JP2008016405A6 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP2008016405A6
JP2008016405A6 JP2006188918A JP2006188918A JP2008016405A6 JP 2008016405 A6 JP2008016405 A6 JP 2008016405A6 JP 2006188918 A JP2006188918 A JP 2006188918A JP 2006188918 A JP2006188918 A JP 2006188918A JP 2008016405 A6 JP2008016405 A6 JP 2008016405A6
Authority
JP
Japan
Prior art keywords
dye
layer portion
solar cell
porous semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006188918A
Other languages
Japanese (ja)
Other versions
JP2008016405A (en
JP5048281B2 (en
Inventor
竜一 白土
末廣 大久保
修二 早瀬
能弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Nippon Steel Chemical Co Ltd
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Nippon Steel Chemical Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2006188918A priority Critical patent/JP5048281B2/en
Priority claimed from JP2006188918A external-priority patent/JP5048281B2/en
Publication of JP2008016405A publication Critical patent/JP2008016405A/en
Publication of JP2008016405A6 publication Critical patent/JP2008016405A6/en
Application granted granted Critical
Publication of JP5048281B2 publication Critical patent/JP5048281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】多孔質半導体層の厚みを厚くする等した場合においても高い変換効率を得ることができる色素増感太陽電池およびその製造方法を提供する。
【解決手段】色素増感太陽電池10は、透明基板12と、透明導電膜14と、導電膜16および基板18で構成される導電性基板を備え、透明導電膜14と導電性基板の間に色素を吸着した多孔質半導体層20と電解質22を有する。多孔質半導体層20は、酸化スズを主成分とする導電層部20aと、導電層部20aの透明基板14に対向する側の表面に設けられる第1の多孔質半導体層部20bおよび導電層部20aの他方の表面に設けられる第2の多孔質半導体層部20cで構成される。導電層部20aは、貫通孔21を有し、透明導電膜14に電気的に接続される。
【選択図】図1
Disclosed is a dye-sensitized solar cell capable of obtaining high conversion efficiency even when the thickness of a porous semiconductor layer is increased.
A dye-sensitized solar cell includes a conductive substrate including a transparent substrate, a transparent conductive film, a conductive film, and a substrate, and the transparent conductive film is interposed between the transparent conductive film and the conductive substrate. It has the porous semiconductor layer 20 and the electrolyte 22 which adsorb | sucked the pigment | dye. The porous semiconductor layer 20 includes a conductive layer portion 20a mainly composed of tin oxide, and a first porous semiconductor layer portion 20b and a conductive layer portion provided on the surface of the conductive layer portion 20a on the side facing the transparent substrate 14. It is comprised by the 2nd porous semiconductor layer part 20c provided in the other surface of 20a. The conductive layer portion 20 a has a through hole 21 and is electrically connected to the transparent conductive film 14.
[Selection] Figure 1

Description

本発明は、色素増感太陽電池およびその製造方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for producing the same.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。具体的には、透明な導電性ガラス板(透明導電膜を積層した透明基板)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)からなる対極の間に電解液としてヨウ素溶液等を配置した、簡易な構造を有する。
色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor. Specifically, a porous semiconductor layer such as a titania layer formed by baking a titanium dioxide powder or the like on a transparent conductive glass plate (transparent substrate on which a transparent conductive film is laminated) and adsorbing a pigment thereto, and conductive glass It has a simple structure in which an iodine solution or the like is disposed as an electrolytic solution between counter electrodes made of a plate (conductive substrate).
Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.

色素増感太陽電池は、太陽光の変換効率が現状で11%程度であり、さらなる効率の向上が求められている。   The dye-sensitized solar cell currently has a conversion efficiency of sunlight of about 11%, and further improvement in efficiency is required.

太陽光の変換効率を向上させために種々の観点から検討がなされているが、そのうちのひとつとして、多孔質半導体層の厚みを厚くして太陽光の吸収効率を上げる方法が考えられる。   In order to improve the conversion efficiency of sunlight, studies have been made from various viewpoints. One of them is a method of increasing the absorption efficiency of sunlight by increasing the thickness of the porous semiconductor layer.

また、通常の厚みの金属酸化物半導体層を有する色素増感太陽電池についてのものではあるが、電子を効率的に透明導電膜に移動させて変換効率を上げることを目的として、厚みが10〜13μm程度の金属酸化物半導体層(多孔質半導体層)中に櫛型等の形状に形成された導電層が形成され、導電層と基板上の透明導電層が短絡された色素増感太陽電池が提案されている。導電層は、例えば8μm程度の厚みに形成された金属酸化物半導体層の端部を透明導電層の表面が出るまでレーザスクライビングによって削った後、櫛型等の形状のマスクを固定することにより、真空蒸着法等で形成される(特許文献1参照)。
特開2003−197283号公報
Moreover, although it is about the dye-sensitized solar cell which has a metal oxide semiconductor layer of normal thickness, thickness is 10-10 for the purpose of moving an electron efficiently to a transparent conductive film and raising conversion efficiency. A dye-sensitized solar cell in which a conductive layer formed in a comb shape or the like is formed in a metal oxide semiconductor layer (porous semiconductor layer) of about 13 μm, and the conductive layer and the transparent conductive layer on the substrate are short-circuited. Proposed. The conductive layer is shaved by laser scribing until the surface of the transparent conductive layer comes out, for example, after the end of the metal oxide semiconductor layer formed to a thickness of about 8 μm, and then fixed by a comb-shaped mask. It is formed by a vacuum deposition method or the like (see Patent Document 1).
JP 2003-197283 A

しかしながら、多孔質半導体層の厚みを厚くする場合、多孔質半導体層内での電子の拡散距離が長くなることによって直列抵抗が大きくなり、その結果フィルファクター(FF)の値が低くなることで、かえって変換効率が低下する問題がある。
また、金属酸化物半導体層中に真空蒸着法等によって櫛型等の形状を有する導電層を形成する方法は、変換効率向上効果はあるものの、製造方法として煩雑でかつコストもかかるものと考えられる。また、この方法を多孔質半導体層の厚みが13μmを超えるように厚くした場合においても好適に適用できるものかどうかは定かではない。
However, when the thickness of the porous semiconductor layer is increased, the series resistance is increased by increasing the electron diffusion distance in the porous semiconductor layer, and as a result, the value of the fill factor (FF) is decreased. On the contrary, there is a problem that the conversion efficiency is lowered.
In addition, a method of forming a conductive layer having a comb shape or the like in a metal oxide semiconductor layer by vacuum deposition or the like is thought to be complicated and costly as a manufacturing method, although it has an effect of improving conversion efficiency. . Moreover, it is not certain whether this method can be suitably applied even when the thickness of the porous semiconductor layer is increased to exceed 13 μm.

本発明は、上記の課題に鑑みてなされたものであり、多孔質半導体層の厚みを厚くする等した場合においても高い変換効率を得ることができる色素増感太陽電池およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a dye-sensitized solar cell capable of obtaining high conversion efficiency even when the thickness of a porous semiconductor layer is increased, and a method for manufacturing the same. For the purpose.

本発明に係る色素増感太陽電池は、透明基板と、該透明基板の表面に形成される透明導電膜と、該透明導電膜と対向して設けられる導電性基板を備え、該透明導電膜と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有する色素増感太陽電池において、
該多孔質半導体層が、酸化スズを主成分とし、貫通孔を有するとともに該透明導電膜に電気的に接続された導電層部(1)と、該導電層部の該透明基板側の表面に設けられる第1の多孔質半導体層部(2)および該導電層部の他方の表面に設けられる第2の多孔質半導体層部(3)で構成されてなることを特徴とする。
The dye-sensitized solar cell according to the present invention includes a transparent substrate, a transparent conductive film formed on the surface of the transparent substrate, and a conductive substrate provided to face the transparent conductive film, In a dye-sensitized solar cell having a porous semiconductor layer and an electrolyte in which a dye is adsorbed between the conductive substrates,
The porous semiconductor layer is mainly composed of tin oxide, has a through-hole, and is electrically connected to the transparent conductive film, and on the surface of the conductive layer on the transparent substrate side. It comprises a first porous semiconductor layer portion (2) provided and a second porous semiconductor layer portion (3) provided on the other surface of the conductive layer portion.

また、本発明に係る色素増感太陽電池は、前記第1の多孔質半導体層部および前記第2の多孔質半導体層部の合計厚みが14〜31μmであることを特徴とする。   The dye-sensitized solar cell according to the present invention is characterized in that a total thickness of the first porous semiconductor layer portion and the second porous semiconductor layer portion is 14 to 31 μm.

また、本発明に係る色素増感太陽電池は、前記第1の多孔質半導体層部が複数層で構成され、該複数層のうちの前記導電層部に接する側の層が、該導電層部に接する側の層に隣り合う層よりも微細な半導体材料で形成されてなることを特徴とする。   Further, in the dye-sensitized solar cell according to the present invention, the first porous semiconductor layer portion is composed of a plurality of layers, and the layer in contact with the conductive layer portion of the plurality of layers is the conductive layer portion. It is characterized by being formed of a finer semiconductor material than the layer adjacent to the layer on the side in contact with.

また、本発明に係る色素増感太陽電池は、前記第1の多孔質半導体層部の厚みが10〜20μmであることを特徴とする。   In the dye-sensitized solar cell according to the present invention, the thickness of the first porous semiconductor layer portion is 10 to 20 μm.

また、本発明に係る色素増感太陽電池は、前記導電層部の厚みが120nm以下であることを特徴とする。   In the dye-sensitized solar cell according to the present invention, the conductive layer portion has a thickness of 120 nm or less.

また、本発明に係る色素増感太陽電池は、前記導電層部の厚みが75nm以上であることを特徴とする。   In the dye-sensitized solar cell according to the present invention, the conductive layer portion has a thickness of 75 nm or more.

また、本発明に係る色素増感太陽電池は、前記導電層部が、フッ素を0.2質量%以下および塩素を0.4質量%以下含有することを特徴とする。   The dye-sensitized solar cell according to the present invention is characterized in that the conductive layer portion contains 0.2% by mass or less of fluorine and 0.4% by mass or less of chlorine.

また、本発明に係る色素増感太陽電池は、前記導電層部が、熱分解反応によって形成されてなることを特徴とする。   The dye-sensitized solar cell according to the present invention is characterized in that the conductive layer portion is formed by a thermal decomposition reaction.

また、本発明に係る色素増感太陽電池は、前記第2の多孔質半導体層部が複数層で構成され、該複数層のうちの前記導電層部に接する側の層が、他の層よりも微細な半導体材料で形成されてなることを特徴とする。   In the dye-sensitized solar cell according to the present invention, the second porous semiconductor layer portion is composed of a plurality of layers, and the layer on the side in contact with the conductive layer portion of the plurality of layers is more than the other layers. Is formed of a fine semiconductor material.

また、本発明に係る色素増感太陽電池は、前記微細な半導体材料で形成される層の該半導体材料が、平均粒径10nm以下のチタニア微粒子であることを特徴とする。   The dye-sensitized solar cell according to the present invention is characterized in that the semiconductor material of the layer formed of the fine semiconductor material is titania fine particles having an average particle diameter of 10 nm or less.

また、本発明に係る色素増感太陽電池の製造方法は、透明基板と、該透明基板の表面に形成される透明導電膜と、該透明導電膜と対向して設けられる導電性基板を備え、該透明導電膜と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有する色素増感太陽電池の製造方法において、
該透明導電膜の表面に、他の層よりも微細な半導体材料で形成される層を少なくとも最表層に含むように2以上の層からなる多孔質半導体層部を形成する工程と、
該多孔質半導体層部の表面に導電層を形成する工程と、
を有することを特徴とする。
Moreover, the method for producing a dye-sensitized solar cell according to the present invention includes a transparent substrate, a transparent conductive film formed on the surface of the transparent substrate, and a conductive substrate provided to face the transparent conductive film, In the method for producing a dye-sensitized solar cell having a porous semiconductor layer and an electrolyte in which a dye is adsorbed between the transparent conductive film and the conductive substrate,
Forming a porous semiconductor layer composed of two or more layers on the surface of the transparent conductive film so that at least the outermost layer includes a layer formed of a semiconductor material finer than other layers;
Forming a conductive layer on the surface of the porous semiconductor layer portion;
It is characterized by having.

本発明に係る色素増感太陽電池は、多孔質半導体層が、酸化スズを主成分とし、貫通孔を有するとともに透明導電膜に電気的に接続された導電層部と、導電層部の透明基板に対向する側の表面に設けられる第1の多孔質半導体層部および導電層部の他方の表面に設けられる第2の多孔質半導体層部で構成されるので、多孔質半導体層の厚みを厚くする等した場合においても高い変換効率を得ることができる。
また、本発明に係る色素増感太陽電池の製造方法は、透明導電膜の表面に、他の層よりも微細な半導体材料で形成される層を少なくとも最表層に含むように2以上の層からなる多孔質半導体層部を形成する工程と、多孔質半導体層部の表面に導電層を形成する工程と、を有するので、透明導電膜の表面に導電層を容易に形成することができる。
The dye-sensitized solar cell according to the present invention includes a conductive layer portion in which a porous semiconductor layer is mainly composed of tin oxide, has a through-hole, and is electrically connected to a transparent conductive film, and a transparent substrate of the conductive layer portion Since the first porous semiconductor layer portion provided on the surface opposite to the first porous semiconductor layer portion and the second porous semiconductor layer portion provided on the other surface of the conductive layer portion are formed, the thickness of the porous semiconductor layer is increased. High conversion efficiency can be obtained even in the case of doing so.
Moreover, the manufacturing method of the dye-sensitized solar cell which concerns on this invention is the surface of a transparent conductive film from two or more layers so that the layer formed with a semiconductor material finer than another layer may be included in an outermost layer at least. Since it has the process of forming the porous semiconductor layer part which becomes, and the process of forming a conductive layer in the surface of a porous semiconductor layer part, a conductive layer can be easily formed in the surface of a transparent conductive film.

本発明に係る色素増感太陽電池およびその製造方法の好適な実施の形態について、図を参照して、以下に説明する。   Preferred embodiments of a dye-sensitized solar cell and a method for producing the same according to the present invention will be described below with reference to the drawings.

既に説明したように、色素増感太陽電池中の多孔質酸化チタン膜等の多孔質半導体層を厚膜にした場合やその面積を大きくした場合、光により生成された、拡散長が20μm程度といわれている電子の拡散距離が長くなるために、直列抵抗が大きくなってしまう。そのため、電子は、酸化チタン多孔質膜を通って透明導電膜まで到達することが困難になる。その結果、形状因子であるフィルファクター(FF)の値が低くなり、光電変換効率の低下が起こることが問題となっていた。
この問題について、本発明者等が鋭意検討した結果、電子の拡散長と実験より得られた多孔質半導体層の膜厚と光電変換特性の結果を勘案すると、多孔質半導体層のなかに導電性の中間層を設けることで、光電変換効率の向上を図ることができることを見出し、本発明に想達した。
As already explained, when the porous semiconductor layer such as the porous titanium oxide film in the dye-sensitized solar cell is made thick or its area is increased, the diffusion length generated by light is about 20 μm. Since the so-called diffusion distance of electrons becomes long, the series resistance becomes large. Therefore, it becomes difficult for electrons to reach the transparent conductive film through the titanium oxide porous film. As a result, the value of the fill factor (FF), which is a form factor, is lowered, and the photoelectric conversion efficiency is lowered.
As a result of intensive studies by the present inventors on this problem, the results of the electron diffusion length, the thickness of the porous semiconductor layer obtained from the experiment, and the results of the photoelectric conversion characteristics are considered to be conductive in the porous semiconductor layer. It was found that the photoelectric conversion efficiency can be improved by providing the intermediate layer, and the present invention has been conceived.

例えば図1に模式的に示すように、本発明に係る色素増感太陽電池10は、透明基板12と、透明基板12の表面に形成される透明導電膜14と、透明導電膜14と対向して設けられる導電性基板(図1では、導電膜16および基板18で構成される。)を備え、透明導電膜14と導電性基板の間に色素(図1では表示していない。)を吸着した多孔質半導体層20と電解質22を有する。そして、多孔質半導体層20は、酸化スズを主成分とする導電層部20aと、導電層部20aの透明基板14に対向する側の表面に設けられる第1の多孔質半導体層部20bおよび導電層部20aの他方の表面に設けられる第2の多孔質半導体層部20cで構成される。導電層部20aは、貫通孔21を有し、両端(二側)が透明導電膜14に接続されている。なお、図1中、参照符号24は電池内に電解質22を密閉するために設けられるセパレータを示す。   For example, as schematically shown in FIG. 1, a dye-sensitized solar cell 10 according to the present invention faces a transparent substrate 12, a transparent conductive film 14 formed on the surface of the transparent substrate 12, and the transparent conductive film 14. The conductive substrate (constituted by the conductive film 16 and the substrate 18 in FIG. 1) is provided, and a dye (not shown in FIG. 1) is adsorbed between the transparent conductive film 14 and the conductive substrate. The porous semiconductor layer 20 and the electrolyte 22 are provided. The porous semiconductor layer 20 includes a conductive layer portion 20a mainly composed of tin oxide, a first porous semiconductor layer portion 20b provided on the surface of the conductive layer portion 20a facing the transparent substrate 14, and a conductive layer. It is comprised by the 2nd porous semiconductor layer part 20c provided in the other surface of the layer part 20a. The conductive layer portion 20 a has a through hole 21, and both ends (two sides) are connected to the transparent conductive film 14. In FIG. 1, reference numeral 24 denotes a separator provided for sealing the electrolyte 22 in the battery.

透明基板12および基板18は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよい。
透明導電膜14は、例えば、ITO(スズをドープしたインジウム膜)であってもよく、またFTO(フッ素をドープした酸化スズ膜)であってもよく、あるいはまたアンチモンをドープしたSnO(ATO)膜、またはアルミやインジュウムをドープした酸化亜鉛(ZnO)膜等であってもよい。このうち、比抵抗が3.5×10−4(Ω・cm)と低く、また、その表面に多孔質半導体層20を形成するときの熱安定性が高いFTOがより好ましい。導電膜16は、ITO、FTO、ATOやZnO等の膜の上にPt薄膜やカーボン皮膜を持つ導電体層である。
The transparent substrate 12 and the substrate 18 may be glass plates or plastic plates, for example.
The transparent conductive film 14 may be, for example, ITO (indium film doped with tin), FTO (tin oxide film doped with fluorine), or SnO 2 (ATO doped with antimony). ) Film or a zinc oxide (ZnO) film doped with aluminum or indium. Among these, FTO having a low specific resistance of 3.5 × 10 −4 (Ω · cm) and high thermal stability when the porous semiconductor layer 20 is formed on the surface thereof is more preferable. The conductive film 16 is a conductor layer having a Pt thin film or a carbon film on a film of ITO, FTO, ATO, ZnO or the like.

多孔質半導体層20に吸着させる色素は、例えば、ルテニウム等の遷移金属錯体やフタロシアニン、ポルフィン等の金属あるいは非金属等を適宜用いることができる。   As the dye adsorbed on the porous semiconductor layer 20, for example, a transition metal complex such as ruthenium, a metal such as phthalocyanine or porphine, or a nonmetal can be used as appropriate.

電解質22は、特に限定するものではなく、例えばヨウ化物イオンおよびヨウ素の組み合わせからなるもの等の適宜の酸化還元体を用いることができる。酸化還元体は、これを溶解可能な適宜の溶媒を含む。   The electrolyte 22 is not particularly limited, and an appropriate redox material such as a combination of iodide ions and iodine can be used. The redox form contains an appropriate solvent that can dissolve the redox form.

多孔質半導体層20の第1の多孔質半導体層部20bおよび第2の多孔質半導体層部20cは、半導体材料として、例えば、チタン、スズ、ジルコニウム、亜鉛、インジウム、タングステン、鉄、ニッケルあるいは銀等の金属の酸化物を用いることができるが、このうち、チタン酸化物(チタニア)がより好ましい。   The first porous semiconductor layer portion 20b and the second porous semiconductor layer portion 20c of the porous semiconductor layer 20 are made of, for example, titanium, tin, zirconium, zinc, indium, tungsten, iron, nickel or silver as a semiconductor material. Among these, oxides of metals such as titanium oxide (titania) are more preferable.

第1の多孔質半導体層部20bは、単層であってもよいが、例えば図1に示すように、より好ましくは、複数層で構成する。そして、複数層のうちの導電層部20aに接する側の層30aを導電層部20aに接する側の層30aに隣り合う層30bよりも微細な半導体材料で形成する。例えば、層30aを平均粒径10nm以下のチタニア微粒子で形成し、層30bを、好ましくは、平均粒径10nm以上の、例えば平均粒径13〜30nm程度のチタニア微粒子で多孔性を充分有するように形成する。なお、このとき、層30bの外側(図1中、左側)にさらに層30aと同様の層30cを設けてもよい。   Although the first porous semiconductor layer portion 20b may be a single layer, for example, as shown in FIG. 1, it is more preferably composed of a plurality of layers. Then, the layer 30a on the side in contact with the conductive layer portion 20a of the plurality of layers is formed with a finer semiconductor material than the layer 30b adjacent to the layer 30a on the side in contact with the conductive layer portion 20a. For example, the layer 30a is formed with titania fine particles having an average particle size of 10 nm or less, and the layer 30b is preferably sufficiently porous with titania fine particles having an average particle size of 10 nm or more, for example, an average particle size of about 13 to 30 nm. Form. At this time, a layer 30c similar to the layer 30a may be further provided outside the layer 30b (on the left side in FIG. 1).

また、このとき、第1の多孔質半導体層部の厚みは、10〜20μmであることが好ましい。厚みが10μmを下回ると、本発明の効果が十二分に得られないおそれがあり、一方、厚みが20μmを超えると、多孔質半導体層20の厚みが厚くなりすぎて、かえって本発明の効果を損なうおそれがある。   At this time, the thickness of the first porous semiconductor layer portion is preferably 10 to 20 μm. If the thickness is less than 10 μm, the effect of the present invention may not be sufficiently obtained. On the other hand, if the thickness exceeds 20 μm, the thickness of the porous semiconductor layer 20 becomes too thick, and the effect of the present invention is rather. May be damaged.

多孔質半導体層20の第2の多孔質半導体層部20cは、単層であってもよいが、より好ましくは、例えば図1に示すように、多孔質半導体層部20bと同様に、複数層で構成し、複数層のうちの導電層部20aに接する側の層32aを他の層32bよりも微細な半導体材料で形成する。これにより、電解質に溶出しやすく、あるいは第1の多孔質半導体層部20bから剥離するおそれのある導電層部20aをより確実に保護することができ、あるいはまた、ダーク電流の生成によるF.Fの低下を防止することができる。なお、第2の多孔質半導体層部20cについても、第1の多孔質半導体層部20bと同様の、チタニア粒径の構成とすることができ、また、層32bを複数層で構成してもよい。   The second porous semiconductor layer portion 20c of the porous semiconductor layer 20 may be a single layer, but more preferably, as shown in FIG. 1, for example, a plurality of layers as in the porous semiconductor layer portion 20b. The layer 32a on the side in contact with the conductive layer portion 20a of the plurality of layers is formed of a semiconductor material finer than the other layers 32b. As a result, the conductive layer portion 20a that is likely to be eluted into the electrolyte or may be peeled off from the first porous semiconductor layer portion 20b can be more reliably protected, or the F.D. A decrease in F can be prevented. The second porous semiconductor layer portion 20c can also have a titania particle size configuration similar to that of the first porous semiconductor layer portion 20b, and the layer 32b can be composed of a plurality of layers. Good.

導電層部20aは、透明導電膜14に電気的に接続されるものである限り、図1の構成に変えて、透明導電膜14の一端(一側)のみを透明導電膜14に接続した構成としてもよく、あるいはまた、例えば、透明導電膜14および導電層部20aの中央部等に掛け渡された垂直導電体柱で両者を接続した構成としてもよい。
導電層部20aの材料は、酸化スズを主成分とする、ITO、FTOあるいはZnO等を用いることができ、このうち、ITOに比べて熱的な安定性が高いFTOを用いることが、より好ましい。FTOを用いる場合、フッ素を0.2質量%以下および塩素を0.4質量%以下含有するものであると、透明導電層14と同様に、多孔質半導体層20への影響が少なく、抵抗値と透過率のバランスがとれるので、より好ましい。
導電層部20aは、本発明の効果を確実に奏する観点からは、厚みが120nm以下であることが好ましい。一方、本発明の効果を格段に発揮する観点からは、厚みが75nm以上であることが好ましい。
導電層部20aは、熱分解反応によって形成されたものであることが好ましい。
また、導電層部20aは、多孔質半導体層を間に挟んで、すなわち、多孔質半導体層と交互に複数形成してもよい。
As long as the conductive layer portion 20a is electrically connected to the transparent conductive film 14, the configuration is such that only one end (one side) of the transparent conductive film 14 is connected to the transparent conductive film 14 instead of the configuration of FIG. Alternatively, for example, a configuration may be adopted in which both are connected by a vertical conductive pillar extending over the transparent conductive film 14 and the central portion of the conductive layer portion 20a.
As the material of the conductive layer portion 20a, ITO, FTO, ZnO or the like mainly composed of tin oxide can be used, and among these, it is more preferable to use FTO having higher thermal stability than ITO. . When FTO is used, if it contains 0.2% by mass or less of fluorine and 0.4% by mass or less of chlorine, as with the transparent conductive layer 14, there is little influence on the porous semiconductor layer 20, and the resistance value And the transmittance are more preferable.
The conductive layer portion 20a preferably has a thickness of 120 nm or less from the viewpoint of reliably achieving the effects of the present invention. On the other hand, the thickness is preferably 75 nm or more from the viewpoint of remarkably exhibiting the effects of the present invention.
The conductive layer portion 20a is preferably formed by a thermal decomposition reaction.
Further, the conductive layer portion 20a may be formed in plural with the porous semiconductor layer interposed therebetween, that is, alternately with the porous semiconductor layer.

ここで、本発明に係る色素増感太陽電池の製造方法について説明する。
本発明に係る色素増感太陽電池の製造方法は、透明導電膜の表面に、他の層よりも微細な半導体材料で形成される層を少なくとも最表層に含むように2以上の層からなる多孔質半導体層部を形成する工程と、多孔質半導体層部の表面に導電層を形成する工程と、を有するものである。これらの2つの工程以外については、一般的に用いられる適宜の方法を用いることができ、また、上記した本発明に係る色素増感太陽電池の場合は、さらに、導電層の表面に多孔質半導体層部を形成する工程を有するが、他の色素増感太陽電池の製造方法に本発明の製造方法を用いる場合は、この工程は必須ではない。
本発明に係る色素増感太陽電池において、上記のように、第1の多孔質半導体層部20bは、層30aを導電層部20aに接する側の層30aに隣り合う層30bよりも微細な半導体材料で形成する。ついで、微細な半導体材料で形成した層30aの表面に導電層部20aを形成する。
導電層部20aの形成方法は、スプレー法、CVD法、スパッタリング法、ディップ法など種々の方法のなかから適宜選択することができるが、中でもスプレー法やCVD法が、得られる膜の特性の面からも優れており、また経済性の面でも優れる。これら方法において用いられる錫原料としては、SnCl,(CnH2n+1Sn(n=1〜4)、CSnCl、(CHSnCl等を使用することができる。また、フッ素をドーピングするための原料としては、スプレー法の場合、NHF、CVD法の場合、HF、CCl、CHClF、CHCHF、CFBr等を用いることができる。これらの原料を用いた酸化錫の製膜により、フッ素や塩素量を最適化した導電層部20aを形成することができる。
層30aを通常の、例えば13μmを超える粒径の半導体粒子で形成した場合、その表面の凹凸のために、層30aの表面に厚みの薄い導電層部20aを形成することは容易ではなく、膜の形状を保持すること自体がほとんど不可能であった。これに対して、本発明に係る色素増感太陽電池の製造方法によれば、微細な半導体材料は、層30bや層32bの多孔質半導体膜と同様に多孔性を持つが、その表面は比較的滑らかな状態を保ち、直径100nmから200nm程度の小さなくぼみが1μmあたりにわずかに5個程度分布するにすぎない。この比較的平坦化された層30aの表面に対してスプレー熱分解法等の簡易な方法で導電層部20aを比較的容易に形成することができる。
そして、このとき、層30aの表面に厚みの薄い導電層部20aを形成することにより、導電層部20aには自然に貫通孔21が形成される。貫通孔21は製造条件によっては無数に形成されるが、電解質22を適度に浸透、透過できるものである限り適当な数形成されれば十分である。ここでいう、適度に厚みの薄い導電層部20aの具体的な厚みは、多孔質半導体層部の条件等によって異なるが、例えば、50〜170nm程度である。
また、上記本発明の製造方法に代えて、通常の、例えば10nmを超える粒径の半導体粒子で形成した多孔質半導体層部の表面に、上記に比べて厚みの厚い導電層部20aを形成してもよい。ただし、この場合、導電層部20aの厚みが厚すぎることおよび導電層部20aの被覆が十分でないことによる電解液との接触のための漏れ電流に起因して、電池の高い変換効率が得られなかったり、あるいはまた、貫通孔の形成が不十分になったりすることも考えられるので、上記本発明の製造方法のほうがより好ましい。
Here, the manufacturing method of the dye-sensitized solar cell concerning this invention is demonstrated.
In the method for producing a dye-sensitized solar cell according to the present invention, the surface of the transparent conductive film is a porous layer composed of two or more layers so that at least the outermost layer includes a layer formed of a semiconductor material finer than the other layers. A step of forming a porous semiconductor layer portion and a step of forming a conductive layer on the surface of the porous semiconductor layer portion. Except for these two steps, an appropriate method generally used can be used. In the case of the above-described dye-sensitized solar cell according to the present invention, a porous semiconductor is further formed on the surface of the conductive layer. Although it has the process of forming a layer part, when using the manufacturing method of this invention for the manufacturing method of another dye-sensitized solar cell, this process is not essential.
In the dye-sensitized solar cell according to the present invention, as described above, the first porous semiconductor layer portion 20b is a semiconductor finer than the layer 30b adjacent to the layer 30a on the side where the layer 30a is in contact with the conductive layer portion 20a. Form with material. Next, the conductive layer portion 20a is formed on the surface of the layer 30a formed of a fine semiconductor material.
The method for forming the conductive layer portion 20a can be appropriately selected from various methods such as a spray method, a CVD method, a sputtering method, and a dip method. Among these, the spray method and the CVD method are particularly advantageous in terms of the characteristics of the obtained film. It is also excellent in terms of economy. As a tin raw material used in these methods, SnCl 4 , (CnH 2n + 1 ) 4 Sn (n = 1 to 4), C 4 H 9 SnCl 3 , (CH 3 ) 2 SnCl 2 or the like can be used. As a raw material for doping fluorine, NH 4 F can be used in the spray method, HF, CCl 2 F 2 , CHClF 2 , CH 3 CHF 2 , CF 3 Br, or the like can be used in the CVD method. . By forming tin oxide using these raw materials, it is possible to form the conductive layer portion 20a with optimized amounts of fluorine and chlorine.
When the layer 30a is formed of normal semiconductor particles having a particle diameter exceeding, for example, 13 μm, it is not easy to form the thin conductive layer portion 20a on the surface of the layer 30a due to the unevenness of the surface. It was almost impossible to maintain the shape itself. On the other hand, according to the method for manufacturing a dye-sensitized solar cell according to the present invention, the fine semiconductor material has the same porosity as the porous semiconductor films of the layer 30b and the layer 32b, but the surface thereof is compared. The small indentation with a diameter of about 100 nm to 200 nm is distributed only about 5 per 1 μm 2 . The conductive layer portion 20a can be relatively easily formed on the surface of the relatively flattened layer 30a by a simple method such as spray pyrolysis.
At this time, by forming the thin conductive layer portion 20a on the surface of the layer 30a, the through hole 21 is naturally formed in the conductive layer portion 20a. An infinite number of through-holes 21 are formed depending on manufacturing conditions, but it is sufficient to form an appropriate number as long as the electrolyte 22 can permeate and permeate appropriately. Here, the specific thickness of the conductive layer portion 20a having an appropriately thin thickness varies depending on the conditions of the porous semiconductor layer portion, but is, for example, about 50 to 170 nm.
Further, instead of the manufacturing method of the present invention, a conductive layer portion 20a having a thickness larger than that of the above is formed on the surface of a normal porous semiconductor layer portion formed of semiconductor particles having a particle diameter exceeding 10 nm, for example. May be. However, in this case, high conversion efficiency of the battery can be obtained due to leakage current for contact with the electrolytic solution due to the thickness of the conductive layer portion 20a being too thick and the covering of the conductive layer portion 20a being insufficient. The production method of the present invention is more preferable because there may be no through hole formation or insufficient formation of the through hole.

以上説明した本発明に係る色素増感太陽電池は、集電体として機能する導電層部を多孔質半導体層の内部に設けたので、多孔質半導体層の厚みを例えば14μm以上に厚くする等した場合においても高い変換効率を得ることができる。多孔質半導体層の厚みの上限は得られる変換効率の値等に応じて適宜設定されるが、例えば、31μm程度である。なお、本発明を多孔質半導体層が通常の厚みを有する場合にも好適に適用できることは勿論である。
また、本発明の微細な半導体材料で形成した多孔質半導体層の最表層上に導電層部を形成する方法は、多孔質半導体層を構成要素とするものである限り、色素増感太陽電池以外の太陽電池にも適用することができる。
In the dye-sensitized solar cell according to the present invention described above, since the conductive layer portion functioning as a current collector is provided inside the porous semiconductor layer, the thickness of the porous semiconductor layer is increased to, for example, 14 μm or more. Even in the case, high conversion efficiency can be obtained. The upper limit of the thickness of the porous semiconductor layer is appropriately set according to the value of conversion efficiency obtained, and is, for example, about 31 μm. Needless to say, the present invention can also be suitably applied to the case where the porous semiconductor layer has a normal thickness.
In addition, the method of forming the conductive layer portion on the outermost layer of the porous semiconductor layer formed of the fine semiconductor material of the present invention is not a dye-sensitized solar cell as long as the porous semiconductor layer is a constituent element. This can also be applied to solar cells.

実施例および比較例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   The present invention will be further described with reference to examples and comparative examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例1〜実施例5)
大きさが30mm×30mm、厚さ1mmのホウケイ酸ガラスを十分洗浄乾燥し、ガラス基板とした。この基板上に以下のようにして透明導電膜を形成した。
n−ブチル錫トリクロライド、水とエタノールの混合溶液に、フッ素ドープのためにフッ化アンモニュウムを加え、キャリアガスとしての窒素ガスに酸素ガスを混合してスプレーガンにて霧化したものを、380℃以上500℃以下に熱したガラス基板上に搬送し、スプレー熱分解によりFTOを製膜した。このときのFTO膜中のフッ素含有量は、0.13質量%であり、塩素含有量は0.17質量%であった。
こうして得られたFTO膜付きガラス基板を十分に洗浄乾燥した後、酸化チタン微粒子ペーストを0.5cm×0.5cmの面積にスキージ法により塗布した。具体的には、酸化チタン多孔質膜として、10nm以下の微粒子からなる緻密層を2μm程度、その上に10nm以上の微粒子からなる多孔質膜を6μm程度、その上に10nm以下の微粒子からなる緻密層を2μm程度順次製膜した。その後、500℃で1時間の間、電気炉で熱処理を行った。得られた酸化チタン多孔質膜(第1の多孔質半導体層部)の総膜厚は、ほぼ10μmであった。
さらに、ガラス基板上に形成したFTO膜と同様の条件で、スプレー熱分解法で、酸化チタン多孔質膜の上にFTOを製膜し、65nm〜150nmの範囲で厚みを変えた透明導電膜(導電層部)を形成した。
さらに、緻密酸化チタン層2μm程度と多孔質酸化チタン層3μm程度を順次製膜し、再度、500℃で1時間熱処理して酸化チタン多孔質膜(第2の多孔質半導体層部)を形成した。
これらの多孔質膜を形成したガラス基板をN3(RuL2(NCS)2, L: 4,4’-dicarboxy-2,2’-bipyridine)色素を含むエタノール溶液中に13時間程度浸して、酸化チタン厚膜に色素を吸着させた。さらに、スパッタ法により製膜した白金を持つITOまたはFTOを対極として、2つの膜(極)を50μmのスペーサにより封止した。この封止した空間に、アセトニトリル中、I2 250 ml、t-BuPy 580 mMを調整した電解質を注入して、セル(電池セル)を作製し、評価した。
(Example 1 to Example 5)
A borosilicate glass having a size of 30 mm × 30 mm and a thickness of 1 mm was sufficiently washed and dried to obtain a glass substrate. A transparent conductive film was formed on this substrate as follows.
A mixture of n-butyltin trichloride, water and ethanol, ammonium fluoride for fluorine doping, oxygen gas mixed with nitrogen gas as a carrier gas, and atomized with a spray gun, 380 It was transported onto a glass substrate heated to from ℃ to 500 ℃, and FTO was formed by spray pyrolysis. At this time, the fluorine content in the FTO film was 0.13% by mass, and the chlorine content was 0.17% by mass.
The glass substrate with the FTO film thus obtained was sufficiently washed and dried, and then the titanium oxide fine particle paste was applied to an area of 0.5 cm × 0.5 cm by a squeegee method. Specifically, as a porous titanium oxide film, a dense layer made of fine particles of 10 nm or less is about 2 μm, a porous film made of fine particles of 10 nm or more is further about 6 μm, and a dense layer made of fine particles of 10 nm or less is further formed thereon. The layers were sequentially formed to a thickness of about 2 μm. Thereafter, heat treatment was performed in an electric furnace at 500 ° C. for 1 hour. The total film thickness of the obtained titanium oxide porous film (first porous semiconductor layer portion) was approximately 10 μm.
Furthermore, under the same conditions as the FTO film formed on the glass substrate, the FTO film was formed on the titanium oxide porous film by spray pyrolysis, and the thickness was changed in the range of 65 nm to 150 nm. Conductive layer portion) was formed.
Further, a dense titanium oxide layer of about 2 μm and a porous titanium oxide layer of about 3 μm were sequentially formed, and again heat treated at 500 ° C. for 1 hour to form a titanium oxide porous film (second porous semiconductor layer part). .
The glass substrate on which these porous films are formed is immersed in an ethanol solution containing N3 (RuL 2 (NCS) 2 , L: 4,4'-dicarboxy-2,2'-bipyridine) dye for about 13 hours for oxidation. The dye was adsorbed on the titanium thick film. Furthermore, using ITO or FTO having platinum formed by sputtering as a counter electrode, the two films (electrodes) were sealed with a 50 μm spacer. Into this sealed space, an electrolyte prepared by adjusting I 2 250 ml and t-BuPy 580 mM in acetonitrile was injected to produce and evaluate a cell (battery cell).

(実施例6)
実施例1〜実施例5と同様に、第1の多孔質半導体層部は、10nm以下の微粒子からなる緻密層を2μm程度、その上に10nm以上の微粒子からなる多孔質膜を12μm程度、その上に10nm以下の微粒子からなる緻密層を2μm程度順次製膜した。その後、500℃で1時間の間、電気炉で熱処理を行った。得られた酸化チタン多孔質膜(第1の多孔質半導体層部)の総膜厚は、ほぼ16μmであった。さらに、ガラス基板上に形成したFTO膜と同様の条件で、スプレー熱分解法で、酸化チタン多孔質膜の上にFTOを製膜、85nm程度の透明導電膜(導電層部)を形成した。
さらに、緻密酸化チタン層を2μm程度と多孔質酸化チタン層を12μm程度製膜、再度、500℃で1時間熱処理して酸化チタン多孔質膜(第2の多孔質半導体層部)を形成した。
(Example 6)
In the same manner as in Examples 1 to 5, the first porous semiconductor layer portion has a dense layer made of fine particles of 10 nm or less, about 2 μm, and a porous film made of fine particles of 10 nm or more on it, about 12 μm. A dense layer made of fine particles of 10 nm or less was successively formed on the top of the film to a thickness of about 2 μm. Thereafter, heat treatment was performed in an electric furnace at 500 ° C. for 1 hour. The total film thickness of the obtained titanium oxide porous film (first porous semiconductor layer portion) was approximately 16 μm. Furthermore, FTO was formed on the titanium oxide porous film by a spray pyrolysis method under the same conditions as the FTO film formed on the glass substrate, and a transparent conductive film (conductive layer part) of about 85 nm was formed.
Further, a dense titanium oxide layer was formed to a thickness of about 2 μm and a porous titanium oxide layer was formed to a thickness of about 12 μm, and heat treated again at 500 ° C. for 1 hour to form a titanium oxide porous film (second porous semiconductor layer portion).

(比較例1)
透明導電膜(導電層部)を省略した以外は実施例と同様の方法により、従来の構成のセル(電池セル)を作製し、実施例と同様に評価した。
(Comparative Example 1)
A cell (battery cell) having a conventional configuration was produced in the same manner as in the example except that the transparent conductive film (conductive layer part) was omitted, and evaluated in the same manner as in the example.

(比較例2〜比較例7)
酸化チタン多孔質膜として、10nm以下の微粒子からなる緻密層を2μm程度、その上に10nm以上の微粒子からなる多孔質膜を積層して、その合計厚みを8.1μm〜30.3μmの範囲で変えた以外は比較例1と同様の方法により、従来の構成のセル(電池セル)を作製し、実施例と同様に評価した。
(Comparative Example 2 to Comparative Example 7)
As a titanium oxide porous film, a dense layer composed of fine particles of 10 nm or less is laminated about 2 μm, and a porous film made of fine particles of 10 nm or more is laminated thereon, and the total thickness is in the range of 8.1 μm to 30.3 μm. A cell (battery cell) having a conventional configuration was produced in the same manner as in Comparative Example 1 except that the change was made, and evaluated in the same manner as in the example.

以上の結果をまとめて表1に示す。
表1中、太陽電池特性は、100mW/cm2、AM1.5の擬似太陽光を試料セルに照射し、ポテンショスタットと関数発生器を用い、電位掃引して得られた光電流電位曲線から、短絡電流、開放電圧、F.Fを求め、変換効率をそれらの値により求めた。
なお、実施例5の透明導電膜の厚みを150nmとしたものは、比較例1よりも変換効率が低いが、多孔質半導体層部の厚み等の諸条件によっては透明導電膜の厚みを150nmとすることに意義があることはいうまでもない。
The above results are summarized in Table 1.
In Table 1, the solar cell characteristics are short-circuited from the photocurrent potential curve obtained by irradiating the sample cell with 100mW / cm2, AM1.5 simulated sunlight, and using a potentiostat and a function generator to sweep the potential. Current, open voltage, F.V. F was determined and the conversion efficiency was determined from these values.
In addition, what converted the thickness of the transparent conductive film of Example 5 to 150 nm has lower conversion efficiency than Comparative Example 1, but depending on various conditions such as the thickness of the porous semiconductor layer portion, the thickness of the transparent conductive film is set to 150 nm. It goes without saying that there is significance in doing.

本発明に係る色素増感太陽電池の構成を模式的に示した図である。It is the figure which showed typically the structure of the dye-sensitized solar cell which concerns on this invention.

符号の説明Explanation of symbols

10 色素増感太陽電池
12 透明基板
14 透明導電膜
16 導電膜
18 基板
20 多孔質半導体層
20a 導電層部
20b 第1の多孔質半導体層部
20c 第2の多孔質半導体層部
22 電解質
24 セパレータ
30a、30b、30c、32a、32b 層
DESCRIPTION OF SYMBOLS 10 Dye sensitized solar cell 12 Transparent substrate 14 Transparent conductive film 16 Conductive film 18 Substrate 20 Porous semiconductor layer 20a Conductive layer part 20b First porous semiconductor layer part 20c Second porous semiconductor layer part 22 Electrolyte 24 Separator 30a 30b, 30c, 32a, 32b layers

Claims (11)

透明基板と、該透明基板の表面に形成される透明導電膜と、該透明導電膜と対向して設けられる導電性基板を備え、該透明導電膜と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有する色素増感太陽電池において、
該多孔質半導体層が、酸化スズを主成分とし、貫通孔を有するとともに該透明導電膜に電気的に接続された導電層部と、該導電層部の該透明基板側の表面に設けられる第1の多孔質半導体層部および該導電層部の他方の表面に設けられる第2の多孔質半導体層部で構成されてなることを特徴とする色素増感太陽電池。
A transparent substrate, a transparent conductive film formed on the surface of the transparent substrate, and a conductive substrate provided opposite to the transparent conductive film are provided, and a dye is adsorbed between the transparent conductive film and the conductive substrate. In a dye-sensitized solar cell having a porous semiconductor layer and an electrolyte,
The porous semiconductor layer is mainly composed of tin oxide, has a through-hole and is electrically connected to the transparent conductive film, and a conductive layer portion provided on a surface of the conductive layer portion on the transparent substrate side. A dye-sensitized solar cell comprising: a porous semiconductor layer portion of 1 and a second porous semiconductor layer portion provided on the other surface of the conductive layer portion.
前記第1の多孔質半導体層部および前記第2の多孔質半導体層部の合計厚みが14〜31μmであることを特徴とする請求項1記載の色素増感太陽電池。   2. The dye-sensitized solar cell according to claim 1, wherein a total thickness of the first porous semiconductor layer portion and the second porous semiconductor layer portion is 14 to 31 μm. 前記第1の多孔質半導体層部が複数層で構成され、該複数層のうちの前記導電層部に接する側の層が、該導電層部に接する側の層に隣り合う層よりも微細な半導体材料で形成されてなることを特徴とする請求項1記載の色素増感太陽電池。   The first porous semiconductor layer portion is composed of a plurality of layers, and a layer of the plurality of layers in contact with the conductive layer portion is finer than a layer adjacent to a layer in contact with the conductive layer portion. 2. The dye-sensitized solar cell according to claim 1, wherein the dye-sensitized solar cell is formed of a semiconductor material. 前記第1の多孔質半導体層部の厚みが10〜20μmであることを特徴とする請求項3記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 3, wherein the first porous semiconductor layer portion has a thickness of 10 to 20 μm. 前記導電層部の厚みが120nm以下であることを特徴とする請求項1〜4のいずれか1項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the conductive layer portion has a thickness of 120 nm or less. 前記導電層部の厚みが75nm以上であることを特徴とする請求項5記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 5, wherein the conductive layer portion has a thickness of 75 nm or more. 前記導電層部が、フッ素を0.2質量%以下および塩素を0.4質量%以下含有することを特徴とする請求項1記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the conductive layer portion contains 0.2 mass% or less of fluorine and 0.4 mass% or less of chlorine. 前記導電層部が、熱分解反応によって形成されてなることを特徴とする請求項1記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the conductive layer portion is formed by a thermal decomposition reaction. 前記第2の多孔質半導体層部が複数層で構成され、該複数層のうちの前記導電層部に接する側の層が、他の層よりも微細な半導体材料で形成されてなることを特徴とする請求項1記載の色素増感太陽電池。   The second porous semiconductor layer portion is composed of a plurality of layers, and a layer in contact with the conductive layer portion of the plurality of layers is formed of a semiconductor material finer than other layers. The dye-sensitized solar cell according to claim 1. 前記微細な半導体材料で形成される層の該半導体材料が、平均粒径10nm以下のチタニア微粒子であることを特徴とする請求項3または請求項9記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 3 or 9, wherein the semiconductor material of the layer formed of the fine semiconductor material is titania fine particles having an average particle diameter of 10 nm or less. 透明基板と、該透明基板の表面に形成される透明導電膜と、該透明導電膜と対向して設けられる導電性基板を備え、該透明導電膜と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有する色素増感太陽電池の製造方法において、
該透明導電膜の表面に、他の層よりも微細な半導体材料で形成される層を少なくとも最表層に含むように2以上の層からなる多孔質半導体層部を形成する工程と、
該多孔質半導体層部の表面に導電層を形成する工程と、
を有することを特徴とする色素増感太陽電池の製造方法。
A transparent substrate, a transparent conductive film formed on the surface of the transparent substrate, and a conductive substrate provided opposite to the transparent conductive film are provided, and a dye is adsorbed between the transparent conductive film and the conductive substrate. In a method for producing a dye-sensitized solar cell having a porous semiconductor layer and an electrolyte,
Forming a porous semiconductor layer composed of two or more layers on the surface of the transparent conductive film so that at least the outermost layer includes a layer formed of a semiconductor material finer than other layers;
Forming a conductive layer on the surface of the porous semiconductor layer portion;
The manufacturing method of the dye-sensitized solar cell characterized by having.
JP2006188918A 2006-07-10 2006-07-10 Dye-sensitized solar cell and method for producing the same Active JP5048281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188918A JP5048281B2 (en) 2006-07-10 2006-07-10 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188918A JP5048281B2 (en) 2006-07-10 2006-07-10 Dye-sensitized solar cell and method for producing the same

Publications (3)

Publication Number Publication Date
JP2008016405A JP2008016405A (en) 2008-01-24
JP2008016405A6 true JP2008016405A6 (en) 2008-04-03
JP5048281B2 JP5048281B2 (en) 2012-10-17

Family

ID=39073205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188918A Active JP5048281B2 (en) 2006-07-10 2006-07-10 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5048281B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110124239A (en) 2009-03-11 2011-11-16 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Dye-sensitized solar cell
JP2011044426A (en) * 2009-07-24 2011-03-03 Nippon Electric Glass Co Ltd Glass substrate with conductive film for solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021460A (en) * 1998-07-03 2000-01-21 Toyota Central Res & Dev Lab Inc Pigment sensitizing solar battery
JP4343388B2 (en) * 2000-04-04 2009-10-14 Tdk株式会社 Oxide semiconductor dye-coupled electrode and dye-sensitized solar cell
JP2005196982A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2005285473A (en) * 2004-03-29 2005-10-13 Shozo Yanagida Photoelectric conversion device
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP5070704B2 (en) * 2006-01-23 2012-11-14 ソニー株式会社 Photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
KR101145322B1 (en) Counter electrode for photoelectric converter and photoelectric converter
JP4812956B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP5237664B2 (en) Photoelectric conversion element
JP2007073507A (en) Photoelectrochemical element using carbon nanotube
Nagavolu et al. Pt-free spray coated reduced graphene oxide counter electrodes for dye sensitized solar cells
Raksha et al. Functional materials for dye-sensitized solar cells
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
JP5005206B2 (en) Working electrode of dye-sensitized solar cell, dye-sensitized solar cell including the same, and method for producing working electrode of dye-sensitized solar cell
Prabakar et al. Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells
KR101083310B1 (en) Dye-sensitized solar cell and manufacturing method thereof
JP5048281B2 (en) Dye-sensitized solar cell and method for producing the same
KR100908243B1 (en) Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JP4872861B2 (en) Plasmon resonance type photoelectric conversion element and method for manufacturing the same
KR100807238B1 (en) Photoelectrode of dye-sensitized solar cell containing glass powder
JP2008016405A6 (en) Dye-sensitized solar cell and method for producing the same
KR101538640B1 (en) Photoelectrode for dye-sensitized solar cell, manufacturing method thereof and dye-sensitized solar cell using the same
KR100935425B1 (en) Dye-sensitized cell and method for fabrication thereof
JP4050535B2 (en) Method for producing dye-sensitized solar cell
JP5135520B2 (en) Dye-sensitized solar cell
KR101633383B1 (en) Photo-electrode for Photoelectronchemical cell, method of manufacturing the same
JP2005243379A (en) Photoelectric conversion device
JP2013511135A (en) Dye-sensitized solar cell and method for producing the same
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate
KR101623585B1 (en) Dye-Sensitized Solar Cells And Manufacturing Method For Thereof