WO2022224291A1 - Hobbing machine - Google Patents

Hobbing machine Download PDF

Info

Publication number
WO2022224291A1
WO2022224291A1 PCT/JP2021/015791 JP2021015791W WO2022224291A1 WO 2022224291 A1 WO2022224291 A1 WO 2022224291A1 JP 2021015791 W JP2021015791 W JP 2021015791W WO 2022224291 A1 WO2022224291 A1 WO 2022224291A1
Authority
WO
WIPO (PCT)
Prior art keywords
hob
workpiece
work
hob cutter
hobbing machine
Prior art date
Application number
PCT/JP2021/015791
Other languages
French (fr)
Japanese (ja)
Inventor
柳崎淳
熊崎信也
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2023515419A priority Critical patent/JPWO2022224291A1/ja
Priority to PCT/JP2021/015791 priority patent/WO2022224291A1/en
Publication of WO2022224291A1 publication Critical patent/WO2022224291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/20Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling
    • B23F5/22Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling the tool being a hob for making spur gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention relates to a hobbing machine that reduces machining time while maintaining machining accuracy.
  • Patent Literature 1 listed below discloses an invention that solves the problem of errors occurring in the tooth trace direction as one of the problems.
  • the hob and table are rotated synchronously, and the hob is fed parallel to the axis of the workpiece to perform hobbing.
  • the machining resistance acts as a load on the rotation of the hob, and the machining resistance changes as the machining progresses. This is because mechanical deformation such as bending and twisting occurs in the components of the transmission system between the hob and the table, which affects the rotation phase between the hob and the table.
  • Gear cutting of a workpiece performed by a hobbing machine has not only the problem of errors in the direction of tooth traces of the workpiece as in the conventional example, but also problems of machining accuracy and machining time.
  • cutting feed is one of the major parameters that determines the machining accuracy and machining time.
  • the feed rate is lowered to improve the machining accuracy, but this increases the machining time.
  • the feed rate is increased in order to shorten the machining time, the machining accuracy is lowered.
  • an object of the present invention is to provide a hobbing machine that shortens the machining time while maintaining the machining accuracy.
  • a hobbing machine includes a work spindle device that rotates a held work, and a hob cutter having a rotation axis that intersects the rotation axis of the work. It controls a hob driving device that moves in a direction along the rotation axis, the work spindle device and the hob driving device, and the feed speed when moving the hob cutter with respect to the hob driving device is controlled by the work. and a control device that changes according to the machining position with respect to.
  • the workpiece is held by the workpiece spindle device and rotated, while the hob cutter of the hob driving device rotates and moves in the direction along the rotation axis of the workpiece, thereby performing gear cutting on the workpiece. done.
  • the feed speed of the hob cutter is changed by the control device, for example, by increasing the feed speed within a range in which the processing is stabilized, it is possible to shorten the processing time while maintaining the accuracy of the entire processing.
  • FIG. 1 It is an appearance perspective view showing one embodiment of a hobbing machine. It is a perspective view showing the internal structure about one embodiment of a hobbing machine. It is a block diagram showing the control system of the hobbing machine. It is the figure which simply showed the positional relationship and feed speed of the workpiece
  • FIG. 1 is an external perspective view showing the hobbing machine of this embodiment
  • FIG. 2 is a perspective view showing the internal structure of the hobbing machine of this embodiment.
  • the hobbing machine 1 is mounted on a movable bed 11 having wheels and is movable in the front-rear direction along rails 3 fixed to the upper surface of the base 2 .
  • the hobbing machine 1 is modularized together with other working machines such as a lathe, and is configured with a width dimension that matches a base 2 that serves as a reference.
  • the hobbing machine 1 is one work machine that constitutes a processing machine line, and multiple work machines lined up are covered with an exterior cover that has a uniform appearance.
  • An openable and closable front cover 4 forms a transfer space 5 in the outer cover, and an autoloader for transferring a work to each work machine is incorporated therein.
  • a work transfer robot 6, which is a multi-joint robot arm, is movable in the width direction of the machine body along a guardrail constructed in the front part of the base 2.
  • the longitudinal direction of the machine body is the X-axis
  • the width direction of the machine body is the Y-axis
  • the vertical direction is the Z-axis.
  • a column 12 on a movable bed 11 is movable in the longitudinal direction of the machine body in the X-axis direction. It is configured to be raised and lowered by a shaft motor 15 .
  • a hob head 16 that supports a hob cutter 17 is assembled to the saddle 13 .
  • the hob cutter 17 is rotatably supported by a horizontal rotating shaft parallel to the Y-axis, and is rotated during gear cutting by a hob motor 19 (see FIG. 3).
  • the hob head 16 is structured to be movable in the Y-axis direction with respect to the saddle 13 by a Y-axis motor 18 so that the position of the blade of the hob cutter 17 can be changed.
  • a work spindle device 20 is provided on the front side of the hob driving device on which the hob cutter 17 is mounted.
  • the work spindle device 20 is configured vertically such that a lower unit 21 and an upper unit 22 are coaxial with the center of rotation aligned with the Z-axis.
  • a support column 23 is erected on the movable bed 11 to constitute a lift mechanism for moving the upper unit 22 up and down in the Z-axis direction.
  • a vertical rail is fixed to the support column 23, and a lift 24 holding the upper unit 22 is slidably assembled thereon.
  • a lift motor 25 is provided at the top of the support column 23, and its rotational output is converted into linear motion of the lift 24 by a ball screw.
  • the lower unit 21 has a lower clamp block that sandwiches the workpiece W between itself and the rotatable upper clamp block of the upper unit 22.
  • the rotation of the workpiece rotating motor 27 is transmitted to the lower clamp block via a worm gear.
  • the hobbing machine 1 is mounted on the movable bed 11 with a control device 30 for controlling each driving part arranged behind a hob driving device composed of a column 12 and the like.
  • FIG. 3 is a block diagram showing the control system of the hobbing machine 1. As shown in FIG.
  • a microprocessor (CPU) 31, a ROM 32, a RAM 33, and a nonvolatile memory 34 are connected to the control device 30 via bus lines.
  • the CPU 31 controls the entire control device
  • the ROM 32 stores system programs executed by the CPU 31, control parameters, and the like
  • the RAM 33 stores temporary calculation data, display data, and the like.
  • the non-volatile memory 34 stores information necessary for processing performed by the CPU 31, and stores a sequence program for the hobbing machine 1 and the like.
  • the non-volatile memory 34 of this embodiment also stores a hobbing program and the like, which will be described later.
  • the hobbing machine 1 is equipped with a touch panel type operation display device 38 on the front part of the machine body, which enables the operator to perform input operations and display the manufacturing status on the screen.
  • the controller 30 is provided with an I/O port 35 through which an operation display device 38 and the like are connected.
  • the I/O port 35 is connected to drivers 41, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43
  • the workpiece W carried into the machining chamber by the workpiece transfer robot 6 is placed on the lower unit 21 of the workpiece spindle device 20.
  • the upper unit 22 held by the lift 24 is lowered by driving the lift motor 25, and the work W is held by the upper and lower clamp blocks by the clamping operation with the lower unit 21.
  • the clamped workpiece W is rotated by driving the workpiece rotation motor 27 .
  • the hob cutter 17 is rotated and moved in the Z-axis direction by driving the hob driving device, and the rotating workpiece W is subjected to gear cutting.
  • FIG. 4 is a diagram simply showing the positional relationship between the work W and the hob cutter 17 and the feed speed.
  • the hob cutter 17 moves linearly in a direction parallel to the Z-axis while rotating around the rotation axis Oy in the Y-axis direction, while the work W moves around the work rotation axis Oz in the Z-axis direction. and rotate. Therefore, as shown in FIG. 4, the hob cutter 17, which applies the hob blade 171 to the rotating work W, gradually moves from A to D while the gear cutting process proceeds.
  • the feed speed in the Z-axis direction of the hob cutter 17 was constant between A and D. Therefore, as mentioned above, machining accuracy and shortening of machining time are incompatible. There is a problem that the accuracy is lowered. Therefore, in this embodiment, a hob feed program for adjusting the feed speed of the hob cutter 17 is provided so that the machining time can be shortened while maintaining the machining accuracy.
  • FIG. 5 is a perspective view showing the hob cutter 17 for the work W.
  • the hob cutter 17 has a helically formed hob blade 171 that is discontinuous in the circumferential direction due to a plurality of blade grooves 173 cut in the axial direction. Therefore, intermittent contact of the hob blade 171 with the work W makes it difficult to increase the feed rate while maintaining the machining accuracy.
  • the large variation in machining load around position A at the start of machining, where only the tip of the hob blade 171 is in contact has been a cause of reduced machining accuracy due to an increase in feed rate.
  • the feed speed of the hob cutter 17 is set to change according to the feed amount of the hob blade 171 .
  • the feed rate is changed as the position of the tool rotation axis Oy of the hob cutter 17 moves between AB, BC and CD shown in FIG. ing.
  • Position A is the position at which the hob cutter 17 begins contact with the work W
  • Position B and Position C are positions at which the tool rotation axis Oy overlaps the work W in the orthogonal direction
  • Position C is the position where the hob cutter 17 touches the work W. It is a position away from W.
  • the feed speed between BC is constant, and the feed speed between AB and between CD is obtained based on the following formulas (1) and (2).
  • fa ⁇ b fa+ ⁇ (fb ⁇ fa)/(B ⁇ A) ⁇ Z1
  • fc ⁇ d fc+ ⁇ (fc ⁇ fd)/(C ⁇ D) ⁇ Z2
  • A, B, C, and D are coordinate values of the hobbing machine 1 in the three-dimensional space in the Z-axis direction.
  • Z1 and Z2 are feed amounts in the Z-axis direction of the hob cutter 17 based on the tool rotation axis Oy
  • Z1 is a variable based on the A position
  • Z2 is a variable based on the C position.
  • the coordinate values A, B, C, and D and the feed speeds fa, fb, fc, and fd in accordance with the workpiece W in the equations (1) and (2) are used for gear cutting of the corresponding workpiece W. input from the operation display device 38 by the operator. From the equations (1) and (2), in the gear cutting of this embodiment, the value of Z1 increases as the hob cutter 17 moves during machining between A and B, and the value of the feed rate fa-b is (1 ) increases from fa to fb according to the equation. Also, during machining between CD, the value of the feed rate fc-d decreases from fc to fd according to the equation (2).
  • machining is started at the feed speed fa.
  • the feed speed gradually increases as the feed amount Z1 of the hob cutter 17 changes when the tool rotation axis Oy moves from the A position to the B position. That is, at the beginning of machining where the contact of the hob blade 171 changes and the machining load fluctuates greatly, the feed rate is relatively low, and as the hob blade 171 approaches the position B where the hob blade 171 enters deeply into the workpiece W, the machining load fluctuation decreases. Therefore, the feed speed fa-b gradually increases.
  • the processing time is shortened by increasing the feed speed between B and C, where the processing load fluctuation is particularly small. becomes possible.
  • the feed speed is changed between AB and between CD where machining load fluctuations are large, machining accuracy can be maintained while shortening the overall machining time.
  • the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.
  • the feeding speed between BC is constant, but the feeding speed during this period may also be changed.

Abstract

This hobbing machine maintains processing accuracy while shortening processing time, the hobbing machine including: a workpiece spindle device which applies rotation to a held workpiece; a hob driving device which rotates a hob cutter having an axis of rotation in a direction intersecting the axis of rotation of the workpiece, while moving the hob cutter in a direction along the axis of rotation of the workpiece; and a control device which controls the workpiece spindle device and the hob driving device, the control device changing the feed speed when moving the hob cutter relative to the hob driving device according to processing positions of the workpiece, such as a starting position where the hob cutter first makes contact with the workpiece, an intermediate position where the axis of rotation of the hob cutter overlaps the workpiece in a direction orthogonal to the axis of rotation, and an end position where the hob cutter separates from the workpiece, for example.

Description

ホブ盤hobbing machine
 本発明は、加工精度を維持しながら加工時間を短縮するようにしたホブ盤に関する。 The present invention relates to a hobbing machine that reduces machining time while maintaining machining accuracy.
 ホブ盤によってワークを歯切りする場合、ホブの回転に対する加工負荷の変動によって加工精度が低下してしまう問題がある。下記特許文献1では、その一つとして歯スジ方向に誤差が生じてしまう点を課題とし、それを解決した発明が開示されている。ホブ盤ではホブとテーブルとを同期して回転させ、ホブがワークの軸心に平行に送られてホブ切り加工が行われる。その際、加工抵抗がホブの回転に対する負荷として作用し、その加工抵抗が加工の進行に従って変化してしまう。ホブとテーブルとの間の伝動系構成部材に撓みやねじれなどの機械的変形が生じ、ホブとテーブルとの回転位相に影響を及ぼすからである。そこで同文献のホブ盤では、ホブの回転に対する負荷変動に応じてホブ駆動モータの電流値が変動するのに着目し、ホブ駆動モータの電流値を検出することにより、その検出信号とワークの歯スジ方向誤差の相関値を演算し、テーブルに補正回転を与えることによりワークの歯スジ方向誤差の解決が図られている。 When gear cutting a workpiece with a hobbing machine, there is a problem that the machining accuracy decreases due to fluctuations in the machining load relative to the rotation of the hob. Patent Literature 1 listed below discloses an invention that solves the problem of errors occurring in the tooth trace direction as one of the problems. In the hobbing machine, the hob and table are rotated synchronously, and the hob is fed parallel to the axis of the workpiece to perform hobbing. At that time, the machining resistance acts as a load on the rotation of the hob, and the machining resistance changes as the machining progresses. This is because mechanical deformation such as bending and twisting occurs in the components of the transmission system between the hob and the table, which affects the rotation phase between the hob and the table. Therefore, in the hobbing machine of the same document, attention is paid to the fact that the current value of the hob drive motor fluctuates according to the load fluctuation with respect to the rotation of the hob. By calculating the correlation value of the error in the direction of the streak and giving a correction rotation to the table, the error in the direction of the tooth streak of the workpiece is resolved.
特開昭59-81017号公報JP-A-59-81017
 ホブ盤によって行われるワークの歯切り加工は、前記従来例のようなワークの歯スジ方向の誤差の問題だけではなく、加工精度と加工時間との問題もある。ホブ加工は、その加工精度と加工時間を決定づけるのは切削送りが大きなパラメータの一つである。通常、加工精度を向上させるには送り速度を下げることになるが、それでは加工時間が長くなってしまう。その一方で、加工時間を短縮させるには送り速度を上げることになるが、逆に加工精度が低下してしまう。 Gear cutting of a workpiece performed by a hobbing machine has not only the problem of errors in the direction of tooth traces of the workpiece as in the conventional example, but also problems of machining accuracy and machining time. In hobbing, cutting feed is one of the major parameters that determines the machining accuracy and machining time. Usually, the feed rate is lowered to improve the machining accuracy, but this increases the machining time. On the other hand, although the feed rate is increased in order to shorten the machining time, the machining accuracy is lowered.
 そこで、本発明は、かかる課題を解決すべく、加工精度を維持しながら加工時間を短縮するホブ盤を提供することを目的とする。 Therefore, in order to solve such problems, an object of the present invention is to provide a hobbing machine that shortens the machining time while maintaining the machining accuracy.
 本発明の一態様におけるホブ盤は、保持したワークに回転を与えるワーク主軸装置と、ワークの回転軸に対して交差する方向の回転軸をもったホブカッタを回転させながら、そのホブカッタを前記ワークの回転軸に沿った方向に移動させるホブ駆動装置と、前記ワーク主軸装置と前記ホブ駆動装置とを制御するものであって、前記ホブ駆動装置に対して前記ホブカッタを移動させる際の送り速度をワークに対する加工位置に応じて変化させる制御装置とを有する。 A hobbing machine according to one aspect of the present invention includes a work spindle device that rotates a held work, and a hob cutter having a rotation axis that intersects the rotation axis of the work. It controls a hob driving device that moves in a direction along the rotation axis, the work spindle device and the hob driving device, and the feed speed when moving the hob cutter with respect to the hob driving device is controlled by the work. and a control device that changes according to the machining position with respect to.
 前記構成によれば、ワーク主軸装置に保持されワークに回転が与えられ、一方でホブ駆動装置のホブカッタが回転しながらワークの回転軸に沿った方向に移動することにより、ワークに対する歯切り加工が行われる。その際、制御装置によってホブカッタの送り速度が変化するため、例えば加工が安定する範囲で送り速度を上げることにより、加工全体の精度を維持しながら加工時間を短縮することができる。 According to the above configuration, the workpiece is held by the workpiece spindle device and rotated, while the hob cutter of the hob driving device rotates and moves in the direction along the rotation axis of the workpiece, thereby performing gear cutting on the workpiece. done. At that time, since the feed speed of the hob cutter is changed by the control device, for example, by increasing the feed speed within a range in which the processing is stabilized, it is possible to shorten the processing time while maintaining the accuracy of the entire processing.
ホブ盤の一実施形態を示した外観斜視図である。It is an appearance perspective view showing one embodiment of a hobbing machine. ホブ盤の一実施形態についてその内部構造を示した斜視図である。It is a perspective view showing the internal structure about one embodiment of a hobbing machine. ホブ盤の制御システムを示したブロック図である。It is a block diagram showing the control system of the hobbing machine. ワークWとホブカッタの位置関係および送り速度を簡易的に示した図である。It is the figure which simply showed the positional relationship and feed speed of the workpiece|work W and a hob cutter. ワークWに対するホブカッタを示した斜視図である。4 is a perspective view showing a hob cutter for a work W; FIG.
 本発明に係るホブ盤の一実施形態について、図面を参照しながら以下に説明する。図1は、本実施形態のホブ盤を示した外観斜視図であり、図2は、本実施形態のホブ盤についてその内部構造を示した斜視図である。ホブ盤1は、車輪を備えた可動ベッド11の上に組付けられ、ベース2の上面に固定されたレール3に沿って前後方向への移動が可能になっている。ホブ盤1は、旋盤など他の作業機とともにモジュール化されたものであり、基準となるベース2に合わせた幅寸法で構成されている。 An embodiment of a hobbing machine according to the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view showing the hobbing machine of this embodiment, and FIG. 2 is a perspective view showing the internal structure of the hobbing machine of this embodiment. The hobbing machine 1 is mounted on a movable bed 11 having wheels and is movable in the front-rear direction along rails 3 fixed to the upper surface of the base 2 . The hobbing machine 1 is modularized together with other working machines such as a lathe, and is configured with a width dimension that matches a base 2 that serves as a reference.
 ホブ盤1は、加工機械ラインを構成する一作業機であり、並べられた複数の作業機は外観を統一した外装カバーによって覆われている。外装カバーは、開閉可能な前カバー4によって搬送空間5が形成され、その内部には各作業機にワークを搬送するオートローダが組み込まれている。具体的には、多関節ロボットアームであるワーク搬送ロボット6がベース2の前部に構成されたガードレールに沿って機体幅方向に移動可能になっている。なお、本実施形態では、機体前後方向をX軸、機体幅方向をY軸、そして鉛直方向をZ軸として説明する。 The hobbing machine 1 is one work machine that constitutes a processing machine line, and multiple work machines lined up are covered with an exterior cover that has a uniform appearance. An openable and closable front cover 4 forms a transfer space 5 in the outer cover, and an autoloader for transferring a work to each work machine is incorporated therein. Specifically, a work transfer robot 6, which is a multi-joint robot arm, is movable in the width direction of the machine body along a guardrail constructed in the front part of the base 2. As shown in FIG. In this embodiment, the longitudinal direction of the machine body is the X-axis, the width direction of the machine body is the Y-axis, and the vertical direction is the Z-axis.
 ホブ盤1は、可動ベッド11上のコラム12が機体前後のX軸方向に移動可能であり、そのコラム12の前面にはサドル13がZ軸方向に摺動可能な状態で組付けられ、Z軸用モータ15によって昇降するよう構成されている。サドル13にはホブカッタ17を支持するホブヘッド16が組付けられている。ホブカッタ17は、Y軸に平行な横向きの回転軸によって回転可能に支持され、ホブ用モータ19(図3参照)によって歯切り加工時の回転が与えられるようになっている。ホブヘッド16は、ホブカッタ17の刃の位置が変えられるように、サドル13に対してY軸用モータ18によってY軸方向に移動可能な構造になっている。 In the hobbing machine 1, a column 12 on a movable bed 11 is movable in the longitudinal direction of the machine body in the X-axis direction. It is configured to be raised and lowered by a shaft motor 15 . A hob head 16 that supports a hob cutter 17 is assembled to the saddle 13 . The hob cutter 17 is rotatably supported by a horizontal rotating shaft parallel to the Y-axis, and is rotated during gear cutting by a hob motor 19 (see FIG. 3). The hob head 16 is structured to be movable in the Y-axis direction with respect to the saddle 13 by a Y-axis motor 18 so that the position of the blade of the hob cutter 17 can be changed.
 こうしてホブカッタ17を搭載したホブ駆動装置の前方側にはワーク主軸装置20が設けられている。ワーク主軸装置20は、下部ユニット21と上部ユニット22とが回転中心をZ軸に合わせた同軸の状態で上下に構成されている。可動ベッド11にサポートコラム23が立設され、上部ユニット22をZ軸方向に上下動させるリフト機構が構成されている。サポートコラム23には鉛直なレールが固定され、そこに上部ユニット22を保持したリフト24が摺動可能に組付けられている。そして、サポートコラム23の頂部にリフト用モータ25が設けられ、その回転出力がボールネジによってリフト24の直線運動に変換されるよう構成されている。 A work spindle device 20 is provided on the front side of the hob driving device on which the hob cutter 17 is mounted. The work spindle device 20 is configured vertically such that a lower unit 21 and an upper unit 22 are coaxial with the center of rotation aligned with the Z-axis. A support column 23 is erected on the movable bed 11 to constitute a lift mechanism for moving the upper unit 22 up and down in the Z-axis direction. A vertical rail is fixed to the support column 23, and a lift 24 holding the upper unit 22 is slidably assembled thereon. A lift motor 25 is provided at the top of the support column 23, and its rotational output is converted into linear motion of the lift 24 by a ball screw.
 下部ユニット21は、上部ユニット22の回転自在な上クランプブロックとの間にワークWを挟み込む下クランプブロックを有し、その下クランプブロックに対してワーク回転用モータ27の回転がウォームギヤを介して伝達されるよう構成されている。そして、ホブ盤1は、コラム12などからなるホブ駆動装置の後方側に各駆動部を制御するための制御装置30が配置され、可動ベッド11上に搭載されている。図3は、ホブ盤1の制御システムを示したブロック図である。 The lower unit 21 has a lower clamp block that sandwiches the workpiece W between itself and the rotatable upper clamp block of the upper unit 22. The rotation of the workpiece rotating motor 27 is transmitted to the lower clamp block via a worm gear. configured to be The hobbing machine 1 is mounted on the movable bed 11 with a control device 30 for controlling each driving part arranged behind a hob driving device composed of a column 12 and the like. FIG. 3 is a block diagram showing the control system of the hobbing machine 1. As shown in FIG.
 制御装置30にはマイクロプロセッサ(CPU)31、ROM32、RAM33、不揮発性メモリ34がバスラインを介して接続されている。CPU31は、制御装置全体を統括制御するものであり、ROM32にはCPU31が実行するシステムプログラムや制御パラメータ等が格納され、RAM33には一時的な計算データや表示データ等が格納される。不揮発性メモリ34にはCPU31が行う処理に必要な情報が記憶され、ホブ盤1のシーケンスプログラムなどが格納されている。特に、本実施形態の不揮発性メモリ34には、後述するホブ送りプログラムなども格納されている。 A microprocessor (CPU) 31, a ROM 32, a RAM 33, and a nonvolatile memory 34 are connected to the control device 30 via bus lines. The CPU 31 controls the entire control device, the ROM 32 stores system programs executed by the CPU 31, control parameters, and the like, and the RAM 33 stores temporary calculation data, display data, and the like. The non-volatile memory 34 stores information necessary for processing performed by the CPU 31, and stores a sequence program for the hobbing machine 1 and the like. In particular, the non-volatile memory 34 of this embodiment also stores a hobbing program and the like, which will be described later.
 ホブ盤1は、図1に示すように、機体前面部にタッチパネル型の操作表示装置38が取り付けられ、作業者による入力操作や画面における製造状況の表示などが可能になっている。制御装置30にはI/Oポート35が設けられており、そのI/Oポート35を介して操作表示装置38などが接続されている。更に、I/Oポート35には、Z軸用モータ15やホブ用モータ19、ワーク回転用モータ27など、ホブ駆動装置やワーク主軸装置20を構成する各種モータが各々ドライバ41,42,43,44,45を介して接続されている。 As shown in FIG. 1, the hobbing machine 1 is equipped with a touch panel type operation display device 38 on the front part of the machine body, which enables the operator to perform input operations and display the manufacturing status on the screen. The controller 30 is provided with an I/O port 35 through which an operation display device 38 and the like are connected. Further, the I/O port 35 is connected to drivers 41, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43. 44 and 45 are connected.
 ホブ盤1における歯切り加工は、ワーク搬送ロボット6によって加工室内に運び込まれたワークWがワーク主軸装置20の下部ユニット21に載せられる。ワーク主軸装置20は、リフト用モータ25の駆動によってリフト24に保持された上部ユニット22が下降し、下部ユニット21とのクランプ動作によってワークWが上下クランプブロックによって保持される。こうしてワークWに対する加工準備が整ったワーク主軸装置20は、ワーク回転用モータ27の駆動によりクランプしたワークWに回転が与えられる。そして、ホブ駆動装置の駆動によりホブカッタ17が回転しながらZ軸方向に移動し、回転するワークWに対して歯切り加工が施される。 For gear cutting on the hobbing machine 1, the workpiece W carried into the machining chamber by the workpiece transfer robot 6 is placed on the lower unit 21 of the workpiece spindle device 20. In the work spindle device 20, the upper unit 22 held by the lift 24 is lowered by driving the lift motor 25, and the work W is held by the upper and lower clamp blocks by the clamping operation with the lower unit 21. After the workpiece spindle device 20 is ready for machining the workpiece W, the clamped workpiece W is rotated by driving the workpiece rotation motor 27 . Then, the hob cutter 17 is rotated and moved in the Z-axis direction by driving the hob driving device, and the rotating workpiece W is subjected to gear cutting.
 ここで、図4は、ワークWとホブカッタ17の位置関係および送り速度を簡易的に示した図である。ワークWに対する歯切り加工は、ホブカッタ17がY軸方向の回転軸Oyを中心にして回転しながらZ軸と平行な方向に直線移動する一方、ワークWはZ軸方向のワーク回転軸Ozを中心にして回転する。よって、図4に示すように、回転するワークWにホブ刃171を当てるホブカッタ17がAからDへと位置を徐々に移動しながら歯切り加工が進められる。 Here, FIG. 4 is a diagram simply showing the positional relationship between the work W and the hob cutter 17 and the feed speed. In the gear cutting of the work W, the hob cutter 17 moves linearly in a direction parallel to the Z-axis while rotating around the rotation axis Oy in the Y-axis direction, while the work W moves around the work rotation axis Oz in the Z-axis direction. and rotate. Therefore, as shown in FIG. 4, the hob cutter 17, which applies the hob blade 171 to the rotating work W, gradually moves from A to D while the gear cutting process proceeds.
 従来の歯切り加工では、ホブカッタ17のZ軸方向の送り速度がA-D間で一定であった。そのため、前述したように加工精度と加工時間の短縮とが両立せず、加工精度向上のために送り速度を下げれば加工時間が長くなってしい、加工時間短縮のために送り度を上げれば加工精度が低下してしまうという課題があった。そこで、本実施形態では加工精度を維持しながら加工時間を短縮することができるように、ホブカッタ17の送り速度を調整するホブ送りプログラムが設けられている。 In conventional gear cutting, the feed speed in the Z-axis direction of the hob cutter 17 was constant between A and D. Therefore, as mentioned above, machining accuracy and shortening of machining time are incompatible. There is a problem that the accuracy is lowered. Therefore, in this embodiment, a hob feed program for adjusting the feed speed of the hob cutter 17 is provided so that the machining time can be shortened while maintaining the machining accuracy.
 図5は、ワークWに対するホブカッタ17を示した斜視図である。ホブカッタ17は、らせん状に形成されたホブ刃171が、軸方向に切り欠かれた複数の刃溝173によって円周方向に非連続な形状になっている。そのため、ワークWに対するホブ刃171の当たり方が断続的になってしまうことが加工精度を維持しながら送り速度を大きくするということを困難にしていた。特に、ホブ刃171の先端部分しか当たらない加工開始のA位置付近などで加工負荷の変動が大きくなることが、送り速度の上昇によって加工精度を低下させる原因になっていた。 5 is a perspective view showing the hob cutter 17 for the work W. FIG. The hob cutter 17 has a helically formed hob blade 171 that is discontinuous in the circumferential direction due to a plurality of blade grooves 173 cut in the axial direction. Therefore, intermittent contact of the hob blade 171 with the work W makes it difficult to increase the feed rate while maintaining the machining accuracy. In particular, the large variation in machining load around position A at the start of machining, where only the tip of the hob blade 171 is in contact, has been a cause of reduced machining accuracy due to an increase in feed rate.
 その一方で、ホブカッタ17の位置が図4のB位置まで移動すると、ホブ刃171がワークWに対して最も深い位置まで入り込んだ状態になる。このとき回転方向に前後する非連続のホブ刃171はワークWに対して同時に作用するようになり、ホブ刃171が断続的であることの影響が薄れ加工負荷変動も小さくなる。このようなことからワークWに対するホブカッタ17の当たり方がZ軸方向の移動に伴って変化し、不安定な加工状態から安定した加工状態へと変化していると考えられる。そのため、ホブカッタ17の加工状態が安定した状態であれば送り速度を大きくしたとしても一定の加工精度が得られる。 On the other hand, when the hob cutter 17 moves to position B in FIG. At this time, the discontinuous hob blades 171 that move back and forth in the rotational direction simultaneously act on the workpiece W, so that the influence of the discontinuity of the hob blades 171 is reduced and the machining load fluctuation is reduced. For this reason, it is considered that the way in which the hob cutter 17 contacts the workpiece W changes as it moves in the Z-axis direction, changing from an unstable machining state to a stable machining state. Therefore, if the machining state of the hob cutter 17 is stable, a certain machining accuracy can be obtained even if the feed rate is increased.
 本実施形態のホブ送りプログラムでは、ホブカッタ17の送り速度がホブ刃171の送り量に応じて変化するように設定されている。具体的には、ホブカッタ17の工具回転軸Oyの位置が図4に示すA-B間、B-C間そしてC-D間を移動するのに応じて、送り速度が変化するように構成されている。A位置はワークW対するホブカッタ17の当たりはじめの位置であり、B位置およびC位置は工具回転軸Oyがその直交方向にワークWと重なるはじめと終わりの位置であり、C位置はホブカッタ17がワークWから離れる位置である。B-C間の送り速度は一定であり、A-B間およびC-D間の送り速度が次の(1)式および(2)式に基づいて求められる。 In the hob feed program of this embodiment, the feed speed of the hob cutter 17 is set to change according to the feed amount of the hob blade 171 . Specifically, the feed rate is changed as the position of the tool rotation axis Oy of the hob cutter 17 moves between AB, BC and CD shown in FIG. ing. Position A is the position at which the hob cutter 17 begins contact with the work W, Position B and Position C are positions at which the tool rotation axis Oy overlaps the work W in the orthogonal direction, and Position C is the position where the hob cutter 17 touches the work W. It is a position away from W. The feed speed between BC is constant, and the feed speed between AB and between CD is obtained based on the following formulas (1) and (2).
 fa-b=fa+{(fb-fa)/(B-A)}×Z1・・・(1)
 fc-d=fc+{(fc-fd)/(C-D)}×Z2・・・(2)
 ここで、fnは、A位置、B位置などのZ軸方向の任意の位置での送り速度および、A-B間などZ軸方向の任意の範囲における送り速度を表している(nは、任意の位置や範囲)。また、A,B,C,Dは、ホブ盤1の3次元空間におけるZ軸方向の座標値である。そして、Z1およびZ2は、工具回転軸Oyに基づくホブカッタ17におけるZ軸方向の送り量であり、Z1はA位置を基準にした変数であり、Z2はC位置を基準にした変数である。
fa−b=fa+{(fb−fa)/(B−A)}×Z1 (1)
fc−d=fc+{(fc−fd)/(C−D)}×Z2 (2)
Here, fn represents the feed speed at an arbitrary position in the Z-axis direction such as the A position and the B position, and the feed speed in an arbitrary range in the Z-axis direction such as between AB (n is an arbitrary position and range). A, B, C, and D are coordinate values of the hobbing machine 1 in the three-dimensional space in the Z-axis direction. Z1 and Z2 are feed amounts in the Z-axis direction of the hob cutter 17 based on the tool rotation axis Oy, Z1 is a variable based on the A position, and Z2 is a variable based on the C position.
 また、ホブカッタ17の送り速度は、ワークWの材質や大きさのほか、ホブ刃171の大きさや形状さらにはワークWにおける加工深さなど様々な要素があり、試験を基に適切な送り速度fa,fb,fc,fdが任意に定められる。このとき各々の送り速度の関係は、fb=fb-c=fc、fa<fb、fc>fdとなる。なお、図4に示すグラフでは送り速度faと送り速度fdが一致するように示されているが、単純に表現しただけであって必ずしも一致しない。 In addition, the feed speed of the hob cutter 17 depends on various factors such as the material and size of the work W, the size and shape of the hob blade 171, and the depth of work W to be machined. , fb, fc, and fd are arbitrarily determined. At this time, the relationship of each feed rate is fb=fb-c=fc, fa<fb, fc>fd. In the graph shown in FIG. 4, the feed speed fa and the feed speed fd are shown to match, but they are simply expressed and do not necessarily match.
 そして、(1)式および(2)式におけるワークWに従った座標値A,B,C,Dの値や送り速度fa,fb,fc,fdは、該当するワークWの歯切り加工に際して作業者によって操作表示装置38から入力される。この(1)式および(2)式から本実施形態の歯切り加工では、A-B間の加工時にはホブカッタ17の移動にしたがってZ1の値が大きくなり、送り速度fa-bの値が(1)式に従ってfaからfbへと大きくなる。また、C-D間の加工時には送り速度fc-dの値が(2)式に従ってfcからfdへと小さくなる。 The coordinate values A, B, C, and D and the feed speeds fa, fb, fc, and fd in accordance with the workpiece W in the equations (1) and (2) are used for gear cutting of the corresponding workpiece W. input from the operation display device 38 by the operator. From the equations (1) and (2), in the gear cutting of this embodiment, the value of Z1 increases as the hob cutter 17 moves during machining between A and B, and the value of the feed rate fa-b is (1 ) increases from fa to fb according to the equation. Also, during machining between CD, the value of the feed rate fc-d decreases from fc to fd according to the equation (2).
 具体的には、まず図5に示すようにホブ刃171の先端がワークWに当たるA位置では送り速度faで加工が開始される。そして、工具回転軸OyがA位置からB位置まで移動するホブカッタ17の送り量Z1の変化に従って徐々に送り速度が大きくなる。すなわち、ホブ刃171の当たり方が変化して加工負荷変動の大きい加工はじめでは送り速度が比較的は小さく、ホブ刃171がワークWに対して深く入るB位置に近づくにしたがって加工負荷変動が小さくなるため、反対に送り速度fa-bが徐々に大きくなる。 Specifically, first, as shown in FIG. 5, at position A where the tip of the hob blade 171 hits the workpiece W, machining is started at the feed speed fa. Then, the feed speed gradually increases as the feed amount Z1 of the hob cutter 17 changes when the tool rotation axis Oy moves from the A position to the B position. That is, at the beginning of machining where the contact of the hob blade 171 changes and the machining load fluctuates greatly, the feed rate is relatively low, and as the hob blade 171 approaches the position B where the hob blade 171 enters deeply into the workpiece W, the machining load fluctuation decreases. Therefore, the feed speed fa-b gradually increases.
 次に、B位置からC位置までは加工負荷変動が小さく加工が安定するため、送り速度fb-c(=fb)は最も大きな値で一定になる。そして、C位置からは再びホブ刃171の当たり方が変化して加工負荷変動の大きくなるため、工具回転軸OyがC位置からD位置まで移動するホブカッタ17の送り量Z2に従って徐々に送り速度fc-dが小さくなる。 Next, from the B position to the C position, the machining load fluctuation is small and machining is stable, so the feed speed fb-c (=fb) is the largest and constant. From the C position, the contact of the hob blade 171 changes again and the machining load fluctuation increases. -d becomes smaller.
 よって、本実施形態によれば、ホブカッタ17におけるワーク加工時の特性に応じて送り速度を変化させたため、特に加工負荷変動が小さいB-C間の送り速度を大きくしたことにより加工時間を短縮させることが可能になる。また、加工負荷変動が大きいA-B間やC-D間では送り速度を変化させるようにしたため、全体の加工時間を短縮しながらも加工精度を維持することができる。 Therefore, according to the present embodiment, since the feed speed is changed according to the characteristics at the time of work processing in the hob cutter 17, the processing time is shortened by increasing the feed speed between B and C, where the processing load fluctuation is particularly small. becomes possible. In addition, since the feed speed is changed between AB and between CD where machining load fluctuations are large, machining accuracy can be maintained while shortening the overall machining time.
 本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、前記実施形態ではB-C間の送り速度が一定であるが、この間の送り速度も変化させるようにしてもよい。
Although one embodiment of the present invention has been described, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.
For example, in the above-described embodiment, the feeding speed between BC is constant, but the feeding speed during this period may also be changed.
1…ホブ盤 12…コラム 13…サドル 15…Z軸用モータ 17…ホブカッタ 18…Y軸用モータ 20…ワーク主軸装置 27…ワーク回転用モータ 30…制御装置
 
DESCRIPTION OF SYMBOLS 1... Hobbing machine 12... Column 13... Saddle 15... Z-axis motor 17... Hob cutter 18... Y-axis motor 20... Work spindle device 27... Work rotation motor 30... Control device

Claims (3)

  1.  保持したワークに回転を与えるワーク主軸装置と、
     ワークの回転軸に対して交差する方向の回転軸をもったホブカッタを回転させながら、そのホブカッタを前記ワークの回転軸に沿った方向に移動させるホブ駆動装置と、
     前記ワーク主軸装置と前記ホブ駆動装置とを制御するものであって、前記ホブ駆動装置に対して前記ホブカッタを移動させる際の送り速度をワークに対する加工位置に応じて変化させる制御装置と、
     を有するホブ盤。
    a work spindle device that rotates the held work;
    A hob driving device that moves the hob cutter in a direction along the rotation axis of the work while rotating the hob cutter having a rotation axis that intersects the rotation axis of the work;
    a control device that controls the work spindle device and the hob drive device, and changes the feed speed when moving the hob cutter with respect to the hob drive device according to the machining position with respect to the work;
    A hobbing machine having a
  2.  前記制御装置は、ワークに対する前記ホブカッタの当たりはじめの開始位置、前記ホブカッタの回転軸がその直交方向にワークと重なっている中間位置および、前記ホブカッタがワークから離れる終了位置に基づいて前記送り速度を変化させる請求項1に記載のホブ盤。 The control device adjusts the feed speed based on the start position of the hob cutter at the beginning of contact with the work, the intermediate position where the rotation axis of the hob cutter overlaps the work in the orthogonal direction, and the end position where the hob cutter leaves the work. The hobbing machine of claim 1, wherein the hobbing machine is variable.
  3.   前記制御装置は、前記開始位置から前記中間位置までの間は加速させ、前記中間位置の間では一定にし、前記中間位置から前記終了位置までの間は減速させるように前記送り速度を変化させる請求項2に記載のホブ盤。
     
    The control device changes the feed rate so that it is accelerated from the start position to the intermediate position, is constant during the intermediate position, and is decelerated from the intermediate position to the end position. Item 2. The hobbing machine according to item 2.
PCT/JP2021/015791 2021-04-19 2021-04-19 Hobbing machine WO2022224291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023515419A JPWO2022224291A1 (en) 2021-04-19 2021-04-19
PCT/JP2021/015791 WO2022224291A1 (en) 2021-04-19 2021-04-19 Hobbing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015791 WO2022224291A1 (en) 2021-04-19 2021-04-19 Hobbing machine

Publications (1)

Publication Number Publication Date
WO2022224291A1 true WO2022224291A1 (en) 2022-10-27

Family

ID=83722032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015791 WO2022224291A1 (en) 2021-04-19 2021-04-19 Hobbing machine

Country Status (2)

Country Link
JP (1) JPWO2022224291A1 (en)
WO (1) WO2022224291A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846778A (en) * 1971-10-18 1973-07-03
JPS51115379A (en) * 1975-04-03 1976-10-09 Daihatsu Motor Co Ltd Cutting feed control system for machine tool
JPS5771754A (en) * 1980-10-24 1982-05-04 Mitsubishi Heavy Ind Ltd Synchronous operating method of numerically controlled machine tool
JPS5919630A (en) * 1982-07-27 1984-02-01 Toyota Motor Corp Method and device for cutting gear
JPS5981017A (en) * 1982-10-27 1984-05-10 Kashifuji Tekkosho:Kk Correcting method of error in tooth trace direction in hobbing machine
JPS63156615A (en) * 1986-12-17 1988-06-29 Mitsubishi Motors Corp Gear cutting method in gear hobbing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846778A (en) * 1971-10-18 1973-07-03
JPS51115379A (en) * 1975-04-03 1976-10-09 Daihatsu Motor Co Ltd Cutting feed control system for machine tool
JPS5771754A (en) * 1980-10-24 1982-05-04 Mitsubishi Heavy Ind Ltd Synchronous operating method of numerically controlled machine tool
JPS5919630A (en) * 1982-07-27 1984-02-01 Toyota Motor Corp Method and device for cutting gear
JPS5981017A (en) * 1982-10-27 1984-05-10 Kashifuji Tekkosho:Kk Correcting method of error in tooth trace direction in hobbing machine
JPS63156615A (en) * 1986-12-17 1988-06-29 Mitsubishi Motors Corp Gear cutting method in gear hobbing machine

Also Published As

Publication number Publication date
JPWO2022224291A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US6618917B2 (en) Complex machining tools
US10241493B2 (en) Control device for machine tool and machine tool including the control device
CA2510974C (en) Gear grinding machine
US8838265B2 (en) Machine tool, machining method, program and NC data generation device
CN108994552B (en) Gear machining method and gear machining device
JP2003011021A (en) Gear grinding apparatus and dressing method for grinding wheel
JP4987214B2 (en) Automatic lathe and its control method and control device
JP6255885B2 (en) Numerical controller
KR100967455B1 (en) Method and device for controlling tool selecting operation of turret tool post
EP2868411B1 (en) Control device for machine tool and machine tool
JP5413913B2 (en) Non-circular machining method by turning
US20210331261A1 (en) Gear machining apparatus
JPWO2002091090A1 (en) Automatic lathe, its control method and its control device
JPS61293704A (en) Numerical controller for automatic lathe
WO2022224291A1 (en) Hobbing machine
JP6865413B2 (en) NC lathe and cutting method using it
KR20200135943A (en) machine tool
JP7161254B2 (en) Processing method, processing equipment and program
JP2000190127A (en) Gear shaping method by machining center
JP4656371B2 (en) Cutting method
JP4037087B2 (en) Thread cutting control method and control device for numerically controlled machine tool and numerically controlled machine tool incorporating the same
JP4509348B2 (en) Tool position correcting method and control device in numerically controlled lathe
JP2001269816A (en) Gear machining method and gear machining device
US20230115138A1 (en) Machine tool and method of deciding tool moving path
JP2000158260A (en) Table for machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937790

Country of ref document: EP

Kind code of ref document: A1