JP2008016061A - Control method of multishaft multi-system nc lathe - Google Patents

Control method of multishaft multi-system nc lathe Download PDF

Info

Publication number
JP2008016061A
JP2008016061A JP2007257283A JP2007257283A JP2008016061A JP 2008016061 A JP2008016061 A JP 2008016061A JP 2007257283 A JP2007257283 A JP 2007257283A JP 2007257283 A JP2007257283 A JP 2007257283A JP 2008016061 A JP2008016061 A JP 2008016061A
Authority
JP
Japan
Prior art keywords
control
machining program
machining
axis
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007257283A
Other languages
Japanese (ja)
Inventor
Takayasu Saito
高靖 斎藤
Umeo Tsuyusaki
梅夫 露崎
Toru Takahashi
徹 高橋
Akihide Kanetani
昭秀 金谷
Sousaku Kimura
壮作 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007257283A priority Critical patent/JP2008016061A/en
Publication of JP2008016061A publication Critical patent/JP2008016061A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a multishaft multi-system NC lathe for controlling a section up to a multi-system finishing command from a multi-system starting command by a multi-system processing program, and controlling the other section by a single system processing program. <P>SOLUTION: This control method is constituted so as to be capable of switching to a control state of performing simultaneous processing and switching to a control state by the single system processing program from a control state of a multi-system processing program by the multi-system finishing command, in a plurality of control systems by the multi-system processing program composed of a processing program respectively corresponding to the plurality of control systems, from the control state by the single system processing program, by processing control and the multi-system starting command in only one control system by the single system processing program composed of the processing program corresponding to one control system for performing processing. The processing by one control system and the simultaneous processing by the plurality of control systems are performed by switching the control state on the basis of the multi-system starting command and the multi-system finishing command. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は多軸多系統NC旋盤の制御方法に関する。   The present invention relates to a control method for a multi-axis multi-system NC lathe.

多軸多系統NC旋盤の加工プログラムは系統ごとの加工プログラムをそれぞれひとまとめにし、常時多系統加工プログラムで多軸多系統NC旋盤を制御していた(例えば特許文献1参照)。
特開昭63−317807号公報
The machining program for the multi-axis multi-system NC lathe is a group of machining programs for each system, and the multi-axis multi-system NC lathe is always controlled by the multi-system machining program (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. Sho 63-317807

本発明の目的は、多軸多系統NC旋盤を、多軸多系統NC旋盤の加工プログラム中の多系統開始指令から多系統終了指令までの区間は多系統加工プログラムにより制御し、他の区間は単系統加工プログラムにより制御する制御方法を提供することを課題としている。   The purpose of the present invention is to control a multi-axis multi-system NC lathe from the multi-system start command to the multi-system end command in the multi-axis multi-system NC lathe machining program by the multi-system machining program. It is an object to provide a control method controlled by a single system machining program.

上記目的を達成するために、本発明の多軸多系統NC旋盤の制御方法は、複数の制御系統各々に対応する加工プログラムからなる多系統加工プログラムによる制御によって複数の制御系統で同時加工を行うことができる多軸多系統NC旋盤の制御方法において、上記多軸多系統NC旋盤を、加工を実行する1つの制御系統に対応する加工プログラムからなる単系統加工プログラムによる1つの制御系統のみでの加工制御と、多系統開始指令により、単系統加工プログラムによる制御状態から多系統加工プログラムによる制御状態への切り換えと、多系統終了指令により、多系統加工プログラムによる制御状態から単系統加工プログラムによる制御状態への切り換えとを可能に構成し、単系統加工プログラムと、多系統開始指令と多系統終了指令との間に挟まれた多系統加工プログラムとが直列に連続する加工プログラムによって、1つの制御系統による加工と、複数の制御系統による同時加工とを、多系統開始指令と多系統終了指令とに基づき制御状態を切り換えながら実行させることを特徴とする。   In order to achieve the above object, the control method for a multi-axis multi-system NC lathe according to the present invention performs simultaneous machining in a plurality of control systems under the control of a multi-system machining program comprising machining programs corresponding to each of the plurality of control systems. In the control method of a multi-axis multi-system NC lathe capable of performing the above-mentioned multi-axis multi-system NC lathe with only one control system by a single system machining program consisting of a machining program corresponding to one control system for performing machining. Switching from a control state by a single system machining program to a control state by a multi-system machining program by machining control and a multi-system machining program, and control by a single system machining program from a control state by a multi-system machining program by a multi-system end command The system can be switched to a single system machining program, multi-system start command and multi-system end instruction. With a machining program in which a multi-system machining program sandwiched between the two is connected in series, machining by one control system and simultaneous machining by multiple control systems are converted into a multi-system start command and a multi-system end command. Based on this, the control state is executed while switching.

必要な箇所のみ多系統加工プログラムによる制御を行わせることにより、軸の系統への割り当てや座標の設定等の回数を減らし、プログラム作成者に系統の意識をさせない加工プログラム作成を可能にし、分かり易い多軸多系統NC旋盤の制御方法を提供することができる。   By allowing the multi-system machining program to control only the necessary parts, the number of axis assignments to the system and the setting of coordinates, etc., can be reduced, making it possible to create machining programs that do not make the program creator aware of the system, making it easy to understand A control method for a multi-axis multi-system NC lathe can be provided.

以下に本発明の最良の形態を、図面を使用して説明する。   The best mode of the present invention will be described below with reference to the drawings.

はじめに多軸多系統NC旋盤の簡単な機械構成を図3を用いて説明する。この装置は複数の工具11を保持しX1軸方向に移動する第1刃物台10と、複数の工具21を保持しZ2軸方向とX2軸方向に移動する第2刃物台20と、材料31を把持し回転しZ1軸方向に移動する主軸30で構成され、主に主軸30の回転とZ1軸方向の移動と第1刃物台10に保持された工具11のX1軸方向の移動による加工と、主軸30の回転とZ1軸方向の移動と第2刃物台20に保持された工具21のZ2軸方向の移動による加工を行う。   First, a simple mechanical configuration of a multi-axis multi-system NC lathe will be described with reference to FIG. This apparatus holds a plurality of tools 11 and moves a first tool post 10 that moves in the X1 axis direction, a plurality of tools 21 holds a second tool rest 20 that moves in the Z2 axis direction and the X2 axis direction, and a material 31. A spindle 30 that is gripped, rotated, and moved in the Z1 axis direction, mainly processing by rotation of the spindle 30, movement in the Z1 axis direction, and movement of the tool 11 held on the first tool post 10 in the X1 axis direction; Machining is performed by rotating the spindle 30, moving in the Z1 axis direction, and moving the tool 21 held on the second tool post 20 in the Z2 axis direction.

図4は図5、図6の加工プログラム例による同時加工の概要を、工具の刃先の軌跡と加工後の材料の形状で示したものである。第1刃物台10の複数の工具11から選択した外
径切削用工具T12により直径10mmの材料31の先端から10mmまでを直径6mmに切削し、同時に第2刃物台20の複数の工具21から選択したドリルT22により材料31の先端から深さ5mmの穴あけを行い、その後第1刃物台10の複数の工具11から選択した突っ切り用工具T13により突っ切って製品32の形とした。
FIG. 4 shows an outline of simultaneous machining by the machining program examples of FIGS. 5 and 6 in terms of the locus of the cutting edge of the tool and the shape of the material after machining. The outer diameter cutting tool T12 selected from the plurality of tools 11 of the first tool post 10 is used to cut from the tip of the material 31 having a diameter of 10 mm to 10 mm to a diameter of 6 mm, and at the same time selected from the plurality of tools 21 of the second tool post 20 A drill having a depth of 5 mm was drilled from the tip of the material 31 with the drill T22, and then cut off with the cutting tool T13 selected from the plurality of tools 11 of the first tool post 10 to form the product 32.

図1、図2は直列に表記された加工プログラムの表示例を模式的に示した図である。図1は加工プログラムを1行直列に表示した例であり、多系統制御部分8すなわち同時実行する加工プログラム部分が連続し隣接しているため動作の時間関係の認識が簡単にできる。図2は加工プログラムを複数行直列に表示した例である。なお1は多軸多系統NC旋盤の表示画面,2は加工プログラム表示範囲,3は加工プログラムが長く表示範囲に収まらない部分,4は表示の空き部分,7は単系統制御部分である。   FIG. 1 and FIG. 2 are diagrams schematically showing display examples of machining programs written in series. FIG. 1 shows an example in which machining programs are displayed in series in one line. Since the multi-system control part 8, that is, the machining program parts to be executed simultaneously, are continuous and adjacent to each other, it is possible to easily recognize the time relation of the operation. FIG. 2 is an example in which a machining program is displayed in a plurality of lines in series. Note that 1 is a display screen of a multi-axis multi-system NC lathe, 2 is a machining program display range, 3 is a portion where the machining program is long and does not fit in the display range, 4 is a display empty portion, and 7 is a single-system control portion.

図5は加工プログラム例であり、左の列が指令で右にその内容を簡単に示した。各ステップの指令による動作等の終了後に次のステップの指令を実行する単系統加工プログラムによる制御に続き多系統開始指令と多系統終了指令にはさまれた多系統加工プログラムによる同時動作制御を行いさらに単系統加工プログラムによる制御を続けて行う同時加工を含む簡単な加工の多系統加工プログラム例である。この多系統加工プログラムの内容を順をおって説明する。   FIG. 5 shows an example of a machining program. The left column is a command and the contents are simply shown on the right. Following the control by the single system machining program that executes the command of the next step after the operation by the command of each step is completed, the simultaneous operation control by the multi-system machining program sandwiched between the multi-system start command and the multi-system end command is performed. Furthermore, it is an example of a simple machining multi-system machining program including simultaneous machining performed continuously by a single system machining program. The contents of this multi-system machining program will be described in order.

まずはじめの単系統加工プログラムでは、主軸30の現在のZ1軸の座標位置を−20.0と設定し、チャックを開き、主軸30を毎分送り速度5000mm/分でZ1軸の座標位置0に移動し、0.5秒待機し、主軸30のチャックを閉じる。これらにより座標の設定を行い材料を20mm前進させた形で把持した。主軸30をZ1軸の座標位置1.0に後退させ、第1刃物台10に保持された工具11の刃先位置から材料の端面までの距離を1mmにする。工具送りを毎回転送りのモードに設定し、主軸30を回転数2500rpmで正転させる。これらにより加工の準備を行った。   In the first single system machining program, the current Z1 axis coordinate position of the spindle 30 is set to -20.0, the chuck is opened, and the spindle 30 is moved to the Z1 axis coordinate position 0 at a feed rate of 5000 mm / min. It moves, waits for 0.5 seconds, and closes the chuck of the spindle 30. The coordinates were set by these, and the material was gripped in a form advanced by 20 mm. The main shaft 30 is retracted to the coordinate position 1.0 of the Z1 axis, and the distance from the cutting edge position of the tool 11 held on the first tool rest 10 to the end face of the material is set to 1 mm. The tool feed is set to a mode of every rotation feed, and the main spindle 30 is rotated forward at a rotational speed of 2500 rpm. The preparation of processing was performed by these.

次に多系統開始指令G185から多系統終了指令G186までの区間の多系統加工プログラムでは、多系統開始指令に続く系統指令によりこれ以降の指令を系統1で制御することを示し系統1で制御する軸をZ1軸とX1軸と設定し、第1刃物台10の工具T12を選択し、この工具T12の刃先位置をX1軸の座標位置6.0に主軸30をZ1軸の座標位置0.5に移動し、主軸30をZ1軸の座標位置10.0まで1回転に付き0.05mmの毎回転切削送りで送り、第1刃物台10のX1軸の座標位置11.0に送る。ここまでを系統1で制御し、これらにより主軸30に把持された直径10mmの材料31を外径切削用工具により長手方向10mmまで直径6mmに切削する。   Next, in the multi-system machining program in the section from the multi-system start command G185 to the multi-system end command G186, the system command subsequent to the multi-system start command indicates that the subsequent commands are controlled by the system 1, and is controlled by the system 1 The axes are set as the Z1 axis and the X1 axis, the tool T12 of the first tool post 10 is selected, the cutting edge position of the tool T12 is set to the coordinate position 6.0 of the X1 axis, and the main shaft 30 is set to the coordinate position 0.5 of the Z1 axis. The spindle 30 is fed to the Z1 axis coordinate position 10.0 at a rotation speed of 0.05 mm per rotation until the Z1 axis coordinate position 10.0, and is sent to the X1 axis coordinate position 11.0 of the first tool post 10. The process up to this point is controlled by the system 1, and the material 31 having a diameter of 10 mm held by the main shaft 30 is cut to a diameter of 6 mm by a tool for outer diameter cutting up to 10 mm in the longitudinal direction.

続いて第2の系統指令によりこれ以降の指令を系統2で制御することを示し系統2で制御する軸をZ2軸とX2軸と設定し、第2刃物台20の工具T22を選択し、この時の第2刃物台20の工具T22の刃先位置のZ2軸の座標位置を0とし、この刃先位置をZ2軸の座標位置−0.5に移動し、同じくZ2軸の座標位置5.0まで1回転に付き0.08mmの毎回転切削送りで送り、工具T22の刃先位置をZ2軸の座標位置−0.5まで戻す。ここまでが系統2で制御され、これらにより主軸30に把持された直径10mmの材料31にドリルにより深さ5mmの穴をあける。多系統終了指令はすべての系統の最終指令の終了を確認後実行終了となる。この多系統加工プログラムによる多系統制御区間では、系統指令とこれ以降の指令を同時に実行し同時加工動作を行う。従ってこの加工プログラム例では系統1の外径切削加工と系統2の穴あけ加工を同時に実行する。   Subsequently, the second system command indicates that the subsequent commands are controlled by the system 2, the axes controlled by the system 2 are set as the Z2 axis and the X2 axis, the tool T22 of the second tool post 20 is selected, and this The coordinate position of the Z2 axis of the tool tip position of the tool T22 of the second tool post 20 at time 0 is set to 0, and this tooltip position is moved to the coordinate position -0.5 of the Z2 axis, and similarly to the coordinate position 5.0 of the Z2 axis. It is sent at a cutting feed of 0.08 mm per rotation, and the cutting edge position of the tool T22 is returned to the coordinate position −0.5 of the Z2 axis. The process up to this point is controlled by the system 2, and a hole having a depth of 5 mm is drilled in the material 31 having a diameter of 10 mm held by the main shaft 30 by these. The multi-system end command is executed after confirming the end of the final command of all systems. In a multi-system control section by this multi-system machining program, a system command and subsequent commands are simultaneously executed to perform simultaneous machining operations. Therefore, in this machining program example, the outer diameter cutting of the system 1 and the drilling of the system 2 are executed simultaneously.

次の単系統加工プログラムでは、第1刃物台10に保持された工具11中の工具T13を選択し、主軸30をZ1軸の座標位置20.0まで移動し、工具T13の刃先位置をX1軸の座標位置−3.0まで毎回転送りで速度0.03mm/1回転で送り、主軸30の
回転を停止し、終了の処理に入る。これらにより主軸30に把持され加工されたワークを突っ切り、製品にし、製品の個数をカウントし、1サイクルを終了し、製品の個数が設定値に達していない場合プログラムの先頭に戻り、達した場合プログラムを終了する。
In the next single system machining program, the tool T13 in the tool 11 held on the first tool post 10 is selected, the spindle 30 is moved to the coordinate position 20.0 of the Z1 axis, and the cutting edge position of the tool T13 is set to the X1 axis. Is sent at a speed of 0.03 mm / 1 rotation at a rotation speed of up to the coordinate position −3.0, and the rotation of the main shaft 30 is stopped, and the end processing is started. When the workpieces gripped and processed by the spindle 30 are cut off and made into products, the number of products is counted, one cycle is completed, and if the number of products has not reached the set value, the program returns to the top and reaches Exit the program.

図6は別の加工プログラム例である。単系統加工プログラム区間は図5の実施形態と同様であるため、多系統開始指令と多系統終了指令の区間の多系統加工プログラム例を示した。この区間でも第1の実施形態から系統指令のみを省略したものが第2の実施形態であり、このため主にこの相違部分について説明する。   FIG. 6 shows another machining program example. Since the single system machining program section is the same as that of the embodiment of FIG. 5, the example of the multi-system machining program in the section of the multi-system start command and the multi-system end command is shown. Even in this section, only the system command is omitted from the first embodiment is the second embodiment, and therefore, this difference will be mainly described.

工具選択指令は通常マクロプログラム指令であるためそのマクロプログラム部分に多系統開始指令と多系統終了指令の区間の多系統加工プログラム中のみに実行する系統指令を予めいれておき、工具選択指令があるとその系統指令に予め設定してある系統番号と制御する軸を設定する。ここでは第1刃物台10に保持された工具11中のいずれかを選択する工具選択指令により予め設定してある第1刃物台10の加工動作に使用する制御軸Z1軸、X1軸を第1系統の制御軸に設定する。又、第2刃物台20の工具T22中のいずれかを選択する工具選択指令では予め設定してある第2刃物台20の加工動作に使用する制御軸Z2軸、X2軸を第2系統の制御軸に設定する。そしてそれぞれの工具選択指令以降の加工プログラムを多系統加工プログラムとして同時実行し、それぞれ外径切削用工具とドリルを選択後第1の実施形態と同様に主軸30に把持された直径10mmの材料31を外径切削用工具により長手方向10mmまでを直径6mmに切削し、主軸30に把持された直径10mmの材料31にドリルにより深さ5mmの穴をあける同時加工を行う。このように加工プログラム作成者に系統指令を使わず、多系統を意識せず多軸多系統加工プログラムを作成可能とした。これらの実施形態では主軸摺動型NC旋盤の加工プログラムについて述べたが、主軸固定型NC旋盤においても同様に実施できる。また2系統の加工プログラム例について述べたが3系統以上の多系統加工プログラムにおいても同様に実施できる。制御軸の数が少なく同時加工のパターンが1つまたは少ない場合、工具選択指令により予め設定してある系統指令等で自動的に設定されるようにすると、加工プログラム作成者は同時加工の意識はあっても多系統の意識は持たずにプログラムを作成、編集できる。   Since the tool selection command is usually a macro program command, a system command to be executed only in the multi-system machining program in the section of the multi-system start command and multi-system end command is entered in advance in the macro program part, and there is a tool selection command And the system number preset in the system command and the axis to be controlled are set. Here, the control axes Z1 and X1 used for the machining operation of the first tool rest 10 set in advance by a tool selection command for selecting one of the tools 11 held on the first tool rest 10 are set to the first. Set to the control axis of the system. Further, in the tool selection command for selecting one of the tools T22 of the second tool post 20, the control axes Z2 and X2 used for the machining operation of the second tool post 20 set in advance are controlled by the second system. Set to axis. Then, the machining program after each tool selection command is simultaneously executed as a multi-system machining program, and after selecting an outer diameter cutting tool and a drill, respectively, a material 31 having a diameter of 10 mm held by the spindle 30 as in the first embodiment. The outer diameter cutting tool is used to cut a diameter of up to 10 mm to a diameter of 6 mm, and simultaneously drilling a 5 mm deep hole in the material 31 having a diameter of 10 mm held by the spindle 30. In this way, it is possible to create a multi-axis multi-system machining program without using system commands for the machining program creator and without being aware of multiple systems. In these embodiments, the machining program for the spindle-sliding NC lathe has been described. However, the machining program can be similarly applied to the spindle-fixed NC lathe. In addition, although two machining program examples have been described, the present invention can be similarly applied to a multi-system machining program having three or more systems. If the number of control axes is small and the number of simultaneous machining patterns is one or small, the machining program creator will be aware of the simultaneous machining if it is automatically set by the system command set in advance by the tool selection command. Even if there is, it is possible to create and edit programs without having multi-system awareness.

本発明の実施形態における加工プログラムを1行直列に表記した例を示す図である。It is a figure which shows the example which described the machining program in embodiment of this invention in 1 line series. 本発明の実施形態における加工プログラムを複数行直列に表記した例を示す図である。It is a figure which shows the example which described the machining program in embodiment of this invention in multiple lines in series. 本発明の実施形態における加工プログラムで制御する多軸多系統NC旋盤の構成例を示す図である。It is a figure showing an example of composition of a multi-axis multi-system NC lathe controlled by a processing program in an embodiment of the present invention. 本発明の実施形態における加工プログラムでの加工例を示す図である。It is a figure which shows the example of a process in the process program in embodiment of this invention. 加工プログラム例を示す図である。It is a figure which shows the example of a process program. 別の加工プログラム例示す図である。It is a figure which shows another example of a processing program.

符号の説明Explanation of symbols

1 表示画面
2 加工プログラム表示範囲
10 第1刃物台
11 工具
20 第2刃物台
21 工具
30 主軸
31 材料
32 製品
DESCRIPTION OF SYMBOLS 1 Display screen 2 Machining program display range 10 1st tool post 11 Tool 20 2nd tool post 21 Tool 30 Spindle 31 Material 32 Product

Claims (1)

複数の制御系統各々に対応する加工プログラムからなる多系統加工プログラムによる制御によって複数の制御系統で同時加工を行うことができる多軸多系統NC旋盤の制御方法において、
上記多軸多系統NC旋盤を、加工を実行する1つの制御系統に対応する加工プログラムからなる単系統加工プログラムによる1つの制御系統のみでの加工制御と、多系統開始指令により、単系統加工プログラムによる制御状態から多系統加工プログラムによる制御状態への切り換えと、多系統終了指令により、多系統加工プログラムによる制御状態から単系統加工プログラムによる制御状態への切り換えとを可能に構成し、
単系統加工プログラムと、多系統開始指令と多系統終了指令との間に挟まれた多系統加工プログラムとが直列に連続する加工プログラムによって、1つの制御系統による加工と、複数の制御系統による同時加工とを、多系統開始指令と多系統終了指令とに基づき制御状態を切り換えながら実行させる
多軸多系統NC旋盤の制御方法。
In the control method of a multi-axis multi-system NC lathe capable of performing simultaneous machining in a plurality of control systems by control by a multi-system machining program consisting of machining programs corresponding to each of a plurality of control systems,
The multi-axis multi-system NC lathe is controlled by a single control system using a single system machining program consisting of a machining program corresponding to a single control system for performing machining, and a multi-system start command is issued. It is possible to switch from the control state by the multi-system machining program to the control state by the multi-system machining program, and from the control state by the multi-system machining program to the control state by the single system machining program by the multi-system machining command,
Machining by a single control system and simultaneous control by multiple control systems by a machining program in which a single system machining program and a multi-system machining program sandwiched between a multi-system start command and a multi-system end command are connected in series A control method for a multi-axis multi-system NC lathe that performs machining while switching control states based on a multi-system start command and a multi-system end command.
JP2007257283A 2007-10-01 2007-10-01 Control method of multishaft multi-system nc lathe Pending JP2008016061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257283A JP2008016061A (en) 2007-10-01 2007-10-01 Control method of multishaft multi-system nc lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257283A JP2008016061A (en) 2007-10-01 2007-10-01 Control method of multishaft multi-system nc lathe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29787398A Division JP4149584B2 (en) 1998-10-20 1998-10-20 Machining program display method of multi-axis multi-system NC lathe

Publications (1)

Publication Number Publication Date
JP2008016061A true JP2008016061A (en) 2008-01-24

Family

ID=39072947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257283A Pending JP2008016061A (en) 2007-10-01 2007-10-01 Control method of multishaft multi-system nc lathe

Country Status (1)

Country Link
JP (1) JP2008016061A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793015A (en) * 1993-09-24 1995-04-07 Mitsubishi Electric Corp Numerical control unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793015A (en) * 1993-09-24 1995-04-07 Mitsubishi Electric Corp Numerical control unit

Similar Documents

Publication Publication Date Title
KR20150136485A (en) Polygon machining device and polygon machining method
JP6301979B2 (en) Numerical control device for controlling axes of multiple systems by a single system program and its simulation device
US20160274560A1 (en) Numerical controller performing reciprocal turning in complex fixed cycle
JP5240412B1 (en) Numerical controller
JP6833710B2 (en) Machine tools and processing methods using machine tools
JP2009012075A (en) Machining tool and method for machining work-piece
JP4987214B2 (en) Automatic lathe and its control method and control device
JP2008023611A (en) Composite nc lathe
KR102021081B1 (en) Polygon machining device and polygon machining method
JP5353375B2 (en) Cutting method
JP4149584B2 (en) Machining program display method of multi-axis multi-system NC lathe
JP6444923B2 (en) Numerical controller
US10248100B2 (en) Numerical controller
JP2009028872A (en) Movement control device for machine tool
JP2002205209A (en) Drilling method by three-dimensional cutting
JP2008016061A (en) Control method of multishaft multi-system nc lathe
JP2013139066A (en) Method and apparatus for manufacturing impeller
JP2010052073A (en) Lathe and method of controlling the same
JP2007130706A (en) Gear machining method using machining center
TWI409601B (en) Numerical control device and system of controlling corner motion and method of controlling the corner motion
JP2008126371A (en) Machine tool
WO2023067987A1 (en) Hole machining method, control device, and machine tool
JP7413729B2 (en) Machine tools and machine tool control methods
WO2022102237A1 (en) Method for controlling superimposed machining of nc machine tool
JP2002137119A (en) Machining method for gear by machining center

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705