JP2007130706A - Gear machining method using machining center - Google Patents

Gear machining method using machining center Download PDF

Info

Publication number
JP2007130706A
JP2007130706A JP2005324615A JP2005324615A JP2007130706A JP 2007130706 A JP2007130706 A JP 2007130706A JP 2005324615 A JP2005324615 A JP 2005324615A JP 2005324615 A JP2005324615 A JP 2005324615A JP 2007130706 A JP2007130706 A JP 2007130706A
Authority
JP
Japan
Prior art keywords
machining
axis
gear
pinion cutter
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005324615A
Other languages
Japanese (ja)
Other versions
JP4247760B2 (en
Inventor
Takehiko Hirata
武彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Machine Techno Co Ltd
Original Assignee
Niigata Machine Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Machine Techno Co Ltd filed Critical Niigata Machine Techno Co Ltd
Priority to JP2005324615A priority Critical patent/JP4247760B2/en
Publication of JP2007130706A publication Critical patent/JP2007130706A/en
Application granted granted Critical
Publication of JP4247760B2 publication Critical patent/JP4247760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the need of machining a clearance groove in a work for a pinion cutter, to restrain increase in machining man-hours, and to smoothly machine a gear from one end of the work to the middle part without the lowering of work rigidity. <P>SOLUTION: X and Y control axes of a machining center are controlled, a spindle on which the pinion cutter T is mounted is revolved along a circle taking the axis of a gear H to be machine in the work W on a table as the center, and simultaneously the C control axis is controlled to rotate the spindle at a fixed ratio corresponding to the revolution amount. After that, Z control axis is controlled to give a cutting feed in the Z-axis direction to the pinion cutter T, whereby in forming a tooth profile of the machined gear H in the work W, after a cutting blade Tc reaches a midway position (forming terminal position of the tooth profile) k2 in the Z-axis direction, the pinion cutter T is moved toward the straight line direction connecting the axis of the machined gear H and the center of the pinion cutter T under the control of the X and Y control axes to continue cutting feed until the cutting blade Tc leaves the work W. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主軸に装着したピニオンカッターで歯車を加工するマシニングセンタによる歯車の加工方法に関するものである。   The present invention relates to a gear processing method using a machining center that processes a gear with a pinion cutter attached to a main shaft.

従来、数値制御装置によって各制御軸を制御されるマシニングセンタの主軸にピニオンカッターを、テーブルにワークをそれぞれ装着し、前記主軸をテーブルのX、Y制御軸の制御で加工すべき歯車の軸心を中心とする円の周方向に沿って移動させると同時に、前記主軸を前記周方向の移動量に応じた一定の割合でC軸回りに回転させた後に、前記ピニオンカッターにZ制御軸の制御による前記主軸とテーブルとの相対移動でZ軸方向に切削送りを与えることにより、前記ワークに加工歯車の歯形を形成するようにしたマシニングセンタによる歯車の加工方法が知られている(例えば、特許文献1、特許文献2参照)。
特許第3561761号公報 特開2002−137119号公報
Conventionally, a pinion cutter is mounted on a spindle of a machining center whose respective control axes are controlled by a numerical controller, and a workpiece is mounted on a table. The spindle is used to control the center of a gear to be machined by controlling the X and Y control axes of the table. At the same time as moving along the circumferential direction of the center circle, after rotating the main shaft around the C axis at a constant rate according to the amount of movement in the circumferential direction, the pinion cutter is controlled by the Z control axis A gear machining method using a machining center in which a tooth shape of a machining gear is formed on the workpiece by giving a cutting feed in the Z-axis direction by relative movement between the spindle and the table is known (for example, Patent Document 1). , See Patent Document 2).
Japanese Patent No. 3556161 JP 2002-137119 A

前記従来のマシニングセンタによる歯車の加工方法においては、ワークのZ軸方向の全長にわたって歯車を加工する場合には、ピニオンカッターがZ軸方向にワークを突き抜けた後に歯形面から待避して切削開始位置に戻ることにより、歯形を不都合なく形成して歯車を加工することができる。
しかしながら、前記ワークのZ軸方向における一端部から途中部までの歯車を有する製品を加工する場合には、前記途中部における歯形の形成終端位置では前記ピニオンカッターを切削送りを停止して歯形の形成面から速やかに待避する必要があるが、歯形の形成終端位置でピニオンカッターを常に正確に停止させることは実際上困難であり、衝撃等の発生によりピニオンカッターやワークに損傷が生じるおそれがある。
このようなことから、前記ワークの途中部までの歯車を加工する場合には、通常、ワークの歯形の形成終端位置の切削送り方向における先方位置に、Z軸方向に所定幅を有し歯形の歯溝より深い環状の逃げ溝を形成し、該逃げ溝に切削送りを終了したピニオンカッターの切刃を突き抜けさせた後に歯形の形成面から待避させるようにしている。この場合には、ワークに前記逃げ溝の加工が必要であり加工工数が増すと共に、逃げ溝のためにワークの剛性が低下する問題が生じる。
In the gear machining method using the conventional machining center, when the gear is machined over the entire length of the workpiece in the Z-axis direction, the pinion cutter penetrates the workpiece in the Z-axis direction and then retracts from the tooth profile surface to the cutting start position. By returning, the tooth profile can be formed without inconvenience and the gear can be machined.
However, when machining a product having a gear from one end to the middle in the Z-axis direction of the workpiece, the pinion cutter stops cutting feed at the end position of the tooth profile at the middle to form the tooth profile. Although it is necessary to evacuate promptly from the surface, it is practically difficult to always stop the pinion cutter accurately at the end position of the tooth profile, and there is a possibility that damage to the pinion cutter or the workpiece occurs due to the occurrence of an impact or the like.
For this reason, when machining the gear up to the middle part of the workpiece, the tooth profile having a predetermined width in the Z-axis direction is usually located at the tip position in the cutting feed direction of the formation end position of the workpiece tooth profile. An annular relief groove deeper than the tooth groove is formed, and the cutting edge of the pinion cutter that has finished cutting feed is penetrated into the relief groove and then retracted from the tooth form forming surface. In this case, it is necessary to process the clearance groove on the workpiece, which increases the number of processing steps and causes a problem that the rigidity of the workpiece decreases due to the clearance groove.

本発明は、上記事情に鑑みてなされたものであって、ワークにピニオンカッター用の逃げ溝の加工を不要としてワークの加工工数の増加を抑えることができると共に、ワークの剛性を低下させることがなく、ワークの一端部から途中部までの歯車を円滑に加工することができるマシニングセンタによる歯車の加工方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to suppress the increase in the number of processing steps of the workpiece by eliminating the processing of the relief groove for the pinion cutter in the workpiece, and to reduce the rigidity of the workpiece. An object of the present invention is to provide a machining method of a gear by a machining center capable of smoothly machining a gear from one end portion to a middle portion of a workpiece.

本発明は、数値制御装置によってマシニングセンタのX,Y制御軸を制御して、ピニオンカッターを装着した主軸の軸心を、テーブルに固定したワークに加工すべき加工歯車の軸心を中心とする円の周方向に沿って移動させると同時に、C制御軸を制御して前記主軸を前記周方向の移動量に応じた一定の割合で軸回りに回転させた後に、Z制御軸を制御して前記ピニオンカッターにZ軸方向への切削送りを与えることにより、前記ワークに加工歯車の歯形を形成するマシニングセンタによる歯車の加工方法において、
前記ピニオンカッターが、その切刃が前記加工歯車のZ軸方向における歯形の形成終端位置に達した後、X,Y制御軸の制御により、加工歯車の軸心とピニオンカッターの中心とを結ぶ直線の方向に向けて移動され、前記切刃が前記ワークから離れるまで切削送りを継続するようにしたことを特徴としている。
The present invention controls the X and Y control axes of a machining center by a numerical control device, and the center of the spindle on which the pinion cutter is mounted is a circle centered on the axis of the machining gear to be machined into a workpiece fixed to a table. At the same time, the C control axis is controlled to rotate the main shaft around the axis at a constant rate according to the amount of movement in the circumferential direction, and then the Z control axis is controlled to In a machining method of a gear by a machining center that forms a tooth shape of a machining gear on the workpiece by giving a cutting feed in the Z-axis direction to the pinion cutter,
The pinion cutter is a straight line connecting the axis of the machining gear and the center of the pinion cutter by controlling the X and Y control axes after the cutting edge reaches the formation end position of the tooth profile in the Z-axis direction of the machining gear. The cutting feed is continued until the cutting edge moves away from the workpiece.

本発明に係るマシニングセンタによる歯車の加工方法によれば、ピニオンカッターの切刃を加工歯車の歯形の形成終端位置から切削送り方向に移動させながらワークから離すことにより、前記切刃を加工歯車の歯形の形成面からの待避を円滑に行わせることができるので、Z軸方向にワークを突き抜けて歯形を形成することができない場合であっても、前記ワークにピニオンカッター用の逃げ溝の加工が不要となって、ワークの加工工数の増加を抑えることができると共に、ワークの剛性を低下させることがなく、ワークの一端部から途中部までの歯車を円滑に加工することができる。   According to the gear machining method by the machining center according to the present invention, the cutting edge of the pinion cutter is moved away from the work while moving the cutting edge of the tooth shape of the machining gear in the cutting feed direction, and the tooth shape of the machining gear is thereby removed. Since it is possible to smoothly evacuate from the forming surface, it is not necessary to process a clearance groove for a pinion cutter on the workpiece even when the tooth shape cannot be formed by penetrating the workpiece in the Z-axis direction. Thus, an increase in the work man-hours of the workpiece can be suppressed, and the gear from one end portion to the middle portion of the workpiece can be smoothly machined without reducing the rigidity of the workpiece.

以下、本発明の実施の形態を添付図面を参照して説明する。図1は本発明の実施に使用するマシニングセンタとこれを作動させる数値制御装置の一例を示す。図1において、1は汎用のマシニングセンタで、従来と同様に、ベッド2の一側上にコラム3が固定され、ベッド2の他側上にサドル4がY軸サーボモータ4aによりY軸方向に移動、位置決め可能に設けられいる。前記サドル4の上には、テーブル5がX軸サーボモータ5aによりX軸方向に移動、位置決め可能に設けられている。前記テーブル5の中心には、割出テーブル6がその中心軸の周りに割出用サーボモータ6aにより回転割り出し可能に設けられている。割出テーブル6の上には歯車を加工すべきワークWが載置されている。
そして、前記コラム3の前面には、主軸ヘッド7がZ軸サーボモータ7aによりZ軸方向に移動、位置決め可能に設けられ、前記主軸ヘッド7には、主軸8がC軸サーボモータ8aにより軸回りに回転、位置決めを可能に設けられており、前記主軸8にはピニオンカッタTが取り付けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a machining center used for carrying out the present invention and a numerical control device for operating the machining center. In FIG. 1, 1 is a general-purpose machining center, and a column 3 is fixed on one side of a bed 2 and a saddle 4 is moved in the Y-axis direction by a Y-axis servo motor 4a on the other side of the bed 2 as in the prior art. The positioning is provided. A table 5 is provided on the saddle 4 so as to be moved and positioned in the X-axis direction by an X-axis servomotor 5a. At the center of the table 5, an indexing table 6 is provided around its central axis so that it can be rotated and indexed by an indexing servomotor 6a. On the index table 6, a workpiece W to be machined is placed.
A spindle head 7 is provided on the front surface of the column 3 so that the spindle head 7 can be moved and positioned in the Z-axis direction by a Z-axis servomotor 7a. The spindle 8 has a spindle 8 that rotates around its axis by a C-axis servomotor 8a. And a pinion cutter T is attached to the main shaft 8.

前記マシニングセンタ1を作動させる数値制御装置9は、マイクロプロセッサ10を備え、このマイクロプロセッサ10にバス11を介してROM12,RAM13、不揮発性メモリ14,入力装置15、表示装置16が接続されている。前記マイクロプロセッサ10には、I/Oインタフェース17を介して前記X軸、Y軸、Z軸、C軸サーボモータ5a、4a、7a、8aと前記割出用サーボモータ6aの回転を制御するX軸位置制御回路18,Y軸位置制御回路19,Z軸位置制御回路20,C軸位置制御回路21と割出位置制御回路22が、それぞれ接続されている。   A numerical control device 9 for operating the machining center 1 includes a microprocessor 10, and a ROM 12, a RAM 13, a nonvolatile memory 14, an input device 15, and a display device 16 are connected to the microprocessor 10 via a bus 11. The microprocessor 10 controls the rotation of the X-axis, Y-axis, Z-axis, and C-axis servomotors 5a, 4a, 7a, and 8a and the indexing servomotor 6a via the I / O interface 17. The axis position control circuit 18, the Y axis position control circuit 19, the Z axis position control circuit 20, the C axis position control circuit 21 and the index position control circuit 22 are connected to each other.

前記ROM12には、マシニングセンタ1やその他を動作させるシステムプログラムが格納されており、このシステムプログラムに従って前記マイクロプロセッサ10がマシニングセンタ1や数値制御装置9の全体の動作を制御する。また、前記RAM13は、マイクロプロセッサ10の作業領域として各種のデータの一時記憶等の処理に使用される。不揮発性メモリ14には、ピニオンカッタTによりワークWに歯車を加工するためのNC加工プログラムやその加工に必要な各種パラメータ等が記憶されている。   The ROM 12 stores a system program for operating the machining center 1 and others, and the microprocessor 10 controls the overall operation of the machining center 1 and the numerical controller 9 according to this system program. The RAM 13 is used as a work area for the microprocessor 10 for processing such as temporary storage of various data. The nonvolatile memory 14 stores an NC machining program for machining gears on the workpiece W by the pinion cutter T, various parameters necessary for the machining, and the like.

上記各種パラメータとしては、ワークWに内歯車を加工する場合には、基本項目として、ワークWに加工すべき歯車(加工歯車)HおよびピニオンカッタTの歯数とピッチ円径、加工歯車の1歯当たりの加工回数(切削回数)が設定され、さらに、その他の項目として、加工歯車Hの谷の径と山の径、モジュール、切削時のZ軸の送り速度、ピニオンカッタTの逃げ時(Z軸方向における加工開始位置への後退時)のZ軸の送り速度、歯切り加工開始位置P1の角度、加工深さ、アブソリュート座標等が設定される。   As the above-mentioned various parameters, when machining the internal gear on the workpiece W, as basic items, the number of teeth and pitch circle diameter of the gear (machining gear) H and the pinion cutter T to be machined on the workpiece W, the machining gear 1 The number of times of machining per tooth (number of times of cutting) is set. Further, as other items, the diameter and valley diameter of the machining gear H, the module, the Z-axis feed speed during cutting, and the pinion cutter T escape ( The Z-axis feed speed (at the time of retreating to the machining start position in the Z-axis direction), the angle of the gear cutting start position P1, the machining depth, absolute coordinates, and the like are set.

次に、ピニオンカッタTによってワークWに内歯車(加工歯車)Hを加工する方法について説明する。図2、図3は、高さLを有する円筒状のワークWを、マシニングセンタ1の割出テーブル6上に、その軸方向を制御軸のZ軸に平行にして載置すると共に、ピニオンカッタTの軸線をマシニングセンタ1の主軸8の軸線に一致させて該主軸8に装着し、ピニオンカッタTをZ軸方向に往復運動させて、ピニオンカッタTの外周の切刃Tcにより、ワークWの内周面に、その上端(一端)k1から途中位置(歯車の形成終端位置)k2に至る長さL1の範囲にわたってワークWと同軸心の内歯車を加工する状態を示す。
なお、ワークWの内周部には、歯車の形成終端側部Aに破線で示すようなピニオンカッターTの切刃Tcの下端(先端)の突き抜けを許容する環状溝Jは設けられていない。
Next, a method for machining the internal gear (machining gear) H on the workpiece W by the pinion cutter T will be described. 2 and 3 show that a cylindrical workpiece W having a height L is placed on the indexing table 6 of the machining center 1 with its axial direction parallel to the Z axis of the control axis, and the pinion cutter T Is attached to the main shaft 8 so that it coincides with the axis of the main shaft 8 of the machining center 1, the pinion cutter T is reciprocated in the Z-axis direction, and the inner periphery of the workpiece W is cut by the cutting edge Tc on the outer periphery of the pinion cutter T. The surface shows a state in which an internal gear coaxial with the workpiece W is processed over a range of a length L1 extending from the upper end (one end) k1 to a midway position (gear formation end position) k2.
Note that the inner circumferential portion of the workpiece W is not provided with an annular groove J that allows the lower end (tip) of the cutting blade Tc of the pinion cutter T to penetrate through as shown by a broken line on the gear forming terminal side A.

上記内歯車Hの加工においては、例えば、ワークWの中心(加工歯車の軸心)c1を通り該中心c1を原点とするX,Y座標軸のX軸から角度θだけ変位した直線S上の位置に中心c2を置いたピニオンカッタTを、その切刃Tcの外周部(刃先)が、ワークWの内周面から内側(中心c1寄り)に僅少距離eだけ離れるように、前記直線Sに沿って後退させておくと共に、切刃Tcの下端をワークWの上面よりZ軸方向の上方に間隔L2だけ離間した切削開始位置z1に待避させておく。このとき、ピニオンカッタTは、ワークWに近接する1つの切刃Tcの刃先の中心が前記直線S上に位置するようにして、軸回りに回転を位置決めされて固定されている。   In machining the internal gear H, for example, the position on the straight line S that is displaced by an angle θ from the X axis of the X and Y coordinate axes passing through the center (axis of the machining gear) c1 of the workpiece W and having the center c1 as the origin. The pinion cutter T with the center c2 positioned along the straight line S so that the outer peripheral part (cutting edge) of the cutting edge Tc is separated from the inner peripheral surface of the work W by a small distance e inward (near the center c1). The lower end of the cutting edge Tc is retracted to the cutting start position z1 separated from the upper surface of the workpiece W in the Z-axis direction by a distance L2. At this time, the pinion cutter T is positioned and fixed around the axis so that the center of the cutting edge of one cutting edge Tc close to the workpiece W is positioned on the straight line S.

この状態から、加工の開始指令が出されると、ピニオンカッタTの切刃Tcが前記直線Sに沿ってワークWの内周面に向けて移動され、ピニオンカッタTのピッチ円が内歯車Hのピッチ円に内接する位置までの切り込みfを与えられた後、ピニオンカッタTにZ軸方向に切削送り運動が与えられ、ワークWに切刃Tcによる切り込みfにもとづく歯形の形成面が加工される。前記ピニオンカッターTは、その切刃Tcの下端がワークWの途中位置k2まで下降すると、その下方の距離L3に設定されたカッター逃げ位置k3まで切削送りを継続しながら、切刃Tcを前記直線S上を中心c1方向に移動させてワークWから離すカッター逃げ動作を行い、しかる後、内歯車Hの歯の頂面(ワークWの内周面)より距離eだけ切刃Tcを後退させてからZ軸方向の上方に移動し、切刃Tcの下端を前記切削開始位置z1に戻す。   When a machining start command is issued from this state, the cutting edge Tc of the pinion cutter T is moved toward the inner peripheral surface of the workpiece W along the straight line S, and the pitch circle of the pinion cutter T is changed to the inner gear H. After being given a notch f up to a position inscribed in the pitch circle, the pinion cutter T is given a cutting feed motion in the Z-axis direction, and the workpiece W is formed with a tooth profile forming surface based on the notch f by the cutting edge Tc. . When the lower end of the cutting edge Tc is lowered to the midway position k2 of the workpiece W, the pinion cutter T continues the cutting feed to the cutter escape position k3 set at the lower distance L3 while the cutting edge Tc is moved to the straight line. The cutter is moved away from the workpiece W by moving in the direction of the center c1 on S, and then the cutting edge Tc is retracted by a distance e from the top surface of the teeth of the internal gear H (the inner peripheral surface of the workpiece W). To move upward in the Z-axis direction and return the lower end of the cutting edge Tc to the cutting start position z1.

前記ピニオンカッターTによる歯形の形成時におけるカッター逃げ動作によれば、前記途中位置k2の下方における歯形の形成終端側部Aに、内歯車Hの歯底が下端側(Z軸方向の先方側)に行くに従って徐々に浅くなる斜面Qに形成される。該斜面QはピニオンカッタTの切削送り速度に対する前記直線Sの方向への移動速度を適宜に選定することにより、図示のように直線状の傾斜面としたり、円弧状の凹面とすることができる。
なお、前記角度θだけ変位した直線Sを起点とするワークWの周方向における歯切りの加工開始角度位置(第1の加工位置)P1では、1回の切り込みfで歯の高さ分(歯丈分)の切削をすると切削抵抗が大きくなり過ぎるので、前記直線Sの方向における1回の切削当たりの切り込みfを小さくして複数回前記切削動作を繰り返して歯丈分の切り込み量に達するようにする。この場合は、ピニオンカッターTが歯形の形成終端側部Aにおいて各切り込みfによる切削動作毎に前記傾斜面Qに沿った切刃Tcの移動を繰り返す。
According to the cutter clearance operation during the formation of the tooth profile by the pinion cutter T, the tooth bottom of the internal gear H is located at the lower end side (the front side in the Z-axis direction) at the tooth formation end portion A below the intermediate position k2. It is formed on the slope Q that gradually becomes shallower as it goes to. The inclined surface Q can be formed into a linear inclined surface as shown in the figure or an arcuate concave surface by appropriately selecting the moving speed in the direction of the straight line S with respect to the cutting feed speed of the pinion cutter T. .
It should be noted that, at the cutting start angle position (first processing position) P1 in the circumferential direction of the workpiece W starting from the straight line S displaced by the angle θ, the tooth height (tooth) is obtained by one cut f. Cutting), the cutting resistance becomes too large, so that the cutting f per cutting in the direction of the straight line S is reduced, and the cutting operation is repeated a plurality of times so as to reach the cutting depth for the tooth height. To. In this case, the pinion cutter T repeats the movement of the cutting edge Tc along the inclined surface Q for each cutting operation by the notches f in the tooth-form formation end portion A.

上記のようにして加工開始角度位置P1における歯面の加工が済むと、ピニオンカッタTは、Z軸方向の切削開始位置z1において、その中心c2が、内歯車Hのピッチ円半径とピニオンカッタTのピッチ円半径との差に相当する半径を有する中心c1を中心とする円Gに沿って、内歯車Hのピッチ角(360度を内歯車Hの歯数nで除した角度)αだけイ矢方向に移動した加工角度位置(第2の加工位置)P2(X,Y座標軸の座標(X1,Y1))に位置決めされる。このとき、ピニオンカッタTは、そのピッチ角(360度をピニオンカッタTの歯数mで除した角度)βとすると、βとαの角度差(以下「角度δ」という)だけ、前記加工開始角度位置P1での回転位置決め角度から、自身の軸回りにロ矢方向に回転(自転)して位置決めされる。   When the tooth surface is processed at the processing start angle position P1 as described above, the center c2 of the pinion cutter T at the cutting start position z1 in the Z-axis direction is the pitch circle radius of the internal gear H and the pinion cutter T. A pitch angle of the internal gear H (an angle obtained by dividing 360 degrees by the number of teeth n of the internal gear H) α along the circle G centered on the center c1 having a radius corresponding to the difference from the pitch circle radius of It is positioned at the machining angle position (second machining position) P2 (the coordinates (X1, Y1) of the X, Y coordinate axes) moved in the arrow direction. At this time, if the pinion cutter T has a pitch angle (an angle obtained by dividing 360 degrees by the number of teeth m of the pinion cutter T) β, the machining starts by an angle difference between β and α (hereinafter referred to as “angle δ”). From the rotational positioning angle at the angular position P1, the positioning is performed by rotating (spinning) in the direction of the arrow around its own axis.

このようにして、ピニオンカッタの中心c1の回りの公転と中心c2の回りの自転により、次の加工角度位置P2におけるピニオンカッタTの切刃Tcの切削位置が設定されると、ピニオンカッタTに内歯車Hの歯の高さ分の切り込みfとZ軸方向の切削送りが与えられて、内歯車Hの次の歯面の切削が行われる。そして、以下、同様にしてピニオンカッタTが、順次、中心c1の回りに公転して各加工角度位置(各加工位置)P1,P2,P3・・・に位置決めされる毎に、角度δだけ回転して位置決めされて内歯車Hの歯面の切削が繰り返され、ピニオンカッタTが中心c1の回りを1周公転したところで内歯車Hの加工が終了する。   Thus, when the cutting position of the cutting edge Tc of the pinion cutter T at the next machining angle position P2 is set by the revolution around the center c1 of the pinion cutter and the rotation around the center c2, the pinion cutter T A cutting f for the height of the teeth of the internal gear H and a cutting feed in the Z-axis direction are given, and the next tooth surface of the internal gear H is cut. In the same manner, each time the pinion cutter T sequentially revolves around the center c1 and is positioned at each processing angle position (each processing position) P1, P2, P3. Then, the cutting of the tooth surface of the internal gear H is repeated, and when the pinion cutter T revolves around the center c1 once, the processing of the internal gear H is completed.

なお、前記歯車の加工方法では、内歯車Hのピッチ角αだけ移動した加工角度位置(内歯車Hの歯1枚分の移動位置)P1,P2,P3・・・に位置決めされる毎に、1回のZ軸方向の切削送りで歯面を形成するように説明したが、実際には、内歯車Hの歯1枚分の移動毎に、1回の切削送りでは歯面を滑らかな歯形形状に加工することはできない。そこで、前記内歯車Hのピッチ角αを複数nに細分して、その細分したピッチ角Δαの加工角度位置p1,p2,p3・・・にピニオンカッタTを公転移動して位置決めする毎に、ピニオンカッタTをそのピッチ角βを複数nに細分したピッチ角Δβとすると、Δβ−Δαの角度差(以下「角度Δδ」という)だけ自転させて回転位置決めし、各歯面の切削を切削回数nだけ繰り返して行う。   Note that in the gear machining method, each time it is positioned at a machining angle position (movement position of one tooth of the internal gear H) P1, P2, P3,... Moved by the pitch angle α of the internal gear H, In the above description, the tooth surface is formed by one cutting feed in the Z-axis direction. However, in actuality, each time the internal gear H moves by one tooth, the tooth surface is smoothed by one cutting feed. It cannot be processed into a shape. Therefore, every time the pitch angle α of the internal gear H is subdivided into a plurality of n and the pinion cutter T is revolved and positioned at the machining angle positions p1, p2, p3... Of the subdivided pitch angle Δα, Assuming that the pinion cutter T has a pitch angle Δβ obtained by subdividing the pitch angle β into a plurality of n, the pinion cutter T is rotated and positioned by rotation by an angle difference of Δβ−Δα (hereinafter referred to as “angle Δδ”), and the cutting of each tooth surface is performed by the number of times of cutting. Repeat for n times.

すなわち、この場合には、ピニオンカッタTは、内歯車Hの歯数Nのn倍数に相当する加工角度位置(加工位置)に公転して位置決めされる毎に、(β−α)/nの角度だけ自転による回転位置決めが行われて、歯面の切削が繰り返されて内歯車Hの加工が行われることとなる。その結果、内歯歯車Hの各歯面が滑らかに仕上げられる。この場合においても、前記ピニオンカッターTによる歯形の各形成時におけるワークWからの逃げ動作によれば、前記ワークWの途中位置k2の下方における歯形の形成終端側部Aでは、加工歯車Hの歯底が下端側(Z軸方向の先方側)に行くに従って徐々に浅くなる斜面Qに形成される。   That is, in this case, each time the pinion cutter T is revolved and positioned at a machining angle position (machining position) corresponding to an n multiple of the number N of teeth of the internal gear H, (β−α) / n Rotational positioning is performed by rotation by an angle, and tooth surface cutting is repeated to process the internal gear H. As a result, each tooth surface of the internal gear H is finished smoothly. Even in this case, according to the relief operation from the workpiece W when each tooth profile is formed by the pinion cutter T, the tooth of the machining gear H is formed at the tooth profile formation terminal side A below the intermediate position k2 of the workpiece W. It is formed on the slope Q that gradually becomes shallower as the bottom goes to the lower end side (the front side in the Z-axis direction).

次に、上記歯車の加工を、マシニングセンタ1を数値制御装置9によって制御して行う方法について説明する。上記前記数値制御装置9を動作させて、入力装置15によって前記各種のパラメータ、前記カッター逃げ位置k3やピニオンカッターTのワークWからの逃げ動作時における前記直線Sに沿った移動速度等を含むNC加工プログラムで指令すべき各種データを前記不揮発性メモリ14に登録した後に、マシニングセンタ1を作動させる。数値制御装置9では、マイクロプロセッサ10が前記不揮発性メモリ14に登録された各種パラメータやデータを読み出し、ピニオンカッタTのの中心c1の回りを公転移動する軌跡となる円Gの径を演算する。また、切削回数nを考慮した内歯車Hの細分したピッチ角ΔαとピニオンカッタTの細分したピッチ角(自転角度)Δβとを、前記細分したピッチ角Δαと前記円Gの径とから細分化した各加工角度位置p1,p2,p3・・・に対応するピニオンカッタTの中心c2のX,Y軸座標系の座標(X1,Y1)、(X2,Y2)、(X3,Y3)・・・を、歯切りの加工開始角度位置P1の角度θから1周して加工終了するまでのものについて演算する。   Next, a method for processing the gears by controlling the machining center 1 with the numerical controller 9 will be described. The numerical controller 9 is operated, and the input device 15 includes the various parameters, the cutter escape position k3, the moving speed of the pinion cutter T along the straight line S during the escape operation from the workpiece W, and the like. After registering various data to be commanded by the machining program in the nonvolatile memory 14, the machining center 1 is operated. In the numerical controller 9, the microprocessor 10 reads various parameters and data registered in the non-volatile memory 14, and calculates the diameter of the circle G that becomes a trajectory of revolving around the center c1 of the pinion cutter T. Further, the subdivided pitch angle Δα of the internal gear H considering the number of times of cutting n and the subdivided pitch angle (rotation angle) Δβ of the pinion cutter T are subdivided from the subdivided pitch angle Δα and the diameter of the circle G. The coordinates (X1, Y1), (X2, Y2), (X3, Y3) of the center c2 of the pinion cutter T corresponding to the machining angle positions p1, p2, p3,. Is calculated for one round from the angle θ of the gear cutting machining start angle position P1 until machining is completed.

この演算結果と各種パラメータにもとづき、マイクロプロセッサ10は、NC加工プログラムに従ってI/Oインタフェース17を介して各軸位置制御回路18,19,20,21に各軸に対する移動位置を指令するので、各軸位置制御回路18,19,20,21は、X軸,Y軸,Z軸,C軸サーボモータ5a,4a,7a,8aを作動させる。
これにより、X軸,Y軸サーボモータ5a,4aが回転してテーブル5のX軸,Y軸方向の移動、位置決めの動作が行われ、割出テーブル6上のワークWの中心c1を通るX,Y座標系における主軸8の中心(ピニオンカッタTの中心c2)の位置決めがなされる。前記ピニオンカッタTが前記直線Sの角度θにおける加工開始角度P1おいては、先ず、ピニオンカッタTは、その切刃Tc刃先が中心c1寄りにワークWの内周面から僅少距離eだけ離れるように、中心c2が前記直線S上の加工待機位置c(X,Y)に位置決めされる。また、C軸サーボモータ8aが回転して主軸8が、その軸回りに回転、位置決め動作をされ、中心c2を通るx、y座標系におけるx軸から角度φだけ変位した角度位置にピニオンカッタTの切刃Tcが位置決めされる。
Based on this calculation result and various parameters, the microprocessor 10 commands each axis position control circuit 18, 19, 20, 21 to the movement position with respect to each axis via the I / O interface 17 in accordance with the NC machining program. The shaft position control circuits 18, 19, 20, and 21 operate the X-axis, Y-axis, Z-axis, and C-axis servomotors 5a, 4a, 7a, and 8a.
As a result, the X-axis and Y-axis servo motors 5a and 4a rotate to move and position the table 5 in the X-axis and Y-axis directions, and the X passes through the center c1 of the workpiece W on the indexing table 6. , The center of the main shaft 8 (center c2 of the pinion cutter T) in the Y coordinate system is positioned. When the pinion cutter T is at the machining start angle P1 at the angle θ of the straight line S, first, the pinion cutter T is such that its cutting edge Tc is close to the center c1 by a slight distance e from the inner peripheral surface of the workpiece W. The center c2 is positioned at the machining standby position c (X, Y) on the straight line S. Further, the C-axis servo motor 8a is rotated and the main shaft 8 is rotated and positioned around the axis, and the pinion cutter T is moved to an angular position displaced by an angle φ from the x-axis in the x, y coordinate system passing through the center c2. The cutting blade Tc is positioned.

次に、X軸,Y軸サーボモータ5a,4aによりテーブル5とサドル4が同時に作動されて、主軸8がワークWとの間に相対移動することにより、主軸8の中心c2が、該中心c2とワークWの中心c1とを結ぶ直線S上に沿ってワークWの外周方向へ向けて移動して座標位置(X1,Y1)に位置決めされ、内歯車Hのピッチ円にピニオンカッタのピッチ円が内接した状態となる。これにより、ピニオンカッタTの切刃Tcに、ワークWに対する内歯車Hの歯の高さ分に相当する切り込みfが与えられると、Z軸サーボモータ7aが作動されて、主軸8に対してそのZ軸方向の下方へ向けて切削送りが所要の切削速度で与えられるので、1つないし複数の切刃TcによりワークWの上端k1から途中位置k2までの内歯車Hの歯形が形成される。   Next, the table 5 and the saddle 4 are simultaneously operated by the X-axis and Y-axis servomotors 5a, 4a, and the spindle 8 moves relative to the workpiece W, so that the center c2 of the spindle 8 becomes the center c2. Is moved toward the outer periphery of the workpiece W along the straight line S connecting the workpiece C and the center c1 of the workpiece W, and is positioned at the coordinate position (X1, Y1). It becomes inscribed. Thus, when the cutting edge Tc of the pinion cutter T is provided with a cutting f corresponding to the height of the tooth of the internal gear H with respect to the workpiece W, the Z-axis servo motor 7a is operated, and the spindle 8 Since cutting feed is given at a required cutting speed downward in the Z-axis direction, the tooth profile of the internal gear H from the upper end k1 of the workpiece W to the midway position k2 is formed by one or a plurality of cutting edges Tc.

前記ピニオンカッタTの切刃Tcの下面がワークWの途中位置k2まで下降して歯形が形成されたところで、ピニオンカッターTの切削送りが継続されながら、X,Y軸サーボモータ5a,4aが同時に作動されて、主軸8の軸心が前記直線S上を中心c1寄りへワークWから離れるように移動されるので、ピニオンカッターTの切刃Tcの先端が前記途中位置k2からカッター逃げ位置k3に至る歯形の形成終端側部AにおいてワークWの内周面から離れるまで斜面Qに沿って移動される。そして、前記切刃Tcは、カッター逃げ位置k3に達したところで、前記直線Sに沿ってワークWの内周面より距離eだけ離れた待避位置c3に後退し、しかる後、Z軸サーボモータ7aが逆転して主軸8がZ軸方向に上昇されると、ピニオンカッターTが元の切削開始位置z1に戻る。この後、再びX,Y軸サーボモータ5a,4aが同時に作動されることにより、次の加工角度位置p2にピニオンカッタTの中心c2が細分したピッチ角Δαだけ公転移動して位置決めされると共に、ピニオンカッタTがΔδだけ自転して回転位置決めされ、切り込みfが与えられた後、Z軸方向に切削送りが与えられて、前記と同様にしてワークWに対する内歯車Hの歯形の形成が行われる。   When the lower surface of the cutting edge Tc of the pinion cutter T is lowered to an intermediate position k2 of the workpiece W to form a tooth profile, the cutting feed of the pinion cutter T is continued, and the X and Y axis servo motors 5a and 4a are simultaneously operated. When actuated, the axis of the main shaft 8 is moved on the straight line S so as to move away from the workpiece W toward the center c1, so that the tip of the cutting edge Tc of the pinion cutter T changes from the midway position k2 to the cutter escape position k3. It is moved along the inclined surface Q until it is separated from the inner peripheral surface of the workpiece W at the formation end side portion A of the leading tooth profile. Then, when the cutting edge Tc reaches the cutter escape position k3, the cutting edge Tc moves back along the straight line S to the retreat position c3 that is separated from the inner peripheral surface of the workpiece W by the distance e, and then the Z-axis servomotor 7a. Is reversed and the spindle 8 is raised in the Z-axis direction, the pinion cutter T returns to the original cutting start position z1. Thereafter, the X and Y-axis servomotors 5a and 4a are simultaneously operated again, whereby the center c2 of the pinion cutter T is revolved and positioned by the subdivided pitch angle Δα to the next machining angle position p2, The pinion cutter T is rotated and positioned by rotation by Δδ, the cut f is given, the cutting feed is given in the Z-axis direction, and the tooth profile of the internal gear H with respect to the workpiece W is formed in the same manner as described above. .

このようにして、X,Y軸サーボモータ4a,5aの作動により、Z軸方向の切削開始位置z1にある主軸8に対してワークWを相対移動して、主軸8の中心c2を中心c1の回りに内歯車Hの細分したピッチ角Δα毎に公転移動の位置決め動作が行われると共に、各公転移動毎に位置決めされた各加工角度位置p1,p2,p3・・・において、主軸8のピニオンカッタTのΔδに対応した自転による回転位置決め動作と、Z軸方向における切削送り動作と、ワークWの歯形の形成終端側部Aにおける前記斜面Qに沿った移動によるカッター逃げ動作とが行われて、前記内歯車Hの歯形の切削が繰り返され、主軸8が中心c1を1周したところで前記内歯車Hの歯形の切削加工が終了される。   In this way, by the operation of the X and Y axis servo motors 4a and 5a, the workpiece W is moved relative to the main shaft 8 at the cutting start position z1 in the Z-axis direction, and the center c2 of the main shaft 8 is set to the center c1. A revolving movement positioning operation is performed for each pitch angle Δα subdivided around the internal gear H, and the pinion cutter of the main shaft 8 at each machining angle position p1, p2, p3... Positioned for each revolving movement. A rotation positioning operation by rotation corresponding to Δδ of T, a cutting feed operation in the Z-axis direction, and a cutter escape operation by movement along the inclined surface Q in the formation end side portion A of the tooth profile of the workpiece W are performed, The cutting of the tooth profile of the internal gear H is repeated, and the cutting of the tooth profile of the internal gear H is completed when the main shaft 8 makes one turn around the center c1.

前記マシニングセンタによる歯車の加工方法においては、ピニオンカッターTの切刃TcによってワークWの上端k1から途中位置(歯形の形成終端位置)k2までの長さL1にわたって歯車を切削加工する場合、前記途中部k2でピニオンカッターTの切削送りを停止することなく、切削送りを継続しながら切刃TcをワークWから徐々に離すように移動して歯形面から待避させるので、ピニオンカッターTをワークWから突き抜けて歯車を加工するときのように、切削送り方向にピニオンカッターTが惰走したり、切削送り方向における切刃Tcの先端の送り停止位置が不安定になることがない。
したがって、前記途中位置k2からピニオンカッターTの切削送り方向の先方における歯形の形成終端側部Aに、図3に破線で示すように、ピニオンカッターTの突き抜け用の逃げ溝Jが無くても、ワークW衝撃等を発生させることなく、安全にかつ円滑に歯形を形成することができる。また、前記のように歯形の形成終端側部AでピニオンカッターTの切刃TcをワークWから離して歯形の形成面から待避させるカッター逃げ動作は、X,Y、Z制御軸の指令値をNC加工プログラムに適宜に設定することによって容易に実行させることができる。
In the gear machining method by the machining center, when the gear is cut by the cutting edge Tc of the pinion cutter T over the length L1 from the upper end k1 of the workpiece W to the midway position (tooth formation end position) k2, Without stopping the cutting feed of the pinion cutter T at k2, the cutting blade Tc is moved away from the workpiece W while continuing the cutting feed and retracted from the tooth profile surface, so that the pinion cutter T penetrates the workpiece W. Thus, the pinion cutter T does not run in the cutting feed direction and the feed stop position at the tip of the cutting edge Tc in the cutting feed direction does not become unstable as when processing the gear.
Therefore, even if there is no escape groove J for penetrating the pinion cutter T, as shown by a broken line in FIG. The tooth profile can be formed safely and smoothly without generating a workpiece W impact or the like. In addition, as described above, the cutter escape operation in which the cutting edge Tc of the pinion cutter T is moved away from the workpiece W and retracted from the tooth formation surface at the side A of the tooth formation is the command value of the X, Y, and Z control axes. It can be easily executed by appropriately setting the NC machining program.

以上説明したように、前記実施の形態に係るマシニングセンタによる歯車の加工方法は、数値制御装置9によってマシニングセンタ1のX,Y制御軸を制御して、ピニオンカッターTを装着した主軸8の軸心を、テーブル5に固定したワークWに加工すべき加工歯車Hの軸心を中心とする円の周方向に沿って移動させると同時に、C制御軸を制御して前記主軸8を前記周方向の移動量(主軸8の公転量)に応じた一定の割合で軸回りに回転(自転)させた後に、Z制御軸を制御して前記ピニオンカッターTにZ軸方向への切削送りを与えることにより、前記ワークWに加工歯車Hの歯形を形成する場合に、前記ピニオンカッターTが、その切刃Tcが前記加工歯車HのZ軸方向における途中位置(歯形の形成終端位置)k2に達した後、X,Y制御軸の制御により、加工歯車Hの軸心(ワークWの中心c1)とピニオンカッターTの中心c2とを結ぶ直線Sの方向に向けて移動され、前記切刃Tcが前記ワークWから離れるまで切削送りを継続する構成とされている。   As described above, the machining method of the gears by the machining center according to the above-described embodiment controls the X and Y control axes of the machining center 1 by the numerical control device 9, and the axis of the spindle 8 on which the pinion cutter T is mounted is adjusted. The workpiece 8 fixed to the table 5 is moved along the circumferential direction of a circle centered on the axis of the machining gear H to be machined, and at the same time, the C control axis is controlled to move the main shaft 8 in the circumferential direction. By rotating (spinning) around the axis at a constant rate according to the amount (revolution amount of the main shaft 8), the Z control axis is controlled to give the pinion cutter T cutting feed in the Z axis direction, When forming the tooth profile of the machining gear H on the workpiece W, after the pinion cutter T has reached its halfway position in the Z-axis direction of the machining gear H (tooth formation end position) k2, X, By the control of the control shaft, the workpiece is moved in the direction of a straight line S connecting the axis of the machining gear H (the center c1 of the workpiece W) and the center c2 of the pinion cutter T until the cutting edge Tc is separated from the workpiece W. The cutting feed is continued.

したがって、実施の形態に係るマシニングセンタによる歯車の加工方法によれば、ピニオンカッターTの切刃Tcを歯車の歯形の形成終端位置k2から切削送り方向に移動させながらワークWから離すことにより、前記切刃Tcを加工歯車Hの歯形面から円滑に待避させることができるので、Z軸方向にワークWを突き抜けて歯形を形成することができない場合であっても、前記ワークWにピニオンカッターT用の環状の逃げ溝Jの加工が不要となって、ワークWの加工工数の増加を抑えることができると共に、ワークWの剛性を低下させることがなく、ワークWの上端k1から途中位置k2までの歯車を円滑に加工することができる。   Therefore, according to the gear machining method by the machining center according to the embodiment, the cutting edge Tc of the pinion cutter T is moved away from the workpiece W while being moved in the cutting feed direction from the gear tooth profile formation end position k2, so that the cutting Since the blade Tc can be smoothly retracted from the tooth profile surface of the processed gear H, even if the tooth profile cannot be formed by penetrating the workpiece W in the Z-axis direction, the workpiece W is used for the pinion cutter T. Processing of the annular relief groove J is not necessary, and an increase in the number of processing steps of the workpiece W can be suppressed, and the rigidity of the workpiece W is not reduced, and the gear from the upper end k1 of the workpiece W to the midway position k2 is prevented. Can be processed smoothly.

なお、前記実施の形態においては、主軸8に取り付けられたピニオンカッタTがC軸サーボモータ8aにより軸回りに回転、位置決めされて歯車を加工する場合に適用した例を示したが、C軸サーボモータを制止させた状態のまま、ワークWが載置されている割出テーブル6をワークWの軸心回りに回転、位置決めさせて歯車を加工する場合にも適用することもできる。さらに、X,Y制御軸の制御による前記主軸8のワークWに対する相対的な円弧補間運動と主軸8の回転数とを一定の公比で同期させながら、同時に主軸8をZ軸方向に往復運動させることにより、ピニオンカッターTで歯車を加工する場合にも適用することができる。
また、前記実施の形態においては、ワークWの内周に歯車を加工する場合に適用した例を示したが、本発明はこれに限定されず、図4に示すように、ワークWの外周に歯車H1をカッター逃げ動作によって歯形の形成終端側部Aに斜面Qを形成して加工する場合や、ワークの直線状の部分にラックを形成する場合、スプライン溝やスプライン軸部を加工する場合にも適用することができることは勿論である。
In the above-described embodiment, the pinion cutter T attached to the main shaft 8 is rotated and positioned around the axis by the C-axis servomotor 8a to process the gear. The present invention can also be applied to processing a gear by rotating and positioning the indexing table 6 on which the workpiece W is placed around the axis of the workpiece W while the motor is stopped. Further, while the relative circular interpolation motion of the spindle 8 relative to the workpiece W and the rotational speed of the spindle 8 are synchronized with a certain common ratio by controlling the X and Y control axes, the spindle 8 is reciprocated in the Z-axis direction at the same time. Therefore, the present invention can also be applied to processing gears with the pinion cutter T.
Moreover, in the said embodiment, although the example applied when processing a gearwheel to the inner periphery of the workpiece | work W was shown, this invention is not limited to this, As shown in FIG. When the gear H1 is machined by forming the inclined surface Q on the side A of the tooth profile formation by the cutter escape operation, when forming the rack on the linear part of the workpiece, when machining the spline groove or spline shaft part Of course, it can also be applied.

本発明の実施の形態に係るマシニングセンタによる歯車の加工方法を実施するマシニングセンタとその数値制御装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the machining center which implements the gear processing method by the machining center which concerns on embodiment of this invention, and its numerical control apparatus. 本発明の一実施の形態に係るマシニングセンタによる歯車の加工方法を示す平面図である。It is a top view which shows the processing method of the gearwheel by the machining center which concerns on one embodiment of this invention. 同じく縦断面図である。It is a longitudinal cross-sectional view similarly. 本発明の一実施の形態に係るマシニングセンタによる歯車の加工方法によってワークに外歯車を加工する場合を示す縦断面図である。It is a longitudinal cross-sectional view which shows the case where an external gear is processed into a workpiece | work with the processing method of the gear by the machining center which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 マシニングセンタ
4 サドル
4a Y軸サーボモータ
5 テーブル
5a X軸サーボモータ
7 主軸ヘッド
7a Z軸サーボモータ
8 主軸
8a C軸サーボモータ
9 数値制御装置
18 X軸位置制御回路
19 Y軸位置制御回路
20 Z軸位置制御回路
21 C軸位置制御回路
A 歯形の形成終端側部
H,H1 加工歯車
Q 斜面
T ピニオンカッタ
Tc 切刃
W ワーク
g2 途中位置(歯形の形成終端位置)
g3 カッター逃げ位置
DESCRIPTION OF SYMBOLS 1 Machining center 4 Saddle 4a Y-axis servo motor 5 Table 5a X-axis servo motor 7 Spindle head 7a Z-axis servo motor 8 Spindle 8a C-axis servo motor 9 Numerical control device 18 X-axis position control circuit 19 Y-axis position control circuit 20 Z-axis Position control circuit 21 C-axis position control circuit A Tooth profile formation end side H, H1 Machining gear Q Slope T Pinion cutter Tc Cutting blade W Work g2 Intermediate position (Tooth profile formation end position)
g3 Cutter escape position

Claims (1)

数値制御装置によってマシニングセンタのX,Y制御軸を制御して、ピニオンカッターを装着した主軸の軸心を、テーブルに固定したワークに加工すべき加工歯車の軸心を中心とする円の周方向に沿って移動させると同時に、C制御軸を制御して前記主軸を前記周方向の移動量に応じた一定の割合で軸回りに回転させた後に、Z制御軸を制御して前記ピニオンカッターにZ軸方向への切削送りを与えることにより、前記ワークに加工歯車の歯形を形成するマシニングセンタによる歯車の加工方法において、
前記ピニオンカッターは、その切刃が前記加工歯車のZ軸方向における歯形の形成終端位置に達した後、X,Y制御軸の制御により、加工歯車の軸心とピニオンカッターの中心とを結ぶ直線の方向に向けて移動され、前記切刃が前記ワークから離れるまで切削送りを継続することを特徴とするマシニングセンタによる歯車の加工方法。
The X and Y control axes of the machining center are controlled by a numerical controller, and the axis of the spindle with the pinion cutter is placed in the circumferential direction of a circle centering on the axis of the machining gear to be machined on the workpiece fixed to the table. At the same time, the C control axis is controlled to rotate the main shaft around the axis at a constant rate according to the amount of movement in the circumferential direction, and then the Z control axis is controlled to allow the pinion cutter to In a method of machining a gear by a machining center that forms a tooth shape of a machining gear on the workpiece by giving an axial cutting feed,
The pinion cutter is a straight line connecting the axis of the machining gear and the center of the pinion cutter by controlling the X and Y control axes after the cutting edge reaches the tooth forming end position in the Z-axis direction of the machining gear. A machining method of a gear by a machining center, wherein the cutting feed is continued until the cutting blade moves away from the workpiece.
JP2005324615A 2005-11-09 2005-11-09 Gear processing method by machining center Active JP4247760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324615A JP4247760B2 (en) 2005-11-09 2005-11-09 Gear processing method by machining center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324615A JP4247760B2 (en) 2005-11-09 2005-11-09 Gear processing method by machining center

Publications (2)

Publication Number Publication Date
JP2007130706A true JP2007130706A (en) 2007-05-31
JP4247760B2 JP4247760B2 (en) 2009-04-02

Family

ID=38152779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324615A Active JP4247760B2 (en) 2005-11-09 2005-11-09 Gear processing method by machining center

Country Status (1)

Country Link
JP (1) JP4247760B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250356A (en) * 2008-04-07 2009-10-29 Hitachi Constr Mach Co Ltd Spline connection structure
WO2011096104A1 (en) * 2010-02-05 2011-08-11 三菱重工業株式会社 Gear shaping machine
JP2018138319A (en) * 2017-02-24 2018-09-06 トヨタ自動車株式会社 Gear member and method of manufacturing the same
CN113857588A (en) * 2021-10-18 2021-12-31 大连理工大学 Method and device for processing tooth profile of straight-tooth cylindrical gear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135117A (en) * 1983-12-26 1985-07-18 Masaya Kitai Gear shaping by intermittent generating motion
JPH01264709A (en) * 1988-04-11 1989-10-23 Yutaka Seimitsu Kogyo Kk Reciprocating mechanism of cutter with relief and synchronizing driving method therefor
JPH03149115A (en) * 1989-08-25 1991-06-25 Maag Zahnraeder & Mas Ag Manufacture of machined article
JP2000190127A (en) * 1998-12-29 2000-07-11 Komatsu Ltd Gear shaping method by machining center
JP2002137119A (en) * 2000-10-27 2002-05-14 Niigata Eng Co Ltd Machining method for gear by machining center

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135117A (en) * 1983-12-26 1985-07-18 Masaya Kitai Gear shaping by intermittent generating motion
JPH01264709A (en) * 1988-04-11 1989-10-23 Yutaka Seimitsu Kogyo Kk Reciprocating mechanism of cutter with relief and synchronizing driving method therefor
JPH03149115A (en) * 1989-08-25 1991-06-25 Maag Zahnraeder & Mas Ag Manufacture of machined article
JP2000190127A (en) * 1998-12-29 2000-07-11 Komatsu Ltd Gear shaping method by machining center
JP2002137119A (en) * 2000-10-27 2002-05-14 Niigata Eng Co Ltd Machining method for gear by machining center

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250356A (en) * 2008-04-07 2009-10-29 Hitachi Constr Mach Co Ltd Spline connection structure
WO2011096104A1 (en) * 2010-02-05 2011-08-11 三菱重工業株式会社 Gear shaping machine
US9108257B2 (en) 2010-02-05 2015-08-18 Mitsubishi Heavy Industries, Ltd. Gear shaping machine
JP2018138319A (en) * 2017-02-24 2018-09-06 トヨタ自動車株式会社 Gear member and method of manufacturing the same
CN113857588A (en) * 2021-10-18 2021-12-31 大连理工大学 Method and device for processing tooth profile of straight-tooth cylindrical gear

Also Published As

Publication number Publication date
JP4247760B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US6839953B2 (en) Combination gear hobber, chamfer/debur and shaver apparatus and method
KR101643562B1 (en) Method for machining a workpiece and machine tool designed therefor
CN107530803B (en) Tooth finishing tooth making method and combined cutter thereof
JPH10128626A (en) Numerically controlled machine tool for turning and hobbing mechanical part
KR20100118940A (en) Method and device for machining the tooth edges of end-cut work wheels
JP7224109B2 (en) Gear manufacturing machining method for workpiece
CN108994552B (en) Gear machining method and gear machining device
JP5818987B2 (en) Grooving method, machine tool control device, and tool path generation device
EP2979785B1 (en) Polygon machining device and polygon machining method
JP6622044B2 (en) Gear processing machine and method
JP6128640B2 (en) Gear cutting method and apparatus for bevel gear
US20220009016A1 (en) Gear machining apparatus and machining condition determination device
JP4247760B2 (en) Gear processing method by machining center
EP2868411B1 (en) Control device for machine tool and machine tool
JP4189878B2 (en) Manufacturing method of bevel gear forging die
CN111659908B (en) Turning-based cylindrical surface reticulate pattern machining method and system
US20090060672A1 (en) Multiple Operation Gear Manufacturing Apparatus With Common Work Axis
CN104379288A (en) Method for processing workpiece and hobbing machine suitable therefor
JP6819099B2 (en) Gear processing method
JP2002137119A (en) Machining method for gear by machining center
WO2022224291A1 (en) Hobbing machine
JP2588353B2 (en) Gear processing equipment
CN116243648A (en) High-performance parallel multidirectional cutting double-tool control method
JP6405115B2 (en) Drilling method, cylinder block manufacturing method, and drilling machine
JP2000190126A (en) Gear shaping method by nc lathe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080805

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4247760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5