JP2008030157A - Porous abrasive wheel and manufacturing method thereof - Google Patents

Porous abrasive wheel and manufacturing method thereof Download PDF

Info

Publication number
JP2008030157A
JP2008030157A JP2006206961A JP2006206961A JP2008030157A JP 2008030157 A JP2008030157 A JP 2008030157A JP 2006206961 A JP2006206961 A JP 2006206961A JP 2006206961 A JP2006206961 A JP 2006206961A JP 2008030157 A JP2008030157 A JP 2008030157A
Authority
JP
Japan
Prior art keywords
grains
grindstone
phenol resin
amorphous carbon
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006206961A
Other languages
Japanese (ja)
Inventor
Atsushi Kishimoto
淳 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Co Ltd
Original Assignee
Read Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Co Ltd filed Critical Read Co Ltd
Priority to JP2006206961A priority Critical patent/JP2008030157A/en
Publication of JP2008030157A publication Critical patent/JP2008030157A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous abrasive wheel wherein super-abrasive grains are uniformly dispersed into a binding material composing the abrasive wheel and pores contributing to the reduction of abrasive/cutting resistance are appropriately dispersed to prevent cracks from being formed in the inside of the abrasive wheel, and a manufacturing method of the porous abrasive wheel. <P>SOLUTION: The super-abrasive grains 2 are uniformly dispersed into a liquid phenol resin diluted with a solvent to form a mixture, the mixture is calcined without applying pressure to cure the phenol resin to form a cured product. The cured product is crushed, and the crushed grains 1A are pressure-molded with pores formed between grains to make a molded article. Then, the molded article is calcined at the high temperature in an inactive gas or a vacuum, the phenol resin is converted to amorphous carbon, and fine pores 3 are formed in the amorphous carbon by the gas generated accompanying conversion to amorphous carbon to obtain the porous abrasive wheel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、研削・切断などに用いられる有気孔砥石及びその製造方法に関するものである。   The present invention relates to a perforated grindstone used for grinding and cutting, and a method for producing the same.

従来、フェノール樹脂粉末と、ダイヤモンドやcBNなどの高硬度の超砥粒とを混合して、その混合物を成形金型に充填し、加圧焼結して得られるレジンボンド砥石が知られている。この種の方法で製造されたレジンボンド砥石は、フェノール樹脂がゲル状に軟化した状態で加圧成形しながら焼成されるので、砥石構造が稠密構造となる。この稠密構造の砥石は、被加工材の研削・切断時に発生する屑を除去するために必要な中空の気孔が存在せず、目詰まりを起こしやすい傾向があり、安定した加工性能を長期に亘って維持することが困難である。
そこで、微細気孔が分散しているレジンボンド砥石とするために、フェノール樹脂粉末及び超砥粒と共に、気孔形成剤として、塩化ナトリウム、硫酸ナトリウムなどの各種塩類を可溶性フィラーとして添加し、あるいは、中空ガラスビーズなどの中空フィラーを添加し、更には、粒状発砲スチロールを添加するなどの手段が用いられている。
Conventionally, a resin bond grindstone obtained by mixing phenol resin powder and high-abrasive superabrasive grains such as diamond and cBN, filling the mixture into a molding die, and pressure sintering is known. . Since the resin bond grindstone manufactured by this type of method is fired while being pressure-molded in a state where the phenol resin is softened in a gel state, the grindstone structure becomes a dense structure. This dense-structured grindstone does not have the hollow pores necessary to remove debris generated during grinding / cutting of the workpiece, tends to clog, and has stable machining performance over a long period of time. Difficult to maintain.
Therefore, in order to make a resin bond grindstone in which fine pores are dispersed, various salts such as sodium chloride and sodium sulfate are added as a soluble filler as a pore forming agent together with phenol resin powder and superabrasive grains, or hollow. Means such as adding a hollow filler such as glass beads and further adding granular foamed styrene are used.

また、レジンボンド砥石は、結合材のフェノール樹脂の存在に起因する弾性変形により、研削・切断の加工時に被加工材と砥粒の接触が緩和されるため、メタルボンド砥石やビトリファイドボンド砥石と比べて、被加工材への加工ダメージが少ないという利点を有している。更に、レジンボンド砥石は、砥粒の自生発刃作用に優れているので、メタルボンド砥石に比べて、砥粒の目潰れが起こり難いという特徴を有している。   In addition, the resin bond grindstone is elastically deformed due to the presence of the phenolic resin in the binder, so that the contact between the workpiece and the abrasive is eased during grinding and cutting. Compared to the metal bond grindstone and vitrified bond grindstone Thus, there is an advantage that the processing damage to the workpiece is small. Furthermore, since the resin bond grindstone is excellent in the self-generated blade action of the abrasive grains, the resin bond grindstone has a feature that the abrasive grains are not easily crushed compared to the metal bond grindstone.

しかしながら、平均粒径5μm以下の超砥粒を用いる場合、上記の方法で製造されたレジンボンド砥石は、フェノール樹脂粉末と超砥粒とを均一に混合することが難しく、超砥粒が均一に分散した砥石を安定的に得ることが困難である。微細気孔についてもその偏在が発生し易く、超砥粒の粒径と同程度の大きさの微細気孔が適度に分散させることは困難である。   However, when using superabrasive grains having an average grain size of 5 μm or less, it is difficult for the resin bond grindstone manufactured by the above method to mix the phenol resin powder and superabrasive grains uniformly, and the superabrasive grains are uniform. It is difficult to stably obtain a dispersed grindstone. The uneven distribution of the fine pores is likely to occur, and it is difficult to appropriately disperse the fine pores having the same size as the superabrasive grains.

また、平均粒径5μm以下の微細な超砥粒を用いたレジンボンド砥石は、その結合材のフェノール樹脂が比較的軟らかいので、加工時に超砥粒が結合材中に埋没して、被加工材と結合材が接触し易くなる。このことから、レジンボンド砥石に微細な超砥粒を用いた場合には、研削・切断抵抗が上昇し、安定した被加工材の加工が困難になるという問題もある。   In addition, the resin bond grindstone using fine superabrasive grains having an average particle size of 5 μm or less has a relatively soft phenolic resin, so that the superabrasive grains are buried in the binder during processing, and the workpiece is processed. It becomes easy for the binder to come into contact. Therefore, when fine superabrasive grains are used for the resin bond grindstone, there is a problem that the grinding / cutting resistance is increased and it is difficult to process a stable workpiece.

このようなレジンボンド砥石の欠点を改善する技術として、特許文献1には、フェノール樹脂中に超砥粒を分散させて加圧状態で焼結して成形体とし、この成形体を非酸化雰囲気中で高温焼成して、フェノール樹脂をアモルファスカーボン化した砥石について開示されている。
しかしながら、このような方法では、高温焼成時にフェノール樹脂がガスを発生しながらアモルファスカーボンに変換されるため、この砥石は内部にクラックが形成される可能性が大で、成形体が崩れ易いという欠点を有している。
As a technique for improving the drawbacks of such a resin bond grindstone, Patent Document 1 discloses that a superabrasive grain is dispersed in a phenol resin and sintered in a pressurized state to form a molded body. A grinding wheel in which a phenol resin is converted into amorphous carbon by firing at a high temperature is disclosed.
However, in such a method, since the phenol resin is converted to amorphous carbon while generating gas during high-temperature firing, the grindstone has a high possibility of forming cracks therein, and the molded body is liable to collapse. have.

レジンボンド砥石についてクラックの発生を防止する技術として、特許文献2には、フェノールホルムアルデヒド樹脂にアルコール等の溶媒を加えて液状化したものに、超砥粒を混合した後に溶媒を除去して、200℃前後の低温で加圧焼成し、次いで500℃以上の高温で加熱してフェノールホルムアルデヒド樹脂をアモルファスカーボン化させ、それを粉砕して砥石用原料とすることが開示されている。そして、こうして得られた砥石用原料をフェノール樹脂などのレジンボンド原料に添加し、200℃程度の比較的低温で焼成し、焼成による熱歪みを抑えて高精度の砥石となすことも開示している。   As a technique for preventing the occurrence of cracks in a resin bond grindstone, Patent Document 2 discloses a technique in which a solvent such as alcohol is added to a phenol formaldehyde resin to be liquefied, superabrasive grains are mixed, and then the solvent is removed. It is disclosed that pressure baking is performed at a low temperature of about 500C, and then heating is performed at a high temperature of 500C or higher to convert the phenol formaldehyde resin into amorphous carbon, which is pulverized and used as a raw material for a grindstone. And it is also disclosed that the grindstone raw material thus obtained is added to a resin bond raw material such as a phenol resin and fired at a relatively low temperature of about 200 ° C., thereby suppressing thermal distortion caused by the firing and obtaining a high-precision grindstone. Yes.

しかしながら、特許文献2に開示された砥石は、砥石用原料にレジンボンド原料を添加した後には比較的低温で焼成されるので、研削屑・切断屑を除去するために必要な気孔が十分には存在せず、また砥石用原料をレジンボンド原料に添加するので、結合材に超砥粒が均一に分散されていないことがあり得る、という欠点も有している。
特開昭60−232873号公報 特開2002−274944号公報
However, since the grindstone disclosed in Patent Document 2 is fired at a relatively low temperature after the resin bond raw material is added to the grindstone raw material, the pores necessary for removing grinding and cutting waste are sufficient. Further, since the grinding wheel raw material is added to the resin bond raw material, the superabrasive grains may not be uniformly dispersed in the binder.
JP-A-60-232873 JP 2002-274944 A

本発明の技術的課題は、砥石を構成する結合材中に超砥粒を均一に分散させ、かつ研削・切断抵抗の低減等に寄与する気孔を適度に分散させ、しかもそれに伴って砥石内部にクラックが形成されることがない有気孔砥石及びその製造方法を提供することにある。   The technical problem of the present invention is to uniformly disperse the superabrasive grains in the binder constituting the grindstone and appropriately disperse pores contributing to reduction of grinding / cutting resistance, etc. An object of the present invention is to provide a porous hole grindstone in which no cracks are formed and a method for producing the same.

上記課題を解決するための本発明の有気孔砥石は、アモルファスカーボンからなる結合材中に超砥粒が均一に分散すると共に、該結合材中に微細気孔が均一に分散して形成されている有気孔砥石であって、上記超砥粒及び微細気孔が分散している結合材が、超砥粒を分散させたフェノール樹脂の硬化物を粉砕してなる粉砕粒を、粒間気孔が存在する状態で所期の成形体に加圧成形したうえで、それを不活性ガス中又は真空中で高温焼成して、上記フェノール樹脂をアモルファスカーボン化することにより形成され、上記結合材中の微細気孔が、上記アモルファスカーボン化に伴って上記粉砕粒内に発生するガスにより形成されていることを特徴とするものである。   The porous abrasive wheel of the present invention for solving the above problems is formed by uniformly dispersing superabrasive grains in a binder made of amorphous carbon and uniformly dispersing fine pores in the binder. There is an intergranular pore, which is a porous stone, wherein the binder in which the superabrasive grains and fine pores are dispersed is a pulverized grain obtained by pulverizing a cured product of a phenol resin in which superabrasive grains are dispersed. The pores in the binder are formed by pressure-molding the desired molded body in a state and then baking it at a high temperature in an inert gas or vacuum to convert the phenol resin into amorphous carbon. However, it is formed by the gas generated in the pulverized particles as the amorphous carbon is formed.

本発明に係る有気孔砥石の好ましい実施形態においては、上記超砥粒として平均粒径が5μm以下の砥粒が用いられる。上記粉砕粒を形成するフェノール樹脂には、結合度を調整するためのフィラー及び/又は微細気孔量を調整するための気孔形成剤を加えることができる。   In a preferred embodiment of the porous hole grindstone according to the present invention, abrasive grains having an average particle diameter of 5 μm or less are used as the superabrasive grains. A filler for adjusting the degree of bonding and / or a pore forming agent for adjusting the amount of fine pores can be added to the phenol resin forming the pulverized particles.

一方、上記課題を解決するための本発明の有気孔砥石の製造方法は、次の工程(a)〜(d)からなることを特徴とするものである。
(a) 溶媒で希釈した液状のフェノール樹脂中に超砥粒を均一に分散させて混合物とする工程。
(b) 上記混合物を無加圧焼成してフェノール樹脂を硬化させ、硬化物とする工程。
(c) 上記硬化物を粉砕し、粉砕した粉砕粒を粒間気孔が存在する状態に加圧成形して成形体とする工程。
(d) 上記成形体を不活性ガス中又は真空中で高温焼成し、上記フェノール樹脂をアモルファスカーボン化すると共に、それに伴って発生するガスによりアモルファスカーボン中に微細気孔を形成させる工程。
On the other hand, the manufacturing method of the porous hole grindstone of this invention for solving the said subject consists of following process (a)-(d), It is characterized by the above-mentioned.
(A) A step of uniformly dispersing superabrasive grains in a liquid phenolic resin diluted with a solvent to form a mixture.
(B) A step of baking the above-mentioned mixture without pressure to cure the phenol resin to obtain a cured product.
(C) The process which grind | pulverizes the said hardened | cured material and press-molds the grind | pulverized grind | pulverized particle in the state in which an intergranular pore exists, and it is set as a molded object.
(D) A step of firing the molded body at a high temperature in an inert gas or in a vacuum to convert the phenol resin into amorphous carbon and forming fine pores in the amorphous carbon by the gas generated along with the amorphous carbon.

本発明に係る有気孔砥石の製造方法の好ましい実施形態においては、上記工程(b)が上記混合物から溶媒を除去する工程を含み、上記工程(d)における焼成温度が、700〜1200℃に設定される。また、上記工程(a)においては、超砥粒として平均粒径が5μm以下のものが用いられる。   In preferable embodiment of the manufacturing method of the porous hole grindstone concerning this invention, the said process (b) includes the process of removing a solvent from the said mixture, and the calcination temperature in the said process (d) sets to 700-1200 degreeC. Is done. Moreover, in the said process (a), a thing with an average particle diameter of 5 micrometers or less is used as a superabrasive grain.

上記構成を有する本発明の有気孔砥石及びその製造方法においては、溶媒で希釈した液状のフェノール樹脂中に超砥粒を分散させるので、超砥粒としてたとえ平均粒径が5μm以下のものを用いても、超砥粒を比較的容易に均一に分散させることができる。
また、フェノール樹脂の硬化物を粉砕してなる粉砕粒を、粒間気孔が存在する状態で加圧成形したうえで高温焼成し、上記フェノール樹脂をアモルファスカーボン化しているので、該アモルファスカーボン化に伴って発生するガスによる微細気孔が、上記粉砕粒内に形成され、そして、各粉砕粒間には粒間気孔が存在するので、発生したガスの一部は粉砕粒間の該粒間気孔を通して排出され、そのため、成形された有気孔砥石の内部にクラックが発生することはない。しかも、上記砥石における気孔が適度に分散配置される。
このように、砥石中に超砥粒が均一に分散されると共に、多数の気孔が適度に分散されており、研削・切断の加工時に目詰まりを越し難く、加工抵抗が低減し、加工時における発熱も少ない。
In the porous hole grindstone of the present invention having the above-described configuration and its manufacturing method, superabrasive grains are dispersed in a liquid phenolic resin diluted with a solvent, so that superabrasive grains having an average particle diameter of 5 μm or less are used. However, the superabrasive grains can be uniformly dispersed relatively easily.
In addition, pulverized particles obtained by pulverizing a cured product of phenol resin are subjected to pressure molding in the presence of intergranular pores and then baked at high temperature to convert the phenol resin into amorphous carbon. Fine pores due to the generated gas are formed in the pulverized grains, and there are intergranular pores between the pulverized grains, so that part of the generated gas passes through the intergranular pores between the pulverized grains. As a result, no cracks are generated inside the molded porous grindstone. Moreover, the pores in the grindstone are appropriately distributed.
In this way, the superabrasive grains are uniformly dispersed in the grindstone, and a large number of pores are moderately dispersed, so that clogging is difficult to occur at the time of grinding / cutting, processing resistance is reduced, and machining is reduced. There is little fever.

上述した本発明の有気孔砥石及びその製造方法によれば、砥石を構成する結合材中に超砥粒を均一に分散させ、かつ研削・切断抵抗の低減等に寄与する気孔を適度に分散させ、しかも、それに伴って砥石内部にクラックが形成されるのを抑制することができる。   According to the porous hole grindstone of the present invention and the manufacturing method thereof described above, the superabrasive grains are uniformly dispersed in the binder constituting the grindstone, and the pores contributing to reduction of grinding / cutting resistance are appropriately dispersed. And it can suppress that a crack is formed inside a grindstone in connection with it.

以下に、本発明の実施の形態を、図面を参照して詳細に説明する。
図1は、本発明に係る有気孔砥石の一部を拡大して示すもので、該有気孔砥石は、焼成によりアモルファスカーボン化された結合材4中に、超砥粒2が均一に分散すると共に微細気孔3が適度に分散してなる粉砕粒1が、該粉砕粒1間に粒間気孔5が存在する状態に形成されている。この有気孔砥石は、超砥粒を均一に分散させた液状のフェノール樹脂を無加圧焼成してなる硬化物を粉砕し、その粉砕粒を加圧成形してなる成形体を不活性ガス中又は真空中で高温焼成したものである。
上記超砥粒2としては、ダイヤモンド砥粒が望ましいが,cBN砥粒やその他の高硬度の砥粒を用いることができる。上記ダイヤモンド砥粒等は、一定範囲に分級したものを用い、その粒度には特に制限がないが、平均粒径が5μm以下の超砥粒を用いるのに有効である。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is an enlarged view of a portion of a porous hole grinding stone according to the present invention. In the porous hole grinding stone, superabrasive grains 2 are uniformly dispersed in a binder 4 that has been converted to amorphous carbon by firing. At the same time, the pulverized particles 1 in which the fine pores 3 are appropriately dispersed are formed in such a state that the interparticle pores 5 exist between the pulverized particles 1. This porous hole grindstone pulverizes a cured product obtained by pressureless firing of a liquid phenolic resin in which superabrasive grains are uniformly dispersed, and press-molds the pulverized grains in an inert gas. Alternatively, it is fired at a high temperature in a vacuum.
As the superabrasive grains 2, diamond abrasive grains are desirable, but cBN abrasive grains and other high-hardness abrasive grains can be used. The diamond abrasive grains and the like are classified into a certain range, and there is no particular limitation on the particle size, but it is effective to use super abrasive grains having an average particle diameter of 5 μm or less.

次に、図2〜図4を参照して、上記有気孔砥石の製造方法について説明しながら、該有気孔砥石の構成を更に具体的に説明する。
上記有気孔砥石の製造に際しては、まず、図2に示すように、アモルファスカーボン化して上記結合材4とするフェノール樹脂粉末にアルコール等の溶媒を加え、液状化したフェノール樹脂4Aとする。そして、この液状化したフェノール樹脂4Aに、超砥粒2、並びに必要に応じて結合度を調整するためのフィラー及び微細気孔量を調整するための気孔形成剤を加えて混合し、液状化したフェノール樹脂4A中に超砥粒2等が均一に分散した混合物とする。
Next, with reference to FIGS. 2 to 4, the structure of the porous hole grindstone will be described more specifically while explaining the method for manufacturing the porous hole grindstone.
When manufacturing the above-mentioned porous hole grindstone, first, as shown in FIG. 2, a solvent such as alcohol is added to the phenol resin powder that is converted to amorphous carbon to form the above-mentioned binder 4 to obtain a liquefied phenol resin 4A. Then, the liquefied phenol resin 4A was mixed with a superabrasive grain 2, a filler for adjusting the degree of bonding and a pore-forming agent for adjusting the fine pore volume, if necessary, and liquefied. Let it be a mixture in which superabrasive grains 2 and the like are uniformly dispersed in phenol resin 4A.

上記フィラーとしては、アルミナ、炭化珪素、シリカ等を用いることができ、また、気孔形成剤としては、中空ガラスビーズ、セルロース粉末等を用いることができる。   As the filler, alumina, silicon carbide, silica, or the like can be used. As the pore forming agent, hollow glass beads, cellulose powder, or the like can be used.

次いで、上記混合物から溶媒を除去したうえで、無加圧焼成してフェノール樹脂を熱硬化させ、その熱硬化したフェノール樹脂4Bの硬化物を粉砕して、図3に示すような、熱硬化したフェノール樹脂4B中に砥粒2が分散した粉砕粒1Aを得る。この粉砕粒1A中には、超砥粒2が均一に分散しているが、前記微細気孔3は未だ形成されていない。   Next, after removing the solvent from the mixture, the phenol resin was thermally cured by baking without pressure, and the cured product of the thermally cured phenol resin 4B was pulverized and thermally cured as shown in FIG. A pulverized grain 1A in which abrasive grains 2 are dispersed in a phenol resin 4B is obtained. Although the superabrasive grains 2 are uniformly dispersed in the pulverized grains 1A, the fine pores 3 are not yet formed.

上記粉砕粒1Aは、ふるい等を用いて粒径を整えるが、粒径は250μm以下であることが望ましく、この粒径を選択することにより、次工程の加圧成形後の粉砕粒1間の粒間気孔5の大きさを任意に設定することが可能となる。
粒径を選択した上記粉砕粒1Aは、次に、所定の形状の金型に充填して加圧成形し、図4に示すような成形体6とし、この成形体6を不活性ガス中又は真空中で高温焼成する。焼成温度は、700〜1200℃の温度範囲が望ましい。
上記焼成温度が700℃よりも低いと、フェノール樹脂のアモルファスカーボンへの変換が不十分となることから低硬度になって不適であり、また、1200℃よりも高いと、ダイヤモンド粒子の炭化が進行することから研削砥石の機能が大きく損なわれることになる。
The pulverized particles 1A are adjusted in particle size using a sieve or the like, but the particle size is desirably 250 μm or less, and by selecting this particle size, the pulverized particles 1A between the pulverized particles 1 after the pressure forming in the next step The size of the intergranular pores 5 can be set arbitrarily.
Next, the pulverized particles 1A having a selected particle size are filled in a mold having a predetermined shape and subjected to pressure molding to form a molded body 6 as shown in FIG. Bake at high temperature in vacuum. The firing temperature is preferably in the temperature range of 700 to 1200 ° C.
If the firing temperature is lower than 700 ° C., the conversion of the phenol resin into amorphous carbon becomes insufficient, so that the hardness becomes low and unsuitable. If the firing temperature is higher than 1200 ° C., the carbonization of diamond particles proceeds. Therefore, the function of the grinding wheel is greatly impaired.

この焼成により、フェノール樹脂がガスを発生しながらアモルファスカーボンに変換され、この際に、各々の粉砕粒1A内には上記ガスの発生により微細気孔3が形成される。そして、発生したガスの一部は、粉砕粒1間に形成された粒間気孔5を通じて排出されるため、成形体6内部にクラックが形成されることはない。また、焼成時の最高温度を選択することで、焼成後のアモルファスカーボンの硬度を選択することができ、砥石の硬度を任意に選択することが可能となる。   By this firing, the phenol resin is converted to amorphous carbon while generating a gas, and at this time, fine pores 3 are formed in each pulverized particle 1A by the generation of the gas. A part of the generated gas is discharged through the intergranular pores 5 formed between the pulverized grains 1, so that no cracks are formed inside the molded body 6. Further, by selecting the highest temperature during firing, the hardness of the amorphous carbon after firing can be selected, and the hardness of the grindstone can be arbitrarily selected.

以下に、本発明の実施例を比較例との関連において示すが、本発明はこれらの実施例によって何ら限定的に解されるものではない。   Examples of the present invention will be described below in relation to comparative examples, but the present invention is not limited to these examples.

フェノール樹脂粉末(エアウォーターベルパール社製:商標名ベルパール)に溶媒としてのエチルアルコールを加えて液状化したものに、平均粒径2μmに分級したダイヤモンド砥粒と、平均粒径0.8μmのシリカ粒子を加えて混合し、ダイヤモンド砥粒とシリカ粒子を分散させた混合物を得た。なお、この混合物の溶液の濃度が60〜65wt%となるように、エチルアルコールの量を予め算出して加えた。
そして、上記ダイヤモンド砥粒とシリカ粒子を均一に分散させた混合物のアルコール分を蒸発させた後、その混合物を200±5℃の温度に保った環境下で無加圧焼成させ、上記フェノール樹脂の硬化物を得た。
Phenol resin powder (produced by Air Water Velpearl Co., Ltd .: trade name Belpearl), which is liquefied by adding ethyl alcohol as a solvent, diamond abrasive grains classified to an average particle diameter of 2 μm, and silica having an average particle diameter of 0.8 μm Particles were added and mixed to obtain a mixture in which diamond abrasive grains and silica particles were dispersed. In addition, the amount of ethyl alcohol was calculated in advance and added so that the concentration of the solution of this mixture was 60 to 65 wt%.
And after evaporating the alcohol content of the mixture in which the diamond abrasive grains and silica particles are uniformly dispersed, the mixture is baked without pressure in an environment maintained at a temperature of 200 ± 5 ° C. A cured product was obtained.

次に、上記硬化物をボールミルを用いて粉砕し、180μmの目開きのふるいと、125μmの目開きのふるいと、90μmの目開きのふるいを用いて分級し、粉砕粒の粒径を整えた。得られた3種の粉砕粒を、それぞれ直径30mmの金型に入れ、室温中で1.5t/cmの成形圧力を加え、直径30mm、厚さ5mmの成形体を得た。
得られた成形体を、炉内温度が950℃の窒素ガス雰囲気中に3時間保持して、焼成した。具体的には、950℃の温度に到達するまでの昇温時間が20時間であり、950℃で3時間保持した後は、炉内温度が100℃以下になるまで徐冷した。
Next, the cured product was pulverized using a ball mill, and classified using a sieve having an opening of 180 μm, a sieve having an opening of 125 μm, and a sieve having an opening of 90 μm, and adjusted the particle size of the pulverized particles. . The three kinds of pulverized particles thus obtained were each placed in a mold having a diameter of 30 mm, and a molding pressure of 1.5 t / cm 2 was applied at room temperature to obtain a molded body having a diameter of 30 mm and a thickness of 5 mm.
The obtained compact was fired by holding it in a nitrogen gas atmosphere with a furnace temperature of 950 ° C. for 3 hours. Specifically, the temperature rising time until reaching the temperature of 950 ° C. was 20 hours, and after maintaining at 950 ° C. for 3 hours, the furnace was gradually cooled until the furnace temperature became 100 ° C. or lower.

上述したところによって得られた有気孔砥石の内部には、ふるいの目開きの如何に関わらずクラックの形成がなく、均一に分散した超砥粒と気孔が形成されていた。ふるいの目開きに対する焼成後の成形体の乾燥重量と体積の比についての測定結果を表1に示す。   Inside the porous hole grindstone obtained as described above, cracks were not formed regardless of the opening of the sieve, and uniformly dispersed superabrasive grains and pores were formed. Table 1 shows the measurement results of the ratio of the dry weight and volume of the molded body after firing with respect to the sieve opening.

Figure 2008030157
この測定結果によれば、実施例1の有気孔砥石は、乾燥重量と体積の比がフルイ目開きに依存している状態であることがわかる。
Figure 2008030157
According to this measurement result, it can be seen that the porous hole stone of Example 1 is in a state where the ratio of the dry weight to the volume depends on the sieve opening.

実施例1と同様にして得た無加圧焼成によるフェノール樹脂の硬化物を、ボールミルを用いて粉砕し、90μmの目開きのふるいを用いて粉砕粒の粒径を整えた。得られた粉砕粒を所定の金型に入れ、室温中で2.0t/cmの成形圧力を加え、直径143mm、厚み5mm、幅3.5mmのリング形状の成形体を得た。
この成形体を、真空焼成炉内で900℃の温度で3時間保持し、焼成した。900℃の温度に到達するまでの昇温時間は20時間であり、900℃で3時間保持した後は、炉内温度が100℃以下になるまで徐冷した。
The cured product of the phenol resin by pressureless firing obtained in the same manner as in Example 1 was pulverized using a ball mill, and the particle size of the pulverized particles was adjusted using a sieve having an opening of 90 μm. The obtained pulverized grains were put in a predetermined mold, and a molding pressure of 2.0 t / cm 2 was applied at room temperature to obtain a ring-shaped molded body having a diameter of 143 mm, a thickness of 5 mm, and a width of 3.5 mm.
This molded body was held at a temperature of 900 ° C. for 3 hours in a vacuum firing furnace and fired. The temperature rising time until reaching the temperature of 900 ° C. was 20 hours, and after maintaining at 900 ° C. for 3 hours, the furnace was gradually cooled until the temperature in the furnace became 100 ° C. or less.

上記成形体の焼成によって得られた有気孔砥石を長さ32mmの寸法に切り出し、2液性のエポキシ接着剤を用いてアルミ基台に接合した後、直径142mm、厚み3.0mm、幅2.5mmの砥石寸法に成型し、研削砥石を得た。
この研削砥石を横軸超精密平面研削盤(東芝機械株式会社製 HG−130A)に取り付け、研削加工に供した。被削材には、予め表面粗さを中心線平均粗さRa0.2μmに研削したところの、直径125mm、厚さ約0.5mmのシリコンウェーハを用いた。砥石周速を2,920m/min、被削材の回転数を20rev/min、砥石送り設定量を50μm、被削材のテーブル送り速度を12μm/minの条件で、インフィード方式による研削加工を実施した。研削加工の結果を後記の表2に示す。
The porous hole grindstone obtained by firing the molded body was cut into a dimension of 32 mm in length, and bonded to an aluminum base using a two-component epoxy adhesive, and then a diameter of 142 mm, a thickness of 3.0 mm, and a width of 2. Molded to a grinding wheel size of 5 mm to obtain a grinding wheel.
This grinding wheel was attached to a horizontal axis super-precision surface grinding machine (HG-130A manufactured by Toshiba Machine Co., Ltd.) and subjected to grinding. As the work material, a silicon wafer having a diameter of 125 mm and a thickness of about 0.5 mm obtained by previously grinding the surface roughness to a center line average roughness Ra of 0.2 μm was used. Grinding by the in-feed method is performed under the conditions of a grinding wheel peripheral speed of 2,920 m / min, a work material rotation speed of 20 rev / min, a grinding wheel feed set amount of 50 μm, and a work table feed speed of 12 μm / min. Carried out. The results of grinding are shown in Table 2 below.

比較例Comparative example

フェノール樹脂粉末(エアウォーターベルパール社製の商標名ベルパール)と、平均粒径2μmに分級したダイヤモンド砥粒と、平均粒径0.8μmのシリカ粒子とのそれぞれを粉末の状態で混合した。得られた混合物を所定の金型に入れ、180±5℃の温度に保った状態で、1.5t/cmの成形圧力を加えながら焼成させた。直径143mm、厚み5mm、幅3.5mmのリング状の成形体を得た。 Phenol resin powder (trade name Belpearl manufactured by Air Water Velpearl), diamond abrasive grains classified to an average particle diameter of 2 μm, and silica particles having an average particle diameter of 0.8 μm were mixed in a powder state. The obtained mixture was put into a predetermined mold and fired while applying a molding pressure of 1.5 t / cm 2 while maintaining the temperature at 180 ± 5 ° C. A ring-shaped molded body having a diameter of 143 mm, a thickness of 5 mm, and a width of 3.5 mm was obtained.

以上の製造方法で得られた成形体を2液性のエポキシ接着剤を用いて、アルミ基台に接合した後、直径142mm、厚み3.0mm、幅2.5mmの砥石寸法に成形してレジンボンド砥石(研削砥石)を得た。この研削砥石を実施例2と同様に横軸超精密平面研削盤に取り付け、インフィード方式による研削加工を実施した。この研削加工の結果を実施例2の結果と共に表2に示す。   The molded body obtained by the above manufacturing method is bonded to an aluminum base using a two-component epoxy adhesive, and then molded into a grinding wheel size of 142 mm in diameter, 3.0 mm in thickness, and 2.5 mm in width. A bond grindstone (grinding grindstone) was obtained. In the same manner as in Example 2, this grinding wheel was attached to a horizontal axis super-precision surface grinder, and grinding by an infeed method was performed. The results of this grinding process are shown in Table 2 together with the results of Example 2.

Figure 2008030157
この実施例2及び比較例2によれば、本発明の有気孔砥石はレジンボンド砥石に比べ、研削量が50%程度、負荷電流も10%程度改善されていることから、研削性に優れ、研削抵抗が低い研削砥石であることがわかる。
Figure 2008030157
According to this Example 2 and Comparative Example 2, the porous hole grindstone of the present invention has an excellent grindability because the grinding amount is improved by about 50% and the load current is also about 10% compared to the resin bond grindstone. It turns out that it is a grinding wheel with low grinding resistance.

本発明に係る有気孔砥石の部分拡大図である。It is the elements on larger scale of the porous hole grindstone concerning the present invention. 本発明に係る有気孔砥石の製造方法において、液状化したフェノール樹脂中に超砥粒を混合した状態を示す説明図である。It is explanatory drawing which shows the state which mixed the superabrasive grain in the liquefied phenol resin in the manufacturing method of the porous hole grindstone which concerns on this invention. 上記製造方法における硬化物の粉砕状態を示す説明図である。It is explanatory drawing which shows the grinding | pulverization state of the hardened | cured material in the said manufacturing method. 本発明に係る有気孔砥石の成形体の一例を示す斜視図である。It is a perspective view which shows an example of the molded object of the porous hole grindstone which concerns on this invention.

符号の説明Explanation of symbols

1 粉砕粒
1A 粉砕粒
2 超砥粒
3 微細気孔
4 結合材
4A 液状化したフェノール樹脂
5 粒間気孔
6 成形体
DESCRIPTION OF SYMBOLS 1 Ground grain 1A Ground grain 2 Superabrasive grain 3 Fine pore 4 Binder 4A Liquefied phenol resin 5 Intergranular pore 6 Molded body

Claims (6)

アモルファスカーボンからなる結合材中に超砥粒が均一に分散すると共に、該結合材中に微細気孔が均一に分散して形成されている有気孔砥石であって、
上記超砥粒及び微細気孔が分散している結合材が、超砥粒を分散させたフェノール樹脂の硬化物を粉砕してなる粉砕粒を、粒間気孔が存在する状態で所期の成形体に加圧成形したうえで、それを不活性ガス中又は真空中で高温焼成して、上記フェノール樹脂をアモルファスカーボン化することにより形成され、
上記結合材中の微細気孔が、上記アモルファスカーボン化に伴って上記粉砕粒内に発生するガスにより形成されている、
ことを特徴とする有気孔砥石。
A porous abrasive wheel in which superabrasive grains are uniformly dispersed in a binder made of amorphous carbon, and fine pores are uniformly dispersed in the binder,
The above-mentioned superabrasive grains and a binder in which fine pores are dispersed are pulverized grains obtained by pulverizing a cured product of a phenol resin in which superabrasive grains are dispersed. After being pressure-molded, it is formed by baking it at a high temperature in an inert gas or vacuum, and converting the phenol resin into an amorphous carbon,
The fine pores in the binder are formed by the gas generated in the pulverized grains accompanying the amorphous carbonization,
A porous hole grindstone characterized by that.
上記超砥粒が平均粒径5μm以下の砥粒である、
こと特徴とする請求項1に記載の有気孔砥石。
The super abrasive grains are abrasive grains having an average particle size of 5 μm or less.
The perforated grindstone according to claim 1.
上記粉砕粒を形成するフェノール樹脂に、結合度を調整するためのフィラー及び/又は微細気孔量を調整するための気孔形成剤が加えられている、
ことを特徴とする請求項1又は2に記載の有気孔砥石。
To the phenol resin forming the pulverized grains, a filler for adjusting the degree of bonding and / or a pore forming agent for adjusting the amount of fine pores is added,
The porous hole grindstone according to claim 1 or 2, characterized by things.
次の工程(a)〜(d)からなることを特徴とする有気孔砥石の製造方法。
(a) 溶媒で希釈した液状のフェノール樹脂中に超砥粒を均一に分散させて混合物とする工程。
(b) 上記混合物を無加圧焼成してフェノール樹脂を硬化させ、硬化物とする工程。
(c) 上記硬化物を粉砕し、粉砕した粉砕粒を粒間気孔が存在する状態に加圧成形して成形体とする工程。
(d) 上記成形体を不活性ガス中又は真空中で高温焼成し、上記フェノール樹脂をアモルファスカーボン化すると共に、それに伴って発生するガスによりアモルファスカーボン中に微細気孔を形成させる工程。
The manufacturing method of the porous hole grindstone characterized by consisting of following process (a)-(d).
(A) A step of uniformly dispersing superabrasive grains in a liquid phenolic resin diluted with a solvent to form a mixture.
(B) A step of baking the above-mentioned mixture without pressure to cure the phenol resin to obtain a cured product.
(C) The process which grind | pulverizes the said hardened | cured material and press-molds the grind | pulverized grind | pulverized particle in the state in which an intergranular pore exists, and it is set as a molded object.
(D) A step of firing the molded body at a high temperature in an inert gas or in a vacuum to convert the phenol resin into amorphous carbon and forming fine pores in the amorphous carbon by the gas generated along with the amorphous carbon.
上記工程(b)が、上記混合物から溶媒を除去する工程を含み、
上記工程(d)における焼成温度が、700〜1200℃である、
ことを特徴とする請求項4に記載の有気孔砥石の製造方法。
The step (b) includes a step of removing the solvent from the mixture,
The firing temperature in the step (d) is 700 to 1200 ° C.
The manufacturing method of the porous hole grindstone of Claim 4 characterized by the above-mentioned.
上記工程(a)において、超砥粒の平均粒径が5μm以下である、
こと特徴とする請求項4又は5に記載の有気孔砥石の製造方法。
In the step (a), the average particle size of the superabrasive grains is 5 μm or less.
The manufacturing method of the porous hole grindstone of Claim 4 or 5 characterized by the above-mentioned.
JP2006206961A 2006-07-28 2006-07-28 Porous abrasive wheel and manufacturing method thereof Pending JP2008030157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206961A JP2008030157A (en) 2006-07-28 2006-07-28 Porous abrasive wheel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206961A JP2008030157A (en) 2006-07-28 2006-07-28 Porous abrasive wheel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008030157A true JP2008030157A (en) 2008-02-14

Family

ID=39120098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206961A Pending JP2008030157A (en) 2006-07-28 2006-07-28 Porous abrasive wheel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008030157A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058183A (en) * 2008-09-01 2010-03-18 Read Co Ltd Dressing board and method for manufacturing the same
JP2014128878A (en) * 2014-03-04 2014-07-10 Tokyo Seimitsu Co Ltd Thin-edged blade
CN115256251A (en) * 2022-07-19 2022-11-01 江苏赛扬精工科技有限责任公司 Resin-based composite binder grinding disc and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104444A (en) * 1991-10-11 1993-04-27 Olympus Optical Co Ltd Manufacture of grinding wheel for polishing optical glass
JPH0857766A (en) * 1994-08-22 1996-03-05 Olympus Optical Co Ltd Glass polishing-grinding wheel
JPH0947969A (en) * 1995-08-10 1997-02-18 Fujikoshi Mach Corp Superfine powder silicca grinding wheel and manufacture thereof
JPH10329013A (en) * 1997-05-30 1998-12-15 Shin Etsu Handotai Co Ltd Carrier for double polishing and double lapping
JP2002274944A (en) * 2001-03-14 2002-09-25 Mitsubishi Materials Corp Raw material for grinder, resin wheel and method for manufacturing the same
JP2006116683A (en) * 2004-10-25 2006-05-11 Read Co Ltd DIAMOND OR cBN TOOL AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104444A (en) * 1991-10-11 1993-04-27 Olympus Optical Co Ltd Manufacture of grinding wheel for polishing optical glass
JPH0857766A (en) * 1994-08-22 1996-03-05 Olympus Optical Co Ltd Glass polishing-grinding wheel
JPH0947969A (en) * 1995-08-10 1997-02-18 Fujikoshi Mach Corp Superfine powder silicca grinding wheel and manufacture thereof
JPH10329013A (en) * 1997-05-30 1998-12-15 Shin Etsu Handotai Co Ltd Carrier for double polishing and double lapping
JP2002274944A (en) * 2001-03-14 2002-09-25 Mitsubishi Materials Corp Raw material for grinder, resin wheel and method for manufacturing the same
JP2006116683A (en) * 2004-10-25 2006-05-11 Read Co Ltd DIAMOND OR cBN TOOL AND METHOD FOR MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058183A (en) * 2008-09-01 2010-03-18 Read Co Ltd Dressing board and method for manufacturing the same
JP2014128878A (en) * 2014-03-04 2014-07-10 Tokyo Seimitsu Co Ltd Thin-edged blade
CN115256251A (en) * 2022-07-19 2022-11-01 江苏赛扬精工科技有限责任公司 Resin-based composite binder grinding disc and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6431586B2 (en) Abrasive article and method for forming the same
CN101434827B (en) Grinding medium containing ceramic particle, preparation and use thereof
JP5539339B2 (en) High porosity vitrified superabrasive product and manufacturing method
JP2002534281A (en) Super whetstone with active binder
JP2001246566A (en) Cutting grinding wheel, its manufacturing method and grinding method using it
JPH10113875A (en) Super abrasive grain abrasive grindstone
JP2001205566A (en) Resin-impregnated vitrified grinding wheel and its manufacturing method
CN108430700B (en) Sintered, polycrystalline, flat-structured, geometrically structured ceramic grinding element, method for the production thereof and use thereof
JP4584971B2 (en) Manufacturing method of grinding wheel
JP2000343438A (en) Vitrified grinding wheel
JP2008030157A (en) Porous abrasive wheel and manufacturing method thereof
JPS63256364A (en) Porous grindstone of super abrasive grain
JP2006297528A (en) Method for manufacturing resinoid grinding tool having massive abrasive grain
JP2002331461A (en) Grinding stone for super-finishing
CN102066055B (en) Self-bonded foamed abrasive articles and machining with such articles
JP4986590B2 (en) Resinoid grinding wheel
JP6013133B2 (en) High porosity vitrified wheel, and homogeneity evaluation method of vitrified wheel
JP2003181764A (en) Method for manufacturing porous vitrified grinding stone and pore forming agent
JP2002274944A (en) Raw material for grinder, resin wheel and method for manufacturing the same
JP2006320992A (en) Method of manufacturing mirror polishing resinoid grinding wheel containing solid lubricant
JP2007111827A (en) DIAMOND OR cBN GRINDING STONE, AND ITS MANUFACTURING METHOD
CN110587497B (en) Green and environment-friendly grinding material layer, preparation method thereof and grinding wheel
JP2005319556A (en) Pore generating type resinoid grinding wheel
JP2008174744A (en) Abrasive grain product, method for producing the same, and grinding whetstone
JP3858547B2 (en) Whetstone

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080731

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101022

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018