm. The obtained sheet was cut to a size of 4 × 25, degreased in the air at 500 ° C., and then sintered in a vacuum atmosphere using a pulse current sintering method at 1400 ° C., 10 MPa, and 5 minutes. At this time, it was confirmed that WC was formed at the interface between the diamond abrasive grains and the tungsten powder, and the porosity of this was 40%.

焼結されたシートは、図5に示すような配列に配置し、シート間のすき間は粒径の大きいタングステン粉末(平均粒径60μm)を用い、再度1300℃の温度で焼結した。これは、粒径の粗いタングステンを焼結するための熱処理であり、砥石部分の温度より低い温度を設定した。得られた砥石は、図5(a)のようにアルミニウム台盤に接着し、試作砥石とした。その砥石形状は外径150mm、内径100mm、厚み3mmの6A2タイプの砥石形状である。この砥石を用いて、平面研削盤を用い定圧試験を行い、研削能率、表面粗さの測定を行った。試験に供したサンプルはジルコニア(ZrO2:曲げ強さ400MPa、ビッカース硬さ13GPa)断面形状3×5mmのブロックを用いた。
[比較例1]
The sintered sheets were arranged in an arrangement as shown in FIG. 5, and a tungsten powder having a large particle size (average particle size 60 μm) was used between the sheets and sintered again at a temperature of 1300 ° C. This is a heat treatment for sintering tungsten having a coarse particle diameter, and a temperature lower than the temperature of the grindstone portion was set. The obtained grindstone was bonded to an aluminum base as shown in FIG. The grindstone shape is a 6A2 type grindstone shape with an outer diameter of 150 mm, an inner diameter of 100 mm, and a thickness of 3 mm. Using this grindstone, a constant pressure test was performed using a surface grinder, and the grinding efficiency and surface roughness were measured. As a sample used for the test, a block having a zirconia (ZrO2: bending strength of 400 MPa, Vickers hardness of 13 GPa) cross-sectional shape of 3 × 5 mm was used.
[Comparative Example 1]

実施例1の砥石を積層し、厚さ3mmの厚みで実施例1と同様な形状の砥石を作製した。この時砥石の砥粒間隔は制御せずに、ドーナツ状にくりぬいた砥石を基盤に貼りつけたものを使用した。
[比較例2]
The grindstone of Example 1 was laminated, and a grindstone having a thickness of 3 mm and the same shape as that of Example 1 was produced. At this time, a grindstone hollowed in a donut shape was attached to the base without controlling the abrasive interval of the grindstone.
[Comparative Example 2]

比較試験とし、実施例1の砥粒をガラス質のボンドで固めた、ビトリファイドダイヤモンド砥石を作製した。砥石形状は、実施例1と同様であり、砥石の気孔率は45%であった。   As a comparative test, a vitrified diamond grindstone in which the abrasive grains of Example 1 were hardened with a glassy bond was produced. The shape of the grindstone was the same as in Example 1, and the porosity of the grindstone was 45%.

《結果》
実施例1の砥石は比較例1の砥石の約4倍、比較例2の砥石の約5倍の研削速度で被削材であるジルコニアを研削できた。また研削比は比較例1の3倍、比較例1の10倍であり、被削材の面粗さは、比較例1と同等、比較例2の約半分の面粗さを示した。この結果は実施例1の砥石が、研削効率で格段に優れていることを示しており、高能率、高研削比、高仕上げ面粗さを同時に実現できた結果であった。
"result"
The grindstone of Example 1 was able to grind zirconia as a work material at a grinding speed about 4 times that of the grindstone of Comparative Example 1 and about 5 times that of the grindstone of Comparative Example 2. The grinding ratio was 3 times that of Comparative Example 1 and 10 times that of Comparative Example 1. The surface roughness of the work material was the same as that of Comparative Example 1 and was about half that of Comparative Example 2. This result shows that the grindstone of Example 1 is remarkably excellent in grinding efficiency, and is a result that a high efficiency, a high grinding ratio, and a high finished surface roughness can be realized at the same time.

砥粒としてダイヤモンド(粒度2μm)、ボンド材として剛性の高いタングステン粉末(粒径:0.3μm)を使用し、有機バインダーを用い、ダイヤモンド砥粒を100部、タングステンを34部、有機バインダーを3部、溶媒としてエチルアルコール12部計量したものをポリエチレンポットに挿入しアルミナボールを用いて、24時間混合した。その混合物をシート作製装置を用い、シート指定厚みを500ミクロン設定し、シートの作製を行った。シートの大きさは250×1000mmであり、そのシートは揮発分のエタノールを十分に乾燥させた後、厚みの測定を行った。乾燥後のシートの厚みは、約300μmであった。得られたシートは4×25の寸法で切断し、500℃、大気中にて脱脂し、その後真空雰囲気中でパルス通電焼結法を用い1300℃、10MPa、5分の条件で焼結した。この時ダイヤモンド砥粒とタングステン粉末はその界面においてWCが生成していることを確認し、また、このものの気孔率は50%であった。   Diamond (grain size: 2 μm) is used as abrasive grains, tungsten powder with high rigidity (particle size: 0.3 μm) is used as bond material, organic binder is used, diamond abrasive grains are 100 parts, tungsten is 34 parts, and organic binder is 3 parts. A portion of 12 parts of ethyl alcohol measured as a solvent was inserted into a polyethylene pot and mixed for 24 hours using alumina balls. The mixture was prepared using a sheet manufacturing apparatus, with a specified sheet thickness set to 500 microns. The size of the sheet was 250 × 1000 mm, and the thickness of the sheet was measured after the volatile component ethanol was sufficiently dried. The thickness of the dried sheet was about 300 μm. The obtained sheet was cut at a size of 4 × 25, degreased at 500 ° C. in the air, and then sintered in a vacuum atmosphere using a pulse current sintering method at 1300 ° C., 10 MPa, and 5 minutes. At this time, it was confirmed that WC was formed at the interface between the diamond abrasive grains and the tungsten powder, and the porosity of the WC was 50%.

焼結されたシートは、図6に示すような配列に配置し、シート間のすき間は粒径の大きいタングステン粉末(平均粒径50μm)を用い、再度1250℃の温度で焼結した。これは、粒径の粗いタングステンを焼結するための熱処理であり、砥石部分の温度より低い温度を設定した。得られた砥石は、図6(a)のようにアルミニウム台盤に接着し、試作砥石とした。その砥石形状は外径150mm、内径100mm、厚み3mmの6A2タイプの砥石形状である。この砥石を用いて、平面研削盤を用い定圧試験を行い、研削能率、表面粗さの測定を行った。試験に供したサンプルは窒化ケイ素(Si3N4:曲げ強さ500MPa、ビッカース硬さ15GPa)断面形状3×5mmのブロックを用いた。
[比較例3]
The sintered sheets were arranged in an arrangement as shown in FIG. 6, and a tungsten powder having a large particle size (average particle size of 50 μm) was used between the sheets, and sintered again at a temperature of 1250 ° C. This is a heat treatment for sintering tungsten having a coarse particle diameter, and a temperature lower than the temperature of the grindstone portion was set. The obtained grindstone was bonded to an aluminum base as shown in FIG. The grindstone shape is a 6A2 type grindstone shape with an outer diameter of 150 mm, an inner diameter of 100 mm, and a thickness of 3 mm. Using this grindstone, a constant pressure test was performed using a surface grinder, and the grinding efficiency and surface roughness were measured. The sample used for the test was a silicon nitride (Si 3 N 4: bending strength 500 MPa, Vickers hardness 15 GPa) block having a cross section of 3 × 5 mm.
[Comparative Example 3]

実施例2の砥石を積層し、厚さ3mmの厚みで実施例1と同様な形状の砥石を作製した。この時砥石の砥粒間隔は制御せずに、ドーナツ状にくりぬいた砥石を基盤に貼りつけたものを使用した。
[比較例4]
The grindstones of Example 2 were stacked, and a grindstone having a thickness of 3 mm and the same shape as in Example 1 was produced. At this time, a grindstone hollowed in a donut shape was attached to the base without controlling the abrasive interval of the grindstone.
[Comparative Example 4]

比較試験とし、実施例2の砥粒をガラス質のボンドで固めた、ビトリファイドダイヤモンド砥石を作製した。砥石形状は、実施例1と同様であり、砥石の気孔率は45%であった。 As a comparative test, a vitrified diamond grindstone in which the abrasive grains of Example 2 were hardened with a glassy bond was produced. The shape of the grindstone was the same as in Example 1, and the porosity of the grindstone was 45%.

《結果》
実施例2の砥石は比較例3の砥石の約10倍、比較例4の砥石の約20倍の研削速度で被削材である窒化ケイ素を研削できた。また研削比は比較例3の3倍、比較例4の10倍であり、被削材の面粗さは、比較例3、比較例4の約半分の面粗さを示した。この結果は実施例2の砥石が、砥粒径が2μm程度の粒径でありながら、粒度の粗い砥粒と同等の研削性能をもち、固定砥粒でありながら、仕上げ面粗さを50Aまで可能にできた。この結果は、高能率、高研削比、高仕上げ面粗さを同時に実現できた結果であった。
"result"
The grindstone of Example 2 was able to grind silicon nitride as a work material at a grinding speed about 10 times that of the grindstone of Comparative Example 3 and about 20 times that of the grindstone of Comparative Example 4. The grinding ratio was 3 times that of Comparative Example 3 and 10 times that of Comparative Example 4. The surface roughness of the work material was about half that of Comparative Examples 3 and 4. As a result, the grindstone of Example 2 has a grinding performance equivalent to that of coarse abrasive grains while having a grain size of about 2 μm, and is a fixed abrasive grain, and the finished surface roughness is up to 50A. I made it possible. This result was the result of achieving high efficiency, high grinding ratio, and high finished surface roughness at the same time.

砥粒としてダイヤモンド(粒度30−40μm)、ボンド材としてチタン粉末(粒径:2μm)を使用し、有機バインダーを用い、ダイヤモンド砥粒を100部、チタン粉末を120部、有機バインダーを10部、溶媒としてエチルアルコール60部計量したものをポリエチレンポットに挿入しアルミナボールを用いて、24時間混合した。その混合物をシート作製装置を用い、シート指定厚みを500ミクロン設定し、シートの作製を行った。シートの大きさは250×800mmであり、そのシートは揮発分のエタノールを十分に乾燥させた後、厚みの測定を行った。乾燥後のシートの厚みは、約250μmであった。得られたシートは4×100の寸法で10枚切断し、図2(a)に示すような波形の形状に加工し、400℃、大気中にて脱脂し、その後真空雰囲気中で800℃、1時間の条件で焼結した。この時ダイヤモンド砥粒とチタン粉末はその界面においてTiCが生成していることを確認し、また、このものの気孔率は30%であった。焼結されたシートは、750℃の温度で真空炉中において、窒素ガス5気圧のもとで、窒化処理を行った。この窒化処理により、シート中のチタン部分が、TiNのセラミックスに変性していることをX線回折実験によって確認した。この処理において、窒化の度合いは80%であった。また窒化処理前の焼結体(チタンボンド砥石)とビッカース硬度を比較した結果、ビッカース硬度が同じ気孔率(約30%)において、0.3から6GPaと20倍も増加した。窒化処理された波形シートは、炭素基盤のうえで円周上に配置され、シート間のすき間は粒径の大きいチタン粉末(平均粒径30μm)を用い、再度800℃の温度で焼結し、同じ温度において窒化処理を行った。これは、実施例1と同様に粒径の粗いチタン粉末を焼結するための熱処理であり、砥石以外のボンド部分の強度を高め、砥石全体の剛性を高めることを目的とする処理である。得られた砥石は、図5(a)のようにアルミニウム台盤に接着し、試作砥石とした。その砥石形状は外径150mm、内径100mm、厚み3mmの6A2タイプの砥石形状である。この砥石を用いて、平面研削盤を用い定圧試験を行い、研削能率、表面粗さの測定を行った。試験に供したサンプルはジルコニア(ZrO2:曲げ強さ400MPa、ビッカース硬さ13GPa)断面形状3×5mmのブロックを用いた。
[比較例5]
Diamond (particle size: 30-40 μm) is used as the abrasive, titanium powder (particle size: 2 μm) is used as the bonding material, organic binder is used, diamond abrasive is 100 parts, titanium powder is 120 parts, organic binder is 10 parts, A solvent weighed 60 parts of ethyl alcohol was inserted into a polyethylene pot and mixed for 24 hours using alumina balls. The mixture was prepared using a sheet manufacturing apparatus, with a specified sheet thickness set to 500 microns. The size of the sheet was 250 × 800 mm, and the thickness of the sheet was measured after sufficiently drying volatile ethanol. The thickness of the sheet after drying was about 250 μm. The obtained sheet was cut into 10 pieces with dimensions of 4 × 100, processed into a corrugated shape as shown in FIG. 2A, degreased in the atmosphere at 400 ° C., and then 800 ° C. in a vacuum atmosphere. Sintering was performed for 1 hour. At this time, it was confirmed that TiC was formed at the interface between the diamond abrasive grains and the titanium powder, and the porosity of this was 30%. The sintered sheet was subjected to nitriding treatment in a vacuum furnace at a temperature of 750 ° C. under a nitrogen gas pressure of 5 atm. It was confirmed by an X-ray diffraction experiment that the titanium portion in the sheet was modified into TiN ceramics by this nitriding treatment. In this treatment, the degree of nitriding was 80%. Further, as a result of comparing the Vickers hardness with a sintered body (titanium bond grindstone) before nitriding treatment, the Vickers hardness increased by 20 times from 0.3 to 6 GPa at the same porosity (about 30%). The corrugated sheet subjected to nitriding treatment is arranged on the circumference on the carbon base, and the gap between the sheets is sintered again at a temperature of 800 ° C. using titanium powder having a large particle diameter (average particle diameter of 30 μm), Nitriding was performed at the same temperature. This is a heat treatment for sintering titanium powder having a coarse particle diameter as in Example 1, and is a treatment aimed at increasing the strength of the bond portion other than the grindstone and enhancing the rigidity of the entire grindstone. The obtained grindstone was bonded to an aluminum base as shown in FIG. The grindstone shape is a 6A2 type grindstone shape with an outer diameter of 150 mm, an inner diameter of 100 mm, and a thickness of 3 mm. Using this grindstone, a constant pressure test was performed using a surface grinder, and the grinding efficiency and surface roughness were measured. As a sample used for the test, a block having a zirconia (ZrO2: bending strength of 400 MPa, Vickers hardness of 13 GPa) cross-sectional shape of 3 × 5 mm was used.
[Comparative Example 5]

実施例1の砥石において窒化処理していない、波形のチタン砥石を実施例1と同様な形状の砥石に作製した。
[比較例6]
A corrugated titanium grindstone that was not nitrided in the grindstone of Example 1 was made into a grindstone having the same shape as in Example 1.
[Comparative Example 6]

比較試験とし、実施例1の砥粒をガラス質のボンドで固めた、ビトリファイドダイヤモンド砥石を作製した。砥石形状は、実施例1と同様であり、砥石の気孔率は45%であった。   As a comparative test, a vitrified diamond grindstone in which the abrasive grains of Example 1 were hardened with a glassy bond was produced. The shape of the grindstone was the same as in Example 1, and the porosity of the grindstone was 45%.

実施例3の砥石は比較例5の砥石の約50倍、比較例6の砥石の約5倍の研削速度で被削材であるジルコニアを研削できた。また研削比は比較例5の50倍、比較例比較例6の10倍であり、被削材の面粗さは、比較例5と比較例6の約半分の面粗さを示した。比較例5の砥石は、チタンボンド砥石であるために、研削中塑性変形し、その後被削材の除去が殆ど行えなかった。この結果は実施例3の砥石は砥石の形状が波形になっているため、小さい粒径の砥粒でありながら、高い研削能率を示しており、ボンド部分がセラミックス化し、砥粒とボンド部分もまたセラミックスになっているために、比較例5、6に比べて格段に優れた研削性能を示した。   The grindstone of Example 3 was able to grind zirconia as the work material at a grinding speed about 50 times that of the grindstone of Comparative Example 5 and about 5 times that of the grindstone of Comparative Example 6. The grinding ratio was 50 times that of Comparative Example 5 and 10 times that of Comparative Example 6 and the surface roughness of the work material was about half that of Comparative Example 5 and Comparative Example 6. Since the grindstone of Comparative Example 5 was a titanium bond grindstone, it was plastically deformed during grinding, and thereafter the work material could hardly be removed. As a result, since the grindstone of Example 3 has a wavy shape of the grindstone, the grindstone shows a high grinding efficiency even though the grindstone has a small particle diameter, and the bond portion is converted into ceramics. Further, since it is made of ceramics, the grinding performance was remarkably superior to those of Comparative Examples 5 and 6.

本発明の研削砥石が高能率、高研削比、高精度、高仕上げ面を得るための研削砥石であることを説明する模式図である。It is a schematic diagram explaining that the grinding wheel of the present invention is a grinding wheel for obtaining a high efficiency, a high grinding ratio, high accuracy, and a high finished surface. 本発明の研削砥石製造原料で成形した、制御された砥粒間隔の研削砥石を製造するためのシート状予備成形体が(a)波形、(b)渦巻き形、(c)円形に加工できることを説明する図面である。A sheet-shaped preform for producing a grinding wheel with controlled abrasive spacing, formed from the grinding wheel production raw material of the present invention, can be processed into (a) a waveform, (b) a spiral shape, and (c) a circle. It is drawing to explain. (a)一般に砥粒径が細かくなればなるほど砥粒の先端高さのばらつきは小さくなることを説明する模式図である。(b)一般に高能率研削に必要な条件は、砥粒の突き出しと砥粒にかかる分担加重の大きさであることを説明する模式図である。(A) It is a schematic diagram explaining that the dispersion | variation in the tip height of an abrasive grain becomes small, so that an abrasive grain diameter becomes finer generally. (B) It is a schematic diagram explaining that the conditions generally required for high-efficiency grinding are the size of the protrusion of an abrasive grain and the shared weight applied to the abrasive grain. 既存の砥石(a)横軸平研用、(b)縦軸ロータリー用の形状をした図面である。It is drawing which made the shape for the existing grindstone (a) for horizontal axis plane research, and (b) vertical axis rotary. 本発明の実施例1で試作した研削砥石の配置を示す(a)側面図と(b)上面図を示している。The (a) side view and (b) top view which show arrangement | positioning of the grinding stone made as an experiment in Example 1 of this invention are shown. 本発明の実施例2で試作した研削砥石の配置を示す(a)側面図と(b)上面図を示している。The (a) side view and (b) top view which show arrangement | positioning of the grinding stone made as an experiment in Example 2 of this invention are shown.

Claims (7)

砥粒としての超砥粒と、結合材としての金属粉末とを混合して得られた粉粒体からなる研削砥石製造原料でシート状に成形し乾燥して予備成形体を製造し、該予備成形体を所望の形状に切断し、焼結し、焼結されたシート切断片を、複数枚用いて研磨砥石として所望の形状になるように配置し、各焼結されたシート切断片の隙間は金属粉末からなる結合材を用いて充填し、再度焼結して砥石を得ることを特徴とする研削砥石の製造方法。   A pre-formed body is manufactured by forming into a sheet shape by using a grinding wheel manufacturing raw material consisting of powder obtained by mixing superabrasive grains as abrasive grains and metal powder as a binder, and drying the pre-formed body. The formed body is cut into a desired shape, sintered, and a plurality of sintered sheet cut pieces are arranged so as to have a desired shape as a grinding wheel using a plurality of pieces, and a gap between each sintered sheet cut piece Is a method for producing a grinding wheel characterized by filling with a binder made of metal powder and sintering again to obtain a grinding wheel. 超砥粒が、ヌープ硬度1000以上を有する、ダイヤモンドおよび立方晶窒化ホウ素から選ばれる請求項1の研削砥石の製造方法。   The method for producing a grinding wheel according to claim 1, wherein the superabrasive grains are selected from diamond and cubic boron nitride having a Knoop hardness of 1000 or more. 上記研削砥石製造原料を構成する結合材が、Fe、Cu、Ni、Co、Cr、Ta、V、Nb、Al、W、Ti、SiおよびZrからなる群から選ばれる、加熱下に超砥粒と化学的および物理的に結合し得る、かつ、粉末焼結により多孔構造相の多孔質体を形成し得る1種以上の金属からなる請求項1または2の研削砥石の製造方法。   The binder constituting the grinding wheel manufacturing raw material is selected from the group consisting of Fe, Cu, Ni, Co, Cr, Ta, V, Nb, Al, W, Ti, Si and Zr, and superabrasive grains under heating The method for producing a grinding wheel according to claim 1 or 2, comprising at least one metal capable of being chemically and physically bonded to each other and capable of forming a porous body having a porous structure phase by powder sintering. 流し込みまたはドクターブレード法を用いてシート状に成形し乾燥して予備成形体を製造する請求項1、2または3の研削砥石の製造方法。   The method for producing a grinding wheel according to claim 1, 2 or 3, wherein the preform is produced by molding into a sheet using a casting or doctor blade method and drying. 予備成形体を所望の形状に切断し、粉末焼結して、研削砥石製造原料を構成する結合材が、化学的および物理的結合をして超砥粒を保持した多孔質体に形成され、かつ、該多孔質体に形成された後少なくともその表面がセラミックスに変成されている状態に焼結し、焼結されたシート切断片とする請求項1ないし4のいずれかの研削砥石の製造方法。   The preform is cut into a desired shape, powder-sintered, and the binder constituting the grinding wheel manufacturing raw material is formed into a porous body that holds superabrasive grains by chemical and physical bonding, The method for producing a grinding wheel according to any one of claims 1 to 4, wherein after the formation of the porous body, at least the surface thereof is sintered into a state of being transformed into ceramics to obtain a sintered sheet cut piece. . 得られた砥石は、砥石全体の気孔率が5〜60%である請求項5の研削砥石の製造方法。   The method for producing a grinding wheel according to claim 5, wherein the obtained grindstone has a porosity of 5 to 60%. 得られた砥石は、砥石全体の気孔率が5〜45%である請求項6の研削砥石の製造方法。

The method for producing a grinding wheel according to claim 6, wherein the obtained grinding wheel has a porosity of 5 to 45%.

JP2007262925A 2007-10-09 2007-10-09 Manufacturing method of grinding wheel Expired - Lifetime JP4584971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262925A JP4584971B2 (en) 2007-10-09 2007-10-09 Manufacturing method of grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262925A JP4584971B2 (en) 2007-10-09 2007-10-09 Manufacturing method of grinding wheel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32857797A Division JP4335980B2 (en) 1997-11-28 1997-11-28 Grinding wheel

Publications (2)

Publication Number Publication Date
JP2008018532A true JP2008018532A (en) 2008-01-31
JP4584971B2 JP4584971B2 (en) 2010-11-24

Family

ID=39074883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262925A Expired - Lifetime JP4584971B2 (en) 2007-10-09 2007-10-09 Manufacturing method of grinding wheel

Country Status (1)

Country Link
JP (1) JP4584971B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093355A (en) * 2013-11-13 2015-05-18 株式会社ナノテム Grinding, lapping and polishing method and device for use in the same
WO2019069847A1 (en) * 2017-10-03 2019-04-11 株式会社ナノテム Three-dimensional structure grindstone and manufacturing method therefor
CN112453388A (en) * 2020-11-28 2021-03-09 湖南富栊新材料股份有限公司 Aluminum-based binding agent, grinding block and preparation method thereof
CN113635228A (en) * 2021-09-03 2021-11-12 郑州磨料磨具磨削研究所有限公司 Self-dressing grinding wheel for processing semiconductor material and preparation method and application thereof
CN115255368A (en) * 2022-07-15 2022-11-01 广东工业大学 Soft-hard composite metal bond diamond tool and preparation method thereof
WO2023279072A1 (en) * 2021-06-30 2023-01-05 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265973A (en) * 1988-09-01 1990-03-06 Noritake Co Ltd Super finishing grindstone consisting of plural super abrasive grain sheet and manufacture thereof
WO1995027596A1 (en) * 1994-04-08 1995-10-19 Ultimate Abrasive Systems, Inc. Method for making powder preform and abrasive articles made therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265973A (en) * 1988-09-01 1990-03-06 Noritake Co Ltd Super finishing grindstone consisting of plural super abrasive grain sheet and manufacture thereof
WO1995027596A1 (en) * 1994-04-08 1995-10-19 Ultimate Abrasive Systems, Inc. Method for making powder preform and abrasive articles made therefrom

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093355A (en) * 2013-11-13 2015-05-18 株式会社ナノテム Grinding, lapping and polishing method and device for use in the same
WO2019069847A1 (en) * 2017-10-03 2019-04-11 株式会社ナノテム Three-dimensional structure grindstone and manufacturing method therefor
CN111225767A (en) * 2017-10-03 2020-06-02 奈腾新研磨有限公司 Three-dimensional structure grinding stone and manufacturing method thereof
JPWO2019069847A1 (en) * 2017-10-03 2020-10-22 株式会社ナノテム Three-dimensional structure grindstone and its manufacturing method
TWI725344B (en) * 2017-10-03 2021-04-21 日商納米科技股份有限公司 Three-dimensional structure grindstone
CN112453388A (en) * 2020-11-28 2021-03-09 湖南富栊新材料股份有限公司 Aluminum-based binding agent, grinding block and preparation method thereof
WO2023279072A1 (en) * 2021-06-30 2023-01-05 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for forming same
CN113635228A (en) * 2021-09-03 2021-11-12 郑州磨料磨具磨削研究所有限公司 Self-dressing grinding wheel for processing semiconductor material and preparation method and application thereof
CN113635228B (en) * 2021-09-03 2022-07-01 郑州磨料磨具磨削研究所有限公司 Self-dressing grinding wheel for processing semiconductor material and preparation method and application thereof
CN115255368A (en) * 2022-07-15 2022-11-01 广东工业大学 Soft-hard composite metal bond diamond tool and preparation method thereof
CN115255368B (en) * 2022-07-15 2023-08-04 广东工业大学 Diamond tool with soft and hard composite metal binding agent and preparation method thereof

Also Published As

Publication number Publication date
JP4584971B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP4173573B2 (en) Method for producing porous abrasive wheel
JP3949891B2 (en) Super whetstone with active binder
JP4584971B2 (en) Manufacturing method of grinding wheel
JP2007537890A (en) Brazed diamond dressing tool
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
EP2219824A1 (en) Abrasive processing of hard and/or brittle materials
JPH10113875A (en) Super abrasive grain abrasive grindstone
JPH09103965A (en) Porous superbrasive grinding wheel and its manufacture
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP3542520B2 (en) Vitrified whetstone
JPS62205203A (en) Production of ultrafine short metallic fiber
JP2003181765A (en) Porous supergrain grinding stone and method for manufacturing the same
KR20230050320A (en) Bonded abrasive articles and methods of making the same
JP3380125B2 (en) Porous superabrasive stone and its manufacturing method
JP3086667B2 (en) Super abrasive whetstone
JP4335980B2 (en) Grinding wheel
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP2006297528A (en) Method for manufacturing resinoid grinding tool having massive abrasive grain
JP3703228B2 (en) Diamond whetstone, manufacturing method thereof and tool
JP2008030157A (en) Porous abrasive wheel and manufacturing method thereof
JP3406163B2 (en) Superabrasive stone and its manufacturing method
JP2005007531A (en) Throw away tip and manufacturing method thereof
JP3101145B2 (en) Method for producing porous iron-based metal bond diamond wheel
KR100522779B1 (en) Porous grinding stone and method of production thereof
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term